1
|
Hamby M, Stec DE, Hildebrandt E, Stec DF, Drummond HA. Mice lacking ASIC2 and βENaC are protected from high-fat-diet-induced metabolic syndrome. Front Endocrinol (Lausanne) 2024; 15:1449344. [PMID: 39224121 PMCID: PMC11366616 DOI: 10.3389/fendo.2024.1449344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Degenerin proteins, such as βENaC and ASIC2, have been implicated in cardiovascular function. However, their role in metabolic syndrome have not been studied. To begin to assess this interaction, we evaluated the impact of a high fat diet (HFD) on mice lacking normal levels of ASIC2 (ASIC2-/-) and βENaC (βENaCm/m). Methods Twenty-week-old male and female mice were placed on a 60% HFD for 12 weeks. Body weight was measured weekly, and body composition by non-invasive ECHO MRI and fasting blood glucose were measured at 0, 4, 8 and 12 weeks. A glucose tolerance test was administered after 12 weeks. Differences between ASIC2-/-/βENaCm/m and WT groups were compared using independent t-tests or ANOVA where appropriate within each sex. Data are presented as mean ± SEM and ASIC2-/-/βENaCm/m vs. WT. Results At 20 weeks of age, ASIC2-/-/βENaCm/m mice (n=9F/10M) weighed less and gained less weight than WT (n=12F/16M). Total body fat and lean body masses were reduced in female and male ASIC2-/-/βENaCm/m mice. Total body fat and lean body masses as % control were identical at the end of 12 weeks. Fasting blood glucoses were lower in female and male ASIC2-/-/βENaCm/m vs. WT mice after 12 weeks HFD. The area under the curve for the glucose tolerance test was reduced in female and tended (p=.079) to decrease in male ASIC2-/-/βENaCm/m. Plasma leptin and insulin were reduced in female and male ASIC2-/-/βENaCm/m vs. WT mice. Plasma insulin in female ASIC2-/-/βENaCm/m mice remained unchanged throughout the HFD period. Liver and liver fat masses, as well as percent liver fat, were reduced in both female and male ASIC2-/-/βENaCm/m mice after HFD. Plasma triglycerides, cholesterol, LDL- and HDL-cholesterols were markedly improved in male and/or female ASIC2-/-/βENaCm/m following the HFD. Discussion These novel findings suggest that loss of ASIC2 and βENaC offer a significant protection against HFD-induced metabolic syndrome.
Collapse
Affiliation(s)
- Madison Hamby
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
| | - David E. Stec
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
| | - Emily Hildebrandt
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
| | - Donald F. Stec
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Heather A. Drummond
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
2
|
Lawson EA. Understanding oxytocin in human physiology and pathophysiology: A path towards therapeutics. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2024; 19:100242. [PMID: 38974962 PMCID: PMC11225698 DOI: 10.1016/j.cpnec.2024.100242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/06/2024] [Accepted: 05/27/2024] [Indexed: 07/09/2024] Open
Abstract
•Oxytocin is a multifaceted hypothalamic-pituitary hormone involved in energy homeostasis, mental health, and bone metabolism.•Oxytocin deficiency in energy deficit states and in hypopituitarism is associated with worse mental health and bone health.•Oxytocin modulates appetitive neurocircuitry, improves impulse control, and reduces food intake in humans.•Defining the oxytocin system in human physiology and pathophysiology could lead to novel therapeutic strategies.
Collapse
Affiliation(s)
- Elizabeth A. Lawson
- Neuroendocrine Unit, Massachusetts General Hospital, Department of Medicine, Harvard Medical School, 50 Staniford Street, Suite 750B, Boston, MA, 02114, USA
| |
Collapse
|
3
|
Gruber T, Lechner F, Krieger JP, García-Cáceres C. Neuroendocrine gut-brain signaling in obesity. Trends Endocrinol Metab 2024:S1043-2760(24)00120-6. [PMID: 38821753 DOI: 10.1016/j.tem.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 06/02/2024]
Abstract
The past decades have witnessed the rise and fall of several, largely unsuccessful, therapeutic attempts to bring the escalating obesity pandemic to a halt. Looking back to look ahead, the field has now put its highest hopes in translating insights from how the gastrointestinal (GI) tract communicates with the brain to calibrate behavior, physiology, and metabolism. A major focus of this review is to summarize the latest advances in comprehending the neuroendocrine aspects of this so-called 'gut-brain axis' and to explore novel concepts, cutting-edge technologies, and recent paradigm-shifting experiments. These exciting insights continue to refine our understanding of gut-brain crosstalk and are poised to promote the development of additional therapeutic avenues at the dawn of a new era of antiobesity therapeutics.
Collapse
Affiliation(s)
- Tim Gruber
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49506, USA; Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49506, USA; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
| | - Franziska Lechner
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - Jean-Philippe Krieger
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich-Vetsuisse, 8057 Zurich, Switzerland; Institute of Neuroscience and Physiology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Cristina García-Cáceres
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, 80336 Munich, Germany.
| |
Collapse
|
4
|
Iovino M, Messana T, Marucci S, Triggiani D, Giagulli VA, Guastamacchia E, Piazzolla G, De Pergola G, Lisco G, Triggiani V. The neurohypophyseal hormone oxytocin and eating behaviors: a narrative review. Hormones (Athens) 2024; 23:15-23. [PMID: 37979096 PMCID: PMC10847364 DOI: 10.1007/s42000-023-00505-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND The neuropeptide oxytocin (OT) is crucial in several conditions, such as lactation, parturition, mother-infant interaction, and psychosocial function. Moreover, OT may be involved in the regulation of eating behaviors. METHODS This review briefly summarizes data concerning the role of OT in eating behaviors. Appropriate keywords and medical subject headings were identified and searched for in PubMed/MEDLINE. References of original articles and reviews were screened, examined, and selected. RESULTS Hypothalamic OT-secreting neurons project to different cerebral areas controlling eating behaviors, such as the amygdala, area postrema, nucleus of the solitary tract, and dorsal motor nucleus of the vagus nerve. Intracerebral/ventricular OT administration decreases food intake and body weight in wild and genetically obese rats. OT may alter food intake and the quality of meals, especially carbohydrates and sweets, in humans. DISCUSSION OT may play a role in the pathophysiology of eating disorders with potential therapeutic perspectives. In obese patients and those with certain eating disorders, such as bulimia nervosa or binge/compulsive eating, OT may reduce appetite and caloric consumption. Conversely, OT administered to patients with anorexia nervosa may paradoxically stimulate appetite, possibly by lowering anxiety which usually complicates the management of these patients. Nevertheless, OT administration (e.g., intranasal route) is not always associated with clinical benefit, probably because intranasally administered OT fails to achieve therapeutic intracerebral levels of the hormone. CONCLUSION OT administration could play a therapeutic role in managing eating disorders and disordered eating. However, specific studies are needed to clarify this issue with regard to dose-finding and route and administration time.
Collapse
Affiliation(s)
- Michele Iovino
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari "Aldo Moro", School of Medicine, Bari, Apulia, Italy
| | - Tullio Messana
- Infantile Neuropsychiatry, IRCCS - Institute of Neurological Sciences, Bologna, Italy
| | - Simonetta Marucci
- Università Campus Biomedico, Dip. "Scienze e Tecnologie per l'Uomo e l'ambiente", Via Alvaro del Portillo, 21, Roma, Italy
| | - Domenico Triggiani
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari "Aldo Moro", School of Medicine, Bari, Apulia, Italy
| | - Vito Angelo Giagulli
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari "Aldo Moro", School of Medicine, Bari, Apulia, Italy
| | - Edoardo Guastamacchia
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari "Aldo Moro", School of Medicine, Bari, Apulia, Italy
| | - Giuseppina Piazzolla
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari "Aldo Moro", School of Medicine, Bari, Apulia, Italy
| | - Giovanni De Pergola
- National Institute of Gastroenterology IRCCS "Saverio de Bellis", Research Hospital, Castellana Grotte, Bari, Italy
- Department of Biomedical Science and Human Oncology, University of Bari, School of Medicine, Bari, Apulia, Italy
| | - Giuseppe Lisco
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari "Aldo Moro", School of Medicine, Bari, Apulia, Italy.
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari "Aldo Moro", School of Medicine, Bari, Apulia, Italy
| |
Collapse
|
5
|
Jing P, Shan Q. Exogenous oxytocin microinjection into the nucleus accumbens shell attenuates social dominance in group-housed male mice. Physiol Behav 2023:114253. [PMID: 37270150 DOI: 10.1016/j.physbeh.2023.114253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
The nucleus accumbens (NAc), a part of the brain's limbic system, is involved in a variety of brain functions, including reward motivation and social hierarchy. Here, the study investigated the effect of intra-NAc different subregions microinjections of oxytocin on social hierarchy regulation. The hierarchical ranking of group-housed male mice in laboratory settings was determined through the tube test, and a new reliable and robust behavior assay-the mate competition test-was proposed. The mice were randomly divided into two groups, and the bilateral guide cannula was implanted into the shell and core of the NAc, respectively. After social dominance stabilized, changes in social hierarchy were determined through the tube test, warm spot, and mate competition tests. Intra-NAc shell microinjections of oxytocin (0.5 μg/site), but not the core (0.5 μg/site), significantly reduced the social dominance of mice. In addition, oxytocin microinjection into both the shell and core of the NAc significantly increased locomotor ability without affecting anxious behaviors. These findings are tremendously important in understanding the functions of the NAc subregions for social dominance and are more likely to indicate the potential of an oxytocin therapeutic strategy for psychiatric disorders and social impairments.
Collapse
Affiliation(s)
- Pengbo Jing
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Qiang Shan
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, Guangdong, 515041, China.
| |
Collapse
|
6
|
Hassan S, El Baradey H, Madi M, Shebl M, Leng G, Lozic M, Ludwig M, Menzies J, MacGregor D. Measuring oxytocin release in response to gavage: Computational modelling and assay validation. J Neuroendocrinol 2023; 35:e13303. [PMID: 37316906 PMCID: PMC10909523 DOI: 10.1111/jne.13303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/18/2023] [Accepted: 04/28/2023] [Indexed: 06/16/2023]
Abstract
In the present experiments, we tested the conclusion from previous electrophysiological experiments that gavage of sweet food and systemically applied insulin both stimulate oxytocin secretion. To do so, we measured oxytocin secretion from urethane-anaesthetised male rats, and demonstrated a significant increase in secretion in response to gavage of sweetened condensed milk but not isocaloric cream, and a significant increase in response to intravenous injection of insulin. We compared the measurements made in response to sweetened condensed milk with the predictions from a computational model, which we used to predict plasma concentrations of oxytocin from the published electrophysiological responses of oxytocin cells. The prediction from the computational model was very closely aligned to the levels of oxytocin measured in rats in response to gavage.
Collapse
Affiliation(s)
- Shereen Hassan
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Department of Medical Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Hala El Baradey
- Department of Medical Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mohamed Madi
- Department of Medical Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mohamed Shebl
- Department of Medical Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Gareth Leng
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Maja Lozic
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Mike Ludwig
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Neuroendocrinology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - John Menzies
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Duncan MacGregor
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
7
|
Wald HS, Ghidewon MY, Hayes MR, Grill HJ. Hindbrain ghrelin and liver-expressed antimicrobial peptide 2, ligands for growth hormone secretagogue receptor, bidirectionally control food intake. Am J Physiol Regul Integr Comp Physiol 2023; 324:R547-R555. [PMID: 36847494 PMCID: PMC10069974 DOI: 10.1152/ajpregu.00232.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/26/2023] [Accepted: 02/16/2023] [Indexed: 03/01/2023]
Abstract
Hindbrain growth hormone secretagogue receptor (GHSR) agonism increases food intake, yet the underlying neural mechanisms remain unclear. The functional effects of hindbrain GHSR antagonism by its endogenous antagonist liver-expressed antimicrobial peptide 2 (LEAP2) are also yet unexplored. To test the hypothesis that hindbrain GHSR agonism attenuates the food intake inhibitory effect of gastrointestinal (GI) satiation signals, ghrelin (at a feeding subthreshold dose) was administered to the fourth ventricle (4V) or directly to the nucleus tractus solitarius (NTS) before systemic delivery of the GI satiation signal cholecystokinin (CCK). Also examined, was whether hindbrain GHSR agonism attenuated CCK-induced NTS neural activation (c-Fos immunofluorescence). To investigate an alternate hypothesis that hindbrain GHSR agonism enhances feeding motivation and food seeking, intake stimulatory ghrelin doses were administered to the 4V and fixed ratio 5 (FR-5), progressive ratio (PR), and operant reinstatement paradigms for palatable food responding were evaluated. Also assessed were 4V LEAP2 delivery on food intake and body weight (BW) and on ghrelin-stimulated feeding. Both 4V and NTS ghrelin blocked the intake inhibitory effect of CCK and 4V ghrelin blocked CCK-induced NTS neural activation. Although 4V ghrelin increased low-demand FR-5 responding, it did not increase high-demand PR or reinstatement of operant responding. Fourth ventricle LEAP2 reduced chow intake and BW and blocked hindbrain ghrelin-stimulated feeding. Data support a role for hindbrain GHSR in bidirectional control of food intake through mechanisms that include interacting with the NTS neural processing of GI satiation signals but not food motivation and food seeking.
Collapse
Affiliation(s)
- Hallie S Wald
- Department of Psychology, Institute of Diabetes Obesity and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Misgana Y Ghidewon
- Department of Psychology, Institute of Diabetes Obesity and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Matthew R Hayes
- Department of Psychiatry, Institute of Diabetes Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Harvey J Grill
- Department of Psychology, Institute of Diabetes Obesity and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
8
|
Manjila SB, Betty R, Kim Y. Missing pieces in decoding the brain oxytocin puzzle: Functional insights from mouse brain wiring diagrams. Front Neurosci 2022; 16:1044736. [PMID: 36389241 PMCID: PMC9643707 DOI: 10.3389/fnins.2022.1044736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/06/2022] [Indexed: 10/24/2023] Open
Abstract
The hypothalamic neuropeptide, oxytocin (Oxt), has been the focus of research for decades due to its effects on body physiology, neural circuits, and various behaviors. Oxt elicits a multitude of actions mainly through its receptor, the Oxt receptor (OxtR). Despite past research to understand the central projections of Oxt neurons and OxtR- coupled signaling pathways in different brain areas, it remains unclear how this nonapeptide exhibits such pleiotropic effects while integrating external and internal information. Most reviews in the field either focus on neuroanatomy of the Oxt-OxtR system, or on the functional effects of Oxt in specific brain areas. Here, we provide a review by integrating brain wide connectivity of Oxt neurons and their downstream circuits with OxtR expression in mice. We categorize Oxt connected brain regions into three functional modules that regulate the internal state, somatic visceral, and cognitive response. Each module contains three neural circuits that process distinct behavioral effects. Broad innervations on functional circuits (e.g., basal ganglia for motor behavior) enable Oxt signaling to exert coordinated modulation in functionally inter-connected circuits. Moreover, Oxt acts as a neuromodulator of neuromodulations to broadly control the overall state of the brain. Lastly, we discuss the mismatch between Oxt projections and OxtR expression across various regions of the mouse brain. In summary, this review brings forth functional circuit-based analysis of Oxt connectivity across the whole brain in light of Oxt release and OxtR expression and provides a perspective guide to future studies.
Collapse
Affiliation(s)
| | | | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
9
|
Olszewski PK, Noble EE, Paiva L, Ueta Y, Blevins JE. Oxytocin as a potential pharmacological tool to combat obesity. J Neuroendocrinol 2022; 34:e13106. [PMID: 35192207 PMCID: PMC9372234 DOI: 10.1111/jne.13106] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 11/30/2022]
Abstract
The neuropeptide oxytocin (OT) has emerged as an important anorexigen in the regulation of food intake and energy balance. It has been shown that the release of OT and activation of hypothalamic OT neurons coincide with food ingestion. Its effects on feeding have largely been attributed to limiting meal size through interactions in key regulatory brain regions governing the homeostatic control of food intake such as the hypothalamus and hindbrain in addition to key feeding reward areas such as the nucleus accumbens and ventral tegmental area. Furthermore, the magnitude of an anorexigenic response to OT and feeding-related activation of the brain OT circuit are modified by the composition and flavor of a diet, as well as by a social context in which a meal is consumed. OT is particularly effective in reducing consumption of carbohydrates and sweet tastants. Pharmacologic, genetic, and pair-feeding studies indicate that OT-elicited weight loss cannot be fully explained by reductions of food intake and that the overall impact of OT on energy balance is also partly a result of OT-elicited changes in lipolysis, energy expenditure, and glucose regulation. Peripheral administration of OT mimics many of its effects when it is given into the central nervous system, raising the questions of whether and to what extent circulating OT acts through peripheral OT receptors to regulate energy balance. Although OT has been found to elicit weight loss in female mice, recent studies have indicated that sex and estrous cycle may impact oxytocinergic modulation of food intake. Despite the overall promising basic research data, attempts to use OT in the clinical setting to combat obesity and overeating have generated somewhat mixed results. The focus of this mini-review is to briefly summarize the role of OT in feeding and metabolism, address gaps and inconsistencies in our knowledge, and discuss some of the limitations to the potential use of chronic OT that should help guide future research on OT as a tailor-made anti-obesity therapeutic.
Collapse
Affiliation(s)
- Pawel K Olszewski
- Faculty of Science and Engineering, University of Waikato, Waikato, New Zealand
- Department of Food Science and Nutrition, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, St Paul, Minnesota, USA
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Emily E Noble
- Department of Nutritional Sciences, University of Georgia, Athens, Georgia, USA
| | - Luis Paiva
- Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - James E Blevins
- Department of Veterans Affairs Medical Center, VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Seattle, Washington, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
10
|
Ghidewon M, Wald H, McKnight AD, De Jonghe BC, Breen DM, Alhadeff AL, Borner T, Grill HJ. Growth differentiation factor 15 (GDF15) and semaglutide inhibit food intake and body weight through largely distinct, additive mechanisms. Diabetes Obes Metab 2022; 24:1010-1020. [PMID: 35129264 PMCID: PMC9796095 DOI: 10.1111/dom.14663] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/16/2022] [Accepted: 01/30/2022] [Indexed: 12/31/2022]
Abstract
AIMS To evaluate whether the potent hypophagic and weight-suppressive effects of growth differentiation factor-15 (GDF15) and semaglutide combined would be a more efficacious antiobesity treatment than either treatment alone by examining whether the neural and behavioural mechanisms contributing to their anorectic effects were common or disparate. MATERIALS/METHODS Three mechanisms were investigated to determine how GDF15 and semaglutide induce anorexia: the potentiation of the intake suppression by gastrointestinal satiation signals; the reduction in motivation to feed; and the induction of visceral malaise. We then compared the effects of short-term, combined GDF15 and semaglutide treatment on weight loss to the individual treatments. Rat pharmaco-behavioural experiments assessed whether GDF15 or semaglutide added to the satiating effects of orally gavaged food and exogenous cholecystokinin (CCK). A progressive ratio operant paradigm was used to examine whether GDF15 or semaglutide reduced feeding motivation. Pica behaviour (ie, kaolin intake) and conditioned affective food aversion testing were used to evaluate visceral malaise. Additionally, fibre photometry studies were conducted in agouti-related protein (AgRP)-Cre mice to examine whether GDF15 or semaglutide, alone or in combination with CCK, modulate calcium signalling in hypothalamic AgRP neurons. RESULTS Semaglutide reduced food intake by amplifying the feeding-inhibitory effect of CCK or ingested food, inhibited the activity of AgRP neurons when combined with CCK, reduced feeding motivation and induced malaise. GDF15 induced visceral malaise but, strikingly, did not affect feeding motivation, the satiating effect of ingested food or CCK signal processing. Combined GDF15 and semaglutide treatment produced greater food intake and body weight suppression than did either treatment alone, without enhancing malaise. CONCLUSIONS GDF15 and semaglutide reduce food intake and body weight through largely distinct processes that produce greater weight loss and feeding suppression when combined.
Collapse
Affiliation(s)
- M. Ghidewon
- Institute of Diabetes, Obesity and Metabolism and School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania
| | - H.S. Wald
- Institute of Diabetes, Obesity and Metabolism and School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
| | - A. D. McKnight
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania
- Monell Chemical Senses Center, Philadelphia, Pennsylvania
| | - B. C. De Jonghe
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - D. M. Breen
- Internal Medicine Research Unit, Pfizer Global R&D, Cambridge, Massachusetts
| | - A. L. Alhadeff
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania
- Monell Chemical Senses Center, Philadelphia, Pennsylvania
| | - T. Borner
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - H. J. Grill
- Institute of Diabetes, Obesity and Metabolism and School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
11
|
Dunigan AI, Roseberry AG. Actions of feeding-related peptides on the mesolimbic dopamine system in regulation of natural and drug rewards. ADDICTION NEUROSCIENCE 2022; 2:100011. [PMID: 37220637 PMCID: PMC10201992 DOI: 10.1016/j.addicn.2022.100011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The mesolimbic dopamine system is the primary neural circuit mediating motivation, reinforcement, and reward-related behavior. The activity of this system and multiple behaviors controlled by it are affected by changes in feeding and body weight, such as fasting, food restriction, or the development of obesity. Multiple different peptides and hormones that have been implicated in the control of feeding and body weight interact with the mesolimbic dopamine system to regulate many different dopamine-dependent, reward-related behaviors. In this review, we summarize the effects of a selected set of feeding-related peptides and hormones acting within the ventral tegmental area and nucleus accumbens to alter feeding, as well as food, drug, and social reward.
Collapse
Affiliation(s)
- Anna I. Dunigan
- Department of Biology and Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Aaron G. Roseberry
- Department of Biology and Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
12
|
Ye Q, Nunez J, Zhang X. Oxytocin Receptor-Expressing Neurons in the Paraventricular Thalamus Regulate Feeding Motivation through Excitatory Projections to the Nucleus Accumbens Core. J Neurosci 2022; 42:3949-3964. [PMID: 35387870 PMCID: PMC9097779 DOI: 10.1523/jneurosci.2042-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 11/21/2022] Open
Abstract
Oxytocin receptors (OTR) have been found in the paraventricular thalamus (PVT) for the regulation of feeding and maternal behaviors. However, the functional projections of OTR-expressing PVT neurons remain largely unknown. Here, we used chemogenetic and optogenetic tools to test the role of OTR-expressing PVT neurons and their projections in the regulation of food intake in both male and female OTR-Cre mice. We found chemogenetic activation of OTR-expressing PVT neurons promoted food seeking under trials with a progressive ratio schedule of reinforcement. Using Feeding Experimentation Devices for real-time meal measurements, we found chemogenetic activation of OTR-expressing PVT neurons increased meal frequency but not cumulative food intake because of a compensatory decrease in meal sizes. In combination with anterograde neural tracing and slice patch-clamp recordings, we found optogenetic stimulation of PVT OTR terminals excited neurons in the posterior basolateral amygdala (pBLA) and nucleus accumbens core (NAcC) as well as local PVT neurons through monosynaptic glutamatergic transmissions. Photostimulation of OTR-expressing PVT-NAcC projections promoted food-seeking, whereas selective activation of PVT-pBLA projections produced little effect on feeding. In contrast to selective activation of OTR terminals, photostimulation of a broader population of glutamatergic PVT terminals exerted direct excitation followed by indirect lateral inhibition on neurons in both NAcC and anterior basolateral amygdala. Together, these results suggest that OTR-expressing PVT neurons are a distinct population of PVT glutamate neurons that regulate feeding motivation through projections to NAcC.SIGNIFICANCE STATEMENT The paraventricular thalamus plays an important role in the regulation of feeding motivation. However, because of the diversity of paraventricular thalamic neurons, the specific neuron types promoting food motivation remain elusive. In this study, we provide evidence that oxytocin receptor-expressing neurons are a specific group of glutamate neurons that primarily project to the nucleus accumbens core and posterior amygdala. We found that activation of these neurons promotes the motivation for food reward and increases meal frequency through projections to the nucleus accumbens core but not the posterior amygdala. As a result, we postulate that oxytocin receptor-expressing neurons in the paraventricular thalamus and their projections to the nucleus accumbens core mainly regulate feeding motivation but not food consumption.
Collapse
Affiliation(s)
- Qiying Ye
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32306
| | - Jeremiah Nunez
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32306
| | - Xiaobing Zhang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32306
| |
Collapse
|
13
|
Bernanke A, Burnette E, Murphy J, Hernandez N, Zimmerman S, Walker QD, Wander R, Sette S, Reavis Z, Francis R, Armstrong C, Risher ML, Kuhn C. Behavior and Fos activation reveal that male and female rats differentially assess affective valence during CTA learning and expression. PLoS One 2021; 16:e0260577. [PMID: 34898621 PMCID: PMC8668140 DOI: 10.1371/journal.pone.0260577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/15/2021] [Indexed: 12/02/2022] Open
Abstract
Females are more affected by psychiatric illnesses including eating disorders, depression, and post-traumatic stress disorder than males. However, the neural mechanisms mediating these sex differences are poorly understood. Animal models can be useful in exploring such neural mechanisms. Conditioned taste aversion (CTA) is a behavioral task that assesses how animals process the competition between associated reinforcing and aversive stimuli in subsequent task performance, a process critical to healthy behavior in many domains. The purpose of the present study was to identify sex differences in this behavior and associated neural responses. We hypothesized that females would value the rewarding stimulus (Boost®) relative to the aversive stimulus (LiCl) more than males in performing CTA. We evaluated behavior (Boost® intake, LiCl-induced behaviors, ultrasonic vocalizations (USVs), CTA performance) and Fos activation in relevant brain regions after the acute stimuli [acute Boost® (AB), acute LiCl (AL)] and the context-only task control (COT), Boost® only task (BOT) and Boost®-LiCl task (BLT). Acutely, females drank more Boost® than males but showed similar aversive behaviors after LiCl. Females and males performed CTA similarly. Both sexes produced 55 kHz USVs anticipating BOT and inhibited these calls in the BLT. However, more females emitted both 22 kHz and 55 kHz USVs in the BLT than males: the latter correlated with less CTA. Estrous cycle stage also influenced 55 kHz USVs. Fos responses were similar in males and females after AB or AL. Females engaged the gustatory cortex and ventral tegmental area (VTA) more than males during the BOT and males engaged the amygdala more than females in both the BOT and BLT. Network analysis of correlated Fos responses across brain regions identified two unique networks characterizing the BOT and BLT, in both of which the VTA played a central role. In situ hybridization with RNAscope identified a population of D1-receptor expressing cells in the CeA that responded to Boost® and D2 receptor-expressing cells that responded to LiCl. The present study suggests that males and females differentially process the affective valence of a stimulus to produce the same goal-directed behavior.
Collapse
Affiliation(s)
- Alyssa Bernanke
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Elizabeth Burnette
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Justine Murphy
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Nathaniel Hernandez
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Sara Zimmerman
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Q. David Walker
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Rylee Wander
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Samantha Sette
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Zackery Reavis
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Reynold Francis
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Christopher Armstrong
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Mary-Louise Risher
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States of America
| | - Cynthia Kuhn
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| |
Collapse
|
14
|
Niu J, Tong J, Blevins JE. Oxytocin as an Anti-obesity Treatment. Front Neurosci 2021; 15:743546. [PMID: 34720864 PMCID: PMC8549820 DOI: 10.3389/fnins.2021.743546] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/16/2021] [Indexed: 12/19/2022] Open
Abstract
Obesity is a growing health concern, as it increases risk for heart disease, hypertension, type 2 diabetes, cancer, COVID-19 related hospitalizations and mortality. However, current weight loss therapies are often associated with psychiatric or cardiovascular side effects or poor tolerability that limit their long-term use. The hypothalamic neuropeptide, oxytocin (OT), mediates a wide range of physiologic actions, which include reproductive behavior, formation of prosocial behaviors and control of body weight. We and others have shown that OT circumvents leptin resistance and elicits weight loss in diet-induced obese rodents and non-human primates by reducing both food intake and increasing energy expenditure (EE). Chronic intranasal OT also elicits promising effects on weight loss in obese humans. This review evaluates the potential use of OT as a therapeutic strategy to treat obesity in rodents, non-human primates, and humans, and identifies potential mechanisms that mediate this effect.
Collapse
Affiliation(s)
- JingJing Niu
- VA Puget Sound Health Care System, Office of Research and Development, Medical Research Service, Department of Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States.,Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - Jenny Tong
- VA Puget Sound Health Care System, Office of Research and Development, Medical Research Service, Department of Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States.,Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - James E Blevins
- VA Puget Sound Health Care System, Office of Research and Development, Medical Research Service, Department of Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States.,Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
15
|
Oxytocin and Food Intake Control: Neural, Behavioral, and Signaling Mechanisms. Int J Mol Sci 2021; 22:ijms221910859. [PMID: 34639199 PMCID: PMC8509519 DOI: 10.3390/ijms221910859] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/29/2021] [Accepted: 10/03/2021] [Indexed: 11/16/2022] Open
Abstract
The neuropeptide oxytocin is produced in the paraventricular hypothalamic nucleus and the supraoptic nucleus of the hypothalamus. In addition to its extensively studied influence on social behavior and reproductive function, central oxytocin signaling potently reduces food intake in both humans and animal models and has potential therapeutic use for obesity treatment. In this review, we highlight rodent model research that illuminates various neural, behavioral, and signaling mechanisms through which oxytocin’s anorexigenic effects occur. The research supports a framework through which oxytocin reduces food intake via amplification of within-meal physiological satiation signals rather than by altering between-meal interoceptive hunger and satiety states. We also emphasize the distributed neural sites of action for oxytocin’s effects on food intake and review evidence supporting the notion that central oxytocin is communicated throughout the brain, at least in part, through humoral-like volume transmission. Finally, we highlight mechanisms through which oxytocin interacts with various energy balance-associated neuropeptide and endocrine systems (e.g., agouti-related peptide, melanin-concentrating hormone, leptin), as well as the behavioral mechanisms through which oxytocin inhibits food intake, including effects on nutrient-specific ingestion, meal size control, food reward-motivated responses, and competing motivations.
Collapse
|
16
|
Activation of hypothalamic oxytocin neurons reduces binge-like alcohol drinking through signaling at central oxytocin receptors. Neuropsychopharmacology 2021; 46:1950-1957. [PMID: 34127796 PMCID: PMC8429589 DOI: 10.1038/s41386-021-01046-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/04/2021] [Accepted: 05/18/2021] [Indexed: 02/05/2023]
Abstract
Preclinical and clinical evidence suggests that exogenous administration of oxytocin (OT) may hold promise as a therapeutic strategy for reducing heavy alcohol drinking. However, it remains unknown whether these effects are mediated by stimulation of endogenous sources of OT and signaling at oxytocin receptors (OTR) in brain or in the periphery. To address this question, we employed a targeted chemogenetic approach to examine whether selective activation of OT-containing neurons in the paraventricular nucleus of the hypothalamus (PVN) alters alcohol consumption in a binge-like drinking ("Drinking-in-the-Dark"; DID) model. Adult male Oxt-IRES-Cre mice received bilateral infusion of a Cre-dependent virus containing an excitatory DREADD (AAV8-hSyn-DIO-hM3Dq-mCherry) or control virus (AAV8-hSyn-DIO-mCherry) into the PVN. Chemogenetic activation of PVNOT+ neurons following clozapine-N-oxide injection reduced binge-like alcohol drinking in a similar manner as systemic administration of the neuropeptide. Pretreatment with a brain-penetrant OTR antagonist (L-368,899) reversed this effect while systemic administration of a peripherally restricted OTR antagonist (Atosiban) did not alter reduced alcohol drinking following chemogenetic activation of PVNOT+ neurons. Altogether, these data are the first to demonstrate that targeted activation of hypothalamic (endogenous) OT reduces alcohol consumption, providing further evidence that this neuropeptide plays a role in regulation of alcohol self-administration behavior. Further, results indicate that the ability OT to reduce alcohol drinking is mediated by signaling at OTR in the brain.
Collapse
|
17
|
Klockars A, Pal T, Levine AS, Olszewski PK. Neural Basis of Dysregulation of Palatability-Driven Appetite in Autism. Curr Nutr Rep 2021; 10:391-398. [PMID: 34417997 DOI: 10.1007/s13668-021-00368-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW In research on autism spectrum disorder (ASD), cognitive, speech- and anxiety-related impairments have been the focus of the majority of studies. One consistently reported ASD symptom that has rarely attracted attention is disordered appetite. The goal of this paper is to assess whether ASD-related dysregulation of food intake impacts consumption of palatable foods, including sugar. RECENT FINDINGS Aberrant neural processing at the reward system level is at least partially responsible for excessive intake of palatable tastants, including sugar. Impaired oxytocin (OT) signaling likely contributes to the magnitude of this overconsumption. Since intake for reward is generally elevated in individuals with ASD, one strategy to curb sugar overconsumption might utilize presentation of alternative palatable food choices that are more nutritionally adequate than sucrose. Furthermore, OT, which is clinically tested to alleviate other ASD symptoms, might be an effective tool to curb overconsumption of sugar, as well as - likely - of other excessively ingested palatable foods, especially those that have sweet taste.
Collapse
Affiliation(s)
- Anica Klockars
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | - Tapasya Pal
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | - Allen S Levine
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA.
| | - Pawel K Olszewski
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand.,Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, MN, USA.,Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
18
|
He Z, Zhang L, Hou W, Zhang X, Young LJ, Li L, Liu L, Ma H, Xun Y, Lv Z, Li Y, Jia R, Li J, Tai F. Paraventricular Nucleus Oxytocin Subsystems Promote Active Paternal Behaviors in Mandarin Voles. J Neurosci 2021; 41:6699-6713. [PMID: 34226275 PMCID: PMC8336703 DOI: 10.1523/jneurosci.2864-20.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 11/21/2022] Open
Abstract
Paternal care plays a critical role in the development of brain and behaviors in offspring in monogamous species. However, the neurobiological mechanisms, especially the neuronal circuity, underlying paternal care is largely unknown. Using socially monogamous male mandarin voles (Microtus mandarinus) with high levels of paternal care, we found that paraventricular nucleus of the hypothalamus (PVN) to ventral tegmental area (VTA) or nucleus accumbens (NAc) oxytocin (OT) neurons are activated during paternal care. Chemogenetic activation/inhibition of the PVN OT projection to VTA promoted/decreased paternal care, respectively. Chemogenetic inhibition of the PVN to VTA OT pathway reduced dopamine (DA) release in the NAc of male mandarin voles during licking and grooming of pups as revealed by in vivo fiber photometry. Optogenetic activation/inhibition of the VTA to NAc DA pathway possibly enhanced/suppressed paternal behaviors, respectively. Furthermore, chemogenetic activation/inhibition of PVN to NAc OT circuit enhanced/inhibited paternal care. This finding is a first step toward delineating the neuronal circuity underlying paternal care and may have implications for treating abnormalities in paternal care associated with paternal postpartum depression or paternal abuse.SIGNIFICANCE STATEMENT Paternal behavior is essential for offspring survival and development in some mammalian species. However, the circuit mechanisms underlying the paternal brain are poorly understood. We show that manipulation of paraventricular nucleus of the hypothalamus (PVN) to ventral tegmental area (VTA) oxytocin (OT) projections as well as VTA to nucleus accumbens (NAc) DA projections promote paternal behaviors. Inhibition the PVN to VTA OT pathway reduces DA release in the NAc during pup licking and grooming. PVN to NAc OT circuit is also essential for paternal behaviors. Our findings identify two new neural circuits that modulate paternal behaviors.
Collapse
Affiliation(s)
- Zhixiong He
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Lizi Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Wenjuan Hou
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Xin Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Larry J Young
- Department of Psychiatry and Behavioral Sciences, Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30033
- Center for Social Neural Networks, University of Tsukuba, Tsukuba 305-8555, Japan
| | - Laifu Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Limin Liu
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Huan Ma
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yufeng Xun
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Zijian Lv
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yitong Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Rui Jia
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Jingang Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Fadao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
19
|
Barrett LR, Nunez J, Zhang X. Oxytocin activation of paraventricular thalamic neurons promotes feeding motivation to attenuate stress-induced hypophagia. Neuropsychopharmacology 2021; 46:1045-1056. [PMID: 33495546 PMCID: PMC8114915 DOI: 10.1038/s41386-021-00961-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/29/2020] [Indexed: 01/30/2023]
Abstract
The neuropeptide oxytocin (OT) regulates important brain functions including feeding through activating OT receptors in multiple brain areas. Both OT fibers and OT receptors have been reported in the paraventricular thalamus (PVT), an area that was revealed to be important for the control of emotion, motivation, and food intake. However, the function and modulation of PVT OT signaling remain unknown. Here, we used a progressive ratio (PR) schedule of reinforcement to examine the role of PVT OT signaling in regulating the motivation for food and patch-clamp electrophysiology to study the modulation of OT on PVT neurons in brain slices. We demonstrate that PVT OT administration increases active lever presses to earn food rewards in both male and female mice under PR trials and OT receptor antagonist atosiban inhibits OT-induced increase in motivated lever presses. However, intra-PVT OT infusion does not affect food intake in normal conditions but attenuates hypophagia induced by stress and anxiety. Using patch-clamp recordings, we find OT induces long-lasting excitatory effects on neurons in all PVT regions, especially the middle to posterior PVT. OT not only evokes tonic inward currents but also increases the frequency of spontaneous excitatory postsynaptic currents on PVT neurons. The excitatory effect of OT on PVT neurons is mimicked by the specific OT receptor agonist [Thr4, Gly7]-oxytocin (TGOT) and blocked by OT receptor antagonist atosiban. Together, our study reveals a critical role of PVT OT signaling in promoting feeding motivation to attenuate stress-induced hypophagia through exciting PVT neurons.
Collapse
Affiliation(s)
- Lily R. Barrett
- grid.255986.50000 0004 0472 0419Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306 USA
| | - Jeremiah Nunez
- grid.255986.50000 0004 0472 0419Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306 USA
| | - Xiaobing Zhang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
20
|
Matikainen-Ankney BA, Earnest T, Ali M, Casey E, Wang JG, Sutton AK, Legaria AA, Barclay KM, Murdaugh LB, Norris MR, Chang YH, Nguyen KP, Lin E, Reichenbach A, Clarke RE, Stark R, Conway SM, Carvalho F, Al-Hasani R, McCall JG, Creed MC, Cazares V, Buczynski MW, Krashes MJ, Andrews ZB, Kravitz AV. An open-source device for measuring food intake and operant behavior in rodent home-cages. eLife 2021; 10:66173. [PMID: 33779547 PMCID: PMC8075584 DOI: 10.7554/elife.66173] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/26/2021] [Indexed: 01/26/2023] Open
Abstract
Feeding is critical for survival, and disruption in the mechanisms that govern food intake underlies disorders such as obesity and anorexia nervosa. It is important to understand both food intake and food motivation to reveal mechanisms underlying feeding disorders. Operant behavioral testing can be used to measure the motivational component to feeding, but most food intake monitoring systems do not measure operant behavior. Here, we present a new solution for monitoring both food intake and motivation in rodent home-cages: the Feeding Experimentation Device version 3 (FED3). FED3 measures food intake and operant behavior in rodent home-cages, enabling longitudinal studies of feeding behavior with minimal experimenter intervention. It has a programmable output for synchronizing behavior with optogenetic stimulation or neural recordings. Finally, FED3 design files are open-source and freely available, allowing researchers to modify FED3 to suit their needs.
Collapse
Affiliation(s)
| | - Thomas Earnest
- Department of Psychiatry, Washington University in St. LouisSt. LouisUnited States
| | - Mohamed Ali
- National Institute of Diabetes and Digestive and Kidney DiseasesBethesdaUnited States,Department of Bioengineering, University of MarylandCollege ParkUnited States
| | - Eric Casey
- Department of Psychiatry, Washington University in St. LouisSt. LouisUnited States
| | - Justin G Wang
- Department of Neuroscience, Washington University in St. LouisSt. LouisUnited States
| | - Amy K Sutton
- National Institute of Diabetes and Digestive and Kidney DiseasesBethesdaUnited States
| | - Alex A Legaria
- Department of Neuroscience, Washington University in St. LouisSt. LouisUnited States
| | - Kia M Barclay
- Department of Neuroscience, Washington University in St. LouisSt. LouisUnited States
| | - Laura B Murdaugh
- Department of Neuroscience, Virginia Polytechnic and State UniversityBlacksburgUnited States
| | - Makenzie R Norris
- Department of Neuroscience, Washington University in St. LouisSt. LouisUnited States,Center for Clinical Pharmacology, University of Health Sciences and PharmacySt. LouisUnited States
| | - Yu-Hsuan Chang
- Department of Neuroscience, Washington University in St. LouisSt. LouisUnited States
| | - Katrina P Nguyen
- National Institute of Diabetes and Digestive and Kidney DiseasesBethesdaUnited States
| | - Eric Lin
- Department of Psychiatry, Washington University in St. LouisSt. LouisUnited States
| | | | | | - Romana Stark
- Department of Physiology, Monash UniversityClaytonAustralia
| | - Sineadh M Conway
- Center for Clinical Pharmacology, University of Health Sciences and PharmacySt. LouisUnited States,Department of Anesthesiology, Washington University in St. LouisSt. LouisUnited States
| | | | - Ream Al-Hasani
- Center for Clinical Pharmacology, University of Health Sciences and PharmacySt. LouisUnited States,Department of Anesthesiology, Washington University in St. LouisSt. LouisUnited States
| | - Jordan G McCall
- Center for Clinical Pharmacology, University of Health Sciences and PharmacySt. LouisUnited States,Department of Anesthesiology, Washington University in St. LouisSt. LouisUnited States
| | - Meaghan C Creed
- Department of Psychiatry, Washington University in St. LouisSt. LouisUnited States,Department of Neuroscience, Washington University in St. LouisSt. LouisUnited States,Department of Anesthesiology, Washington University in St. LouisSt. LouisUnited States
| | - Victor Cazares
- Department of Psychology, Williams CollegeWilliamstownUnited States
| | - Matthew W Buczynski
- Department of Neuroscience, Virginia Polytechnic and State UniversityBlacksburgUnited States
| | - Michael J Krashes
- National Institute of Diabetes and Digestive and Kidney DiseasesBethesdaUnited States
| | - Zane B Andrews
- Department of Physiology, Monash UniversityClaytonAustralia
| | - Alexxai V Kravitz
- Department of Psychiatry, Washington University in St. LouisSt. LouisUnited States,Department of Neuroscience, Washington University in St. LouisSt. LouisUnited States,Department of Anesthesiology, Washington University in St. LouisSt. LouisUnited States
| |
Collapse
|