1
|
Santollo J, Daniels D. Fluid transitions. Neuropharmacology 2024; 256:110009. [PMID: 38823577 PMCID: PMC11184821 DOI: 10.1016/j.neuropharm.2024.110009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/03/2024]
Abstract
Water is critical for survival and thirst is a powerful way of ensuring that fluid levels remain in balance. Overconsumption, however, can have deleterious effects, therefore optimization requires a need to balance the drive for water with the satiation of that water drive. This review will highlight our current understanding of how thirst is both generated and quenched, with particular focus on the roles of angiotensin II, glucagon like-peptide 1, and estradiol in turning on and off the thirst drive. Our understanding of the roles these bioregulators play has benefited from modern behavioral analyses, which have improved the time resolution of intake measures, allowing for attention to the details of the patterns within a bout of intake. This has led to behavioral interpretation in ways that are helpful in understanding the many controls of water intake and has expanded our understanding beyond the dichotomy that something which increases water intake is simply a "stimulator" while something that decreases water intake is simply a "satiety" factor. Synthesizing the available information, we describe a framework in which thirst is driven directly by perturbations in fluid intake and indirectly modified by several bioregulators. This allows us to better highlight areas that are in need of additional attention to form a more comprehensive understanding of how the system transitions between states of thirst and satiety.
Collapse
Affiliation(s)
- Jessica Santollo
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
| | - Derek Daniels
- Department of Biology, University at Buffalo, State University of New York, Buffalo, NY 14260, USA; Center for Ingestive Behavior Research, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
2
|
Mathieu NM, Tan EE, Reho JJ, Brozoski DT, Muskus PC, Lu KT, Wackman KK, Grobe JL, Nakagawa P, Sigmund CD. Genetic Deletion of β-Arrestin 2 From the Subfornical Organ and Other Periventricular Nuclei in the Brain Alters Fluid Homeostasis and Blood Pressure. Hypertension 2024; 81:1332-1344. [PMID: 38629290 PMCID: PMC11096025 DOI: 10.1161/hypertensionaha.124.22874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/07/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND ANG (angiotensin II) elicits dipsogenic and pressor responses via activation of the canonical Gαq (G-protein component of the AT1R [angiotensin type 1 receptor])-mediated AT1R in the subfornical organ. Recently, we demonstrated that ARRB2 (β-arrestin 2) global knockout mice exhibit a higher preference for salt and exacerbated pressor response to deoxycorticosterone acetate salt. However, whether ARRB2 within selective neuroanatomical nuclei alters physiological responses to ANG is unknown. Therefore, we hypothesized that ARRB2, specifically in the subfornical organ, counterbalances maladaptive dipsogenic and pressor responses to the canonical AT1R signaling. METHODS Male and female Arrb2FLOX mice received intracerebroventricular injection of either adeno-associated virus (AAV)-Cre-GFP (green fluorescent protein) to induce brain-specific deletion of ARRB2 (Arrb2ICV-Cre). Arrb2FLOX mice receiving ICV-AAV-GFP were used as control (Arrb2ICV-Control). Infection with ICV-AAV-Cre primarily targeted the subfornical organ with few off targets. Fluid intake was evaluated using the 2-bottle choice paradigm with 1 bottle containing water and 1 containing 0.15 mol/L NaCl. RESULTS Arrb2ICV-Cre mice exhibited a greater pressor response to acute ICV-ANG infusion. At baseline conditions, Arrb2ICV-Cre mice exhibited a significant increase in saline intake compared with controls, resulting in a saline preference. Furthermore, when mice were subjected to water-deprived or sodium-depleted conditions, which would naturally increase endogenous ANG levels, Arrb2ICV-Cre mice exhibited elevated saline intake. CONCLUSIONS Overall, these data indicate that ARRB2 in selective cardiovascular nuclei in the brain, including the subfornical organ, counterbalances canonical AT1R responses to both exogenous and endogenous ANG. Stimulation of the AT1R/ARRB axis in the brain may represent a novel strategy to treat hypertension.
Collapse
Affiliation(s)
| | - Eden E. Tan
- SUPREMES Program, Marquette University & Medical College of Wisconsin, Milwaukee, WI
| | - John J. Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI
| | | | | | - Ko-Ting Lu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | - Kelsey K. Wackman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | - Justin L. Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI
| | - Pablo Nakagawa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI
| | - Curt D. Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
3
|
Aloui L, Greene ES, Tabler T, Lassiter K, Thompson K, Bottje WG, Orlowski S, Dridi S. Effect of heat stress on the hypothalamic expression profile of water homeostasis-associated genes in low- and high-water efficient chicken lines. Physiol Rep 2024; 12:e15972. [PMID: 38467563 DOI: 10.14814/phy2.15972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024] Open
Abstract
With climate change, selection for water efficiency and heat resilience are vitally important. We undertook this study to determine the effect of chronic cyclic heat stress (HS) on the hypothalamic expression profile of water homeostasis-associated markers in high (HWE)- and low (LWE)-water efficient chicken lines. HS significantly elevated core body temperatures of both lines. However, the amplitude was higher by 0.5-1°C in HWE compared to their LWE counterparts. HWE line drank significantly less water than LWE during both thermoneutral (TN) and HS conditions, and HS increased water intake in both lines with pronounced magnitude in LWE birds. HWE had better feed conversion ratio (FCR), water conversion ratio (WCR), and water to feed intake ratio. At the molecular level, the overall hypothalamic expression of aquaporins (AQP8 and AQP12), arginine vasopressin (AVP) and its related receptor AVP2R, angiotensinogen (AGT), angiotensin II receptor type 1 (AT1), and calbindin 2 (CALB2) were significantly lower; however, CALB1 mRNA and AQP2 protein levels were higher in HWE compared to LWE line. Compared to TN conditions, HS exposure significantly increased mRNA abundances of AQPs (8, 12), AVPR1a, natriuretic peptide A (NPPA), angiotensin I-converting enzyme (ACE), CALB1 and 2, and transient receptor potential cation channel subfamily V member 1 and 4 (TRPV1 and TRPV4) as well as the protein levels of AQP2, however it decreased that of AQP4 gene expression. A significant line by environment interaction was observed in several hypothalamic genes. Heat stress significantly upregulated AQP2 and SCT at mRNA levels and AQP1 and AQP3 at both mRNA and protein levels, but it downregulated that of AQP4 protein only in LWE birds. In HWE broilers, however, HS upregulated the hypothalamic expression of renin (REN) and AVPR1b genes and AQP5 proteins, but it downregulated that of AQP3 protein. The hypothalamic expression of AQP (5, 7, 10, and 11) genes was increased by HS in both chicken lines. In summary, this is the first report showing improvement of growth performances in HWE birds. The hypothalamic expression of several genes was affected in a line- and/or environment-dependent manner, revealing potential molecular signatures for water efficiency and/or heat tolerance in chickens.
Collapse
Affiliation(s)
- Loujain Aloui
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
- Higher School of Agriculture of Mograne, University of Carthage, Zaghouan, Tunisia
| | - Elizabeth S Greene
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
| | - Travis Tabler
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
| | - Kentu Lassiter
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
| | - Kevin Thompson
- Center for Agricultural Data Analyses, Divion of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
| | - Walter G Bottje
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
| | - Sara Orlowski
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
| | - Sami Dridi
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
4
|
Exploration of Ziziphi Spinosae Semen in Treating Insomnia Based on Network Pharmacology Strategy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9888607. [PMID: 34745308 PMCID: PMC8568550 DOI: 10.1155/2021/9888607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/04/2021] [Indexed: 01/21/2023]
Abstract
Ziziphi Spinosae Semen (ZSS) is a common natural medicine used to treat insomnia, and to show clearly its method of action, we managed and did an in-depth discussion. Network pharmacology research is very suitable for the analysis of multiple components, multiple targets, and multiple pathways of Traditional Chinese Medicine (TCM). According to the relevant theory, we first carefully collected and screened the active ingredients in ZSS and received 11 active ingredients that may work. The targets going along with these active components were also strongly related to insomnia targets, 108 common genes were identified, and drug-compound-gene symbol-disease visualization network and protein-protein interaction network were constructed. Forty-eight core genes were identified by PPI analysis and subjected to GO functional analysis with KEGG pathway analysis. The results of GO analysis pointed that there were 998 gene ontology items for the treatment of insomnia, including terms of 892 biological processes, 47 cellular components, and 59 molecular functions. It mainly shows the coupling effect and transport mode of some proteins in the biological pathways of ZSS in the treatment of insomnia and explains the mechanism of action through the connection between the target and the cell biomembrane. KEGG enrichment analyzed 19 signaling pathways, which were collectively classified into seven categories. We have identified the potential pathways of ZSS against insomnia and obtained the regulatory relationship between core genes and pathways and know that the same target can be regulated by multiple components at the same time. The results of molecular docking also prove this conclusion. We sought to provide a new analytical approach to explore TCM treatments for diseases using network pharmacology analysis tools.
Collapse
|
5
|
Nolze A, Köhler C, Ruhs S, Quarch K, Strätz N, Gekle M, Grossmann C. Calcineurin (PPP3CB) regulates angiotensin II-dependent vascular remodelling by potentiating EGFR signalling in mice. Acta Physiol (Oxf) 2021; 233:e13715. [PMID: 34228904 DOI: 10.1111/apha.13715] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/08/2021] [Accepted: 07/03/2021] [Indexed: 12/14/2022]
Abstract
AIM This study investigates the role of calcineurin for angiotensin II (AngII)-induced vascular remodelling with the help of a mouse model lacking the catalytic beta subunit of calcineurin (PPP3CB KO). METHODS Wildtype (WT) and PPP3CB KO mice were treated for 4 weeks with AngII followed by assessment of blood pressure, histological evaluation of aortas and mRNA analysis of aortic genes PPP3CB-dependently regulated by AngII. Primary murine vascular smooth muscle cells (VSMCs) were used for qPCR, ELISA and Western Blot experiments as well as wound healing and cell proliferation assays. RESULTS Upon AngII treatment, PPP3CB KO mice showed less aortic media thickening, lumen dilation and systolic blood pressure compared to WT mice. Next-generation sequencing data of aortic tissue indicated an increase in extracellular matrix components (EMCs), cell migration and cell proliferation. A PPP3CB-dependent increase in EMC was confirmed by qPCR in aorta and VSMCs. PPP3CB-dependent stimulation of VSMC migration could be verified by wound healing assays but markers of enhanced cell proliferation were only detectable in aortic tissue of WT mice but not in isolated WT or KO VSMCs. We could demonstrate in VSMCs with pharmacological inhibitors that PPP3CB leads to enhanced heparin-binding EGF-like growth factor (HB-EGF) secretion, epidermal growth factor receptor (EGFR) activation and consecutive stimulation of transforming growth factor β(TGFβ) and connective tissue growth factor (CTGF) signalling that enhances collagen expression. CONCLUSION AngII-induced vascular remodelling involves PPP3CB, which leads to enhanced EMC production, VSMC migration and sustained increase in systolic blood pressure via HBEGF/EGFR-TGFβ-CTGF signalling.
Collapse
Affiliation(s)
- Alexander Nolze
- Julius‐Bernstein‐Institute of PhysiologyMartin Luther University Halle‐Wittenberg Halle Germany
| | - Conny Köhler
- Julius‐Bernstein‐Institute of PhysiologyMartin Luther University Halle‐Wittenberg Halle Germany
| | - Stefanie Ruhs
- Julius‐Bernstein‐Institute of PhysiologyMartin Luther University Halle‐Wittenberg Halle Germany
| | - Katja Quarch
- Julius‐Bernstein‐Institute of PhysiologyMartin Luther University Halle‐Wittenberg Halle Germany
| | - Nicole Strätz
- Julius‐Bernstein‐Institute of PhysiologyMartin Luther University Halle‐Wittenberg Halle Germany
| | - Michael Gekle
- Julius‐Bernstein‐Institute of PhysiologyMartin Luther University Halle‐Wittenberg Halle Germany
| | - Claudia Grossmann
- Julius‐Bernstein‐Institute of PhysiologyMartin Luther University Halle‐Wittenberg Halle Germany
| |
Collapse
|
6
|
de Melo IS, Sabino-Silva R, Cunha TM, Goulart LR, Reis WL, Jardim ACG, Shetty AK, de Castro OW. Hydroelectrolytic Disorder in COVID-19 patients: Evidence Supporting the Involvement of Subfornical Organ and Paraventricular Nucleus of the Hypothalamus. Neurosci Biobehav Rev 2021; 124:216-223. [PMID: 33577841 PMCID: PMC7872848 DOI: 10.1016/j.neubiorev.2021.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Multiple neurological problems have been reported in coronavirus disease-2019 (COVID-19) patients because severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) likely spreads to the central nervous system (CNS) via olfactory nerves or through the subarachnoid space along olfactory nerves into the brain's cerebrospinal fluid and then into the brain's interstitial space. We hypothesize that SARS-CoV-2 enters the subfornical organ (SFO) through the above routes and the circulating blood since circumventricular organs (CVOs) such as the SFO lack the blood-brain barrier, and infection of the SFO causes dysfunction of the hypothalamic paraventricular nucleus (PVN) and supraoptic nucleus (SON), leading to hydroelectrolytic disorder. SARS-CoV-2 can readily enter SFO-PVN-SON neurons because these neurons express angiotensin-converting enzyme-2 receptors and proteolytic viral activators, which likely leads to neurodegeneration or neuroinflammation in these regions. Considering the pivotal role of SFO-PVN-SON circuitry in modulating hydroelectrolyte balance, SARS-CoV-2 infection in these regions could disrupt the neuroendocrine control of hydromineral homeostasis. This review proposes mechanisms by which SARS-CoV-2 infection of the SFO-PVN-SON pathway leads to hydroelectrolytic disorder in COVID-19 patients.
Collapse
Affiliation(s)
- Igor Santana de Melo
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceio, Brazil
| | - Robinson Sabino-Silva
- Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlândia, MG, Brazil.
| | - Thúlio Marquez Cunha
- Department of Pulmonology, School of Medicine, Federal University of Uberlandia, Minas Gerais, Brazil
| | - Luiz Ricardo Goulart
- Institute of Biotechnology, Federal University of Uberlandia, Minas Gerais, Brazil
| | - Wagner Luis Reis
- Department of Physiological, Sciences Biological Sciences Centre Federal University of Santa Catarina (UFSC) Florianopolis, Santa Catarina, Brazil
| | - Ana Carolina Gomes Jardim
- Laboratory of Virology, Institute of Biomedical Sciences, Federal University of Uberlandia, Minas Gerais, Brazil
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, 77843, USA.
| | - Olagide Wagner de Castro
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceio, Brazil.
| |
Collapse
|
7
|
Post-traumatic stress disorder and its association with stroke and stroke risk factors: A literature review. Neurobiol Stress 2021; 14:100332. [PMID: 34026954 PMCID: PMC8122169 DOI: 10.1016/j.ynstr.2021.100332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/27/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022] Open
Abstract
Stroke is a major cause of mortality and disability globally that has multiple risk factors. A risk factor that has recently gained more attention is post-traumatic stress disorder (PTSD). Literature searches were carried out for updated PTSD information and for the relationship between PTSD and stroke. The review was divided into two sections, one exploring PTSD as an independent risk factor for stroke, with a second concentrating on PTSD's influence on stroke risk factors. The study presents accumulating evidence that shows traumatic stress predicts stroke and is also linked to many major stroke risk factors. The review contributes knowledge to stroke aetiology and acts as a reference for understanding the relationship between PTSD and stroke. The information presented indicates that screening and identification of traumatic experience would be beneficial for directing stroke patients to appropriate psychological and lifestyle interventions. In doing so, the burden of stroke may be reduced worldwide.
Collapse
|
8
|
Zanaty M, Seara FAC, Nakagawa P, Deng G, Mathieu NM, Balapattabi K, Karnik SS, Grobe JL, Sigmund CD. β-Arrestin-Biased Agonist Targeting the Brain AT 1R (Angiotensin II Type 1 Receptor) Increases Aversion to Saline and Lowers Blood Pressure in Deoxycorticosterone Acetate-Salt Hypertension. Hypertension 2020; 77:420-431. [PMID: 33249862 DOI: 10.1161/hypertensionaha.120.15793] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Activation of central AT1Rs (angiotensin type 1 receptors) is required for the increased blood pressure, polydipsia, and salt intake in deoxycorticosterone acetate (DOCA)-salt hypertension. TRV120027 (TRV027) is an AT1R-biased agonist that selectively acts through β-arrestin. We hypothesized that intracerebroventricular administration of TRV027 would ameliorate the effects of DOCA-salt. In a neuronal cell line, TRV027 induced AT1aR internalization through dynamin and clathrin-mediated endocytosis. We next evaluated the effect of chronic intracerebroventricular infusion of TRV027 on fluid intake. We measured the relative intake of water versus various saline solutions using a 2-bottle choice paradigm in mice subjected to DOCA with a concomitant intracerebroventricular infusion of either vehicle, TRV027, or losartan. Sham mice received intracerebroventricular vehicle without DOCA. TRV027 potentiated DOCA-induced water intake in the presence or absence of saline. TRV027 and losartan both increased the aversion for saline-an effect particularly pronounced for highly aversive saline solutions. Intracerebroventricular Ang (angiotensin) II, but not TRV027, increased water and saline intake in the absence of DOCA. In a separate cohort, blood pressure responses to acute intracerebroventricular injection of vehicle, TRV, or losartan were measured by radiotelemetry in mice with established DOCA-salt hypertension. Central administration of intracerebroventricular TRV027 or losartan each caused a significant and similar reduction of blood pressure and heart rate. We conclude that administration of TRV027 a selective β-arrestin biased agonist directly into the brain increases aversion to saline and lowers blood pressure in a model of salt-sensitive hypertension. These data suggest that selective activation of AT1R β-arrestin pathways may be exploitable therapeutically.
Collapse
Affiliation(s)
- Mario Zanaty
- From the Department of Physiology, Cardiovascular Center Medical College of Wisconsin, Milwaukee, WI (M.Z., P.N., N.M.M., K.B., J.L.G., C.D.S.).,Department of Neurosurgery (M.Z.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Fernando A C Seara
- Department of Pharmacology and Neuroscience (F.A.C.S., G.D.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Pablo Nakagawa
- From the Department of Physiology, Cardiovascular Center Medical College of Wisconsin, Milwaukee, WI (M.Z., P.N., N.M.M., K.B., J.L.G., C.D.S.)
| | - Guorui Deng
- Department of Pharmacology and Neuroscience (F.A.C.S., G.D.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Natalia M Mathieu
- From the Department of Physiology, Cardiovascular Center Medical College of Wisconsin, Milwaukee, WI (M.Z., P.N., N.M.M., K.B., J.L.G., C.D.S.)
| | - Kirthikaa Balapattabi
- From the Department of Physiology, Cardiovascular Center Medical College of Wisconsin, Milwaukee, WI (M.Z., P.N., N.M.M., K.B., J.L.G., C.D.S.)
| | - Sadashiva S Karnik
- Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH (S.S.K.)
| | - Justin L Grobe
- From the Department of Physiology, Cardiovascular Center Medical College of Wisconsin, Milwaukee, WI (M.Z., P.N., N.M.M., K.B., J.L.G., C.D.S.)
| | - Curt D Sigmund
- From the Department of Physiology, Cardiovascular Center Medical College of Wisconsin, Milwaukee, WI (M.Z., P.N., N.M.M., K.B., J.L.G., C.D.S.)
| |
Collapse
|
9
|
Jeong JK, Horwath JA, Simonyan H, Blackmore KA, Butler SD, Young CN. Subfornical organ insulin receptors tonically modulate cardiovascular and metabolic function. Physiol Genomics 2019; 51:333-341. [PMID: 31172876 DOI: 10.1152/physiolgenomics.00021.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Insulin acts within the central nervous system through the insulin receptor to influence both metabolic and cardiovascular physiology. While a major focus has been placed on hypothalamic regions, participation of extrahypothalamic insulin receptors in cardiometabolic regulation remains largely unknown. We hypothesized that insulin receptors in the subfornical organ (SFO), a forebrain circumventricular region devoid of a blood-brain barrier, are involved in metabolic and cardiovascular regulation. Immunohistochemistry in mice revealed widespread insulin receptor-positive cells throughout the rostral to caudal extent of the SFO. SFO-targeted adenoviral delivery of Cre-recombinase in insulin receptorlox/lox mice resulted in sufficient ablation of insulin receptors in the SFO. Interestingly, when mice were maintained on a normal chow diet, deletion of SFO insulin receptors resulted in greater weight gain and adiposity, relative to controls, independently of changes in food intake. In line with this, ablation of insulin receptors in the SFO was associated with marked hepatic steatosis and hypertriglyceridemia. Selective removal of SFO insulin receptors also resulted in a lower mean arterial blood pressure, which was primarily due to a reduction in diastolic blood pressure, whereas systolic blood pressure remained unchanged. Cre-mediated targeting of SFO insulin receptors did not influence heart rate. These data demonstrate multidirectional roles for insulin receptor signaling in the SFO, with ablation of SFO insulin receptors resulting in an overall deleterious metabolic state while at the same time maintaining blood pressure at low levels. These novel findings further suggest that alterations in insulin receptor signaling in the SFO could contribute to metabolic syndrome phenotypes.
Collapse
Affiliation(s)
- Jin Kwon Jeong
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia
| | - Julie A Horwath
- Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Hayk Simonyan
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia
| | - Katherine A Blackmore
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia
| | - Scott D Butler
- Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Colin N Young
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia
| |
Collapse
|
10
|
Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98:1627-1738. [PMID: 29873596 DOI: 10.1152/physrev.00038.2017] [Citation(s) in RCA: 693] [Impact Index Per Article: 99.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - George W Booz
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Curt D Sigmund
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thomas M Coffman
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
11
|
Sandgren JA, Linggonegoro DW, Zhang SY, Sapouckey SA, Claflin KE, Pearson NA, Leidinger MR, Pierce GL, Santillan MK, Gibson-Corley KN, Sigmund CD, Grobe JL. Angiotensin AT 1A receptors expressed in vasopressin-producing cells of the supraoptic nucleus contribute to osmotic control of vasopressin. Am J Physiol Regul Integr Comp Physiol 2018; 314:R770-R780. [PMID: 29364700 PMCID: PMC6032302 DOI: 10.1152/ajpregu.00435.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/03/2018] [Accepted: 01/17/2018] [Indexed: 11/22/2022]
Abstract
Angiotensin II (ANG) stimulates the release of arginine vasopressin (AVP) from the neurohypophysis through activation of the AT1 receptor within the brain, although it remains unclear whether AT1 receptors expressed on AVP-expressing neurons directly mediate this control. We explored the hypothesis that ANG acts through AT1A receptors expressed directly on AVP-producing cells to regulate AVP secretion. In situ hybridization and transgenic mice demonstrated localization of AVP and AT1A mRNA in the supraoptic nucleus (SON) and the paraventricular nucleus (PVN), but coexpression of both AVP and AT1A mRNA was only observed in the SON. Mice harboring a conditional allele for the gene encoding the AT1A receptor (AT1Aflox) were then crossed with AVP-Cre mice to generate mice that lack AT1A in all cells that express the AVP gene (AT1AAVP-KO). AT1AAVP-KO mice exhibited spontaneously increased plasma and serum osmolality but no changes in fluid or salt-intake behaviors, hematocrit, or total body water. AT1AAVP-KO mice exhibited reduced AVP secretion (estimated by measurement of copeptin) in response to osmotic stimuli such as acute hypertonic saline loading and in response to chronic intracerebroventricular ANG infusion. However, the effects of these receptors on AVP release were masked by complex stimuli such as overnight dehydration and DOCA-salt treatment, which simultaneously induce osmotic, volemic, and pressor stresses. Collectively, these data support the expression of AT1A in AVP-producing cells of the SON but not the PVN, and a role for AT1A receptors in these cells in the osmotic regulation of AVP secretion.
Collapse
MESH Headings
- Angiotensin II/administration & dosage
- Angiotensin II/pharmacology
- Animals
- Body Water
- Feeding Behavior
- Injections, Intraventricular
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Osmosis
- Paraventricular Hypothalamic Nucleus/metabolism
- Receptor, Angiotensin, Type 1/biosynthesis
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/physiology
- Sodium, Dietary
- Supraoptic Nucleus/metabolism
- Supraoptic Nucleus/physiology
- Vasoconstrictor Agents/administration & dosage
- Vasoconstrictor Agents/pharmacology
- Vasopressins/biosynthesis
- Vasopressins/physiology
Collapse
Affiliation(s)
| | | | - Shao Yang Zhang
- Department of Pharmacology, University of Iowa , Iowa City, Iowa
| | | | | | - Nicole A Pearson
- Department of Pharmacology, University of Iowa , Iowa City, Iowa
| | | | - Gary L Pierce
- Department of Health and Human Physiology, University of Iowa , Iowa City, Iowa
- Center for Hypertension Research, University of Iowa , Iowa City, Iowa
- François M. Abboud Cardiovascular Research Center, University of Iowa , Iowa City, Iowa
| | - Mark K Santillan
- Department of Obstetrics and Gynecology, University of Iowa , Iowa City, Iowa
- Center for Hypertension Research, University of Iowa , Iowa City, Iowa
| | - Katherine N Gibson-Corley
- Department of Pathology, University of Iowa , Iowa City, Iowa
- Center for Hypertension Research, University of Iowa , Iowa City, Iowa
- Fraternal Order of Eagles' Diabetes Research Center, University of Iowa , Iowa City, Iowa
| | - Curt D Sigmund
- Department of Pharmacology, University of Iowa , Iowa City, Iowa
- Center for Hypertension Research, University of Iowa , Iowa City, Iowa
- François M. Abboud Cardiovascular Research Center, University of Iowa , Iowa City, Iowa
| | - Justin L Grobe
- Department of Pharmacology, University of Iowa , Iowa City, Iowa
- Center for Hypertension Research, University of Iowa , Iowa City, Iowa
- François M. Abboud Cardiovascular Research Center, University of Iowa , Iowa City, Iowa
- Iowa Neuroscience Institute, University of Iowa , Iowa City, Iowa
- Obesity Research and Education Initiative, University of Iowa , Iowa City, Iowa
- Fraternal Order of Eagles' Diabetes Research Center, University of Iowa , Iowa City, Iowa
| |
Collapse
|
12
|
Bali A, Jaggi AS. Angiotensin II-triggered kinase signaling cascade in the central nervous system. Rev Neurosci 2018; 27:301-15. [PMID: 26574890 DOI: 10.1515/revneuro-2015-0041] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 09/26/2015] [Indexed: 12/26/2022]
Abstract
Recent studies have projected the renin-angiotensin system as a central component of the physiological and pathological processes of assorted neurological disorders. Its primary effector hormone, angiotensin II (Ang II), not only mediates the physiological effects of vasoconstriction and blood pressure regulation in cardiovascular disease but is also implicated in a much wider range of neuronal activities and diseases, including Alzheimer's disease, neuronal injury, and cognitive disorders. Ang II produces different actions by acting on its two subtypes of receptors (AT1 and AT2); however, the well-known physiological actions of Ang II are mainly mediated through AT1 receptors. Moreover, recent studies also suggest the important functional role of AT2 receptor in the brain. Ang II acts on AT1 receptors and conducts its functions via MAP kinases (ERK1/2, JNK, and p38MAPK), glycogen synthase kinase, Rho/ROCK kinase, receptor tyrosine kinases (PDGF and EGFR), and nonreceptor tyrosine kinases (Src, Pyk2, and JAK/STAT). AT1R-mediated NADPH oxidase activation also leads to the generation of reactive oxygen species, widely implicated in neuroinflammation. These signaling cascades lead to glutamate excitotoxicity, apoptosis, cerebral infarction, astrocyte proliferation, nociception, neuroinflammation, and progression of other neurological disorders. The present review focuses on the Ang II-triggered signal transduction pathways in central nervous system.
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW The central nervous system plays a pivotal role in the regulation of extracellular fluid volume and consequently arterial blood pressure. Key hypothalamic regions sense and integrate neurohumoral signals to subsequently alter intake (thirst and salt appetite) and output (renal excretion via neuroendocrine and autonomic function). Here, we review recent findings that provide new insight into such mechanisms that may represent new therapeutic targets. RECENT FINDINGS Implementation of cutting edge neuroscience approaches such as opto- and chemogenetics highlight pivotal roles of circumventricular organs to impact body fluid homeostasis. Key signaling mechanisms within these areas include the N-terminal variant of transient receptor potential vannilloid type-1, NaX, epithelial sodium channel, brain electroneutral transporters, and non-classical actions of vasopressin. Despite the identification of several new mechanisms, future studies need to better define the neurochemical phenotype and molecular profiles of neurons within circumventricular organs for future therapeutic potential.
Collapse
|
14
|
Sapouckey SA, Deng G, Sigmund CD, Grobe JL. Potential mechanisms of hypothalamic renin-angiotensin system activation by leptin and DOCA-salt for the control of resting metabolism. Physiol Genomics 2017; 49:722-732. [PMID: 28986397 DOI: 10.1152/physiolgenomics.00087.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/22/2017] [Indexed: 02/07/2023] Open
Abstract
The renin-angiotensin system (RAS), originally described as a circulating hormone system, is an enzymatic cascade in which the final vasoactive peptide angiotensin II (ANG) regulates cardiovascular, hydromineral, and metabolic functions. The RAS is also synthesized locally in a number of tissues including the brain, where it can act in a paracrine fashion to regulate blood pressure, thirst, fluid balance, and resting energy expenditure/resting metabolic rate (RMR). Recent studies demonstrate that ANG AT1A receptors (Agtr1a) specifically in agouti-related peptide (AgRP) neurons of the arcuate nucleus (ARC) coordinate autonomic and energy expenditure responses to various stimuli including deoxycorticosterone acetate (DOCA)-salt, high-fat feeding, and leptin. It remains unclear, however, how these disparate stimuli converge upon and activate this specific population of AT1A receptors in AgRP neurons. We hypothesize that these stimuli may act to stimulate local expression of the angiotensinogen (AGT) precursor for ANG, or the expression of AT1A receptors, and thereby local activity of the RAS within the (ARC). Here we review mechanisms that may control AGT and AT1A expression within the central nervous system, with a particular focus on mechanisms activated by steroids, dietary fat, and leptin.
Collapse
Affiliation(s)
- Sarah A Sapouckey
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Molecular Medicine Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Guorui Deng
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Curt D Sigmund
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Molecular Medicine Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Center for Hypertension Research, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Fraternal Order of Eagles' Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Justin L Grobe
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa; .,Molecular Medicine Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Center for Hypertension Research, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Fraternal Order of Eagles' Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa; and.,Obesity Research & Education Initiative, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
15
|
Shinohara K, Nakagawa P, Gomez J, Morgan DA, Littlejohn NK, Folchert MD, Weidemann BJ, Liu X, Walsh SA, Ponto LL, Rahmouni K, Grobe JL, Sigmund CD. Selective Deletion of Renin-b in the Brain Alters Drinking and Metabolism. Hypertension 2017; 70:990-997. [PMID: 28874461 DOI: 10.1161/hypertensionaha.117.09923] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/10/2017] [Accepted: 08/15/2017] [Indexed: 02/07/2023]
Abstract
The brain-specific isoform of renin (Ren-b) has been proposed as a negative regulator of the brain renin-angiotensin system (RAS). We analyzed mice with a selective deletion of Ren-b which preserved expression of the classical renin (Ren-a) isoform. We reported that Ren-bNull mice exhibited central RAS activation and hypertension through increased expression of Ren-a, but the dipsogenic and metabolic effects in Ren-bNull mice are unknown. Fluid intake was similar in control and Ren-bNull mice at baseline and both exhibited an equivalent dipsogenic response to deoxycorticosterone acetate-salt. Dehydration promoted increased water intake in Ren-bNull mice, particularly after deoxycorticosterone acetate-salt. Ren-bNull and control mice exhibited similar body weight when fed a chow diet. However, when fed a high-fat diet, male Ren-bNull mice gained significantly less weight than control mice, an effect blunted in females. This difference was not because of changes in food intake, energy absorption, or physical activity. Ren-bNull mice exhibited increased resting metabolic rate concomitant with increased uncoupled protein 1 expression and sympathetic nerve activity to the interscapular brown adipose tissue, suggesting increased thermogenesis. Ren-bNull mice were modestly intolerant to glucose and had normal insulin sensitivity. Another mouse model with markedly enhanced brain RAS activity (sRA mice) exhibited pronounced insulin sensitivity concomitant with increased brown adipose tissue glucose uptake. Altogether, these data support the hypothesis that the brain RAS regulates energy homeostasis by controlling resting metabolic rate, and that Ren-b deficiency increases brain RAS activity. Thus, the relative level of expression of Ren-b and Ren-a may control activity of the brain RAS.
Collapse
Affiliation(s)
- Keisuke Shinohara
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Pablo Nakagawa
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Javier Gomez
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Donald A Morgan
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Nicole K Littlejohn
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Matthew D Folchert
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Benjamin J Weidemann
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Xuebo Liu
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Susan A Walsh
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Laura L Ponto
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Kamal Rahmouni
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Justin L Grobe
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Curt D Sigmund
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.).
| |
Collapse
|
16
|
Role of the histone deacetylase inhibitor valproic acid in high-fat diet-induced hypertension via inhibition of HDAC1/angiotensin II axis. Int J Obes (Lond) 2017; 41:1702-1709. [PMID: 28720877 DOI: 10.1038/ijo.2017.166] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/23/2017] [Accepted: 07/05/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Obesity is known as an epidemic worldwide because of consumption of westernized high-fat diets and one of the major risk factors of hypertension. Histone deacetylases (HDACs) control gene expression by regulating histone/non-histone protein deacetylation. HDAC inhibitors exert anti-cancer and anti-inflammatory effects and play a protective role in cardiovascular diseases. In the present study, we tested the effect of an FDA-approved pan-HDAC inhibitor valproic acid (VPA) on high-fat diet (HFD)-induced hypertension in mice. Furthermore, we examined the mechanism of VPA-induced prevention of hypertension. METHODS Nine-week-old male C57BL/6 mice were fed either a normal diet (ND) or HFD. When the HFD group reached a pre-hypertensive phase (130-140 mm Hg systolic blood pressure), VPA was administered for 6 days (300 mg kg-1 per day). Body weights and blood pressure (BP), expression of renin-angiotensin system (RAS) components and HDAC1 were determined. The direct role of HDAC1 in the expression of RAS components was investigated using gene silencing. RESULTS HFD accelerated the increase in body weight from 22.4±1.3 to 31.9±3.0 compared to in the ND group from 22.7±0.9 to 26.0±1.7 (P=0.0134 ND vs HFD), systolic BP from 118.5±5.7 to 145.0±3.0 (P<0.001), and diastolic BP from 91.0±13.6 to 121.0±5.0 (P=0.006); BP was not altered in the ND group. HFD increased RAS components and HDAC1 in the kidneys as well as leptin in the plasma. VPA administration prevented the progression of hypertension and inhibited the increase in expression of HDAC1 and RAS components. VPA did not affect plasma leptin level. Knockdown of HDAC1 in MDCK cells decreased the expression of angiotensinogen and type 1 angiotensin II receptor. CONCLUSIONS VPA prevented HFD-induced hypertension by downregulating angiotensin II and its receptor via inhibition of HDAC1, offering a novel therapeutic option for HFD-induced hypertension.
Collapse
|
17
|
Agassandian K, Grobe JL, Liu X, Agassandian M, Thompson AP, Sigmund CD, Cassell MD. Evidence for intraventricular secretion of angiotensinogen and angiotensin by the subfornical organ using transgenic mice. Am J Physiol Regul Integr Comp Physiol 2017; 312:R973-R981. [PMID: 28490451 PMCID: PMC5495920 DOI: 10.1152/ajpregu.00511.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 05/03/2017] [Accepted: 05/03/2017] [Indexed: 01/05/2023]
Abstract
Direct intracerebroventricular injection of angiotensin II (ANG II) causes increases in blood pressure and salt and water intake, presumably mimicking an effect mediated by an endogenous mechanism. The subfornical organ (SFO) is a potential source of cerebrospinal fluid (CSF), ANG I, and ANG II, and thus we hypothesized that the SFO has a secretory function. Endogenous levels of angiotensinogen (AGT) and renin are very low in the brain. We therefore examined the immunohistochemical localization of angiotensin peptides and AGT in the SFO, and AGT in the CSF in two transgenic models that overexpress either human AGT (A+ mice), or both human AGT (hAGT) and human renin (SRA mice) in the brain. Measurements were made at baseline and following volumetric depletion of CSF. Ultrastructural analysis with immunoelectron microscopy revealed that superficially located ANG I/ANG II and AGT immunoreactive cells in the SFO were vacuolated and opened directly into the ventricle. Withdrawal of CSF produced an increase in AGT in the CSF that was accompanied by a large decline in AGT immunoreactivity within SFO cells. Our data provide support for the hypothesis that the SFO is a secretory organ that releases AGT and possibly ANG I/ANG II into the ventricle at least under conditions when genes that control the renin-angiotensin system are overexpressed in mice.
Collapse
Affiliation(s)
- Khristofor Agassandian
- Department of Anatomy and Cell Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Justin L Grobe
- UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Xuebo Liu
- UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Marianna Agassandian
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Anthony P Thompson
- Department of Anatomy and Cell Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa.,UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Curt D Sigmund
- UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; .,Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Martin D Cassell
- Department of Anatomy and Cell Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa.,UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
18
|
Claflin KE, Grobe JL. Control of energy balance by the brain renin-angiotensin system. Curr Hypertens Rep 2016; 17:38. [PMID: 25833461 DOI: 10.1007/s11906-015-0549-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The renin-angiotensin system (RAS) exists as a circulating hormone system but it is also used by various tissues of the body, including the brain, as a paracrine signaling mechanism. The local brain version of the RAS is mechanistically involved in fluid balance and blood pressure control, and there is growing appreciation for a role of the brain RAS in the control of energy balance. Here, we review major evidence for the control of energy balance by the brain RAS; outline the current understanding of the RAS components, targets, and mechanisms involved; and highlight some major questions that currently face the field.
Collapse
Affiliation(s)
- Kristin E Claflin
- Department of Pharmacology, Center for Hypertension Research, Obesity Research & Education Initiative, François M. Abboud Cardiovascular Research Center, and Fraternal Order of Eagles' Diabetes Research Center, University of Iowa, 51 Newton Rd., 2-307 BSB, Iowa City, IA, 52242, USA
| | | |
Collapse
|
19
|
Jo F, Jo H, Hilzendeger AM, Thompson AP, Cassell MD, Rutkowski DT, Davisson RL, Grobe JL, Sigmund CD. Brain endoplasmic reticulum stress mechanistically distinguishes the saline-intake and hypertensive response to deoxycorticosterone acetate-salt. Hypertension 2015; 65:1341-8. [PMID: 25895586 DOI: 10.1161/hypertensionaha.115.05377] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 03/26/2015] [Indexed: 12/14/2022]
Abstract
Endoplasmic reticulum stress has become an important mechanism in hypertension. We examined the role of endoplasmic reticulum stress in mediating the increased saline-intake and hypertensive effects in response to deoxycorticosterone acetate (DOCA)-salt. Intracerebroventricular delivery of the endoplasmic reticulum stress-reducing chemical chaperone tauroursodeoxycholic acid did not affect the magnitude of hypertension, but markedly decreased saline-intake in response to DOCA-salt. Increased saline-intake returned after tauroursodeoxycholic acid was terminated. Decreased saline-intake was also observed after intracerebroventricular infusion of 4-phenylbutyrate, another chemical chaperone. Immunoreactivity to CCAAT homologous binding protein, a marker of irremediable endoplasmic reticulum stress, was increased in the subfornical organ and supraoptic nucleus of DOCA-salt mice, but the signal was absent in control and CCAAT homologous binding protein-deficient mice. Electron microscopy revealed abnormalities in endoplasmic reticulum structure (decrease in membrane length, swollen membranes, and decreased ribosome numbers) in the subfornical organ consistent with endoplasmic reticulum stress. Subfornical organ-targeted adenoviral delivery of GRP78, a resident endoplasmic reticulum chaperone, decreased DOCA-salt-induced saline-intake. The increase in saline-intake in response to DOCA-salt was blunted in CCAAT homologous binding protein-deficient mice, but these mice exhibited a normal hypertensive response. We conclude that (1) brain endoplasmic reticulum stress mediates the saline-intake, but not blood pressure response to DOCA-salt, (2) DOCA-salt causes endoplasmic reticulum stress in the subfornical organ, which when attenuated by GRP78 blunts saline-intake, and (3) CCAAT homologous binding protein may play a functional role in DOCA-salt-induced saline-intake. The results suggest a mechanistic distinction between the importance of endoplasmic reticulum stress in mediating effects of DOCA-salt on saline-intake and blood pressure.
Collapse
Affiliation(s)
- Fusakazu Jo
- From the Department of Pharmacology (F.J., H.J., A.M.H., J.L.G., C.D.S.), Department of Anatomy and Cell Biology (A.P.T., M.D.C., D.T.R.), and UIHC Center for Hypertension Research (J.L.G., C.D.S.), Roy J. and Lucille Carver College of Medicine, University of Iowa; Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY (R.L.D.); and Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY (R.L.D.)
| | - Hiromi Jo
- From the Department of Pharmacology (F.J., H.J., A.M.H., J.L.G., C.D.S.), Department of Anatomy and Cell Biology (A.P.T., M.D.C., D.T.R.), and UIHC Center for Hypertension Research (J.L.G., C.D.S.), Roy J. and Lucille Carver College of Medicine, University of Iowa; Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY (R.L.D.); and Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY (R.L.D.)
| | - Aline M Hilzendeger
- From the Department of Pharmacology (F.J., H.J., A.M.H., J.L.G., C.D.S.), Department of Anatomy and Cell Biology (A.P.T., M.D.C., D.T.R.), and UIHC Center for Hypertension Research (J.L.G., C.D.S.), Roy J. and Lucille Carver College of Medicine, University of Iowa; Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY (R.L.D.); and Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY (R.L.D.)
| | - Anthony P Thompson
- From the Department of Pharmacology (F.J., H.J., A.M.H., J.L.G., C.D.S.), Department of Anatomy and Cell Biology (A.P.T., M.D.C., D.T.R.), and UIHC Center for Hypertension Research (J.L.G., C.D.S.), Roy J. and Lucille Carver College of Medicine, University of Iowa; Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY (R.L.D.); and Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY (R.L.D.)
| | - Martin D Cassell
- From the Department of Pharmacology (F.J., H.J., A.M.H., J.L.G., C.D.S.), Department of Anatomy and Cell Biology (A.P.T., M.D.C., D.T.R.), and UIHC Center for Hypertension Research (J.L.G., C.D.S.), Roy J. and Lucille Carver College of Medicine, University of Iowa; Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY (R.L.D.); and Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY (R.L.D.)
| | - D Thomas Rutkowski
- From the Department of Pharmacology (F.J., H.J., A.M.H., J.L.G., C.D.S.), Department of Anatomy and Cell Biology (A.P.T., M.D.C., D.T.R.), and UIHC Center for Hypertension Research (J.L.G., C.D.S.), Roy J. and Lucille Carver College of Medicine, University of Iowa; Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY (R.L.D.); and Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY (R.L.D.)
| | - Robin L Davisson
- From the Department of Pharmacology (F.J., H.J., A.M.H., J.L.G., C.D.S.), Department of Anatomy and Cell Biology (A.P.T., M.D.C., D.T.R.), and UIHC Center for Hypertension Research (J.L.G., C.D.S.), Roy J. and Lucille Carver College of Medicine, University of Iowa; Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY (R.L.D.); and Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY (R.L.D.)
| | - Justin L Grobe
- From the Department of Pharmacology (F.J., H.J., A.M.H., J.L.G., C.D.S.), Department of Anatomy and Cell Biology (A.P.T., M.D.C., D.T.R.), and UIHC Center for Hypertension Research (J.L.G., C.D.S.), Roy J. and Lucille Carver College of Medicine, University of Iowa; Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY (R.L.D.); and Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY (R.L.D.)
| | - Curt D Sigmund
- From the Department of Pharmacology (F.J., H.J., A.M.H., J.L.G., C.D.S.), Department of Anatomy and Cell Biology (A.P.T., M.D.C., D.T.R.), and UIHC Center for Hypertension Research (J.L.G., C.D.S.), Roy J. and Lucille Carver College of Medicine, University of Iowa; Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY (R.L.D.); and Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY (R.L.D.).
| |
Collapse
|
20
|
Zucker IH, Schultz HD, Patel KP, Wang H. Modulation of angiotensin II signaling following exercise training in heart failure. Am J Physiol Heart Circ Physiol 2015; 308:H781-91. [PMID: 25681422 PMCID: PMC4398865 DOI: 10.1152/ajpheart.00026.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/04/2015] [Indexed: 02/07/2023]
Abstract
Sympathetic activation is a consistent finding in the chronic heart failure (CHF) state. Current therapy for CHF targets the renin-angiotensin II (ANG II) and adrenergic systems. Angiotensin converting enzyme (ACE) inhibitors and ANG II receptor blockers are standard treatments along with β-adrenergic blockade. However, the mortality and morbidity of this disease is still extremely high, even with good medical management. Exercise training (ExT) is currently being used in many centers as an adjunctive therapy for CHF. Clinical studies have shown that ExT is a safe, effective, and inexpensive way to improve quality of life, work capacity, and longevity in patients with CHF. This review discusses the potential neural interactions between ANG II and sympatho-excitation in CHF and the modulation of this interaction by ExT. We briefly review the current understanding of the modulation of the angiotensin type 1 receptor in sympatho-excitatory areas of the brain and in the periphery (i.e., in the carotid body and skeletal muscle). We discuss possible cellular mechanisms by which ExT may impact the sympatho-excitatory process by reducing oxidative stress, increasing nitric oxide. and reducing ANG II. We also discuss the potential role of ACE2 and Ang 1-7 in the sympathetic response to ExT. Fruitful areas of further investigation are the role and mechanisms by which pre-sympathetic neuronal metabolic activity in response to individual bouts of exercise regulate redox mechanisms and discharge at rest in CHF and other sympatho-excitatory states.
Collapse
Affiliation(s)
- Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Harold D Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kaushik P Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Hanjun Wang
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
21
|
Coble JP, Grobe JL, Johnson AK, Sigmund CD. Mechanisms of brain renin angiotensin system-induced drinking and blood pressure: importance of the subfornical organ. Am J Physiol Regul Integr Comp Physiol 2014; 308:R238-49. [PMID: 25519738 DOI: 10.1152/ajpregu.00486.2014] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is critical for cells to maintain a homeostatic balance of water and electrolytes because disturbances can disrupt cellular function, which can lead to profound effects on the physiology of an organism. Dehydration can be classified as either intra- or extracellular, and different mechanisms have developed to restore homeostasis in response to each. Whereas the renin-angiotensin system (RAS) is important for restoring homeostasis after dehydration, the pathways mediating the responses to intra- and extracellular dehydration may differ. Thirst responses mediated through the angiotensin type 1 receptor (AT1R) and angiotensin type 2 receptors (AT2R) respond to extracellular dehydration and intracellular dehydration, respectively. Intracellular signaling factors, such as protein kinase C (PKC), reactive oxygen species (ROS), and the mitogen-activated protein (MAP) kinase pathway, mediate the effects of central angiotensin II (ANG II). Experimental evidence also demonstrates the importance of the subfornical organ (SFO) in mediating some of the fluid intake effects of central ANG II. The purpose of this review is to highlight the importance of the SFO in mediating fluid intake responses to dehydration and ANG II.
Collapse
Affiliation(s)
| | - Justin L Grobe
- Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | | | - Curt D Sigmund
- Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|