1
|
Li CL, Liu SF. Cellular and Molecular Biology of Mitochondria in Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2024; 25:7780. [PMID: 39063022 PMCID: PMC11276859 DOI: 10.3390/ijms25147780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive respiratory disorder characterized by enduring airflow limitation and chronic inflammation. Growing evidence highlights mitochondrial dysfunction as a critical factor in COPD development and progression. This review explores the cellular and molecular biology of mitochondria in COPD, focusing on structural and functional changes, including alterations in mitochondrial shape, behavior, and respiratory chain complexes. We discuss the impact on cellular signaling pathways, apoptosis, and cellular aging. Therapeutic strategies targeting mitochondrial dysfunction, such as antioxidants and mitochondrial biogenesis inducers, are examined for their potential to manage COPD. Additionally, we consider the role of mitochondrial biomarkers in diagnosis, evaluating disease progression, and monitoring treatment efficacy. Understanding the interplay between mitochondrial biology and COPD is crucial for developing targeted therapies to slow disease progression and improve patient outcomes. Despite advances, further research is needed to fully elucidate mitochondrial dysfunction mechanisms, discover new biomarkers, and develop targeted therapies, aiming for comprehensive disease management that preserves lung function and enhances the quality of life for COPD patients.
Collapse
Affiliation(s)
- Chin-Ling Li
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - Shih-Feng Liu
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, #123, Ta-Pei Road, Niaosong District, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
2
|
Winsvold BS, Harder AVE, Ran C, Chalmer MA, Dalmasso MC, Ferkingstad E, Tripathi KP, Bacchelli E, Børte S, Fourier C, Petersen AS, Vijfhuizen LS, Magnusson SH, O'Connor E, Bjornsdottir G, Häppölä P, Wang Y, Callesen I, Kelderman T, Gallardo VJ, de Boer I, Olofsgård FJ, Heinze K, Lund N, Thomas LF, Hsu C, Pirinen M, Hautakangas H, Ribasés M, Guerzoni S, Sivakumar P, Yip J, Heinze A, Küçükali F, Ostrowski SR, Pedersen OB, Kristoffersen ES, Martinsen AE, Artigas MS, Lagrata S, Cainazzo MM, Adebimpe J, Quinn O, Göbel C, Cirkel A, Volk AE, Heilmann‐Heimbach S, Skogholt AH, Gabrielsen ME, Wilbrink LA, Danno D, Mehta D, Guðbjartsson DF, Rosendaal FR, Willems van Dijk K, Fronczek R, Wagner M, Scherer M, Göbel H, Sleegers K, Sveinsson OA, Pani L, Zoli M, Ramos‐Quiroga JA, Dardiotis E, Steinberg A, Riedel‐Heller S, Sjöstrand C, Thorgeirsson TE, Stefansson H, Southgate L, Trembath RC, Vandrovcova J, Noordam R, Paemeleire K, Stefansson K, Fann CS, Waldenlind E, Tronvik E, Jensen RH, Chen S, Houlden H, Terwindt GM, Kubisch C, Maestrini E, Vikelis M, Pozo‐Rosich P, Belin AC, Matharu M, van den Maagdenberg AM, Hansen TF, Ramirez A, Zwart J. Cluster Headache Genomewide Association Study and Meta-Analysis Identifies Eight Loci and Implicates Smoking as Causal Risk Factor. Ann Neurol 2023; 94:713-726. [PMID: 37486023 PMCID: PMC10952302 DOI: 10.1002/ana.26743] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/22/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023]
Abstract
OBJECTIVE The objective of this study was to aggregate data for the first genomewide association study meta-analysis of cluster headache, to identify genetic risk variants, and gain biological insights. METHODS A total of 4,777 cases (3,348 men and 1,429 women) with clinically diagnosed cluster headache were recruited from 10 European and 1 East Asian cohorts. We first performed an inverse-variance genomewide association meta-analysis of 4,043 cases and 21,729 controls of European ancestry. In a secondary trans-ancestry meta-analysis, we included 734 cases and 9,846 controls of East Asian ancestry. Candidate causal genes were prioritized by 5 complementary methods: expression quantitative trait loci, transcriptome-wide association, fine-mapping of causal gene sets, genetically driven DNA methylation, and effects on protein structure. Gene set and tissue enrichment analyses, genetic correlation, genetic risk score analysis, and Mendelian randomization were part of the downstream analyses. RESULTS The estimated single nucleotide polymorphism (SNP)-based heritability of cluster headache was 14.5%. We identified 9 independent signals in 7 genomewide significant loci in the primary meta-analysis, and one additional locus in the trans-ethnic meta-analysis. Five of the loci were previously known. The 20 genes prioritized as potentially causal for cluster headache showed enrichment to artery and brain tissue. Cluster headache was genetically correlated with cigarette smoking, risk-taking behavior, attention deficit hyperactivity disorder (ADHD), depression, and musculoskeletal pain. Mendelian randomization analysis indicated a causal effect of cigarette smoking intensity on cluster headache. Three of the identified loci were shared with migraine. INTERPRETATION This first genomewide association study meta-analysis gives clues to the biological basis of cluster headache and indicates that smoking is a causal risk factor. ANN NEUROL 2023;94:713-726.
Collapse
Affiliation(s)
- Bendik S. Winsvold
- Department of Research and Innovation, Division of Clinical NeuroscienceOslo University HospitalOsloNorway
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health SciencesNorwegian University of Science and Technology (NTNU)TrondheimNorway
- Department of NeurologyOslo University HospitalOsloNorway
- Norwegian Centre for Headache Research (NorHEAD), Department of Neuromedicine and Movement ScienceNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Aster V. E. Harder
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
- Department of NeurologyLeiden University Medical CenterLeidenThe Netherlands
| | - Caroline Ran
- Centre for Cluster Headache, Department of NeuroscienceKarolinska InstitutetStockholmSweden
| | - Mona A. Chalmer
- Department of Neurology, Danish Headache Center, Rigshospitalet‐GlostrupUniversity of Copenhagen University HospitalGlostrupDenmark
| | - Maria Carolina Dalmasso
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Neurosciences and Complex Systems Unit (EnyS), CONICET, Hospital El Cruce 'N. Kirchner'National University A. Jauretche (UNAJ)Florencio VarelaArgentina
| | | | - Kumar Parijat Tripathi
- Division of Neurogenetics and Molecular Psychiatry, Department of PsychiatryUniklinik KölnCologneGermany
| | - Elena Bacchelli
- Department of Pharmacy and BiotechnologyUniversity of BolognaBolognaItaly
| | - Sigrid Børte
- Department of Research and Innovation, Division of Clinical NeuroscienceOslo University HospitalOsloNorway
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health SciencesNorwegian University of Science and Technology (NTNU)TrondheimNorway
- Norwegian Centre for Headache Research (NorHEAD), Department of Neuromedicine and Movement ScienceNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Carmen Fourier
- Centre for Cluster Headache, Department of NeuroscienceKarolinska InstitutetStockholmSweden
| | - Anja S. Petersen
- Department of Neurology, Danish Headache Center, Rigshospitalet‐GlostrupUniversity of Copenhagen University HospitalGlostrupDenmark
| | | | | | - Emer O'Connor
- Department of Neuromuscular Diseases, Institute of NeurologyUniversity College LondonLondonUK
| | | | - Paavo Häppölä
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of HelsinkiHelsinkiFinland
| | - Yen‐Feng Wang
- Department of NeurologyTaipei Veterans General HospitalTaipeiTaiwan
- Brain Research CenterNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Ida Callesen
- Department of Neurology, Danish Headache Center, Rigshospitalet‐GlostrupUniversity of Copenhagen University HospitalGlostrupDenmark
| | - Tim Kelderman
- Department of NeurologyGhent University HospitalGhentBelgium
| | - Victor J Gallardo
- Headache and Neurological Pain Research Group, Vall d'Hebron Research Institute, Departament de MedicinaUniversitat Autònoma de Barcelona, Vall d'Hebron Research Institute (VHIR)BarcelonaSpain
| | - Irene de Boer
- Department of NeurologyLeiden University Medical CenterLeidenThe Netherlands
| | | | | | - Nunu Lund
- Department of Neurology, Danish Headache Center, Rigshospitalet‐GlostrupUniversity of Copenhagen University HospitalGlostrupDenmark
| | - Laurent F. Thomas
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health SciencesNorwegian University of Science and Technology (NTNU)TrondheimNorway
- Department of Clinical and Molecular MedicineNorwegian University of Science and Technology (NTNU)TrondheimNorway
- BioCore–Bioinformatics Core FacilityNorwegian University of Science and Technology (NTNU)TrondheimNorway
- Clinic of Laboratory MedicineSt. Olavs Hospital, Trondheim University HospitalTrondheimNorway
| | - Chia‐Lin Hsu
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
| | - Matti Pirinen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of HelsinkiHelsinkiFinland
- Department of Public HealthUniversity of HelsinkiHelsinkiFinland
- Department of Mathematics and StatisticsUniversity of HelsinkiHelsinkiFinland
| | - Heidi Hautakangas
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of HelsinkiHelsinkiFinland
| | - Marta Ribasés
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and AddictionUniversitat Autònoma de Barcelona, Vall d'Hebron Research Institute (VHIR)BarcelonaSpain
- Department of PsychiatryVall d'Hebron University HospitalBarcelonaSpain
- Biomedical Network Research Centre on Mental Health (CIBERSAM)Instituto de Salud Carlos IIIMadridSpain
- Department of Genetics, Microbiology, and Statistics, Faculty of BiologyUniversitat de BarcelonaBarcelonaSpain
| | | | - Prasanth Sivakumar
- Department of Neuromuscular Diseases, Institute of NeurologyUniversity College LondonLondonUK
| | - Janice Yip
- Department of Neuromuscular Diseases, Institute of NeurologyUniversity College LondonLondonUK
| | - Axel Heinze
- Kiel Migraine and Headache CentreKielGermany
| | - Fahri Küçükali
- Complex Genetics of Alzheimer's Disease Group, Center for Molecular Neurology, VIBAntwerpBelgium
- Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium
| | - Sisse R. Ostrowski
- Department of Clinical Immunology, Centre of Diagnostic InvestigationRigshospitaletCopenhagenDenmark
- Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Ole B. Pedersen
- Department of Clinical ImmunologyZealand University HospitalKøgeDenmark
| | - Espen S. Kristoffersen
- Department of Research and Innovation, Division of Clinical NeuroscienceOslo University HospitalOsloNorway
- Norwegian Centre for Headache Research (NorHEAD), Department of Neuromedicine and Movement ScienceNorwegian University of Science and Technology (NTNU)TrondheimNorway
- Department of General PracticeUniversity of OsloOsloNorway
- Department of NeurologyAkershus University HospitalLørenskogNorway
| | - Amy E. Martinsen
- Department of Research and Innovation, Division of Clinical NeuroscienceOslo University HospitalOsloNorway
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health SciencesNorwegian University of Science and Technology (NTNU)TrondheimNorway
- Norwegian Centre for Headache Research (NorHEAD), Department of Neuromedicine and Movement ScienceNorwegian University of Science and Technology (NTNU)TrondheimNorway
- Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloOsloNorway
| | - María S. Artigas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and AddictionUniversitat Autònoma de Barcelona, Vall d'Hebron Research Institute (VHIR)BarcelonaSpain
- Department of PsychiatryVall d'Hebron University HospitalBarcelonaSpain
- Biomedical Network Research Centre on Mental Health (CIBERSAM)Instituto de Salud Carlos IIIMadridSpain
- Department of Genetics, Microbiology, and Statistics, Faculty of BiologyUniversitat de BarcelonaBarcelonaSpain
| | - Susie Lagrata
- Headache and Facial Pain GroupUniversity College London Queen Square Institute of Neurology and National Hospital for Neurology and NeurosurgeryLondonUK
| | | | - Joycee Adebimpe
- Department of Neuromuscular Diseases, Institute of NeurologyUniversity College LondonLondonUK
| | - Olivia Quinn
- Department of Neuromuscular Diseases, Institute of NeurologyUniversity College LondonLondonUK
| | - Carl Göbel
- Kiel Migraine and Headache CentreKielGermany
- Department of NeurologyUniversity Hospital Schleswig‐HolsteinLübeckGermany
| | - Anna Cirkel
- Kiel Migraine and Headache CentreKielGermany
- Department of NeurologyUniversity Hospital Schleswig‐HolsteinLübeckGermany
| | - Alexander E. Volk
- Institute of Human GeneticsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Stefanie Heilmann‐Heimbach
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital BonnBonnGermany
| | - Anne Heidi Skogholt
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health SciencesNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Maiken E. Gabrielsen
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health SciencesNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | | | - Daisuke Danno
- Headache and Facial Pain GroupUniversity College London Queen Square Institute of Neurology and National Hospital for Neurology and NeurosurgeryLondonUK
| | - Dwij Mehta
- Headache and Facial Pain GroupUniversity College London Queen Square Institute of Neurology and National Hospital for Neurology and NeurosurgeryLondonUK
| | | | | | - Frits R. Rosendaal
- Department of Clinical EpidemiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Ko Willems van Dijk
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
- Department of Internal Medicine, Division of EndocrinologyLeiden University Medical CenterLeidenThe Netherlands
| | - Rolf Fronczek
- Department of NeurologyLeiden University Medical CenterLeidenThe Netherlands
| | - Michael Wagner
- Department of Neurodegenerative Diseases and Geriatric PsychiatryUniversity Hospital BonnBonnGermany
- German Center for Neurodegenerative Diseases (DZNE Bonn)BonnGermany
| | - Martin Scherer
- Department of Primary Medical CareUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | | | - Kristel Sleegers
- Complex Genetics of Alzheimer's Disease Group, Center for Molecular Neurology, VIBAntwerpBelgium
- Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium
| | - Olafur A. Sveinsson
- Faculty of Medicine, School of Health SciencesUniversity of IcelandReykjavikIceland
| | - Luca Pani
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
- Department of Psychiatry and Behavioral SciencesUniversity of MiamiMiamiFL
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Josep A. Ramos‐Quiroga
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and AddictionUniversitat Autònoma de Barcelona, Vall d'Hebron Research Institute (VHIR)BarcelonaSpain
- Department of PsychiatryVall d'Hebron University HospitalBarcelonaSpain
- Biomedical Network Research Centre on Mental Health (CIBERSAM)Instituto de Salud Carlos IIIMadridSpain
- Department of Psychiatry and Forensic MedicineUniversitat Autònoma de Barcelona, Vall d'Hebron Research Institute (VHIR)BarcelonaSpain
| | - Efthimios Dardiotis
- Department of Neurology, Faculty of MedicineUniversity of ThessalyVolosGreece
| | - Anna Steinberg
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
- Department of NeurologyKarolinska University HospitalStockholmSweden
| | - Steffi Riedel‐Heller
- Institute of Social Medicine, Occupational Health and Public HealthUniversity of LeipzigLeipzigGermany
| | - Christina Sjöstrand
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
- Department of NeurologyDanderyd HospitalStockholmSweden
| | | | | | - Laura Southgate
- Molecular and Clinical Sciences Research InstituteSt. George's, University of LondonLondonUK
- Department of Medical & Molecular Genetics, Faculty of Life Sciences & MedicineKing's College LondonLondonUK
| | - Richard C. Trembath
- Department of Medical & Molecular Genetics, Faculty of Life Sciences & MedicineKing's College LondonLondonUK
| | - Jana Vandrovcova
- Department of Neuromuscular Diseases, Institute of NeurologyUniversity College LondonLondonUK
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and GeriatricsLeiden University Medical CenterLeidenThe Netherlands
| | - Koen Paemeleire
- Department of NeurologyGhent University HospitalGhentBelgium
| | - Kari Stefansson
- deCODE genetics/Amgen Inc.ReykjavikIceland
- Faculty of Medicine, School of Health SciencesUniversity of IcelandReykjavikIceland
| | | | - Elisabet Waldenlind
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
- Department of NeurologyKarolinska University HospitalStockholmSweden
| | - Erling Tronvik
- Norwegian Centre for Headache Research (NorHEAD), Department of Neuromedicine and Movement ScienceNorwegian University of Science and Technology (NTNU)TrondheimNorway
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health SciencesNorwegian University of Science and Technology (NTNU)TrondheimNorway
- Department of Neurology and Clinical NeurophysiologySt. Olavs Hospital, Trondheim University HospitalTrondheimNorway
| | - Rigmor H. Jensen
- Department of Neurology, Danish Headache Center, Rigshospitalet‐GlostrupUniversity of Copenhagen University HospitalGlostrupDenmark
| | - Shih‐Pin Chen
- Brain Research CenterNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Department of Medical Research, Division of Translational ResearchTaipei Veterans General HospitalTaipeiTaiwan
| | - Henry Houlden
- Department of Neuromuscular Diseases, Institute of NeurologyUniversity College LondonLondonUK
| | - Gisela M. Terwindt
- Department of NeurologyLeiden University Medical CenterLeidenThe Netherlands
| | - Christian Kubisch
- Institute of Human GeneticsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Elena Maestrini
- Department of Pharmacy and BiotechnologyUniversity of BolognaBolognaItaly
| | | | - Patricia Pozo‐Rosich
- Headache and Neurological Pain Research Group, Vall d'Hebron Research Institute, Departament de MedicinaUniversitat Autònoma de Barcelona, Vall d'Hebron Research Institute (VHIR)BarcelonaSpain
- Headache Unit, Neurology DepartmentVall d'Hebron University HospitalBarcelonaSpain
| | - Andrea C. Belin
- Centre for Cluster Headache, Department of NeuroscienceKarolinska InstitutetStockholmSweden
| | - Manjit Matharu
- Headache and Facial Pain GroupUniversity College London Queen Square Institute of Neurology and National Hospital for Neurology and NeurosurgeryLondonUK
| | - Arn M.J.M. van den Maagdenberg
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
- Department of NeurologyLeiden University Medical CenterLeidenThe Netherlands
| | - Thomas F. Hansen
- Department of Neurology, Danish Headache Center, Rigshospitalet‐GlostrupUniversity of Copenhagen University HospitalGlostrupDenmark
- Novo Nordic Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Department of Neurodegenerative Diseases and Geriatric PsychiatryUniversity Hospital BonnBonnGermany
- German Center for Neurodegenerative Diseases (DZNE Bonn)BonnGermany
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health Sciences CenterSan AntonioTX
- Cluster of Excellence Cellular Stress Responses in Aging‐associated Diseases (CECAD)University of CologneCologneGermany
| | - John‐Anker Zwart
- Department of Research and Innovation, Division of Clinical NeuroscienceOslo University HospitalOsloNorway
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health SciencesNorwegian University of Science and Technology (NTNU)TrondheimNorway
- Norwegian Centre for Headache Research (NorHEAD), Department of Neuromedicine and Movement ScienceNorwegian University of Science and Technology (NTNU)TrondheimNorway
- Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloOsloNorway
| | | |
Collapse
|
3
|
Asmus E, Karle W, Brack MC, Wittig C, Behrens F, Reinshagen L, Pfeiffer M, Schulz S, Mandzimba-Maloko B, Erfinanda L, Perret PL, Michalick L, Smeele PJ, Lim EHT, van den Brom CE, Vonk ABA, Kaiser T, Suttorp N, Hippenstiel S, Sander LE, Kurth F, Rauch U, Landmesser U, Haghikia A, Preissner R, Bogaard HJ, Witzenrath M, Kuebler WM, Szulcek R, Simmons S. Cystic fibrosis transmembrane conductance regulator modulators attenuate platelet activation and aggregation in blood of healthy donors and COVID-19 patients. Eur Respir J 2023; 61:13993003.02009-2022. [PMID: 36958745 PMCID: PMC10033930 DOI: 10.1183/13993003.02009-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 01/31/2023] [Indexed: 03/25/2023]
Affiliation(s)
- Erik Asmus
- Institute of Physiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Weronika Karle
- Institute of Physiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Markus C Brack
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Corey Wittig
- Institute of Physiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Felix Behrens
- Institute of Physiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Leander Reinshagen
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Department of Cardiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Moritz Pfeiffer
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Sabrina Schulz
- Institute of Physiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Bertina Mandzimba-Maloko
- Institute of Physiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Lasti Erfinanda
- Institute of Physiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Paul L Perret
- Institute of Physiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Laura Michalick
- Institute of Physiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Patrick J Smeele
- Department of Pulmonary Diseases, Amsterdam UMC, VU University Medical Center, Amsterdam Cardiovascular Sciences (ACS), Amsterdam, The Netherlands
| | - Endry H T Lim
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Neurology, University of Amsterdam, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Charissa E van den Brom
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Anesthesiology, Amsterdam UMC, VU University Amsterdam, Amsterdam, The Netherlands
| | - Alexander B A Vonk
- Department of Cardiothoracic Surgery, Amsterdam UMC, VU University Amsterdam, Amsterdam, The Netherlands
| | - Toralf Kaiser
- German Rheumatism Research Centre Berlin (DRFZ) - Flow Cytometry Core Facility, Berlin, Germany
| | - Norbert Suttorp
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Partner site Berlin, Berlin, Germany
| | - Stefan Hippenstiel
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Partner site Berlin, Berlin, Germany
| | - Leif E Sander
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Partner site Berlin, Berlin, Germany
| | - Florian Kurth
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Partner site Berlin, Berlin, Germany
| | - Ursula Rauch
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Department of Cardiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Ulf Landmesser
- Berlin Institute of Health (BIH), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Department of Cardiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Arash Haghikia
- Berlin Institute of Health (BIH), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Department of Cardiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Robert Preissner
- Institute of Physiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Science-IT, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Harm J Bogaard
- Department of Pulmonary Diseases, Amsterdam UMC, VU University Medical Center, Amsterdam Cardiovascular Sciences (ACS), Amsterdam, The Netherlands
| | - Martin Witzenrath
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Partner site Berlin, Berlin, Germany
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Partner site Berlin, Berlin, Germany
- The Keenan Research Centre for Biomedical Science at St. Michael's, Toronto, ON, Canada
- Departments of Surgery and Physiology, University of Toronto, Toronto, ON, Canada
- These authors contributed equally to this work
| | - Robert Szulcek
- Institute of Physiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Department of Pulmonary Diseases, Amsterdam UMC, VU University Medical Center, Amsterdam Cardiovascular Sciences (ACS), Amsterdam, The Netherlands
- German Heart Center Berlin, Berlin, Germany
- These authors contributed equally to this work
| | - Szandor Simmons
- Institute of Physiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- These authors contributed equally to this work
| |
Collapse
|
4
|
Dong ZW, Liu H, Su FF, Fan XZ, Zhang Y, Liu P. Cystic fibrosis transmembrane conductance regulator prevents ischemia/reperfusion induced intestinal apoptosis via inhibiting PI3K/AKT/NF-κB pathway. World J Gastroenterol 2022; 28:918-932. [PMID: 35317058 PMCID: PMC8908288 DOI: 10.3748/wjg.v28.i9.918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/14/2021] [Accepted: 01/22/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Intestinal ischemia/reperfusion (I/R) injury is a fatal syndrome that occurs under many clinical scenarios. The apoptosis of intestinal cells caused by ischemia can cause cell damage and provoke systemic dysfunction during reperfusion. However, the mechanism of I/R-induced apoptosis remains unclear. Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated chloride channel. Few researchers have paid attention to its role in intestinal I/R injury, or the relationship between CFTR and intestinal apoptosis induced by hypoxia/reoxygenation (H/R).
AIM To investigate the effects of CFTR on I/R-induced intestinal apoptosis and its underlying molecular mechanisms.
METHODS An intestinal I/R injury model was established in mice with superior mesenteric artery occlusion, and Caco2 cells were subjected to H/R for the simulation of I/R in vivo.
RESULTS The results suggested that CFTR overexpression significantly increased the Caco2 cell viability and decreased cell apoptosis induced by the H/R. Interestingly, we found that the translocation of p65, an NF-κB member, from the cytoplasm to the nucleus after H/R treatment can be reversed by the overexpression of CFTR, the NF-κB P65 would return from the nucleus to the cytoplasm as determined by immunostaining. We also discovered that CFTR inhibited cell apoptosis in the H/R-treated cells, and this effect was significantly curbed by the NF-κB activator BA, AKT inhibitor GSK690693 and the PI3K inhibitor LY294002. Moreover, we demonstrated that CFTR overexpression could reverse the decreased PI3K/AKT expression induced by the I/R treatment in vivo or H/R treatment in vitro.
CONCLUSION The results of the present study indicate that the overexpression of CFTR protects Caco2 cells from H/R-induced apoptosis; furthermore, it also inhibits H/R-induced apoptosis through the PI3K/AKT/NF-κB signaling pathway in H/R-treated Caco2 cells and intestinal tissues.
Collapse
Affiliation(s)
- Zhi-Wei Dong
- Department of General Surgery, Air Force Medical Center, Beijing 100000, China
| | - Hui Liu
- Department of Gastroenterology, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| | - Fei-Fei Su
- Department of Cardiology, Air Force Medical Center, Beijing 100000, China
| | - Xiao-Zhou Fan
- Department of Ultrasound, Air Force Medical Center, Beijing 100000, China
| | - Yong Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology, Beijing 100000, China
| | - Peng Liu
- Research Laboratory of Aero-Medical Support, Air Force Medical Center, Beijing 100000, China
| |
Collapse
|
5
|
Zulueta A, Dei Cas M, Luciano F, Mingione A, Pivari F, Righi I, Morlacchi L, Rosso L, Signorelli P, Ghidoni R, Paroni R, Caretti A. Spns2 Transporter Contributes to the Accumulation of S1P in Cystic Fibrosis Human Bronchial Epithelial Cells. Biomedicines 2021; 9:biomedicines9091121. [PMID: 34572307 PMCID: PMC8467635 DOI: 10.3390/biomedicines9091121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/03/2022] Open
Abstract
The role of S1P in Cystic Fibrosis (CF) has been investigated since 2001, when it was first described that the CFTR channel regulates the inward transport of S1P. From then on, various studies have associated F508del CFTR, the most frequent mutation in CF patients, with altered S1P expression in tissue and plasma. We found that human bronchial epithelial immortalized and primary cells from CF patients express more S1P than the control cells, as evidenced by mass spectrometry analysis. S1P accumulation relies on two- to four-fold transcriptional up-regulation of SphK1 and simultaneous halving of SGPL1 in CF vs. control cells. The reduction of SGPL1 transcription protects S1P from irreversible degradation, but the excessive accumulation is partially prevented by the action of the two phosphatases that are up-regulated compared to control cells. For the first time in CF, we describe that Spns2, a non-ATP dependent transporter that normally extrudes S1P out of the cells, shows deficient transcriptional and protein expression, thus impairing S1P accrual dissipation. The in vitro data on CF human bronchial epithelia correlates with the impaired expression of Spns2 observed in CF human lung biopsies compared to healthy control.
Collapse
Affiliation(s)
- Aida Zulueta
- Biochemistry and Molecular Biology Laboratory, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (A.Z.); (F.L.); (A.M.); (F.P.); (P.S.); (R.G.)
| | - Michele Dei Cas
- Clinical Biochemistry and Mass Spectrometry Laboratory, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.D.C.); (R.P.)
| | - Francesco Luciano
- Biochemistry and Molecular Biology Laboratory, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (A.Z.); (F.L.); (A.M.); (F.P.); (P.S.); (R.G.)
| | - Alessandra Mingione
- Biochemistry and Molecular Biology Laboratory, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (A.Z.); (F.L.); (A.M.); (F.P.); (P.S.); (R.G.)
| | - Francesca Pivari
- Biochemistry and Molecular Biology Laboratory, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (A.Z.); (F.L.); (A.M.); (F.P.); (P.S.); (R.G.)
| | - Ilaria Righi
- Thoracic Surgery and Lung Transplant Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (I.R.); (L.R.)
| | - Letizia Morlacchi
- Respiratory Unit and Cystic Fibrosis Center, Internal Medicine Department, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Lorenzo Rosso
- Thoracic Surgery and Lung Transplant Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (I.R.); (L.R.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Paola Signorelli
- Biochemistry and Molecular Biology Laboratory, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (A.Z.); (F.L.); (A.M.); (F.P.); (P.S.); (R.G.)
| | - Riccardo Ghidoni
- Biochemistry and Molecular Biology Laboratory, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (A.Z.); (F.L.); (A.M.); (F.P.); (P.S.); (R.G.)
| | - Rita Paroni
- Clinical Biochemistry and Mass Spectrometry Laboratory, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.D.C.); (R.P.)
| | - Anna Caretti
- Biochemistry and Molecular Biology Laboratory, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (A.Z.); (F.L.); (A.M.); (F.P.); (P.S.); (R.G.)
- Correspondence: ; Tel.: +39-02-50323264
| |
Collapse
|
6
|
Yang Y, Di T, Zhang Z, Liu J, Fu C, Wu Y, Bian T. Dynamic evolution of emphysema and airway remodeling in two mouse models of COPD. BMC Pulm Med 2021; 21:134. [PMID: 33902528 PMCID: PMC8073949 DOI: 10.1186/s12890-021-01456-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/03/2021] [Indexed: 12/22/2022] Open
Abstract
Background Establishment of a mouse model is important for investigating the mechanism of chronic obstructive pulmonary disease (COPD). In this study, we observed and compared the evolution of the pathology in two mouse models of COPD induced by cigarette smoke (CS) exposure alone or in combination with lipopolysaccharide (LPS). Methods One hundred eight wild-type C57BL/6 mice were equally divided into three groups: the (1) control group, (2) CS-exposed group (CS group), and (3) CS + LPS-exposed group (CS + LPS group). The body weight of the mice was recorded, and noninvasive lung function tests were performed monthly. Inflammation was evaluated by counting the number of inflammatory cells in bronchoalveolar lavage fluid and measuring the expression of the IL-6 mRNA in mouse lung tissue. Changes in pathology were assessed by performing hematoxylin and eosin and Masson staining of lung tissue sections. Results The two treatments induced emphysema and airway remodeling and decreased lung function. Emphysema was induced after 1 month of exposure to CS or CS + LPS, while airway remodeling was induced after 2 months of exposure to CS + LPS and 3 months of exposure to CS. Moreover, the mice in the CS + LPS group exhibited more severe inflammation and airway remodeling than the mice in the CS group, but the two treatments induced similar levels of emphysema. Conclusion Compared with the single CS exposure method, the CS + LPS exposure method is a more suitable model of COPD in airway remodeling research. Conversely, the CS exposure method is a more suitable model of COPD for emphysema research due to its simple operation. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-021-01456-z.
Collapse
Affiliation(s)
- Yue Yang
- Department of Respiratory Medicine, Wuxi People's Hospital Affiliated With Nanjing Medical University, Wuxi, 214023, Jiangsu, People's Republic of China
| | - Tingting Di
- Department of Respiratory Medicine, Wuxi People's Hospital Affiliated With Nanjing Medical University, Wuxi, 214023, Jiangsu, People's Republic of China
| | - Zixiao Zhang
- Department of Respiratory Medicine, Wuxi People's Hospital Affiliated With Nanjing Medical University, Wuxi, 214023, Jiangsu, People's Republic of China
| | - Jiaxin Liu
- Department of Respiratory Medicine, Wuxi People's Hospital Affiliated With Nanjing Medical University, Wuxi, 214023, Jiangsu, People's Republic of China
| | - Congli Fu
- Respiratory and Critical Care Medicine, Zhejiang Province People's Hospital, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Yan Wu
- Department of Respiratory Medicine, Wuxi People's Hospital Affiliated With Nanjing Medical University, Wuxi, 214023, Jiangsu, People's Republic of China.
| | - Tao Bian
- Department of Respiratory Medicine, Wuxi People's Hospital Affiliated With Nanjing Medical University, Wuxi, 214023, Jiangsu, People's Republic of China.
| |
Collapse
|
7
|
Vij N. Prognosis-Based Early Intervention Strategies to Resolve Exacerbation and Progressive Lung Function Decline in Cystic Fibrosis. J Pers Med 2021; 11:jpm11020096. [PMID: 33546140 PMCID: PMC7913194 DOI: 10.3390/jpm11020096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic disease caused by a mutation(s) in the CF transmembrane regulator (CFTR), where progressive decline in lung function due to recurring exacerbations is a major cause of mortality. The initiation of chronic obstructive lung disease in CF involves inflammation and exacerbations, leading to mucus obstruction and lung function decline. Even though clinical management of CF lung disease has prolonged survival, exacerbation and age-related lung function decline remain a challenge for controlling the progressive lung disease. The key to the resolution of progressive lung disease is prognosis-based early therapeutic intervention; thus, the development of novel diagnostics and prognostic biomarkers for predicting exacerbation and lung function decline will allow optimal management of the lung disease. Hence, the development of real-time lung function diagnostics such as forced oscillation technique (FOT), impulse oscillometry system (IOS), and electrical impedance tomography (EIT), and novel prognosis-based intervention strategies for controlling the progression of chronic obstructive lung disease will fulfill a significant unmet need for CF patients. Early detection of CF lung inflammation and exacerbations with the timely resolution will not only prolong survival and reduce mortality but also improve quality of life while reducing significant health care costs due to recurring hospitalizations.
Collapse
Affiliation(s)
- Neeraj Vij
- Precision Theranostics Inc., Baltimore, MD 21202, USA; or or ; Tel.: +1-240-623-0757
- VIJ Biotech, Baltimore, MD 21202, USA
- Department of Pediatrics & Pulmonary Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
8
|
Vij N. Synthesis and Evaluation of Dendrimers for Autophagy Augmentation and Alleviation of Obstructive Lung Diseases. Methods Mol Biol 2021; 2118:155-164. [PMID: 32152978 DOI: 10.1007/978-1-0716-0319-2_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Preservation of cellular homeostasis requires constant synthesis of fresh proteins and cellular organelles and efficient degradation or removal of damaged proteins and cellular components. This involves two cellular degradation processes or molecular mechanisms: the ubiquitin-proteasome and autophagy-lysosomal systems. Impairment of these catabolic processes has been linked to pathogenesis of a variety of chronic obstructive lung diseases such as COPD (chronic obstructive pulmonary disease) and CF (cystic fibrosis). Proteosomal and autophagic functions (proteostasis) are known to decline with advancing age leading to accumulation of cellular debris and proteins, initiating cellular senescence or death and accelerating lung aging. Obstructive lung diseases associated with airway hyperinflammation and mucus obstruction provide major challenges to the delivery and therapeutic efficacy of nanotherapeutics systems as they need to bypass the airway defense. Targeted autophagy augmentation has emerged, as a promising therapeutic utility for alleviating obstructive lung diseases, and promoting healthy aging. A targeted dendrimer-based approach has been designed to penetrate the airway obstruction and allow the selective correction of proteostasis/autophagy in the diseased cells while circumventing the side effects. This report describes methods for synthesis and therapeutic evaluation of autophagy augmenting dendrimers in the treatment of obstructive lung disease(s). The formulations and methods of autophagy augmentation described here are currently under clinical development in our laboratory for alleviating pathogenesis and progression of chronic obstructive lung diseases, and promoting healthy aging.
Collapse
Affiliation(s)
- Neeraj Vij
- Department of Pediatrics and Pulmonary Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,4Dx Limited, Los Angeles, CA, USA. .,VIJ BIOTECH & PRECISION THERANOSTICS INC, Baltimore, MD, USA.
| |
Collapse
|
9
|
Liessi N, Pesce E, Braccia C, Bertozzi SM, Giraudo A, Bandiera T, Pedemonte N, Armirotti A. Distinctive lipid signatures of bronchial epithelial cells associated with cystic fibrosis drugs, including Trikafta. JCI Insight 2020; 5:138722. [PMID: 32673287 PMCID: PMC7455125 DOI: 10.1172/jci.insight.138722] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
In recent years, a number of drugs have been approved for the treatment of cystic fibrosis (CF). Among them, newly released Trikafta, a combination of 3 drugs (VX-661/VX-445/VX-770), holds great promise to radically improve the quality of life for a large portion of patients with CF carrying 1 copy of F508del, the most frequent CF transmembrane conductance regulator (CFTR) mutation. Currently available disease-modifying CF drugs work by rescuing the function of the mutated CFTR anion channel. Recent research has shown that membrane lipids, and the cell lipidome in general, play a significant role in the mechanism of CFTR-defective trafficking and, on the other hand, its rescue. In this paper, by using untargeted lipidomics on CFBE41o- cells, we identified distinctive changes in the bronchial epithelial cell lipidome associated with treatment with Trikafta and other CF drugs. Particularly interesting was the reduction of levels of ceramide, a known molecular player in the induction of apoptosis, which appeared to be associated with a decrease in the susceptibility of cells to undergo apoptosis. This evidence could account for additional beneficial roles of the triple combination of drugs on CF phenotypes.
Collapse
Affiliation(s)
- Nara Liessi
- Analytical Chemistry Lab, Istituto Italiano di Tecnologia, Genova, Italy
| | - Emanuela Pesce
- L'Unità Operativa Complessa (UOC) Genetica Medica, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Giannina Gaslini, Genova, Italy
| | - Clarissa Braccia
- D3 PharmaChemistry, Istituto Italiano di Tecnologia, Genova, Italy
| | | | | | - Tiziano Bandiera
- D3 PharmaChemistry, Istituto Italiano di Tecnologia, Genova, Italy
| | - Nicoletta Pedemonte
- L'Unità Operativa Complessa (UOC) Genetica Medica, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Giannina Gaslini, Genova, Italy
| | - Andrea Armirotti
- Analytical Chemistry Lab, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
10
|
Liu J, Ou C, Zhu X, Tan C, Xiang X, He Y. Potential role of CFTR in bisphenol A-induced malignant transformation of prostate cells via mitochondrial apoptosis. Toxicol Ind Health 2020; 36:531-539. [PMID: 32729384 DOI: 10.1177/0748233720943750] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bisphenol A (BPA) is an environmental endocrine disruptor and a risk factor for prostate cancer. The cystic fibrosis transmembrane conductance regulator (CFTR) is proposed to be a prostate cancer suppressor in some recent researches. However, the potential role and mechanism of CFTR in BPA-induced prostate cancer cells has not been well identified. In this study, BPA decreased the viability of human normal prostate RWPE-1 cells detected with a CCK-8 kit. The capacity of the cell line on soft agar colony formation, wound healing, and transwell invasion indicated malignant transformation induced by BPA. Western blot analysis demonstrated that the levels of CFTR and Bcl-2 decreased, whereas Bax level increased, and ELISA detection showed a decreased ATP level in BPA-exposed cells. Cell apoptosis was analyzed with Annexin V-FITC Detection Kit by flow cytometry. However, no significant difference was observed in cell viability and apoptosis rates compared to normal RWPE-1 cells. Our research revealed a potential role of CFTR in BPA-induced malignant transformation via mitochondrial apoptosis of normal prostate cells.
Collapse
Affiliation(s)
- Jia Liu
- Department of Epidemiology and Statistics, School of Public Health, 74716Guilin Medical University, Guilin, China
| | - Chaoyan Ou
- Department of Toxicology, School of Public Health, 74716Guilin Medical University, Guilin, China
| | - Xiaonian Zhu
- Department of Toxicology, School of Public Health, 74716Guilin Medical University, Guilin, China
| | - Chao Tan
- Department of Epidemiology and Statistics, School of Public Health, 74716Guilin Medical University, Guilin, China
| | - Xuebao Xiang
- Department of Urology, Affiliated Hospital of 74716Guilin Medical University, Guilin, China
| | - Yonghua He
- Department of Epidemiology and Statistics, School of Public Health, 74716Guilin Medical University, Guilin, China
| |
Collapse
|
11
|
Presa N, Gomez-Larrauri A, Dominguez-Herrera A, Trueba M, Gomez-Muñoz A. Novel signaling aspects of ceramide 1-phosphate. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158630. [PMID: 31958571 DOI: 10.1016/j.bbalip.2020.158630] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 12/12/2022]
Abstract
The bioactive sphingolipid ceramide 1-phosphate (C1P) regulates key physiologic cell functions and is implicated in a number of metabolic alterations and pathological processes. Initial studies using different types of fibroblasts and monocytes/macrophages revealed that C1P was mitogenic and that it promoted cell survival through inhibition of apoptosis. Subsequent studies implicated C1P in inflammatory responses with a specific role as pro-inflammatory agent. Specifically, C1P potently stimulated cytosolic phospholipase A2 (cPLA2) resulting in elevation of arachidonic acid and pro-inflammatory eicosanoid levels. However, increasing experimental evidence suggests that C1P can also exert anti-inflammatory actions in some cell types and tissues. Specifically, it has been demonstrated that C1P inhibits the release of pro-inflammatory cytokines and blocks activation of the pro-inflammatory transcription factor NF-κB in some cell types. Moreover, C1P was shown to increase the release of anti-inflammatory interleukin-10 in macrophages, and to overcome airway inflammation and reduce lung emphysema in vivo. Noteworthy, C1P stimulated cell migration, an action that is associated with diverse physiological cell functions, as well as with inflammatory responses and tumor dissemination. More recently, ceramide kinase (CerK), the enzyme that produces C1P in mammalian cells, has been shown to be upregulated during differentiation of pre-adipocytes into mature adipocytes, and that exogenous C1P, acting through a putative Gi protein-coupled receptor, negatively regulates adipogenesis. Although the latter actions seem to be contradictory, it is plausible that exogenous C1P may balance the adipogenic effects of intracellularly generated (CerK-derived) C1P in adipose tissue. The present review highlights novel signaling aspects of C1P and its impact in the regulation of cell growth and survival, inflammation and tumor dissemination.
Collapse
Affiliation(s)
- Natalia Presa
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Vizcaya, Spain
| | - Ana Gomez-Larrauri
- Department of Pneumology, Cruces University Hospital, Barakaldo, Vizcaya, Spain
| | - Asier Dominguez-Herrera
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Vizcaya, Spain
| | - Miguel Trueba
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Vizcaya, Spain
| | - Antonio Gomez-Muñoz
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Vizcaya, Spain.
| |
Collapse
|
12
|
Wellmerling JH, Chang SW, Kim E, Osman WH, Boyaka PN, Borchers MT, Cormet-Boyaka E. Reduced expression of the Ion channel CFTR contributes to airspace enlargement as a consequence of aging and in response to cigarette smoke in mice. Respir Res 2019; 20:200. [PMID: 31477092 PMCID: PMC6720379 DOI: 10.1186/s12931-019-1170-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 08/22/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a complex disease resulting in respiratory failure and represents the third leading cause of global death. The two classical phenotypes of COPD are chronic bronchitis and emphysema. Owing to similarities between chronic bronchitis and the autosomal-recessive disease Cystic Fibrosis (CF), a significant body of research addresses the hypothesis that dysfunctional CF Transmembrane Conductance Regulator (CFTR) is implicated in the pathogenesis of COPD. Much less attention has been given to emphysema in this context, despite similarities between the two diseases. These include early-onset cellular senescence, similar comorbidities, and the finding that CF patients develop emphysema as they age. To determine a potential role for CFTR dysfunction in the development of emphysema, Cftr+/+ (Wild-type; WT), Cftr+/− (heterozygous), and Cftr−/− (knock-out; KO) mice were aged or exposed to cigarette smoke and analyzed for airspace enlargement. Aged knockout mice demonstrated increased alveolar size compared to age-matched wild-type and heterozygous mice. Furthermore, both heterozygous and knockout mice developed enlarged alveoli compared to their wild-type counterparts following chronic smoke exposure. Taken into consideration with previous findings that cigarette smoke leads to reduced CFTR function, our findings suggest that decreased CFTR expression sensitizes the lung to the effects of cigarette smoke. These findings may caution normally asymptomatic CF carriers against exposure to cigarette smoke; as well as highlight emphysema as a future challenge for CF patients as they continue to live longer. More broadly, our data, along with clinical findings, may implicate CFTR dysfunction in a pathology resembling accelerated aging.
Collapse
Affiliation(s)
- Jack H Wellmerling
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Sheng-Wei Chang
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Eunsoo Kim
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Wissam H Osman
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Prosper N Boyaka
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Michael T Borchers
- Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Estelle Cormet-Boyaka
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
13
|
Bodas M, Pehote G, Silverberg D, Gulbins E, Vij N. Autophagy augmentation alleviates cigarette smoke-induced CFTR-dysfunction, ceramide-accumulation and COPD-emphysema pathogenesis. Free Radic Biol Med 2019; 131:81-97. [PMID: 30500419 DOI: 10.1016/j.freeradbiomed.2018.11.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 01/27/2023]
Abstract
In this study, we aimed to investigate precise mechanism(s) of sphingolipid-imbalance and resulting ceramide-accumulation in COPD-emphysema. Where, human and murine emphysema lung tissues or human bronchial epithelial cells (Beas2b) were used for experimental analysis. We found that lungs of smokers and COPD-subjects with increasing emphysema severity demonstrate sphingolipid-imbalance, resulting in significant ceramide-accumulation and increased ceramide/sphingosine ratio, as compared to non-emphysema/non-smoker controls. Next, we found a substantial increase in emphysema chronicity-related ceramide-accumulation in murine (C57BL/6) lungs, while sphingosine levels only slightly increased. In accordance, the expression of the acid ceramidase decreased after CS-exposure. Moreover, CS-induced (sub-chronic) ceramide-accumulation was significantly (p < 0.05) reduced by treatment with TFEB/autophagy-inducing drug, gemfibrozil (GEM), suggesting that autophagy regulates CS-induced ceramide-accumulation. Next, we validated experimentally that autophagy/lipophagy-induction using an anti-oxidant, cysteamine, significantly (p < 0.05) reduces CS-extract (CSE)-mediated intracellular-ceramide-accumulation in p62 + aggresome-bodies. In addition to intracellular-accumulation, we found that CSE also induces membrane-ceramide-accumulation by ROS-dependent acid-sphingomyelinase (ASM) activation and plasma-membrane translocation, which was significantly controlled (p < 0.05) by cysteamine (an anti-oxidant) and amitriptyline (AMT, an inhibitor of ASM). Cysteamine-mediated and CSE-induced membrane-ceramide regulation was nullified by CFTR-inhibitor-172, demonstrating that CFTR controls redox impaired-autophagy dependent membrane-ceramide accumulation. In summary, our data shows that CS-mediated autophagy/lipophagy-dysfunction results in intracellular-ceramide-accumulation, while acquired CFTR-dysfunction-induced ASM causes membrane ceramide-accumulation. Thus, CS-exposure alters the sphingolipid-rheostat leading to the increased membrane- and intracellular- ceramide-accumulation inducing COPD-emphysema pathogenesis that is alleviated by treatment with cysteamine, a potent anti-oxidant with CFTR/autophagy-augmenting properties.
Collapse
Affiliation(s)
- Manish Bodas
- College of Medicine, Central Michigan University, Mt Pleasant, MI, USA
| | - Garrett Pehote
- College of Medicine, Central Michigan University, Mt Pleasant, MI, USA
| | - David Silverberg
- College of Medicine, Central Michigan University, Mt Pleasant, MI, USA
| | - Erich Gulbins
- Dept. of Molecular Biology, University of Duisburg-Essen, Germany and Dept. of Surgery, University of Cincinnati, OH, USA
| | - Neeraj Vij
- College of Medicine, Central Michigan University, Mt Pleasant, MI, USA; The Johns Hopkins University SOM University, Baltimore, MD, USA; VIJ Biotech LLC, Baltimore, MD, USA and 4Dx Ltd, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Cystic fibrosis epithelial cells are primed for apoptosis as a result of increased Fas (CD95). J Cyst Fibros 2018; 17:616-623. [DOI: 10.1016/j.jcf.2018.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 01/11/2018] [Accepted: 01/30/2018] [Indexed: 01/06/2023]
|
15
|
Fernandez Fernandez E, De Santi C, De Rose V, Greene CM. CFTR dysfunction in cystic fibrosis and chronic obstructive pulmonary disease. Expert Rev Respir Med 2018; 12:483-492. [PMID: 29750581 DOI: 10.1080/17476348.2018.1475235] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Obstructive lung diseases such as cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) are causes of high morbidity and mortality worldwide. CF is a multiorgan genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene and is characterized by progressive chronic obstructive lung disease. Most cases of COPD are a result of noxious particles, mainly cigarette smoke but also other environmental pollutants. Areas covered: Although the pathogenesis and pathophysiology of CF and COPD differ, they do share key phenotypic features and because of these similarities there is great interest in exploring common mechanisms and/or factors affected by CFTR mutations and environmental insults involved in COPD. Various molecular, cellular and clinical studies have confirmed that CFTR protein dysfunction is common in both the CF and COPD airways. This review provides an update of our understanding of the role of dysfunctional CFTR in both respiratory diseases. Expert commentary: Drugs developed for people with CF to improve mutant CFTR function and enhance CFTR ion channel activity might also be beneficial in patients with COPD. A move toward personalized therapy using, for example, microRNA modulators in conjunction with CFTR potentiators or correctors, could enhance treatment of both diseases.
Collapse
Affiliation(s)
- Elena Fernandez Fernandez
- a Lung Biology Group, Department of Clinical Microbiology , RCSI Education & Research Centre, Beaumont Hospital , Dublin 9 , Ireland
| | - Chiara De Santi
- a Lung Biology Group, Department of Clinical Microbiology , RCSI Education & Research Centre, Beaumont Hospital , Dublin 9 , Ireland
| | - Virginia De Rose
- b Department of Clinical and Biological Sciences , University of Torino , Torino , Italy
| | - Catherine M Greene
- a Lung Biology Group, Department of Clinical Microbiology , RCSI Education & Research Centre, Beaumont Hospital , Dublin 9 , Ireland
| |
Collapse
|
16
|
Zhang YP, Zhang Y, Xiao ZB, Zhang YB, Zhang J, Li ZQ, Zhu YB. CFTR prevents neuronal apoptosis following cerebral ischemia reperfusion via regulating mitochondrial oxidative stress. J Mol Med (Berl) 2018; 96:611-620. [PMID: 29761302 DOI: 10.1007/s00109-018-1649-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/02/2018] [Accepted: 05/07/2018] [Indexed: 01/12/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is linked to cell apoptosis and abundantly expressed in brain tissue. Mitochondrial oxidative stress plays a key role in activating apoptotic pathway following cerebral ischemia reperfusion (IR) injury. Reduced glutathione (GSH) is exclusively synthesized in cytosol but distributed in mitochondria. In the present study, we investigated whether CFTR affected mitochondrial oxidative stress via regulating GSH and thereby protected neurons against apoptosis following cerebral IR. Brains were subjected to global IR by four-vessel occlusion and CFTR activator forskolin (FSK) was used in vivo. CFTR silence was performed in vitro for neurons by RNA interference. We found that FSK suppressed neuronal apoptosis whereas CFTR silence enhanced neuronal apoptosis. FSK prevented the elevations in reactive oxygen species (ROS) and caspase activities while FSK inhibited the reductions in complex I activity and mitochondrial GSH level following IR. FSK decreased mitochondrial oxidative stress partially and preserved mitochondrial function. On the contrary, CFTR silence exaggerated mitochondrial dysfunction. CFTR loss increased hydrogen peroxide (H2O2) level and decreased GSH level in mitochondria. Importantly, we showed that CFTR was located on mitochondrial membrane. GSH transport assay suggested that GSH decrease may be a consequence not a reason for mitochondrial oxidative stress mediated by CFTR disruption. Our results highlight the central role of CFTR in the pathogenesis of cerebral IR injury. CFTR regulates neuronal apoptosis following cerebral IR via mitochondrial oxidative stress-dependent pathway. The mechanism of CFTR-mediated mitochondrial oxidative stress needs further studies. KEY MESSAGES: CFTR activation protects brain tissue against IR-induced apoptosis and oxidative stress. CFTR disruption enhances H2O2-induced neuronal apoptosis and CFTR loss leads to mitochondrial oxidative stress. CFTR regulates IR-induced neuronal apoptosis via mitochondrial oxidative stress. CFTR may be a potential therapeutic target to cerebral IR damage.
Collapse
Affiliation(s)
- Ya-Ping Zhang
- The Heart Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yong Zhang
- The Heart Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zhi-Bin Xiao
- The Heart Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yan-Bo Zhang
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Jing Zhang
- Pediatric Heart Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Zhi-Qiang Li
- Department of Cardiovascular Surgery II, Children's Hospital, National Center for Children's Health, Capital Medical University, 56 Nan-Li-Shi Road, 100045, Beijing, People's Republic of China.
| | - Yao-Bin Zhu
- Department of Cardiovascular Surgery II, Children's Hospital, National Center for Children's Health, Capital Medical University, 56 Nan-Li-Shi Road, 100045, Beijing, People's Republic of China.
| |
Collapse
|
17
|
Bartlett JA, Ramachandran S, Wohlford-Lenane CL, Barker CK, Pezzulo AA, Zabner J, Welsh MJ, Meyerholz DK, Stoltz DA, McCray PB. Newborn Cystic Fibrosis Pigs Have a Blunted Early Response to an Inflammatory Stimulus. Am J Respir Crit Care Med 2018; 194:845-854. [PMID: 27027566 DOI: 10.1164/rccm.201510-2112oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
RATIONALE Studies suggest that inappropriate responses to proinflammatory stimuli might contribute to inflammation in cystic fibrosis (CF) lungs. However, technical challenges have made it difficult to distinguish whether altered responses in CF airways are an intrinsic defect or a secondary effect of chronic disease in their tissue of origin. The CF pig model provides an opportunity to study the inflammatory responses of CF airways at birth, before the onset of infection and inflammation. OBJECTIVES To test the hypothesis that acute inflammatory responses are perturbed in porcine CF airways. METHODS We investigated the inflammatory responses of newborn CF and non-CF pig airways following a 4-hour exposure to heat-killed Staphylococcus aureus, in vivo and in vitro. MEASUREMENTS AND MAIN RESULTS Following an in vivo S. aureus challenge, markers of inflammation were similar between CF and littermate control animals through evaluation of bronchoalveolar lavage and tissues. However, transcriptome analysis revealed genotype-dependent differences as CF pigs showed a diminished host defense response compared with their non-CF counterparts. Furthermore, CF pig airways exhibited an increase in apoptotic pathways and a suppression of ciliary and flagellar biosynthetic pathways. Similar differences were observed in cultured airway epithelia from CF and non-CF pigs exposed to the stimulus. CONCLUSIONS Transcriptome profiling suggests that acute inflammatory responses are dysregulated in the airways of newborn CF pigs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michael J Welsh
- 2 Department of Internal Medicine.,3 Department of Molecular Physiology and Biophysics.,4 Howard Hughes Medical Institute, and
| | - David K Meyerholz
- 5 Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | | | | |
Collapse
|
18
|
Ding S, Hou X, Wang F, Wang G, Tan X, Liu Y, Zhou Y, Qiu H, Sun E, Jiang N, Li Z, Song J, Feng L, Jia X. Regulation of Eclipta prostrata L. components on cigarette smoking-induced autophagy of bronchial epithelial cells via keap1-Nrf2 pathway. ENVIRONMENTAL TOXICOLOGY 2018; 33:811-820. [PMID: 29726624 DOI: 10.1002/tox.22567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/02/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
Cigarette smoking extract (CSE)-induced autophagic injury has been regarded as an important contributor to the pathogenesis of lung cancer. We previously found that Eclipta prostrata L. component (CCE) reduced CSE-induced bronchial epithelial cells damage. However, the mechanism remains unknown. Human normal bronchial epithelial cells (NHBE) were exposed to CSE to establish stress model. Nrf2-siRNA and Keap1-siRNA transfection were performed. mRFP-GFP-LC3 dual fluorescence and transmission electron microscopy were used to observe the autophagic characteristics. CCE prevented CSE-induced Nrf2 transfer into cytoplasm and up-regulated Keap1 level of NHBE cells. Furthermore, CCE significantly increased p-p16, p-p21 and p-p53 phosphorylation levels in Nrf2-siRNA- or Keap1-siRNA-transfected cells. As demonstrated by transmission electron microscopy and mRFP-GFP-LC3 dual fluorescence assays, CCE mitigated autophagic injury, and also down-regulated autophagy-related Beclin-1, LC3II/LC3I ratio, Atg5 and ATF4 levels. Our findings showed the attenuation of CCE on CSE-induced NHBE cells injury was associated with Nrf-2-mediated oxidative signaling pathway.
Collapse
Affiliation(s)
- Shumin Ding
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu, People's Republic of China
| | - Xuefeng Hou
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, People's Republic of China
| | - Fujing Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, People's Republic of China
| | - Gang Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, People's Republic of China
| | - Xiaobin Tan
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, China
| | - Ying Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, People's Republic of China
| | - Yuanli Zhou
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, China
| | - Huihui Qiu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, China
| | - E Sun
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, China
| | - Nan Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, People's Republic of China
| | - Zihao Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, China
| | - Jie Song
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, China
| | - Liang Feng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, China
- Chinese Materia Medica Department, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Xiaobin Jia
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, People's Republic of China
- Chinese Materia Medica Department, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
19
|
Cigarette Smoke-Induced Acquired Dysfunction of Cystic Fibrosis Transmembrane Conductance Regulator in the Pathogenesis of Chronic Obstructive Pulmonary Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6567578. [PMID: 29849907 PMCID: PMC5937428 DOI: 10.1155/2018/6567578] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 04/11/2018] [Indexed: 12/27/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a disease state characterized by airflow limitation that is not fully reversible. Cigarette smoke and oxidative stress are main etiological risks in COPD. Interestingly, recent studies suggest a considerable overlap between chronic bronchitis (CB) phenotypic COPD and cystic fibrosis (CF), a common fatal hereditary lung disease caused by genetic mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Phenotypically, CF and COPD are associated with an impaired mucociliary clearance and mucus hypersecretion, although they are two distinct entities of unrelated origin. Mechanistically, the cigarette smoke-increased oxidative stress-induced CFTR dysfunction is implicated in COPD. This underscores CFTR in understanding and improving therapies for COPD by altering CFTR function with antioxidant agents and CFTR modulators as a great promising strategy for COPD treatments. Indeed, treatments that restore CFTR function, including mucolytic therapy, antioxidant ROS scavenger, CFTR stimulator (roflumilast), and CFTR potentiator (ivacaftor), have been tested in COPD. This review article is aimed at summarizing the molecular, cellular, and clinical evidence of oxidative stress, particularly the cigarette smoke-increased oxidative stress-impaired CFTR function, as well as signaling pathways of CFTR involved in the pathogenesis of COPD, with a highlight on the therapeutic potential of targeting CFTR for COPD treatment.
Collapse
|
20
|
Singh DP, Kaur G, Bagam P, Pinkston R, Batra S. Membrane microdomains regulate NLRP10- and NLRP12-dependent signalling in A549 cells challenged with cigarette smoke extract. Arch Toxicol 2018; 92:1767-1783. [PMID: 29623357 DOI: 10.1007/s00204-018-2185-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 03/13/2018] [Indexed: 12/22/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is predicted to become the third leading cause of death and disability worldwide by 2030; with cigarette smoking (active or passive) being one of the chief cause of its occurrence. Cigarette smoke exposure has been found to result in excessive inflammation and tissue injury, which might lead to COPD, although the exact pathophysiology of the disease remains elusive. While previous studies have demonstrated the role of membrane-bound Toll-like receptors (TLRs) in cigarette smoke (CS)-induced inflammation, scant information is available about the role of cytosolic NOD-like receptors (NLRs) in regulating CS-mediated inflammatory responses. Thus, we investigated the role of NLRP10 and NLRP12 in regulating inflammatory responses in human alveolar type II epithelial cells (A549) and human monocytic cells (THP-1) in response to a challenge with cigarette smoke extract (CSE). We observed CSE-mediated increase in caspase-1 activity; production of IL-1β and IL-18; and expression of NLRP10 and NLRP12 in A549 and THP-1 cells. Interestingly, immunofluorescence imaging results demonstrated an increase in the membrane recruitment of NLRP10 and NLRP12 proteins in CSE-challenged A549 cells. We also observed an increase in the expression of lipid raft proteins (caveolin-1, caveolin-2, and flotillin-1) and an induction of lipid raft assembly following CSE-exposure in A549 cells. Lipid rafts are cholesterol-rich membrane microdomains well known to act as harbours for signalling molecules. Here we demonstrate the recruitment of NLRP10 and NLRP12 in lipid raft entities as well as the interaction of NLRP12 with the lipid raft protein caveolin-1 in CSE-challenged A549 cells. Furthermore, enrichment of lipid raft entities with poly-unsaturated fatty acids (PUFA) rescued A549 cells from CSE-mediated membrane recruitment of NLRP10 and NLRP12, and also from inflammatory responses and inflammasome activation. Enrichment of membrane microdomains with PUFA was able to reverse filipin (chemical agent used for disrupting lipid rafts)-mediated enhanced inflammation in CSE-challenged A549 cells. Overall, our findings unveil a novel mechanism by identifying an important role of membrane microdomains (lipid rafts) in regulating CSE-induced inflammation and NLRP10/NLRP12-dependent signalling in A549 cells.
Collapse
Affiliation(s)
- Dhirendra P Singh
- Laboratory of Pulmonary Immuno-toxicology, Environmental Toxicology Department, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Gagandeep Kaur
- Laboratory of Pulmonary Immuno-toxicology, Environmental Toxicology Department, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Prathyusha Bagam
- Laboratory of Pulmonary Immuno-toxicology, Environmental Toxicology Department, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Rakeysha Pinkston
- Laboratory of Pulmonary Immuno-toxicology, Environmental Toxicology Department, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Sanjay Batra
- Laboratory of Pulmonary Immuno-toxicology, Environmental Toxicology Department, Southern University and A&M College, Baton Rouge, LA, 70813, USA. .,Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
21
|
MicroRNA-34a Suppresses Autophagy in Alveolar Type II Epithelial Cells in Acute Lung Injury by Inhibiting FoxO3 Expression. Inflammation 2018; 40:927-936. [PMID: 28321785 PMCID: PMC7101993 DOI: 10.1007/s10753-017-0537-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Excessive autophagic activity of alveolar type II epithelial (AT-II) cells is one of the main causes of acute lung injury (ALI); however, the underlying molecular mechanism remains to be determined. The microRNAs (miRNAs) are involved with autophagy in many diseases. The objective of this study was therefore to investigate the relationship between the miRNA expression and the autophagic activity of the AT-II cells in the pathogenesis of ALI and its molecular mechanism. A mouse model of ALI and AT-II cell injury was induced using lipopolysaccharide (LPS) in vivo and in vitro, and the expression of miR-34a and the autophagy-related proteins LC3 II/I and p62 were determined. Moreover, the autophagic activity was investigated after miR-34a overexpression and inhibition. The effects of miR-34a on its target gene, FoxO3, in regulating autophagic activity in AT-II cells were also determined. LPS induced autophagic activity and increased the expression of miR-34a in lung tissues and in AT-II cells. The in vitro results showed that the upregulation of miR-34a suppressed, whereas the inhibition of miR-34a promoted, autophagy in AT-II cells. Moreover, miR-34a could directly bind to the 3'-untranslated region of the autophagy-related gene, FoxO3, to decrease its expression. In addition, the knockdown of FoxO3 expression inhibited the autophagic activity in AT-II cells. Together, this study suggested that miR-34a might suppress the excessive autophagic activity in AT-II cells via targeting FoxO3 to reduce the damage of LPS-induced ALI.
Collapse
|
22
|
The role of sphingolipids in psychoactive drug use and addiction. J Neural Transm (Vienna) 2018; 125:651-672. [DOI: 10.1007/s00702-018-1840-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/03/2018] [Indexed: 12/14/2022]
|
23
|
The EGFR-ADAM17 Axis in Chronic Obstructive Pulmonary Disease and Cystic Fibrosis Lung Pathology. Mediators Inflamm 2018. [PMID: 29540993 PMCID: PMC5818912 DOI: 10.1155/2018/1067134] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF) share molecular mechanisms that cause the pathological symptoms they have in common. Here, we review evidence suggesting that hyperactivity of the EGFR/ADAM17 axis plays a role in the development of chronic lung disease in both CF and COPD. The ubiquitous transmembrane protease A disintegrin and metalloprotease 17 (ADAM17) forms a functional unit with the EGF receptor (EGFR), in a feedback loop interaction labeled the ADAM17/EGFR axis. In airway epithelial cells, ADAM17 sheds multiple soluble signaling proteins by proteolysis, including EGFR ligands such as amphiregulin (AREG), and proinflammatory mediators such as the interleukin 6 coreceptor (IL-6R). This activity can be enhanced by injury, toxins, and receptor-mediated external triggers. In addition to intracellular kinases, the extracellular glutathione-dependent redox potential controls ADAM17 shedding. Thus, the epithelial ADAM17/EGFR axis serves as a receptor of incoming luminal stress signals, relaying these to neighboring and underlying cells, which plays an important role in the resolution of lung injury and inflammation. We review evidence that congenital CFTR deficiency in CF and reduced CFTR activity in chronic COPD may cause enhanced ADAM17/EGFR signaling through a defect in glutathione secretion. In future studies, these complex interactions and the options for pharmaceutical interventions will be further investigated.
Collapse
|
24
|
Bodas M, Mazur S, Min T, Vij N. Inhibition of histone-deacetylase activity rescues inflammatory cystic fibrosis lung disease by modulating innate and adaptive immune responses. Respir Res 2018; 19:2. [PMID: 29301535 PMCID: PMC5755330 DOI: 10.1186/s12931-017-0705-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 12/15/2017] [Indexed: 12/25/2022] Open
Abstract
Background Chronic lung disease resulting from dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR) and NFκB-mediated neutrophilic-inflammation forms the basis of CF-related mortality. Here we aimed to evaluate if HDAC inhibition controls Pseudomonas-aeruginosa-lipopolysaccharide (Pa-LPS) induced airway inflammation and CF-lung disease. Methods For in vitro experiments, HEK293-cells were transfected with IL-8 or NFκB-firefly luciferase, and SV40-renilla- luciferase reporter constructs or ΔF508-CFTR-pCEP, followed by treatment with suberoylanilide hydroxamic acid (SAHA), Trichostatin-A (TSA) and/or TNFα. For murine studies, Cftr+/+ or Cftr−/− mice (n = 3) were injected/instilled with Pa-LPS and/or treated with SAHA or vehicle control. The progression of lung disease was monitored by quantifying changes in inflammatory markers (NFκB), cytokines (IL-6/IL-10), neutrophil activity (MPO, myeloperoxidase and/or NIMP-R14) and T-reg numbers. Results SAHA treatment significantly (p < 0.05) suppresses TNFα-induced NFκB and IL-8 reporter activities in HEK293-cells. Moreover, SAHA, Tubacin (selective HDAC6-inhibitor) or HDAC6-shRNAs controls CSE-induced ER-stress activities (p < 0.05). In addition, SAHA restores trafficking of misfolded-ΔF508-CFTR, by inducing protein levels of both B and C forms of CFTR. Murine studies using Cftr+/+ or Cftr−/− mice verified that SAHA controls Pa-LPS induced IL-6 levels, and neutrophil (MPO levels and/or NIMP-R14), NFκB-(inflammation) and Nrf2 (oxidative-stress marker) activities, while promoting FoxP3+ T-reg activity. Conclusion In summary, SAHA-mediated HDAC inhibition modulates innate and adaptive immune responses involved in pathogenesis and progression of inflammatory CF-lung disease. Electronic supplementary material The online version of this article (10.1186/s12931-017-0705-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manish Bodas
- College of Medicine, Central Michigan University, 2630 Denison Drive, Room# 120 (Office) & 126-127 (Lab), Mt Pleasant, MI, USA.,Department of Pediatrics and Pulmonary Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven Mazur
- Department of Pediatrics and Pulmonary Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,National Institute of Allergy and Infectious Diseases, National Institutes of Health, Integrated Research Facility at Fort Detrick, Fort Detrick, Frederick, MD, USA
| | - Taehong Min
- Department of Pediatrics and Pulmonary Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Genentech, 1 DNA Way, San Francisco, CA, USA
| | - Neeraj Vij
- College of Medicine, Central Michigan University, 2630 Denison Drive, Room# 120 (Office) & 126-127 (Lab), Mt Pleasant, MI, USA. .,Department of Pediatrics and Pulmonary Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,VIJ Biotech LLC, Baltimore, Maryland, USA.
| |
Collapse
|
25
|
Wong FH, AbuArish A, Matthes E, Turner MJ, Greene LE, Cloutier A, Robert R, Thomas DY, Cosa G, Cantin AM, Hanrahan JW. Cigarette smoke activates CFTR through ROS-stimulated cAMP signaling in human bronchial epithelial cells. Am J Physiol Cell Physiol 2018; 314:C118-C134. [PMID: 28978522 PMCID: PMC5866379 DOI: 10.1152/ajpcell.00099.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/27/2017] [Accepted: 09/27/2017] [Indexed: 11/22/2022]
Abstract
Air pollution stimulates airway epithelial secretion through a cholinergic reflex that is unaffected in cystic fibrosis (CF), yet a strong correlation is observed between passive smoke exposure in the home and impaired lung function in CF children. Our aim was to study the effects of low smoke concentrations on cystic fibrosis transmembrane conductance regulator (CFTR) function in vitro. Cigarette smoke extract stimulated robust anion secretion that was transient, mediated by CFTR, and dependent on cAMP-dependent protein kinase activation. Secretion was initiated by reactive oxygen species (ROS) and mediated by at least two distinct pathways: autocrine activation of EP4 prostanoid receptors and stimulation of Ca2+ store-operated cAMP signaling. The response was absent in cells expressing the most common disease-causing mutant F508del-CFTR. In addition to the initial secretion, prolonged exposure of non-CF bronchial epithelial cells to low levels of smoke also caused a gradual decline in CFTR functional expression. F508del-CFTR channels that had been rescued by the CF drug combination VX-809 (lumacaftor) + VX-770 (ivacaftor) were more sensitive to this downregulation than wild-type CFTR. The results suggest that CFTR-mediated secretion during acute cigarette smoke exposure initially protects the airway epithelium while prolonged exposure reduces CFTR functional expression and reduces the efficacy of CF drugs.
Collapse
Affiliation(s)
- Francis H Wong
- Department of Physiology, McGill University , Montreal, Quebec , Canada
- Cystic Fibrosis Translational Research Centre, McGill University , Montreal, Quebec , Canada
| | - Asmahan AbuArish
- Department of Physiology, McGill University , Montreal, Quebec , Canada
- Cystic Fibrosis Translational Research Centre, McGill University , Montreal, Quebec , Canada
| | - Elizabeth Matthes
- Department of Physiology, McGill University , Montreal, Quebec , Canada
- Cystic Fibrosis Translational Research Centre, McGill University , Montreal, Quebec , Canada
| | - Mark J Turner
- Department of Physiology, McGill University , Montreal, Quebec , Canada
- Cystic Fibrosis Translational Research Centre, McGill University , Montreal, Quebec , Canada
| | - Lana E Greene
- Department of Chemistry, McGill University , Montreal, Quebec , Canada
| | - Alexandre Cloutier
- Pulmonary Division, Faculty of Medicine, Université de Sherbrooke , Sherbrooke, Quebec , Canada
| | - Renaud Robert
- Department of Physiology, McGill University , Montreal, Quebec , Canada
- Cystic Fibrosis Translational Research Centre, McGill University , Montreal, Quebec , Canada
- Department of Biochemistry, McGill University , Montreal, Quebec , Canada
| | - David Y Thomas
- Cystic Fibrosis Translational Research Centre, McGill University , Montreal, Quebec , Canada
- Department of Biochemistry, McGill University , Montreal, Quebec , Canada
| | - Gonzalo Cosa
- Department of Chemistry, McGill University , Montreal, Quebec , Canada
| | - André M Cantin
- Cystic Fibrosis Translational Research Centre, McGill University , Montreal, Quebec , Canada
- Pulmonary Division, Faculty of Medicine, Université de Sherbrooke , Sherbrooke, Quebec , Canada
| | - John W Hanrahan
- Department of Physiology, McGill University , Montreal, Quebec , Canada
- Cystic Fibrosis Translational Research Centre, McGill University , Montreal, Quebec , Canada
- Research Institute of McGill Univ. Hospital Centre , Montreal, Quebec , Canada
| |
Collapse
|
26
|
Evidence for the Involvement of Lipid Rafts and Plasma Membrane Sphingolipid Hydrolases in Pseudomonas aeruginosa Infection of Cystic Fibrosis Bronchial Epithelial Cells. Mediators Inflamm 2017; 2017:1730245. [PMID: 29333001 PMCID: PMC5733190 DOI: 10.1155/2017/1730245] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/02/2017] [Accepted: 08/30/2017] [Indexed: 12/28/2022] Open
Abstract
Cystic fibrosis (CF) is the most common autosomal genetic recessive disease caused by mutations of gene encoding for the cystic fibrosis transmembrane conductance regulator. Patients with CF display a wide spectrum of symptoms, the most severe being chronic lung infection and inflammation, which lead to onset of cystic fibrosis lung disease. Several studies indicate that sphingolipids play a regulatory role in airway inflammation. The inhibition and downregulation of GBA2, the enzyme catabolizing glucosylceramide to ceramide, are associated with a significant reduction of IL-8 production in CF bronchial epithelial cells. Herein, we demonstrate that GBA2 plays a role in the proinflammatory state characterizing CF cells. We also report for the first time that Pseudomonas aeruginosa infection causes a recruitment of plasma membrane-associated glycosphingolipid hydrolases into lipid rafts of CuFi-1-infected cells. This reorganization of cell membrane may be responsible for activation of a signaling cascade, culminating in aberrant inflammatory response in CF bronchial epithelial cells upon bacterial infection. Taken together, the presented data further support the role of sphingolipids and their metabolic enzymes in controlling the inflammatory response in CF.
Collapse
|
27
|
Bartoszewski R, Matalon S, Collawn JF. Ion channels of the lung and their role in disease pathogenesis. Am J Physiol Lung Cell Mol Physiol 2017; 313:L859-L872. [PMID: 29025712 PMCID: PMC5792182 DOI: 10.1152/ajplung.00285.2017] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 12/16/2022] Open
Abstract
Maintenance of normal epithelial ion and water transport in the lungs includes providing a thin layer of surface liquid that coats the conducting airways. This airway surface liquid is critical for normal lung function in a number of ways but, perhaps most importantly, is required for normal mucociliary clearance and bacterial removal. Preservation of the appropriate level of hydration, pH, and viscosity for the airway surface liquid requires the proper regulation and function of a battery of different types of ion channels and transporters. Here we discuss how alterations in ion channel/transporter function often lead to lung pathologies.
Collapse
Affiliation(s)
- Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Cell, Developmental, and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
- Gregory Fleming James Cystic Fibrosis Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - James F Collawn
- Department of Cell, Developmental, and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama;
- Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
- Gregory Fleming James Cystic Fibrosis Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
28
|
Karandashova S, Kummarapurugu AB, Zheng S, Chalfant CE, Voynow JA. Neutrophil elastase increases airway ceramide levels via upregulation of serine palmitoyltransferase. Am J Physiol Lung Cell Mol Physiol 2017; 314:L206-L214. [PMID: 29025713 DOI: 10.1152/ajplung.00322.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Altered sphingolipid metabolism is associated with increased inflammation; however, the impact of inflammatory mediators, including neutrophil elastase (NE), on airway sphingolipid homeostasis remains unknown. Using a well-characterized mouse model of NE oropharyngeal aspiration, we investigated a potential link between NE-induced airway inflammation and increased synthesis of various classes of sphingolipids, including ceramide species. Sphingolipids in bronchoalveolar lavage fluids (BAL) were identified and quantified using reverse-phase high-performance liquid chromatography/electrospray ionization tandem mass spectrometry analysis. BAL total and differential cell counts, CXCL1/keratinocyte chemoattractant (KC) protein levels, and high-mobility group box 1 (HMGB1) protein levels were determined. NE exposure increased BAL long-chain ceramides, total cell and neutrophil counts, and upregulated KC and HMGB1. The mRNA and protein levels of serine palmitoyltransferase (SPT) long-chain subunits 1 and 2, the multimeric enzyme responsible for the first, rate-limiting step of de novo ceramide generation, were determined by qRT-PCR and Western analyses, respectively. NE increased lung SPT long-chain subunit 2 (SPTLC2) protein levels but not SPTLC1 and had no effect on mRNA for either subunit. To assess whether de novo ceramide synthesis was required for NE-induced inflammation, myriocin, a SPT inhibitor, or a vehicle control was administered intraperitoneally 2 h before NE administration. Myriocin decreased BAL d18:1/22:0 and d18:1/24:1 ceramide, KC, and HMGB1 induced by NE exposure. These results support a feed-forward cycle of NE-generated ceramide and ceramide-driven cytokine signaling that may be a potential target for intervention in lung disease typified by chronic neutrophilic inflammation.
Collapse
Affiliation(s)
- Sophia Karandashova
- Center for Clinical and Translational Research, Virginia Commonwealth University , Richmond, Virginia
| | - Apparao B Kummarapurugu
- Division of Pediatric Pulmonary Medicine, Children's Hospital of Richmond at Virginia Commonwealth University , Richmond, Virginia
| | - Shuo Zheng
- Division of Pediatric Pulmonary Medicine, Children's Hospital of Richmond at Virginia Commonwealth University , Richmond, Virginia
| | - Charles E Chalfant
- Dept. of Biochemistry and Molecular Biology, Institute of Molecular Medicine, Johnson Center for Critical Care and Pulmonary Research, and Massey Cancer Center, Virginia Commonwealth University , Richmond, Virginia.,Research Service, Hunter Holmes McGuire Veterans Administration Medical Center , Richmond, Virginia
| | - Judith A Voynow
- Division of Pediatric Pulmonary Medicine, Children's Hospital of Richmond at Virginia Commonwealth University , Richmond, Virginia
| |
Collapse
|
29
|
Brockman SM, Bodas M, Silverberg D, Sharma A, Vij N. Dendrimer-based selective autophagy-induction rescues ΔF508-CFTR and inhibits Pseudomonas aeruginosa infection in cystic fibrosis. PLoS One 2017; 12:e0184793. [PMID: 28902888 PMCID: PMC5597233 DOI: 10.1371/journal.pone.0184793] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 08/31/2017] [Indexed: 12/11/2022] Open
Abstract
Background Cystic Fibrosis (CF) is a genetic disorder caused by mutation(s) in the CF-transmembrane conductance regulator (Cftr) gene. The most common mutation, ΔF508, leads to accumulation of defective-CFTR protein in aggresome-bodies. Additionally, Pseudomonas aeruginosa (Pa), a common CF pathogen, exacerbates obstructive CF lung pathology. In the present study, we aimed to develop and test a novel strategy to improve the bioavailability and potentially achieve targeted drug delivery of cysteamine, a potent autophagy-inducing drug with anti-bacterial properties, by developing a dendrimer (PAMAM-DEN)-based cysteamine analogue. Results We first evaluated the effect of dendrimer-based cysteamine analogue (PAMAM-DENCYS) on the intrinsic autophagy response in IB3-1 cells and observed a significant reduction in Ub-RFP and LC3-GFP co-localization (aggresome-bodies) by PAMAM-DENCYS treatment as compared to plain dendrimer (PAMAM-DEN) control. Next, we observed that PAMAM-DENCYS treatment shows a modest rescue of ΔF508-CFTR as the C-form. Moreover, immunofluorescence microscopy of HEK-293 cells transfected with ΔF508-CFTR-GFP showed that PAMAM-DENCYS is able to rescue the misfolded-ΔF508-CFTR from aggresome-bodies by inducing its trafficking to the plasma membrane. We further verified these results by flow cytometry and observed significant (p<0.05; PAMAM-DEN vs. PAMAM-DENCYS) rescue of membrane-ΔF508-CFTR with PAMAM-DENCYS treatment using non-permeabilized IB3-1 cells immunostained for CFTR. Finally, we assessed the autophagy-mediated bacterial clearance potential of PAMAM-DENCYS by treating IB3-1 cells infected with PA01-GFP, and observed a significant (p<0.01; PAMAM-DEN vs. PAMAM-DENCYS) decrease in intracellular bacterial counts by immunofluorescence microscopy and flow cytometry. Also, PAMAM-DENCYS treatment significantly inhibits the growth of PA01-GFP bacteria and demonstrates potent mucolytic properties. Conclusions We demonstrate here the efficacy of dendrimer-based autophagy-induction in preventing sequestration of ΔF508-CFTR to aggresome-bodies while promoting its trafficking to the plasma membrane. Moreover, PAMAM-DENCYS decreases Pa infection and growth, while showing mucolytic properties, suggesting its potential in rescuing Pa-induced ΔF508-CF lung disease that warrants further investigation in CF murine model.
Collapse
Affiliation(s)
- Scott Mackenzie Brockman
- College of Medicine, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Manish Bodas
- College of Medicine, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - David Silverberg
- College of Medicine, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Ajit Sharma
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Neeraj Vij
- College of Medicine, Central Michigan University, Mount Pleasant, Michigan, United States of America
- Department of Pediatric Respiratory Sciences, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
30
|
Bodas M, Silverberg D, Walworth K, Brucia K, Vij N. Augmentation of S-Nitrosoglutathione Controls Cigarette Smoke-Induced Inflammatory-Oxidative Stress and Chronic Obstructive Pulmonary Disease-Emphysema Pathogenesis by Restoring Cystic Fibrosis Transmembrane Conductance Regulator Function. Antioxid Redox Signal 2017; 27:433-451. [PMID: 28006950 PMCID: PMC5564030 DOI: 10.1089/ars.2016.6895] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AIMS Cigarette smoke (CS)-mediated acquired cystic fibrosis transmembrane conductance regulator (CFTR)-dysfunction, autophagy-impairment, and resulting inflammatory-oxidative/nitrosative stress leads to chronic obstructive pulmonary disease (COPD)-emphysema pathogenesis. Moreover, nitric oxide (NO) signaling regulates lung function decline, and low serum NO levels that correlates with COPD severity. Hence, we aim to evaluate here the effects and mechanism(s) of S-nitrosoglutathione (GSNO) augmentation in regulating inflammatory-oxidative stress and COPD-emphysema pathogenesis. RESULTS Our data shows that cystic fibrosis transmembrane conductance regulator (CFTR) colocalizes with aggresome bodies in the lungs of COPD subjects with increasing emphysema severity (Global Initiative for Chronic Obstructive Lung Disease [GOLD] I - IV) compared to nonemphysema controls (GOLD 0). We further demonstrate that treatment with GSNO or S-nitrosoglutathione reductase (GSNOR)-inhibitor (N6022) significantly inhibits cigarette smoke extract (CSE; 5%)-induced decrease in membrane CFTR expression by rescuing it from ubiquitin (Ub)-positive aggresome bodies (p < 0.05). Moreover, GSNO restoration significantly (p < 0.05) decreases CSE-induced reactive oxygen species (ROS) activation and autophagy impairment (decreased accumulation of ubiquitinated proteins in the insoluble protein fractions and restoration of autophagy flux). In addition, GSNO augmentation inhibits protein misfolding as CSE-induced colocalization of ubiquitinated proteins and LC3B (in autophagy bodies) is significantly reduced by GSNO/N6022 treatment. We verified using the preclinical COPD-emphysema murine model that chronic CS (Ch-CS)-induced inflammation (interleukin [IL]-6/IL-1β levels), aggresome formation (perinuclear coexpression/colocalization of ubiquitinated proteins [Ub] and p62 [impaired autophagy marker], and CFTR), oxidative/nitrosative stress (p-Nrf2, inducible nitric oxide synthase [iNOS], and 3-nitrotyrosine expression), apoptosis (caspase-3/7 activity), and alveolar airspace enlargement (Lm) are significantly (p < 0.05) alleviated by augmenting airway GSNO levels. As a proof of concept, we demonstrate that GSNO augmentation suppresses Ch-CS-induced perinuclear CFTR protein accumulation (p < 0.05), which restores both acquired CFTR dysfunction and autophagy impairment, seen in COPD-emphysema subjects. INNOVATION GSNO augmentation alleviates CS-induced acquired CFTR dysfunction and resulting autophagy impairment. CONCLUSION Overall, we found that augmenting GSNO levels controls COPD-emphysema pathogenesis by reducing CS-induced acquired CFTR dysfunction and resulting autophagy impairment and chronic inflammatory-oxidative stress. Antioxid. Redox Signal. 27, 433-451.
Collapse
Affiliation(s)
- Manish Bodas
- 1 College of Medicine, Central Michigan University , Mt. Pleasant, Michigan
| | - David Silverberg
- 1 College of Medicine, Central Michigan University , Mt. Pleasant, Michigan
| | - Kyla Walworth
- 1 College of Medicine, Central Michigan University , Mt. Pleasant, Michigan
| | - Kathryn Brucia
- 1 College of Medicine, Central Michigan University , Mt. Pleasant, Michigan
| | - Neeraj Vij
- 1 College of Medicine, Central Michigan University , Mt. Pleasant, Michigan.,2 Department of Pediatrics and Pulmonary Medicine, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| |
Collapse
|
31
|
Bodas M, Patel N, Silverberg D, Walworth K, Vij N. Master Autophagy Regulator Transcription Factor EB Regulates Cigarette Smoke-Induced Autophagy Impairment and Chronic Obstructive Pulmonary Disease-Emphysema Pathogenesis. Antioxid Redox Signal 2017; 27:150-167. [PMID: 27835930 PMCID: PMC5510670 DOI: 10.1089/ars.2016.6842] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/06/2016] [Accepted: 11/11/2016] [Indexed: 12/14/2022]
Abstract
AIMS Recent studies have shown that cigarette smoke (CS)-induced oxidative stress impairs autophagy, resulting in aggresome-formation that correlates with severity of chronic obstructive pulmonary disease (COPD)-emphysema, although the specific step in autophagy pathway that is impaired is unknown. Hence, in this study, we aimed to evaluate the role of master autophagy transcription factor EB (TFEB) in CS-induced COPD-emphysema pathogenesis. RESULTS We first observed that TFEB accumulates in perinuclear spaces as aggresome-bodies in COPD lung tissues of tobacco smokers and severe emphysema subjects, compared with non-emphysema or nonsmoker controls. Next, Beas2b cells and C57BL/6 mice were exposed to either cigarette smoke extract (CSE) or subchronic-CS (sc-CS), followed by treatment with potent TFEB-inducing drug, gemfibrozil (GEM, or fisetin as an alternate), to experimentally verify the role of TFEB in COPD. Our in vitro results indicate that GEM/fisetin-mediated TFEB induction significantly (p < 0.05) decreases CSE-induced autophagy-impairment (Ub/LC3B reporter and autophagy flux assay) and resulting aggresome-formation (Ub/p62 coexpression/accumulation; immunoblotting and staining) by controlling reactive oxygen species (ROS) activity. Intriguingly, we observed that CS induces TFEB accumulation in the insoluble protein fractions of Beas2b cells, which shows a partial rescue with GEM treatment. Moreover, TFEB knockdown induces oxidative stress, autophagy-impairment, and senescence, which can all be mitigated by GEM-mediated TFEB induction. Finally, in vivo studies were used to verify that CS-induced autophagy-impairment (increased Ub, p62, and valosin-containing protein in the insoluble protein fractions of lung/cell lysates), inflammation (interleukin-6 [IL-6] levels in bronchoalveolar lavage fluid and iNOS expression in lung sections), apoptosis (caspase-3/7), and resulting emphysema (hematoxylin and eosin [H&E]) can be controlled by GEM-mediated TFEB induction (p < 0.05). INNOVATION CS exposure impairs autophagy in COPD-emphysema by inducing perinuclear localization of master autophagy regulator, TFEB, to aggresome-bodies. CONCLUSION TFEB-inducing drug(s) can control CS-induced TFEB/autophagy-impairment and COPD-emphysema pathogenesis. Antioxid. Redox Signal. 27, 150-167.
Collapse
Affiliation(s)
- Manish Bodas
- College of Medicine, Central Michigan University, Mount Pleasant, Michigan
| | - Neel Patel
- College of Medicine, Central Michigan University, Mount Pleasant, Michigan
| | - David Silverberg
- College of Medicine, Central Michigan University, Mount Pleasant, Michigan
| | - Kyla Walworth
- College of Medicine, Central Michigan University, Mount Pleasant, Michigan
| | - Neeraj Vij
- College of Medicine, Central Michigan University, Mount Pleasant, Michigan
- Department of Pediatrics and Pulmonary Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
32
|
Zulueta A, Caretti A, Campisi GM, Brizzolari A, Abad JL, Paroni R, Signorelli P, Ghidoni R. Inhibitors of ceramide de novo biosynthesis rescue damages induced by cigarette smoke in airways epithelia. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2017; 390:753-759. [PMID: 28409208 DOI: 10.1007/s00210-017-1375-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/06/2017] [Indexed: 02/03/2023]
Abstract
Exposure to cigarette smoke represents the most important risk factor for the development of chronic obstructive pulmonary disease (COPD). COPD is characterized by chronic inflammation of the airways, imbalance of proteolytic activity resulting in the destruction of lung parenchyma, alveolar hypoxia, oxidative stress, and apoptosis. Sphingolipids are structural membrane components whose metabolism is altered during stress. Known as apoptosis and inflammation inducer, the sphingolipid ceramide was found to accumulate in COPD airways and its plasma concentration increased as well. The present study investigates the role of sphingolipids in the cigarette smoke-induced damage of human airway epithelial cells. Lung epithelial cells were pre-treated with sphingolipid synthesis inhibitors (myriocin or XM462) and then exposed to a mixture of nicotine, acrolein, formaldehyde, and acetaldehyde, the major toxic cigarette smoke components. The inflammatory and proteolytic responses were investigated by analysis of the mRNA expression (RT-PCR) of cytokines IL-1β and IL-8, and matrix metalloproteinase-9 and of the protein expression (ELISA) of IL-8. Ceramide intracellular amounts were measured by LC-MS technique. Ferric-reducing antioxidant power test and superoxide anion radical scavenging activity assay were used to assess the antioxidant power of the inhibitors of ceramide synthesis. We here show that ceramide synthesis is enhanced under treatment with a cigarette smoke mixture correlating with increased expression of inflammatory cytokines and matrix metalloproteinase 9. The use of inhibitors of ceramide synthesis protected from smoke induced damages such as inflammation, oxidative stress, and proteolytic imbalance in airways epithelia.
Collapse
Affiliation(s)
- Aida Zulueta
- Health Sciences Department, Biochemistry & Mol. Biology Lab., University of Milan, Via Di Rudinì 8, 20142, Milan, Italy.
| | - Anna Caretti
- Health Sciences Department, Biochemistry & Mol. Biology Lab., University of Milan, Via Di Rudinì 8, 20142, Milan, Italy
| | - Giuseppe Matteo Campisi
- Health Sciences Department, Clinical Biochemistry &Mass Spectrometry Lab, University of Milan, Milan, Italy
| | - Andrea Brizzolari
- Health Sciences Department, Biochemistry & Mol. Biology Lab., University of Milan, Via Di Rudinì 8, 20142, Milan, Italy
| | - Jose Luis Abad
- Department of Biomed. Chem., IQAC/CSIC, Research Unit on Bioactive Molecules, Barcelona, Spain
| | - Rita Paroni
- Health Sciences Department, Clinical Biochemistry &Mass Spectrometry Lab, University of Milan, Milan, Italy
| | - Paola Signorelli
- Health Sciences Department, Biochemistry & Mol. Biology Lab., University of Milan, Via Di Rudinì 8, 20142, Milan, Italy
| | - Riccardo Ghidoni
- Health Sciences Department, Biochemistry & Mol. Biology Lab., University of Milan, Via Di Rudinì 8, 20142, Milan, Italy
| |
Collapse
|
33
|
Patel N, Trumph CD, Bodas M, Vij N. Role of second-hand smoke (SHS)-induced proteostasis/autophagy impairment in pediatric lung diseases. Mol Cell Pediatr 2017; 4:3. [PMID: 28150141 PMCID: PMC5289127 DOI: 10.1186/s40348-017-0069-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/02/2017] [Indexed: 12/11/2022] Open
Abstract
Background Exposure to second-hand tobacco smoke (SHS) is one of the prime risk factors for chronic lung disease development. Smoking during pregnancy may lead to birth defects in the newborn that include pulmonary dysfunction, increased susceptibility to opportunistic pathogens, or initiation of childhood respiratory manifestations such as bronchopulmonary dysplasia (BPD). Moreover, exposure to SHS in early childhood can have negative impact on lung health, although the exact mechanisms are unclear. Autophagy is a crucial proteostatic mechanism modulated by cigarette smoke (CS) in adult lungs. Here, we sought to investigate whether SHS exposure impairs autophagy in pediatric lungs. Methods Pregnant C57BL/6 mice were exposed to room air or SHS for 14 days. The newborn pups were subsequently exposed to room air or SHS (5 h/day) for 1 or 14 days, and lungs were harvested. Soluble and insoluble protein fractions isolated from pediatric mice lungs were subjected to immunoblotting for ubiquitin (Ub), p62, VCP, HIF-1α, and β-actin. Results Our data shows that short-term exposure to SHS (1 or 14 days) leads to proteostasis and autophagy-impairment as evident by significant increase in accumulation of ubiquitinated proteins (Ub), p62 (impaired-autophagy marker) and valosin-containing protein (VCP) in the insoluble protein fractions of pediatric mice lungs. Moreover, increased HIF-1α levels in SHS-exposed mice lungs points towards a novel mechanism for SHS-induced lung disease initiation in the pediatric population. Validating the in vivo studies, we demonstrate that treatment of human bronchial epithelial cells (Beas2b cells) with the proteasome inhibitor (MG-132) induces HIF-1α expression that is controlled by co-treatment with autophagy-inducing drug, cysteamine. Conclusions SHS-exposure induced proteostasis/autophagy impairment can mediate the initiation of chronic lung disease in pediatric subjects. Hence, our data warrants the evaluation of proteostasis/autophagy-inducing drugs, such as cysteamine, as a potential therapeutic intervention strategy for SHS-induced pediatric lung diseases.
Collapse
Affiliation(s)
- Neel Patel
- College of Medicine, Central Michigan University, College of Medicine Research Building, 2630 Denison Drive, Room# 120, Room# 120 (Office) and 126-127 (Lab), Mt Pleasant, MI, 48859, USA
| | - Christopher D Trumph
- College of Medicine, Central Michigan University, College of Medicine Research Building, 2630 Denison Drive, Room# 120, Room# 120 (Office) and 126-127 (Lab), Mt Pleasant, MI, 48859, USA
| | - Manish Bodas
- College of Medicine, Central Michigan University, College of Medicine Research Building, 2630 Denison Drive, Room# 120, Room# 120 (Office) and 126-127 (Lab), Mt Pleasant, MI, 48859, USA
| | - Neeraj Vij
- College of Medicine, Central Michigan University, College of Medicine Research Building, 2630 Denison Drive, Room# 120, Room# 120 (Office) and 126-127 (Lab), Mt Pleasant, MI, 48859, USA. .,Department of Pediatric Respiratory Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
34
|
Lewis JB, Milner DC, Lewis AL, Dunaway TM, Egbert KM, Albright SC, Merrell BJ, Monson TD, Broberg DS, Gassman JR, Thomas DB, Arroyo JA, Reynolds PR. Up-Regulation of Claudin-6 in the Distal Lung Impacts Secondhand Smoke-Induced Inflammation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:E1018. [PMID: 27763528 PMCID: PMC5086757 DOI: 10.3390/ijerph13101018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/30/2016] [Accepted: 10/13/2016] [Indexed: 01/06/2023]
Abstract
It has long been understood that increased epithelial permeability contributes to inflammation observed in many respiratory diseases. Recently, evidence has revealed that environmental exposure to noxious material such as cigarette smoke reduces tight junction barrier integrity, thus enhancing inflammatory conditions. Claudin-6 (Cldn6) is a tetraspanin transmembrane protein found within the tight junctional complex and is implicated in maintaining lung epithelial barriers. To test the hypothesis that increased Cldn6 ameliorates inflammation at the respiratory barrier, we utilized the Tet-On inducible transgenic system to conditionally over-express Clnd6 in the distal lung. Cldn6 transgenic (TG) and control mice were continuously provided doxycycline from postnatal day (PN) 30 until euthanasia date at PN90. A subset of Cldn6 TG and control mice were also subjected to daily secondhand tobacco smoke (SHS) via a nose only inhalation system from PN30-90 and compared to room air (RA) controls. Animals were euthanized on PN90 and lungs were harvested for histological and molecular characterization. Bronchoalveolar lavage fluid (BALF) was procured for the assessment of inflammatory cells and molecules. Quantitative RT-PCR and immunoblotting revealed increased Cldn6 expression in TG vs. control animals and SHS decreased Cldn6 expression regardless of genetic up-regulation. Histological evaluations revealed no adverse pulmonary remodeling via Hematoxylin and Eosin (H&E) staining or any qualitative alterations in the abundance of type II pneumocytes or proximal non-ciliated epithelial cells via staining for cell specific propeptide of Surfactant Protein-C (proSP-C) or Club Cell Secretory Protein (CCSP), respectively. Immunoblotting and qRT-PCR confirmed the differential expression of Cldn6 and the pro-inflammatory cytokines TNF-α and IL-1β. As a general theme, inflammation induced by SHS exposure was influenced by the availability of Cldn6. These data reveal captivating information suggesting a role for Cldn6 in lungs exposed to tobacco smoke. Further research is critically necessary in order to fully explain roles for tight junctional components such as Cldn6 and other related molecules in lungs coping with exposure.
Collapse
Affiliation(s)
- Joshua B Lewis
- Lung and Placenta Research Laboratory, Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Dallin C Milner
- Lung and Placenta Research Laboratory, Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Adam L Lewis
- Lung and Placenta Research Laboratory, Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Todd M Dunaway
- Lung and Placenta Research Laboratory, Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Kaleb M Egbert
- Lung and Placenta Research Laboratory, Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Scott C Albright
- Lung and Placenta Research Laboratory, Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Brigham J Merrell
- Lung and Placenta Research Laboratory, Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Troy D Monson
- Lung and Placenta Research Laboratory, Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Dallin S Broberg
- Lung and Placenta Research Laboratory, Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Jason R Gassman
- Lung and Placenta Research Laboratory, Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Daniel B Thomas
- Lung and Placenta Research Laboratory, Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Juan A Arroyo
- Lung and Placenta Research Laboratory, Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Paul R Reynolds
- Lung and Placenta Research Laboratory, Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
35
|
Aureli M, Schiumarini D, Loberto N, Bassi R, Tamanini A, Mancini G, Tironi M, Munari S, Cabrini G, Dechecchi MC, Sonnino S. Unravelling the role of sphingolipids in cystic fibrosis lung disease. Chem Phys Lipids 2016; 200:94-103. [DOI: 10.1016/j.chemphyslip.2016.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/22/2016] [Accepted: 08/25/2016] [Indexed: 12/13/2022]
|
36
|
Vij N. Nano-based rescue of dysfunctional autophagy in chronic obstructive lung diseases. Expert Opin Drug Deliv 2016; 14:483-489. [PMID: 27561233 DOI: 10.1080/17425247.2016.1223040] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION ΔF508-CFTR (cystic fibrosis transmembrane conductance regulator) is a common CF-mutation that is known to induce oxidative-inflammatory stress through activation of reactive oxygen species (ROS), which induces autophagy-impairment resulting in accumulation of CFTR in aggresome-bodies. Cysteamine, the reduced form of cystamine, is a FDA-approved drug that has anti-oxidant, anti-bacterial, and mucolytic properties. This drug has been shown in a recent clinical trial to decrease lung inflammation and improve lung function in CF patients by potentially restoring autophagy and allowing CFTR to be trafficked to the cell membrane. Areas covered: The delivery of cysteamine to airway epithelia of chronic subjects prerequisite the need for a delivery system to allow rescue of dysfunctional autophagy. Expert opinion: We anticipate based on our ongoing studies that PLGA-PEG- or Dendrimer-mediated cysteamine delivery could allow sustained airway delivery over standard cysteamine tablets or delay release capsules that are currently used for systemic treatment. In addition, proposed nano-based autophagy induction strategy can also allow rescue of cigarette smoke (CS) induced acquired-CFTR dysfunction seen in chronic obstructive pulmonary disease (COPD)-emphysema subjects. The CS induced acquired-CFTR dysfunction involves CFTR-accumulation in aggresome-bodies that can be rescued by an autophagy-inducing antioxidant drug, cysteamine. Moreover, chronic CS-exposure generates ROS that induces overall protein-misfolding and aggregation of ubiquitinated-proteins as aggresome-bodies via autophagy-impairment that can be also be resolved by treatment with autophagy-inducing antioxidant drug, cysteamine.
Collapse
Affiliation(s)
- Neeraj Vij
- a College of Medicine , Central Michigan University , Mount Pleasant , MI , USA.,b Department of Pediatric Respiratory Sciences , The Johns Hopkins School of Medicine , Baltimore , MD , USA
| |
Collapse
|
37
|
Bodas M, Van Westphal C, Carpenter-Thompson R, K Mohanty D, Vij N. Nicotine exposure induces bronchial epithelial cell apoptosis and senescence via ROS mediated autophagy-impairment. Free Radic Biol Med 2016; 97:441-453. [PMID: 27394171 DOI: 10.1016/j.freeradbiomed.2016.06.017] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/30/2016] [Accepted: 06/17/2016] [Indexed: 12/15/2022]
Abstract
Waterpipe smoking and e-cigarette vaping, the non-combustible sources of inhaled nicotine exposure are increasingly becoming popular and marketed as safer alternative to cigarette smoking. Hence, this study was designed to investigate the impact of inhaled nicotine exposure on disease causing COPD-emphysema mechanisms. For in vitro studies, human bronchial epithelial cells (Beas2b) were treated with waterpipe smoke extract (WPSE, 5%), nicotine (5mM), and/or cysteamine (250μM, an autophagy inducer and anti-oxidant drug), for 6hrs. We observed significantly (p<0.05) increased ubiquitinated protein-accumulation in the insoluble protein fractions of Beas2b cells treated with WPSE or nicotine that could be rescued by cysteamine treatment, suggesting aggresome-formation and autophagy-impairment. Moreover, our data also demonstrate that both WPSE and nicotine exposure significantly (p<0.05) elevates Ub-LC3β co-localization to aggresome-bodies while inducing Ub-p62 co-expression/accumulation, verifying autophagy-impairment. We also found that WPSE and nicotine exposure impacts Beas2b cell viability by significantly (p<0.05) inducing cellular apoptosis/senescence via ROS-activation, as it could be controlled by cysteamine, which is known to have an anti-oxidant property. For murine studies, C57BL/6 mice were administered with inhaled nicotine (intranasal, 500μg/mouse/day for 5 days), as an experimental model of non-combustible nicotine exposure. The inhaled nicotine exposure mediated oxidative-stress induces autophagy-impairment in the murine lungs as seen by significant (p<0.05, n=4) increase in the expression levels of nitrotyrosine protein-adduct (oxidative-stress marker, soluble-fraction) and Ub/p62/VCP (impaired-autophagy marker, insoluble-fraction). Overall, our data shows that nicotine, a common component of WPS, e-cigarette vapor and cigarette smoke, induces bronchial epithelial cell apoptosis and senescence via ROS mediated autophagy-impairment as a potential mechanism for COPD-emphysema pathogenesis.
Collapse
Affiliation(s)
- Manish Bodas
- College of Medicine, Central Michigan University, Mt Pleasant, MI, United States
| | - Colin Van Westphal
- College of Medicine, Central Michigan University, Mt Pleasant, MI, United States
| | | | - Dillip K Mohanty
- Department of Chemistry and Biochemistry, Central Michigan University, Mt Pleasant, MI, United States
| | - Neeraj Vij
- College of Medicine, Central Michigan University, Mt Pleasant, MI, United States; Department of Pediatrics and Pulmonary Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
38
|
Aggarwal S, Mannam P, Zhang J. Differential regulation of autophagy and mitophagy in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 2016; 311:L433-52. [PMID: 27402690 PMCID: PMC5504426 DOI: 10.1152/ajplung.00128.2016] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/01/2016] [Indexed: 12/26/2022] Open
Abstract
Lysosomal-mediated degradation of intracellular lipids, proteins and organelles, known as autophagy, represents a inducible adaptive response to lung injury resulting from exposure to insults, such as hypoxia, microbes, inflammation, ischemia-reperfusion, pharmaceuticals (e.g., bleomycin), or inhaled xenobiotics (i.e., air pollution, cigarette smoke). This process clears damaged or toxic cellular constituents and facilitates cell survival in stressful environments. Autophagic degradation of dysfunctional or damaged mitochondria is termed mitophagy. Enhanced mitophagy is usually an early response to promote survival. However, overwhelming or prolonged mitochondrial damage can induce excessive/pathological levels of mitophagy, thereby promoting cell death and tissue injury. Autophagy/mitophagy is therefore an important modulator in human pulmonary diseases and a potential therapeutic target. This review article will summarize the most recent studies highlighting the role of autophagy/mitophagy and its molecular pathways involved in stress response in pulmonary pathologies.
Collapse
Affiliation(s)
- Saurabh Aggarwal
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Praveen Mannam
- Department of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut; and
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
39
|
Vij N, Chandramani-Shivalingappa P, Van Westphal C, Hole R, Bodas M. Cigarette smoke-induced autophagy impairment accelerates lung aging, COPD-emphysema exacerbations and pathogenesis. Am J Physiol Cell Physiol 2016; 314:C73-C87. [PMID: 27413169 DOI: 10.1152/ajpcell.00110.2016] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cigarette-smoke (CS) exposure and aging are the leading causes of chronic obstructive pulmonary disease (COPD)-emphysema development, although the molecular mechanism that mediates disease pathogenesis remains poorly understood. Our objective was to investigate the impact of CS exposure and aging on autophagy and the pathophysiological changes associated with lung aging (senescence) and emphysema progression. Beas2b cells, C57BL/6 mice, and human (GOLD 0-IV) lung tissues were used to determine the central mechanism involved in CS/age-related COPD-emphysema pathogenesis. Beas2b cells and murine lungs exposed to cigarette smoke extract (CSE)/CS showed a significant ( P < 0.05) accumulation of poly-ubiquitinated proteins and impaired autophagy marker, p62, in aggresome bodies. Moreover, treatment with the autophagy-inducing antioxidant drug cysteamine significantly ( P < 0.001) decreased CSE/CS-induced aggresome bodies. We also found a significant ( P < 0.001) increase in levels of aggresome bodies in the lungs of smokers and COPD subjects in comparison to nonsmoker controls. Furthermore, the presence and levels of aggresome bodies statistically correlated with severity of emphysema and alveolar senescence. In addition to CS exposure, lungs from old mice also showed accumulation of aggresome bodies, suggesting this as a common mechanism to initiate cellular senescence and emphysema. Additionally, Beas2b cells and murine lungs exposed to CSE/CS showed cellular apoptosis and senescence, which were both controlled by cysteamine treatment. In parallel, we evaluated the impact of CS on pulmonary exacerbation, using mice exposed to CS and/or infected with Pseudomonas aeruginosa ( Pa), and confirmed cysteamine's potential as an autophagy-inducing antibacterial drug, based on its ability to control CS-induced pulmonary exacerbation ( Pa-bacterial counts) and resulting inflammation. CS induced autophagy impairment accelerates lung aging and COPD-emphysema exacerbations and pathogenesis.
Collapse
Affiliation(s)
- Neeraj Vij
- College of Medicine, Central Michigan University, Mt. Pleasant, Michigan.,Department of Pediatric Respiratory Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | | | - Colin Van Westphal
- College of Medicine, Central Michigan University, Mt. Pleasant, Michigan
| | - Rachel Hole
- College of Medicine, Central Michigan University, Mt. Pleasant, Michigan
| | - Manish Bodas
- College of Medicine, Central Michigan University, Mt. Pleasant, Michigan
| |
Collapse
|
40
|
Epithelial Anion Transport as Modulator of Chemokine Signaling. Mediators Inflamm 2016; 2016:7596531. [PMID: 27382190 PMCID: PMC4921137 DOI: 10.1155/2016/7596531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 05/03/2016] [Accepted: 05/12/2016] [Indexed: 12/16/2022] Open
Abstract
The pivotal role of epithelial cells is to secrete and absorb ions and water in order to allow the formation of a luminal fluid compartment that is fundamental for the epithelial function as a barrier against environmental factors. Importantly, epithelial cells also take part in the innate immune system. As a first line of defense they detect pathogens and react by secreting and responding to chemokines and cytokines, thus aggravating immune responses or resolving inflammatory states. Loss of epithelial anion transport is well documented in a variety of diseases including cystic fibrosis, chronic obstructive pulmonary disease, asthma, pancreatitis, and cholestatic liver disease. Here we review the effect of aberrant anion secretion with focus on the release of inflammatory mediators by epithelial cells and discuss putative mechanisms linking these transport defects to the augmented epithelial release of chemokines and cytokines. These mechanisms may contribute to the excessive and persistent inflammation in many respiratory and gastrointestinal diseases.
Collapse
|
41
|
Presa N, Gomez-Larrauri A, Rivera IG, Ordoñez M, Trueba M, Gomez-Muñoz A. Regulation of cell migration and inflammation by ceramide 1-phosphate. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:402-9. [DOI: 10.1016/j.bbalip.2016.02.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 12/13/2022]
|
42
|
Shivalingappa PC, Hole R, Westphal CV, Vij N. Airway Exposure to E-Cigarette Vapors Impairs Autophagy and Induces Aggresome Formation. Antioxid Redox Signal 2016; 24:186-204. [PMID: 26377848 PMCID: PMC4744882 DOI: 10.1089/ars.2015.6367] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS Electronic cigarettes (e-cigarettes) are proposed to be a safer alternative to tobacco cigarettes. Hence, we evaluated if e-cigarette vapors (eCV) impair cellular proteostasis similar to cigarette smoke exposure. RESULTS First, we evaluated the impact of eCV exposure (2.5 or 7.5 mg) on Beas2b cells that showed significant increase in accumulation of total polyubiquitinated proteins (Ub, insoluble fractions) with time-dependent decrease in proteasomal activities from 1 h (p < 0.05), 3 h (p < 0.001) to 6 h (p < 0.001) of eCV exposure compared to room air control. We verified that even minimal eCV exposure (1 h) induces valosin-containing protein (VCP; p < 0.001), sequestosome-1/p62 (aberrant autophagy marker; p < 0.05), and aggresome formation (total poly-Ub-accumulation; p < 0.001) using immunoblotting (IB), fluorescence microscopy, and immunoprecipitation (IP). The inhibition of protein synthesis by 6 h of cycloheximide (50 μg/ml) treatment significantly (p < 0.01) alleviates eCV-induced (1 h) aggresome bodies. We also observed that eCV (1 h)-induced protein aggregation can activate oxidative stress, apoptosis (caspase-3/7), and senescence (p < 0.01) compared to room air controls. We verified using an autophagy inducer carbamazepine (20 μM, 6 h) or cysteamine (250 μM; 6 h, antioxidant) that eCV-induced changes in oxidative stress, poly-ub-accumulation, proteasomal activity, autophagy, apoptosis, and/or senescence could be controlled by autophagy induction. We further confirmed the role of acute eCV exposure on autophagy impairment in murine lungs (C57BL/6 and CD1) by IB (Ub, p62, VCP) and IP (VCP, p62), similar to in-vitro experiments. INNOVATION In this study, we report for the first time that eCV exposure induces proteostasis/autophagy impairment leading to oxidative stress, apoptosis, and senescence that can be ameliorated by an autophagy inducer. CONCLUSION eCV-induced autophagy impairment and aggresome formation suggest their potential role in chronic obstructive pulmonary disease-emphysema pathogenesis. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
| | - Rachel Hole
- 1 College of Medicine, Central Michigan University , Mt Pleasant, Michigan
| | - Colin Van Westphal
- 1 College of Medicine, Central Michigan University , Mt Pleasant, Michigan
| | - Neeraj Vij
- 1 College of Medicine, Central Michigan University , Mt Pleasant, Michigan.,2 Department of Pediatric Respiratory Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| |
Collapse
|
43
|
Kenche H, Ye ZW, Vedagiri K, Richards DM, Gao XH, Tew KD, Townsend DM, Blumental-Perry A. Adverse Outcomes Associated with Cigarette Smoke Radicals Related to Damage to Protein-disulfide Isomerase. J Biol Chem 2016; 291:4763-78. [PMID: 26728460 DOI: 10.1074/jbc.m115.712331] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Indexed: 12/19/2022] Open
Abstract
Identification of factors contributing to the development of chronic obstructive pulmonary disease (COPD) is crucial for developing new treatments. An increase in the levels of protein-disulfide isomerase (PDI), a multifaceted endoplasmic reticulum resident chaperone, has been demonstrated in human smokers, presumably as a protective adaptation to cigarette smoke (CS) exposure. We found a similar increase in the levels of PDI in the murine model of COPD. We also found abnormally high levels (4-6 times) of oxidized and sulfenilated forms of PDI in the lungs of murine smokers compared with non-smokers. PDI oxidation progressively increases with age. We begin to delineate the possible role of an increased ratio of oxidized PDI in the age-related onset of COPD by investigating the impact of exposure to CS radicals, such as acrolein (AC), hydroxyquinones (HQ), peroxynitrites (PN), and hydrogen peroxide, on their ability to induce unfolded protein response (UPR) and their effects on the structure and function of PDIs. Exposure to AC, HQ, PN, and CS resulted in cysteine and tyrosine nitrosylation leading to an altered three-dimensional structure of the PDI due to a decrease in helical content and formation of a more random coil structure, resulting in protein unfolding, inhibition of PDI reductase and isomerase activity in vitro and in vivo, and subsequent induction of endoplasmic reticulum stress response. Addition of glutathione prevented the induction of UPR, and AC and HQ induced structural changes in PDI. Exposure to PN and glutathione resulted in conjugation of PDI possibly at active site tyrosine residues. The findings presented here propose a new role of PDI in the pathogenesis of COPD and its age-dependent onset.
Collapse
Affiliation(s)
- Harshavardhan Kenche
- From the Anderson Cancer Institute, Memorial Health University Medical Center, Savannah, Georgia 31404
| | - Zhi-Wei Ye
- the College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Kokilavani Vedagiri
- From the Anderson Cancer Institute, Memorial Health University Medical Center, Savannah, Georgia 31404
| | - Dylan M Richards
- From the Anderson Cancer Institute, Memorial Health University Medical Center, Savannah, Georgia 31404
| | - Xing-Huang Gao
- Genetics, Case Western Reserve University, Cleveland, Ohio 44106, and
| | - Kenneth D Tew
- the College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Danyelle M Townsend
- the College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Anna Blumental-Perry
- From the Anderson Cancer Institute, Memorial Health University Medical Center, Savannah, Georgia 31404, the Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia 31404, the Departments of Surgery and
| |
Collapse
|
44
|
Gomez-Muñoz A, Presa N, Gomez-Larrauri A, Rivera IG, Trueba M, Ordoñez M. Control of inflammatory responses by ceramide, sphingosine 1-phosphate and ceramide 1-phosphate. Prog Lipid Res 2015; 61:51-62. [PMID: 26703189 DOI: 10.1016/j.plipres.2015.09.002] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/14/2015] [Accepted: 09/28/2015] [Indexed: 01/04/2023]
Abstract
Inflammation is a network of complex processes involving a variety of metabolic and signaling pathways aiming at healing and repairing damage tissue, or fighting infection. However, inflammation can be detrimental when it becomes out of control. Inflammatory mediators involve cytokines, bioactive lipids and lipid-derived metabolites. In particular, the simple sphingolipids ceramides, sphingosine 1-phosphate, and ceramide 1-phosphate have been widely implicated in inflammation. However, although ceramide 1-phosphate was first described as pro-inflammatory, recent studies show that it has anti-inflammatory properties when produced in specific cell types or tissues. The biological functions of ceramides and sphingosine 1-phosphate have been extensively studied. These sphingolipids have opposing effects with ceramides being potent inducers of cell cycle arrest and apoptosis, and sphingosine 1-phosphate promoting cell growth and survival. However, the biological actions of ceramide 1-phosphate have only been partially described. Ceramide 1-phosphate is mitogenic and anti-apoptotic, and more recently, it has been demonstrated to be key regulator of cell migration. Both sphingosine 1-phosphate and ceramide 1-phosphate are also implicated in tumor growth and dissemination. The present review highlights new aspects on the control of inflammation and cell migration by simple sphingolipids, with special emphasis to the role played by ceramide 1-phosphate in controlling these actions.
Collapse
Affiliation(s)
- Antonio Gomez-Muñoz
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain.
| | - Natalia Presa
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain.
| | - Ana Gomez-Larrauri
- Department of Pneumology, University Hospital of Alava (Osakidetza), Vitoria-Gasteiz, Spain.
| | - Io-Guané Rivera
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain.
| | - Miguel Trueba
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain.
| | - Marta Ordoñez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain.
| |
Collapse
|
45
|
Lactosylceramide-accumulation in lipid-rafts mediate aberrant-autophagy, inflammation and apoptosis in cigarette smoke induced emphysema. Apoptosis 2015; 20:725-39. [PMID: 25638276 DOI: 10.1007/s10495-015-1098-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ceramide-accumulation is known to be involved in the pathogenesis of chronic inflammatory lung diseases including cigarette smoke-induced emphysema (CS-emphysema) but the exact sphingolipid metabolite that initiates emphysema progression remains ambiguous. We evaluated here a novel role for the sphingolipid, lactosylceramide (LacCer), as a potential mechanism for pathogenesis of CS-emphysema. We assessed the expression of LacCer, and LacCer-dependent inflammatory, apoptosis and autophagy responses in lungs of mice exposed to CS, as well as peripheral lung tissues from COPD subjects followed by experimental analysis to verify the role of LacCer in CS-emphysema. We observed significantly elevated LacCer-accumulation in human COPD lungs with increasing severity of emphysema over non-emphysema controls. Moreover, increased expression of defective-autophagy marker, p62, in lung tissues of severe COPD subjects suggest that LacCer induced aberrant-autophagy may contribute to the pathogenesis of CS-emphysema. We verified that CS-extract treatment significantly induces LacCer-accumulation in both bronchial-epithelial cells (BEAS2B) and macrophages (Raw264.7) as a mechanism to initiate aberrant-autophagy (p62-accumulation) and apoptosis that was rescued by pharmacological inhibitor of LacCer-synthase. Further, we corroborated that CS exposure induces LacCer-accumulation in murine lungs that can be controlled by LacCer-synthase inhibitor. We propose LacCer-accumulation as a novel prognosticator of COPD-emphysema severity, and provide evidence on the therapeutic efficacy of LacCer-synthase inhibitor in CS induced COPD-emphysema.
Collapse
|
46
|
Tran I, Ji C, Ni I, Min T, Tang D, Vij N. Role of Cigarette Smoke-Induced Aggresome Formation in Chronic Obstructive Pulmonary Disease-Emphysema Pathogenesis. Am J Respir Cell Mol Biol 2015; 53:159-73. [PMID: 25490051 DOI: 10.1165/rcmb.2014-0107oc] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cigarette smoke (CS) exposure is known to induce proteostasis imbalance that can initiate accumulation of ubiquitinated proteins. Therefore, the primary goal of this study was to determine if first- and secondhand CS induces localization of ubiquitinated proteins in perinuclear spaces as aggresome bodies. Furthermore, we sought to determine the mechanism by which smoke-induced aggresome formation contributes to chronic obstructive pulmonary disease (COPD)-emphysema pathogenesis. Hence, Beas2b cells were treated with CS extract (CSE) for in vitro experimental analysis of CS-induced aggresome formation by immunoblotting, microscopy, and reporter assays, whereas chronic CS-exposed murine model and human COPD-emphysema lung tissues were used for validation. In preliminary analysis, we observed a significant (P < 0.01) increase in ubiquitinated protein aggregation in the insoluble protein fraction of CSE-treated Beas2b cells. We verified that CS-induced ubiquitin aggregrates are localized in the perinuclear spaces as aggresome bodies. These CS-induced aggresomes (P < 0.001) colocalize with autophagy protein microtubule-associated protein 1 light chain-3B(+) autophagy bodies, whereas U.S. Food and Drug Administration-approved autophagy-inducing drug (carbamazepine) significantly (P < 0.01) decreases their colocalization and expression, suggesting CS-impaired autophagy. Moreover, CSE treatment significantly increases valosin-containing protein-p62 protein-protein interaction (P < 0.0005) and p62 expression (aberrant autophagy marker; P < 0.0001), verifying CS-impaired autophagy as an aggresome formation mechanism. We also found that inhibiting protein synthesis by cycloheximide does not deplete CS-induced ubiquitinated protein aggregates, suggesting the role of CS-induced protein synthesis in aggresome formation. Next, we used an emphysema murine model to verify that chronic CS significantly (P < 0.0005) induces aggresome formation. Moreover, we observed that autophagy induction by carbamazepine inhibits CS-induced aggresome formation and alveolar space enlargement (P < 0.001), confirming involvement of aggresome bodies in COPD-emphysema pathogenesis. Finally, significantly higher p62 accumulation in smokers and severe COPD-emphysema lungs (Global Initiative for Chronic Obstructive Lung Disease Stage III/IV) as compared with normal nonsmokers (Global Initiative for Chronic Obstructive Lung Disease Stage 0) substantiates the pathogenic role of autophagy impairment in aggresome formation and COPD-emphysema progression. In conclusion, CS-induced aggresome formation is a novel mechanism involved in COPD-emphysema pathogenesis.
Collapse
Affiliation(s)
- Ian Tran
- Departments of 1 Pediatric Respiratory Science and.,2 Biomedical Engineering, the Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Changhoon Ji
- Departments of 1 Pediatric Respiratory Science and.,2 Biomedical Engineering, the Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Inzer Ni
- Departments of 1 Pediatric Respiratory Science and.,2 Biomedical Engineering, the Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Taehong Min
- Departments of 1 Pediatric Respiratory Science and.,2 Biomedical Engineering, the Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Danni Tang
- Departments of 1 Pediatric Respiratory Science and.,2 Biomedical Engineering, the Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Neeraj Vij
- Departments of 1 Pediatric Respiratory Science and.,3 College of Medicine, Central Michigan University, Mount Pleasant, Michigan
| |
Collapse
|
47
|
Clarke LA, Botelho HM, Sousa L, Falcao AO, Amaral MD. Transcriptome meta-analysis reveals common differential and global gene expression profiles in cystic fibrosis and other respiratory disorders and identifies CFTR regulators. Genomics 2015. [PMID: 26225835 DOI: 10.1016/j.ygeno.2015.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A meta-analysis of 13 independent microarray data sets was performed and gene expression profiles from cystic fibrosis (CF), similar disorders (COPD: chronic obstructive pulmonary disease, IPF: idiopathic pulmonary fibrosis, asthma), environmental conditions (smoking, epithelial injury), related cellular processes (epithelial differentiation/regeneration), and non-respiratory "control" conditions (schizophrenia, dieting), were compared. Similarity among differentially expressed (DE) gene lists was assessed using a permutation test, and a clustergram was constructed, identifying common gene markers. Global gene expression values were standardized using a novel approach, revealing that similarities between independent data sets run deeper than shared DE genes. Correlation of gene expression values identified putative gene regulators of the CF transmembrane conductance regulator (CFTR) gene, of potential therapeutic significance. Our study provides a novel perspective on CF epithelial gene expression in the context of other lung disorders and conditions, and highlights the contribution of differentiation/EMT and injury to gene signatures of respiratory disease.
Collapse
Affiliation(s)
- Luka A Clarke
- University of Lisboa, Faculty of Sciences, BioISI- Biosystems & Integrative Sciences Institute, Campo Grande, Lisboa, Portugal
| | - Hugo M Botelho
- University of Lisboa, Faculty of Sciences, BioISI- Biosystems & Integrative Sciences Institute, Campo Grande, Lisboa, Portugal
| | - Lisete Sousa
- University of Lisboa, Faculty of Sciences, DEIO and CEAUL, Portugal
| | - Andre O Falcao
- University of Lisboa, Faculty of Sciences, Department of Informatics, Portugal
| | - Margarida D Amaral
- University of Lisboa, Faculty of Sciences, BioISI- Biosystems & Integrative Sciences Institute, Campo Grande, Lisboa, Portugal
| |
Collapse
|
48
|
Signaling network of lipids as a comprehensive scaffold for omics data integration in sputum of COPD patients. Biochim Biophys Acta Mol Cell Biol Lipids 2015. [PMID: 26215076 DOI: 10.1016/j.bbalip.2015.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a heterogeneous and progressive inflammatory condition that has been linked to the dysregulation of many metabolic pathways including lipid biosynthesis. How lipid metabolism could affect disease progression in smokers with COPD remains unclear. We cross-examined the transcriptomics, proteomics, metabolomics, and phenomics data available on the public domain to elucidate the mechanisms by which lipid metabolism is perturbed in COPD. We reconstructed a sputum lipid COPD (SpLiCO) signaling network utilizing active/inactive, and functional/dysfunctional lipid-mediated signaling pathways to explore how lipid-metabolism could promote COPD pathogenesis in smokers. SpLiCO was further utilized to investigate signal amplifiers, distributers, propagators, feed-forward and/or -back loops that link COPD disease severity and hypoxia to disruption in the metabolism of sphingolipids, fatty acids and energy. Also, hypergraph analysis and calculations for dependency of molecules identified several important nodes in the network with modular regulatory and signal distribution activities. Our systems-based analyses indicate that arachidonic acid is a critical and early signal distributer that is upregulated by the sphingolipid signaling pathway in COPD, while hypoxia plays a critical role in the elevated dependency to glucose as a major energy source. Integration of SpLiCo and clinical data shows a strong association between hypoxia and the upregulation of sphingolipids in smokers with emphysema, vascular disease, hypertension and those with increased risk of lung cancer.
Collapse
|
49
|
Zeng JW, Zeng XL, Li FY, Ma MM, Yuan F, Liu J, Lv XF, Wang GL, Guan YY. Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) prevents apoptosis induced by hydrogen peroxide in basilar artery smooth muscle cells. Apoptosis 2015; 19:1317-29. [PMID: 24999019 DOI: 10.1007/s10495-014-1014-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) acts as a cAMP-dependent chloride channel, has been studied in various types of cells. CFTR is abundantly expressed in vascular smooth muscle cells and closely linked to vascular tone regulation. However, the functional significance of CFTR in basilar vascular smooth muscle cells (BASMCs) remains elusive. Accumulating evidence has shown the direct role of CFTR in cell apoptosis that contributes to several main pathological events in CF, such as inflammation, lung injury and pancreatic insufficiency. We therefore investigated the role of CFTR in BASMC apoptotic process induced by hydrogen peroxide (H2O2). We found that H2O2-induced cell apoptosis was parallel to a significant decrease in endogenous CFTR protein expression. Silencing CFTR with adenovirus-mediated CFTR specific siRNA further enhanced H2O2-induced BASMC injury, mitochondrial cytochrome c release into cytoplasm, cleaved caspase-3 and -9 protein expression and oxidized glutathione levels; while decreased cell viability, the Bcl-2/Bax ratio, mitochondrial membrane potential, total glutathione levels, activities of superoxide dismutase and catalase. The pharmacological activation of CFTR with forskolin produced the opposite effects. These results strongly suggest that CFTR may modulate oxidative stress-related BASMC apoptosis through the cAMP- and mitochondria-dependent pathway and regulating endogenous antioxidant defense system.
Collapse
Affiliation(s)
- Jia-Wei Zeng
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ni I, Ji C, Vij N. Second-hand cigarette smoke impairs bacterial phagocytosis in macrophages by modulating CFTR dependent lipid-rafts. PLoS One 2015; 10:e0121200. [PMID: 25794013 PMCID: PMC4368805 DOI: 10.1371/journal.pone.0121200] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 01/27/2015] [Indexed: 01/08/2023] Open
Abstract
Introduction First/Second-hand cigarette-smoke (FHS/SHS) exposure weakens immune defenses inducing chronic obstructive pulmonary disease (COPD) but the underlying mechanisms are not fully understood. Hence, we evaluated if SHS induced changes in membrane/lipid-raft (m-/r)-CFTR (cystic fibrosis transmembrane conductance regulator) expression/activity is a potential mechanism for impaired bacterial phagocytosis in COPD. Methods RAW264.7 murine macrophages were exposed to freshly prepared CS-extract (CSE) containing culture media and/or Pseudomonas-aeruginosa-PA01-GFP for phagocytosis (fluorescence-microscopy), bacterial survival (colony-forming-units-CFU), and immunoblotting assays. The CFTR-expression/activity and lipid-rafts were modulated by transient-transfection or inhibitors/inducers. Next, mice were exposed to acute/sub-chronic-SHS or room-air (5-days/3-weeks) and infected with PA01-GFP, followed by quantification of bacterial survival by CFU-assay. Results We investigated the effect of CSE treatment on RAW264.7 cells infected by PA01-GFP and observed that CSE treatment significantly (p<0.01) inhibits PA01-GFP phagocytosis as compared to the controls. We also verified this in murine model, exposed to acute/sub-chronic-SHS and found significant (p<0.05, p<0.02) increase in bacterial survival in the SHS-exposed lungs as compared to the room-air controls. Next, we examined the effect of impaired CFTR ion-channel-activity on PA01-GFP infection of RAW264.7 cells using CFTR172-inhibitor and found no significant change in phagocytosis. We also similarly evaluated the effect of a CFTR corrector-potentiator compound, VRT-532, and observed no significant rescue of CSE impaired PA01-GFP phagocytosis although it significantly (p<0.05) decreases CSE induced bacterial survival. Moreover, induction of CFTR expression in macrophages significantly (p<0.03) improves CSE impaired PA01-GFP phagocytosis as compared to the control. Next, we verified the link between m-/r-CFTR expression and phagocytosis using methyl-β-cyclodextran (CD), as it is known to deplete CFTR from membrane lipid-rafts. We observed that CD treatment significantly (p<0.01) inhibits bacterial phagocytosis in RAW264.7 cells and adding CSE further impairs phagocytosis suggesting synergistic effect on CFTR dependent lipid-rafts. Conclusion Our data suggest that SHS impairs bacterial phagocytosis by modulating CFTR dependent lipid-rafts.
Collapse
Affiliation(s)
- Inzer Ni
- Department of Pediatric Respiratory Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Changhoon Ji
- Department of Pediatric Respiratory Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Neeraj Vij
- Department of Pediatric Respiratory Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Foundational Sciences, College of Medicine, Central Michigan University, Mount Pleasant, Michigan, United States of America
- * E-mail:
| |
Collapse
|