1
|
Jiang C, DiLeone RJ, Pittenger C, Duman RS. The endogenous opioid system in the medial prefrontal cortex mediates ketamine's antidepressant-like actions. Transl Psychiatry 2024; 14:90. [PMID: 38346984 PMCID: PMC10861497 DOI: 10.1038/s41398-024-02796-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/15/2024] Open
Abstract
Recent studies have implicated the endogenous opioid system in the antidepressant actions of ketamine, but the underlying mechanisms remain unclear. We used a combination of pharmacological, behavioral, and molecular approaches in rats to test the contribution of the prefrontal endogenous opioid system to the antidepressant-like effects of a single dose of ketamine. Both the behavioral actions of ketamine and their molecular correlates in the medial prefrontal cortex (mPFC) are blocked by acute systemic administration of naltrexone, a competitive opioid receptor antagonist. Naltrexone delivered directly into the mPFC similarly disrupts the behavioral effects of ketamine. Ketamine treatment rapidly increases levels of β-endorphin and the expression of the μ-opioid receptor gene (Oprm1) in the mPFC, and the expression of gene that encodes proopiomelanocortin, the precursor of β-endorphin, in the hypothalamus, in vivo. Finally, neutralization of β-endorphin in the mPFC using a specific antibody prior to ketamine treatment abolishes both behavioral and molecular effects. Together, these findings indicate that presence of β-endorphin and activation of opioid receptors in the mPFC are required for the antidepressant-like actions of ketamine.
Collapse
Affiliation(s)
- Cheng Jiang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
| | - Ralph J DiLeone
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Christopher Pittenger
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
- Department of Psychology, Yale University School of Arts and Sciences, New Haven, CT, USA.
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA.
- Center for Brain and Mind Health, Yale University School of Medicine, New Haven, CT, USA.
| | - Ronald S Duman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
2
|
Pittenger C, Jiang C, DiLeone R, Duman R. The endogenous opioid system in the medial prefrontal cortex mediates ketamine's antidepressant-like actions. RESEARCH SQUARE 2023:rs.3.rs-3190391. [PMID: 37886526 PMCID: PMC10602058 DOI: 10.21203/rs.3.rs-3190391/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Recent studies have implicated the endogenous opioid system in the antidepressant actions of ketamine, but the underlying mechanisms remain unclear. We used a combination of pharmacological, behavioral, and molecular approaches in rats to test the contribution of the prefrontal endogenous opioid system to the antidepressant-like effects of a single dose of ketamine. Both the behavioral actions of ketamine and their molecular correlates in the medial prefrontal cortex (mPFC) were blocked by acute systemic administration of naltrexone, a competitive opioid receptor antagonist. Naltrexone delivered directly into the mPFC similarly disrupted the behavioral effects of ketamine. Ketamine treatment rapidly increased levels of β-endorphin and the expression of the μ-opioid receptor gene (Oprm1) in the mPFC, and the expression of the gene that encodes proopiomelanocortin, the precursor of β-endorphin, in the hypothalamus, in vivo. Finally, neutralization of β-endorphin in the mPFC using a specific antibody prior to ketamine treatment abolished both behavioral and molecular effects. Together, these findings indicate that presence of β-endorphin and activation of opioid receptors in the mPFC are required for the antidepressant-like actions of ketamine.
Collapse
Affiliation(s)
| | | | | | - Ronald Duman
- Department of Psychiatry, Yale School of Medicine
| |
Collapse
|
3
|
Behavioral Reaction and c-fos Expression after Opioids Injection into the Pedunculopontine Tegmental Nucleus and Electrical Stimulation of the Ventral Tegmental Area. Int J Mol Sci 2022; 24:ijms24010512. [PMID: 36613953 PMCID: PMC9820701 DOI: 10.3390/ijms24010512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
The pedunculopontine tegmental nucleus (PPN) regulates the activity of dopaminergic cells in the ventral tegmental area (VTA). In this study, the role of opioid receptors (OR) in the PPN on motivated behaviors was investigated by using a model of feeding induced by electrical VTA-stimulation (Es-VTA) in rats (male Wistar; n = 91). We found that the OR excitation by morphine and their blocking by naloxone within the PPN caused a change in the analyzed motivational behavior and neuronal activation. The opioid injections into the PPN resulted in a marked, dose-dependent increase/decrease in latency to feeding response (FR), which corresponded with increased neuronal activity (c-Fos protein), in most of the analyzed brain structures. Morphine dosed at 1.25/1.5 µg into the PPN significantly reduced behavior induced by Es-VTA, whereas morphine dosed at 0.25/0.5 µg into the PPN did not affect this behavior. The opposite effect was observed after the naloxone injection into the PPN, where its lowest doses of 2.5/5.0 μg shortened the FR latency. However, its highest dose of 25.0 μg into the PPN nucleus did not cause FR latency changes. In conclusion, the level of OR arousal in the PPN can modulate the activity of the reward system.
Collapse
|
4
|
Joshi A, Schott M, la Fleur SE, Barrot M. Role of the striatal dopamine, GABA and opioid systems in mediating feeding and fat intake. Neurosci Biobehav Rev 2022; 139:104726. [PMID: 35691472 DOI: 10.1016/j.neubiorev.2022.104726] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 12/08/2021] [Accepted: 06/05/2022] [Indexed: 10/18/2022]
Abstract
Food intake, which is a highly reinforcing behavior, provides nutrients required for survival in all animals. However, when fat and sugar consumption goes beyond the daily needs, it can favor obesity. The prevalence and severity of this health problem has been increasing with time. Besides covering nutrient and energy needs, food and in particular its highly palatable components, such as fats, also induce feelings of joy and pleasure. Experimental evidence supports a role of the striatal complex and of the mesolimbic dopamine system in both feeding and food-related reward processing, with the nucleus accumbens as a key target for reward or reinforcing-associated signaling during food intake behavior. In this review, we provide insights concerning the impact of feeding, including fat intake, on different types of receptors and neurotransmitters present in the striatal complex. Reciprocally, we also cover the evidence for a modulation of palatable food intake by different neurochemical systems in the striatal complex and in particular the nucleus accumbens, with a focus on dopamine, GABA and the opioid system.
Collapse
Affiliation(s)
- Anil Joshi
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France; Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Gastroenterology & Metabolism, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of Endocrinology & Metabolism, Amsterdam Neuroscience, Amsterdam, the Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - Marion Schott
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Susanne Eva la Fleur
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Gastroenterology & Metabolism, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of Endocrinology & Metabolism, Amsterdam Neuroscience, Amsterdam, the Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands.
| | - Michel Barrot
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France.
| |
Collapse
|
5
|
Faden J, Serdenes R, Citrome L. Olanzapine-samidorphan combination tablets for the treatment of schizophrenia and bipolar I disorder - what is it, and will it be used? Expert Rev Neurother 2022; 22:365-376. [PMID: 35354374 DOI: 10.1080/14737175.2022.2060742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Although olanzapine remains one of the most efficacious antipsychotic medications for the treatment of schizophrenia, there are significant tolerability concerns related to its weight and metabolic profile. Olanzapine-samidorphan combination tablets (OLZ/SAM), branded as Lybalvi, is a newly FDA approved formulation aimed at attenuating antipsychotic induced weight gain via modulation of the endogenous opioid system with samidorphan, while retaining the robust antipsychotic efficacy of olanzapine. AREAS COVERED : We reviewed the published literature of OLZ/SAM for the management of schizophrenia using the US National Library of Medicine's PubMed.gov resource. Topics covered in this narrative review include the pharmacokinetics, pharmacodynamics, tolerability, and efficacy of OLZ/SAM. EXPERT OPINION : OLZ/SAM is an effective and well tolerated pharmacologic option in mitigating olanzapine induced weight gain while retaining olanzapine's efficacy. It has a limited effect on metabolic laboratory parameters and cumulatively tends to limit weight gain rather than promote weight loss. Additional research will be needed to determine its effectiveness compared to alternative strategies to attenuate antipsychotic induced weight gain.
Collapse
Affiliation(s)
- Justin Faden
- Lewis Katz School of Medicine at Temple University, Philadelphia PA 19125, USA
| | - Ryan Serdenes
- Lewis Katz School of Medicine at Temple University, Philadelphia PA 19125, USA
| | | |
Collapse
|
6
|
Carlson HN, Christensen BA, Pratt WE. Stimulation of mu opioid, but not GABAergic, receptors of the lateral habenula alters free feeding in rats. Neurosci Lett 2021; 771:136417. [PMID: 34954115 DOI: 10.1016/j.neulet.2021.136417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 01/24/2023]
Abstract
Overconsumption, or eating beyond the point of homeostasis, is a key feature in the development of obesity. Although people are consuming beyond the point of homeostasis, they are not consuming constantly or indefinitely. Thus, there is likely a mechanism that acts to terminate periods of food intake at some point beyond satiation and prior to aversion, or the negative effects of extreme excess (nausea, bloating, etc.). The purpose of the present study was to assess the lateral habenula as a candidate region for such a mechanism, due to its connectivity to midbrain reward circuitry, sensitivity to metabolic signaling, and pronounced role in drug-related motivated behaviors. Two groups of male Sprague-Dawley rats were surgically implanted with bilateral guide cannula targeting the LHb. Rats were then habituated to feeding chambers, wherein locomotion and food intake were monitored throughout a two-hour session. One experimental group was tested in the presence of rat chow; the second group was instead given access to a sweetened fat diet. Each subject separately received a 0.2 μL vehicle (0.9% saline solution) and baclofen-muscimol (50 ng/0.2 μL of each drug dissolved in 0.9% saline) injection. Additionally, on a third injection day, each rat received an injection of mu-opioid agonist DAMGO (0.1 μg/0.2 μL) prior to placement in the chamber. LHb inactivation did not result in significant alterations in feeding behavior, but produced a consistent increase in locomotor activity in both experimental groups. Mu-opioid receptor stimulation increased feeding on standard chow, but decreased intake of the sweetened-fat diet. Although LHb inactivation did not increase feeding as predicted, the novel finding that mu opioid receptor stimulation decreased feeding on a highly palatable diet, but increased intake of rat chow, highlights a differential role for the LHb in regulating hedonic consummatory behavior.
Collapse
Affiliation(s)
| | | | - Wayne E Pratt
- Department of Psychology, Wake Forest University, USA.
| |
Collapse
|
7
|
Peciña M, Chen J, Lyew T, Karp JF, Dombrovski AY. μ Opioid Antagonist Naltrexone Partially Abolishes the Antidepressant Placebo Effect and Reduces Orbitofrontal Cortex Encoding of Reinforcement. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:1002-1012. [PMID: 33684624 PMCID: PMC8419202 DOI: 10.1016/j.bpsc.2021.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Like placebo analgesia, the antidepressant placebo effect appears to involve cortical and subcortical endogenous opioid signaling, yet the mechanism through which opioid release affects mood remains unclear. The orbitofrontal cortex (OFC)-which integrates various attributes of a stimulus to predict associated outcomes-has been implicated in placebo effects and is rich in μ opioid receptors. We hypothesized that naltrexone blockade of μ opioid receptors would blunt OFC-dependent antidepressant placebo effects. METHODS Twenty psychotropic-free patients with major depressive disorder completed a randomized, double-blind, placebo-controlled crossover study of 1 oral dose of 50 mg of naltrexone or matching placebo immediately before completing 2 sessions of the antidepressant placebo functional magnetic resonance imaging task. This task manipulates placebo-associated expectancies and their reinforcement while assessing expected and actual mood improvement. RESULTS Behaviorally, manipulations of antidepressant placebo expectancies and their reinforcement had positive, interactive effects on participants' expectancy and mood ratings. The high-expectancy condition recruited the dorsolateral and ventrolateral prefrontal cortex, as well as dorsal attention stream regions. Interestingly, increased dorsolateral and ventrolateral prefrontal cortex brain responses appeared to attenuate the antidepressant placebo effect. The administration of 1 oral dose of naltrexone, compared with placebo, partially abolished the interaction of the expectancy and reinforcement manipulation on mood and blocked reinforcement-induced responses in the right central OFC. CONCLUSIONS Our results show preliminary evidence for the role of μ opioid central OFC modulation in antidepressant placebo effects by positively biasing the value of placebo based on reinforcement and enhancing subsequent hedonic experiences.
Collapse
Affiliation(s)
- Marta Peciña
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Jiazhou Chen
- National Institutes of Health, Bethesda, Maryland; The Faculty of Brain Sciences, Division of Psychology and Language Sciences, University College London, London, United Kingdom
| | - Thandi Lyew
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jordan F Karp
- Department of Psychiatry, University of Arizona, Tucson, Arizona
| | | |
Collapse
|
8
|
Jaschke N, Pählig S, Pan YX, Hofbauer LC, Göbel A, Rachner TD. From Pharmacology to Physiology: Endocrine Functions of μ-Opioid Receptor Networks. Trends Endocrinol Metab 2021; 32:306-319. [PMID: 33676828 PMCID: PMC8035298 DOI: 10.1016/j.tem.2021.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 01/04/2023]
Abstract
The steady rise in opioid users and abusers has uncovered multiple detrimental health consequences of perturbed opioid receptor signaling, thereby creating the need to better understand the biology of these systems. Among endogenous opioid networks, μ-receptors have received special attention due to their unprecedented biological complexity and broad implications in homeostatic functions. Here, we review the origin, molecular biology, and physiology of endogenous opioids with a special focus on μ-opioid receptor networks within the endocrine system. Moreover, we summarize the current evidence supporting an involvement of the latter in regulating distinct endocrine functions. Finally, we combine these insights to present an integrated perspective on μ-opioid receptor biology and provide an outlook on future studies and unresolved questions in this field.
Collapse
Affiliation(s)
- Nikolai Jaschke
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany.
| | - Sophie Pählig
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Ying-Xian Pan
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Lorenz C Hofbauer
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Andy Göbel
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Tilman D Rachner
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
9
|
Gómez-A A, Shnitko TA, Barefoot HM, Brightbill EL, Sombers LA, Nicola SM, Robinson DL. Local μ-Opioid Receptor Antagonism Blunts Evoked Phasic Dopamine Release in the Nucleus Accumbens of Rats. ACS Chem Neurosci 2019; 10:1935-1940. [PMID: 30388365 DOI: 10.1021/acschemneuro.8b00437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
μ-opioid receptors (MORs) in the nucleus accumbens (NAc) can regulate reward-related behaviors that are dependent on mesolimbic dopamine, but the precise mechanism of this MOR regulation is unknown. We hypothesized that MORs within the NAc core regulate dopamine release. Specifically, we infused the MOR antagonist CTAP (d-Phe-Cys-Tyr-d-Trp-Arg-Thr-Pen-Thr-NH2) into the NAc core while dopamine release was evoked by electrical stimulation of the ventral tegmental area and measured by fast-scan cyclic voltammetry. We report that CTAP dose-dependently inhibited evoked dopamine release, with full blockade achieved with the 8 μg infusion. In contrast, evoked dopamine release increased after nomifensine infusion and was unchanged after vehicle infusion. These findings demonstrate profound local control of dopamine release by MORs within the NAc core, which has implications for regulation of reward processing.
Collapse
Affiliation(s)
| | | | | | | | - Leslie A. Sombers
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Saleem M. Nicola
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | | |
Collapse
|
10
|
Caref K, Nicola SM. Endogenous opioids in the nucleus accumbens promote approach to high-fat food in the absence of caloric need. eLife 2018; 7:34955. [PMID: 29582754 PMCID: PMC5903865 DOI: 10.7554/elife.34955] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/20/2018] [Indexed: 12/14/2022] Open
Abstract
When relatively sated, people (and rodents) are still easily tempted to consume calorie-dense foods, particularly those containing fat and sugar. Consumption of such foods while calorically replete likely contributes to obesity. The nucleus accumbens (NAc) opioid system has long been viewed as a critical substrate for this behavior, mainly via contributions to the neural control of consumption and palatability. Here, we test the hypothesis that endogenous NAc opioids also promote appetitive approach to calorie-dense food in states of relatively high satiety. We simultaneously recorded NAc neuronal firing and infused a µ-opioid receptor antagonist into the NAc while rats performed a cued approach task in which appetitive and consummatory phases were well separated. The results reveal elements of a neural mechanism by which NAc opioids promote approach to high-fat food despite the lack of caloric need, demonstrating a potential means by which the brain is biased towards overconsumption of palatable food. Imagine that you have just finished Thanksgiving dinner. You are completely full, having eaten large portions of turkey, green beans and mashed potatoes. Yet, despite feeling full, you still find yourself tempted by a slice of pie for dessert, maybe even with ice cream on top. Why is it that in such a state of fullness, you desire a slice of pie but not, say, another helping of green beans? The answer may lie in the way the brain responds to food when we do not need any more calories. At such times, your brain drives you to continue eating only those foods that are tasty and calorie-dense. This preference for fatty and sweet foods may have been helpful in the past when we could not be certain where our next meal would come from. But in modern times, the widespread availability of food makes this preference potentially harmful. For example, the drive to consume fatty and sweet foods even when not hungry may now be contributing to soaring levels of obesity and type 2 diabetes. What exactly is happening inside the brain to produce this behavior? Previous work has implicated a structure called the nucleus accumbens. When scientists activated proteins called mu opioid receptors within the nucleus accumbens, animals ate more of the foods that they find tasty. However, they were not as interested in eating more of the foods that they are more ambivalent towards. Caref and Nicola now show that preventing opioid binding makes rats unwilling to respond to a cue to obtain cream, an appetizing, high-fat reward. It also abolishes the brain activity that drives the rats to respond the cue. Crucially, however, this effect only occurs in rats that are not hungry. It therefore appears that opioid binding in the nucleus accumbens drives animals to approach and eat high-fat foods, but only when they do not need the calories. That is, it increases fat consumption in animals that are not actually hungry. A drug that selectively blocks mu opioid receptors in the nucleus accumbens may reduce this behavior. Such a drug could potentially help to prevent obesity and the health problems associated with it.
Collapse
Affiliation(s)
- Kevin Caref
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, United States
| | - Saleem M Nicola
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, United States.,Department of Psychiatry, Albert Einstein College of Medicine, Bronx, United States
| |
Collapse
|
11
|
Pratt WE, Clissold KA, Lin P, Cain AE, Ciesinski AF, Hopkins TR, Ilesanmi AO, Kelly EA, Pierce-Messick Z, Powell DS, Rosner IA. A systematic investigation of the differential roles for ventral tegmentum serotonin 1- and 2-type receptors on food intake in the rat. Brain Res 2016; 1648:54-68. [PMID: 27431937 PMCID: PMC5018453 DOI: 10.1016/j.brainres.2016.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 10/21/2022]
Abstract
Central serotonin (5-HT) pathways are known to influence feeding and other ingestive behaviors. Although the ventral tegmentum is important for promoting the seeking and consumption of food and drugs of abuse, the roles of 5-HT receptor subtypes in this region on food intake have yet to be comprehensively examined. In these experiments, food restricted rats were given 2-h access to rat chow; separate groups of non-restricted animals had similar access to a sweetened fat diet. Feeding and locomotor activity were monitored following ventral tegmentum stimulation or blockade of 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2B, or 5-HT2C receptors. 5-HT1A receptor stimulation transiently inhibited rearing behavior and chow intake in food-restricted rats, and had a biphasic effect on non-restricted rats offered the palatable diet. 5-HT1B receptor agonism transiently inhibited feeding in restricted animals, but did not affect intake of non-restricted rats. In contrast, 5-HT1B receptor antagonism decreased palatable feeding. Although stimulation of ventral tegmental 5-HT2B receptors with BW723C86 did not affect hunger-driven food intake, it significantly affected palatable feeding, with a trend for an increasing intake at 2.0µg/side but not at 5.0µg/side. Antagonism of the same receptor modestly but significantly inhibited feeding of the palatable diet at 5.0µg/side ketanserin. Neither stimulation nor blockade of 5-HT2A or 5-HT2C receptors caused prolonged effects on intake or locomotion. These data suggest that serotonin's effects on feeding within the ventral tegmentum depend upon the specific receptor targeted, as well as whether intake is motivated by food restriction or the palatable nature of the offered diet.
Collapse
Affiliation(s)
- Wayne E Pratt
- Department of Psychology, Wake Forest University, Winston-Salem, NC, United States.
| | - Kara A Clissold
- Department of Psychology, Wake Forest University, Winston-Salem, NC, United States
| | - Peagan Lin
- Department of Psychology, Wake Forest University, Winston-Salem, NC, United States
| | - Amanda E Cain
- Department of Psychology, Wake Forest University, Winston-Salem, NC, United States
| | - Alexa F Ciesinski
- Department of Psychology, Wake Forest University, Winston-Salem, NC, United States
| | - Thomas R Hopkins
- Department of Psychology, Wake Forest University, Winston-Salem, NC, United States
| | - Adeolu O Ilesanmi
- Department of Psychology, Wake Forest University, Winston-Salem, NC, United States
| | - Erin A Kelly
- Department of Psychology, Wake Forest University, Winston-Salem, NC, United States
| | | | - Daniel S Powell
- Department of Psychology, Wake Forest University, Winston-Salem, NC, United States
| | - Ian A Rosner
- Department of Psychology, Wake Forest University, Winston-Salem, NC, United States
| |
Collapse
|
12
|
Edwards A, Abizaid A. Driving the need to feed: Insight into the collaborative interaction between ghrelin and endocannabinoid systems in modulating brain reward systems. Neurosci Biobehav Rev 2016; 66:33-53. [PMID: 27136126 DOI: 10.1016/j.neubiorev.2016.03.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 03/08/2016] [Accepted: 03/31/2016] [Indexed: 01/29/2023]
Abstract
Independent stimulation of either the ghrelin or endocannabinoid system promotes food intake and increases adiposity. Given the similar distribution of their receptors in feeding associated brain regions and organs involved in metabolism, it is not surprising that evidence of their interaction and its importance in modulating energy balance has emerged. This review documents the relationship between ghrelin and endocannabinoid systems within the periphery and hypothalamus (HYP) before presenting evidence suggesting that these two systems likewise work collaboratively within the ventral tegmental area (VTA) to modulate non-homeostatic feeding. Mechanisms, consistent with current evidence and local infrastructure within the VTA, will be proposed.
Collapse
Affiliation(s)
- Alexander Edwards
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| | - Alfonso Abizaid
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
13
|
Involvement of opioid signaling in food preference and motivation. PROGRESS IN BRAIN RESEARCH 2016; 229:159-187. [DOI: 10.1016/bs.pbr.2016.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Lardeux S, Kim JJ, Nicola SM. Intermittent-access binge consumption of sweet high-fat liquid does not require opioid or dopamine receptors in the nucleus accumbens. Behav Brain Res 2015; 292:194-208. [PMID: 26097003 DOI: 10.1016/j.bbr.2015.06.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/04/2015] [Accepted: 06/07/2015] [Indexed: 12/31/2022]
Abstract
Binge eating disorders are characterized by episodes of intense consumption of high-calorie food. In recently developed animal models of binge eating, rats given intermittent access to such food escalate their consumption over time. Consumption of calorie-dense food is associated with neurochemical changes in the nucleus accumbens, including dopamine release and alterations in dopamine and opioid receptor expression. Therefore, we hypothesized that binge-like consumption on intermittent access schedules is dependent on opioid and/or dopamine neurotransmission in the accumbens. To test this hypothesis, we asked whether injection of dopamine and opioid receptor antagonists into the core and shell of the accumbens reduced consumption of a sweet high-fat liquid in rats with and without a history of intermittent binge access to the liquid. Although injection of a μ opioid agonist increased consumption, none of the antagonists (including μ opioid, δ opioid, κ opioid, D1 dopamine and D2 dopamine receptor antagonists, as well as the broad-spectrum opioid receptor antagonist naltrexone) reduced consumption, and this was the case whether or not the animals had a prior history of intermittent access. These results suggest that consumption of sweet, fatty food does not require opioid or dopamine receptor activation in the accumbens even under intermittent access conditions that resemble human binge episodes.
Collapse
Affiliation(s)
- Sylvie Lardeux
- Department of Psychiatry, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - James J Kim
- Department of Psychiatry, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Saleem M Nicola
- Department of Psychiatry, Albert Einstein College of Medicine, Bronx, NY 10461, United States; Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States.
| |
Collapse
|
15
|
Liu S, Borgland S. Regulation of the mesolimbic dopamine circuit by feeding peptides. Neuroscience 2015; 289:19-42. [DOI: 10.1016/j.neuroscience.2014.12.046] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 12/27/2014] [Accepted: 12/31/2014] [Indexed: 12/30/2022]
|
16
|
Gugusheff JR, Ong ZY, Muhlhausler BS. The early origins of food preferences: targeting the critical windows of development. FASEB J 2014; 29:365-73. [PMID: 25466884 DOI: 10.1096/fj.14-255976] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The nutritional environment to which an individual is exposed during the perinatal period plays a crucial role in determining his or her future metabolic health outcomes. Studies in rodent models have demonstrated that excess maternal intake of high-fat and/or high-sugar "junk foods" during pregnancy and lactation can alter the development of the central reward pathway, particularly the opioid and dopamine systems, and program an increased preference for junk foods in the offspring. More recently, there have been attempts to define the critical windows of development during which the opioid and dopamine systems within the reward pathway are most susceptible to alteration and to determine whether it is possible to reverse these effects through nutritional interventions applied later in development. This review discusses the progress made to date in these areas, highlights the apparent importance of sex in determining these effects, and considers the potential implications of the findings from rodent models in the human context.
Collapse
Affiliation(s)
- Jessica Rose Gugusheff
- *FOODplus Research Centre, School of Agriculture Food and Wine, The University of Adelaide, Adelaide, South Australia, Australia; Sansom Institute for Health Research, School of Pharmacy and Medical Science, University of South Australia, Adelaide, South Australia, Australia; and Department of Psychology, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zhi Yi Ong
- *FOODplus Research Centre, School of Agriculture Food and Wine, The University of Adelaide, Adelaide, South Australia, Australia; Sansom Institute for Health Research, School of Pharmacy and Medical Science, University of South Australia, Adelaide, South Australia, Australia; and Department of Psychology, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Beverly Sara Muhlhausler
- *FOODplus Research Centre, School of Agriculture Food and Wine, The University of Adelaide, Adelaide, South Australia, Australia; Sansom Institute for Health Research, School of Pharmacy and Medical Science, University of South Australia, Adelaide, South Australia, Australia; and Department of Psychology, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
17
|
Clissold KA, Pratt WE. The effects of nucleus accumbens μ-opioid and adenosine 2A receptor stimulation and blockade on instrumental learning. Behav Brain Res 2014; 274:84-94. [PMID: 25101542 DOI: 10.1016/j.bbr.2014.07.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 06/10/2014] [Accepted: 07/25/2014] [Indexed: 11/28/2022]
Abstract
Prior research has shown that glutamate and dopamine receptors in the nucleus accumbens (NAcc) core are critical for the learning of an instrumental response for food reinforcement. It has also been demonstrated that μ-opioid and adenosine A2A receptors within the NAcc impact feeding and motivational processes. In these experiments, we examined the potential roles of NAcc μ-opioid and A2A receptors on instrumental learning and performance. Sprague-Dawley rats were food restricted and trained to lever press following daily intra-accumbens injections of the A2A receptor agonist CGS 21680 (at 0.0, 6.0, or 24.0ng/side), the A2A antagonist pro-drug MSX-3 (at 0.0, 1.0, or 3.0μg/side), the μ-opioid agonist DAMGO (at 0.0, 0.025, or 0.025μg/side), or the opioid receptor antagonist naltrexone (at 0.0, 2.0 or 20.0μg/side). After five days, rats continued training without drug injections until lever pressing rates stabilized, and were then tested with a final drug test to assess potential performance effects. Stimulation, but not inhibition, of NAcc adenosine A2A receptors depressed lever pressing during learning and performance tests, but did not impact lever pressing on non-drug days. Both μ-opioid receptor stimulation and blockade inhibited learning of the lever-press response, though only naltrexone treatment caused impairments in lever-pressing after the task had been learned. The effect of A2A receptor stimulation on learning and performance were consistent with known effects of adenosine on effort-related processes, whereas the pattern of lever presses, magazine approaches, and pellet consumption following opioid receptor manipulations suggested that their effects may have been driven by drug-induced shifts in the incentive value of the sugar reinforcer.
Collapse
Affiliation(s)
- Kara A Clissold
- Department of Psychology, Wake Forest University, Winston-Salem, NC, United States.
| | - Wayne E Pratt
- Department of Psychology, Wake Forest University, Winston-Salem, NC, United States.
| |
Collapse
|
18
|
Blasio A, Steardo L, Sabino V, Cottone P. Opioid system in the medial prefrontal cortex mediates binge-like eating. Addict Biol 2014; 19:652-62. [PMID: 23346966 DOI: 10.1111/adb.12033] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Binge eating disorder is an addiction-like disorder characterized by excessive food consumption within discrete periods of time. This study was aimed at understanding the role of the opioid system within the medial prefrontal cortex (mPFC) in the consummatory and motivational aspects of binge-like eating. For this purpose, we trained male rats to obtain either a sugary, highly palatable diet (Palatable rats) or a chow diet (Chow rats) for 1 hour/day. We then evaluated the effects of the opioid receptor antagonist, naltrexone, given either systemically or site-specifically into the nucleus accumbens (NAcc) or the mPFC on a fixed ratio 1 (FR1) and a progressive ratio schedule of reinforcement for food. Finally, we assessed the expression of the genes proopiomelanocortin (POMC), pro-dynorphin (PDyn) and pro-enkephalin (PEnk), coding for the opioids peptides in the NAcc and the mPFC in both groups. Palatable rats rapidly escalated their intake by four times. Naltrexone, when administered systemically and into the NAcc, reduced FR1 responding for food and motivation to eat under a progressive ratio in both Chow and Palatable rats; conversely, when administered into the mPFC, the effects were highly selective for binge eating rats. Furthermore, we found a twofold increase in POMC and a ∼50% reduction in PDyn gene expression in the mPFC of Palatable rats, when compared to control rats; however, no changes were observed in the NAcc. Our data suggest that neuroadaptations of the opioid system in the mPFC occur following intermittent access to highly palatable food, which may be responsible for the development of binge-like eating.
Collapse
Affiliation(s)
- Angelo Blasio
- Laboratory of Addictive Disorders; Departments of Pharmacology and Psychiatry; Boston University School of Medicine; Boston MA USA
| | - Luca Steardo
- Department of Physiology and Pharmacology; University of Rome ‘Sapienza’; Italy
| | - Valentina Sabino
- Laboratory of Addictive Disorders; Departments of Pharmacology and Psychiatry; Boston University School of Medicine; Boston MA USA
| | - Pietro Cottone
- Laboratory of Addictive Disorders; Departments of Pharmacology and Psychiatry; Boston University School of Medicine; Boston MA USA
| |
Collapse
|
19
|
Martire SI, Maniam J, South T, Holmes N, Westbrook RF, Morris MJ. Extended exposure to a palatable cafeteria diet alters gene expression in brain regions implicated in reward, and withdrawal from this diet alters gene expression in brain regions associated with stress. Behav Brain Res 2014; 265:132-41. [DOI: 10.1016/j.bbr.2014.02.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 01/17/2014] [Accepted: 02/18/2014] [Indexed: 01/16/2023]
|
20
|
Hayes MR, Mietlicki-Baase EG, Kanoski SE, De Jonghe BC. Incretins and amylin: neuroendocrine communication between the gut, pancreas, and brain in control of food intake and blood glucose. Annu Rev Nutr 2014; 34:237-60. [PMID: 24819325 DOI: 10.1146/annurev-nutr-071812-161201] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Arguably the most fundamental physiological systems for all eukaryotic life are those governing energy balance. Without sufficient energy, an individual is unable to survive and reproduce. Thus, an ever-growing appreciation is that mammalian physiology developed a redundant set of neuroendocrine signals that regulate energy intake and expenditure, which maintains sufficient circulating energy, predominantly in the form of glucose, to ensure that energy needs are met throughout the body. This orchestrated control requires cross talk between the gastrointestinal tract, which senses the incoming meal; the pancreas, which produces glycemic counterregulatory hormones; and the brain, which controls autonomic and behavioral processes regulating energy balance. Therefore, this review highlights the physiological, pharmacological, and pathophysiological effects of the incretin hormones glucagon-like peptide-1 and gastric inhibitory polypeptide, as well as the pancreatic hormone amylin, on energy balance and glycemic control.
Collapse
Affiliation(s)
- Matthew R Hayes
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| | | | | | | |
Collapse
|
21
|
Walker SC, McGlone FP. The social brain: neurobiological basis of affiliative behaviours and psychological well-being. Neuropeptides 2013; 47:379-93. [PMID: 24210942 DOI: 10.1016/j.npep.2013.10.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 10/14/2013] [Accepted: 10/14/2013] [Indexed: 02/07/2023]
Abstract
The social brain hypothesis proposes that the demands of the social environment provided the evolutionary pressure that led to the expansion of the primate brain. Consistent with this notion, that functioning in the social world is crucial to our survival, while close supportive relationships are known to enhance well-being, a range of social stressors such as abuse, discrimination and dysfunctional relationships can increase the risk of psychiatric disorders. The centrality of the social world to our everyday lives is further exemplified by the fact that abnormality in social behaviour is a salient feature of a range of neurodevelopmental and psychiatric disorders. This paper aims to provide a selective overview of current knowledge of the neurobiological basis of our ability to form and maintain close personal relationships, and of the benefits these relationships confer on our health. Focusing on neurochemical and neuroendocrine interactions within affective and motivational neural circuits, it highlights the specific importance of cutaneous somatosensation in affiliative behaviours and psychological well-being and reviews evidence, in support of the hypothesis, that a class of cutaneous unmyelinated, low threshold mechanosensitive nerves, named c-tactile afferents, have a direct and specific role in processing affiliative tactile stimuli.
Collapse
Affiliation(s)
- S C Walker
- School of Natural Sciences & Psychology, Liverpool John Moores University, Tom Reilly Building, Byrom Street, Liverpool L3 3AF, United Kingdom.
| | | |
Collapse
|
22
|
De Vadder F, Gautier-Stein A, Mithieux G. Satiety and the role of μ-opioid receptors in the portal vein. Curr Opin Pharmacol 2013; 13:959-63. [PMID: 24095601 DOI: 10.1016/j.coph.2013.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/20/2013] [Accepted: 09/04/2013] [Indexed: 01/03/2023]
Abstract
Mu-opioid receptors (MORs) are known to influence food intake at the brain level, through their involvement in the food reward system. MOR agonists stimulate food intake. On the other hand, MOR antagonists suppress food intake. MORs are also active in peripheral organs, especially in the small intestine where they control the gut motility. Recently, an indirect role in the control of food intake was ascribed to MORs in the extrinsic gastrointestinal neural system. MORs present in the neurons of the portal vein walls sense blood peptides released from the digestion of dietary protein. These peptides behave as MOR antagonists. Their MOR antagonist action initiates a gut-brain circuitry resulting in the induction of intestinal gluconeogenesis, a function controlling food intake. Thus, periportal MORs are a key mechanistic link in the satiety effect of protein-enriched diets.
Collapse
Affiliation(s)
- Filipe De Vadder
- Inserm U855, Lyon, France; Université Lyon 1, Villeurbanne, France; Université de Lyon, Lyon, France
| | | | | |
Collapse
|
23
|
Ziauddeen H, Nathan PJ, Dodds C, Maltby K, Miller SR, Waterworth D, Song K, Warren L, Hosking L, Zucchetto M, Bush M, Johnson LV, Sarai B, Mogg K, Bradley BP, Richards DB, Fletcher PC, Bullmore ET. The effects of alcohol on the pharmacokinetics and pharmacodynamics of the selective mu-opioid receptor antagonist GSK1521498 in healthy subjects. J Clin Pharmacol 2013; 53:1078-90. [PMID: 23934621 PMCID: PMC4282435 DOI: 10.1002/jcph.110] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/11/2013] [Indexed: 11/27/2022]
Abstract
The mu-opioid system has a key role in hedonic and motivational processes critical to substance addiction. However, existing mu-opioid antagonists have had limited success as anti-addiction treatments. GSK1521498 is a selective and potent mu-opioid antagonist being developed for the treatment of overeating and substance addictions. In this study, 28 healthy participants were administered single doses of GSK1521498 20 mg, ethanol 0.5 g/kg body weight, or both in combination, in a double blind placebo controlled four-way crossover design. The primary objective was to determine the risk of significant adverse pharmacodynamic and pharmacokinetic (PK) interactions. The effects of GSK1521498 on hedonic and consummatory responses to alcohol and the attentional processing of alcohol-related stimuli, and their modulation by the OPRM1 A118G polymorphism were also explored. GSK1521498 20 mg was well tolerated alone and in combination with ethanol. There were mild transient effects of GSK1521498 on alertness and mood that were greater when it was combined with ethanol. These effects were not of clinical significance. There were no effects of GSK1521498 on reaction time, hedonic or consummatory responses. These findings provide encouraging safety and PK data to support continued development of GSK1521498 for the treatment of alcohol addiction.
Collapse
Affiliation(s)
- Hisham Ziauddeen
- Medicines Discovery and Development, GlaxoSmithKline, Clinical Unit Cambridge, Addenbrooke's Centre for Clinical Investigations, Cambridge, UK; Department of Psychiatry, Behavioural and Clinical Neuroscience Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK; Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK; Cambridgeshire and Peterborough NHS Foundation Trust (CPFT), Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Valenta JP, Job MO, Mangieri RA, Schier CJ, Howard EC, Gonzales RA. μ-opioid receptors in the stimulation of mesolimbic dopamine activity by ethanol and morphine in Long-Evans rats: a delayed effect of ethanol. Psychopharmacology (Berl) 2013; 228:389-400. [PMID: 23503684 PMCID: PMC3707954 DOI: 10.1007/s00213-013-3041-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 02/19/2013] [Indexed: 11/28/2022]
Abstract
RATIONALE Naltrexone, a non-selective opioid antagonist, decreases the euphoria and positive subjective responses to alcohol in heavy drinkers. It has been proposed that the μ-opioid receptor plays a role in ethanol reinforcement through modulation of ethanol-stimulated mesolimbic dopamine release. OBJECTIVES To investigate the ability of naltrexone and β-funaltrexamine, an irreversible μ-opioid specific antagonist, to inhibit ethanol-stimulated and morphine-stimulated mesolimbic dopamine release, and to determine whether opioid receptors on mesolimbic neurons contribute to these mechanisms. METHODS Ethanol-naïve male Long Evans rats were given opioid receptor antagonists either intravenously, subcutaneously, or intracranially into the ventral tegmental area (VTA), followed by intravenous administration of ethanol or morphine. We measured extracellular dopamine in vivo using microdialysis probes inserted into the nucleus accumbens shell (n = 114). RESULTS Administration of naltrexone (intravenously) and β-funaltrexamine (subcutaneously), as well as intracranial injection of naltrexone into the VTA did not prevent the initiation of dopamine release by intravenous ethanol administration, but prevented it from being as prolonged. In contrast, morphine-stimulated mesolimbic dopamine release was effectively suppressed. CONCLUSIONS Our results provide novel evidence that there are two distinct mechanisms that mediate ethanol-stimulated mesolimbic dopamine release (an initial phase and a delayed phase), and that opioid receptor activation is required to maintain the delayed-phase dopamine release. Moreover, μ-opioid receptors account for this delayed-phase dopamine response, and the VTA is potentially the site of action of this mechanism. We conclude that μ-opioid receptors play different roles in the mechanisms of stimulation of mesolimbic dopamine activity by ethanol and morphine.
Collapse
Affiliation(s)
- John P Valenta
- College of Pharmacy, Department of Pharmacology, University of Texas at Austin, 2409 University Avenue, Stop A1900, Austin, TX 78712-1113, USA
| | | | | | | | | | | |
Collapse
|
25
|
Food reward-sensitive interaction of ghrelin and opioid receptor pathways in mesolimbic dopamine system. Neuropharmacology 2013; 67:395-402. [DOI: 10.1016/j.neuropharm.2012.11.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 11/22/2012] [Accepted: 11/24/2012] [Indexed: 11/18/2022]
|
26
|
Principles of motivation revealed by the diverse functions of neuropharmacological and neuroanatomical substrates underlying feeding behavior. Neurosci Biobehav Rev 2013; 37:1985-98. [PMID: 23466532 DOI: 10.1016/j.neubiorev.2013.02.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 02/12/2013] [Accepted: 02/22/2013] [Indexed: 11/21/2022]
Abstract
Circuits that participate in specific subcomponents of feeding (e.g., gustatory perception, peripheral feedback relevant to satiety and energy balance, reward coding, etc.) are found at all levels of the neural axis. Further complexity is conferred by the wide variety of feeding-modulatory neurotransmitters and neuropeptides that act within these circuits. An ongoing challenge has been to refine the understanding of the functional specificity of these neurotransmitters and circuits, and there have been exciting advances in recent years. We focus here on foundational work of Dr. Ann Kelley that identified distinguishable actions of striatal opioid peptide modulation and dopamine transmission in subcomponents of reward processing. We also discuss her work in overlaying these neuropharmacological effects upon anatomical pathways that link the telencephalon (cortex and basal ganglia) with feeding-control circuits in the hypothalamus. Using these seminal contributions as a starting point, we will discuss new findings that expand our understanding of (1) the specific, differentiable motivational processes that are governed by central dopamine and opioid transmission, (2) the manner in which other striatal neuromodulators, specifically acetylcholine, endocannabinoids and adenosine, modulate these motivational processes (including via interactions with opioid systems), and (3) the organization of the cortical-subcortical network that subserves opioid-driven feeding. The findings discussed here strengthen the view that incentive-motivational properties of food are coded by substrates and neural circuits that are distinguishable from those that mediate the acute hedonic experience of food reward. Striatal opioid transmission modulates reward processing by engaging frontotemporal circuits, possibly via a hypothalamic-thalamic axis, that ultimately impinges upon hypothalamic modules dedicated to autonomic function and motor pattern control. We will conclude by discussing implications for understanding disorders of "non-homeostatic" feeding.
Collapse
|
27
|
Li CS, Chung S, Lu DP, Cho YK. Descending projections from the nucleus accumbens shell suppress activity of taste-responsive neurons in the hamster parabrachial nuclei. J Neurophysiol 2012; 108:1288-98. [DOI: 10.1152/jn.00121.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The parabrachial nuclei (PbN), the second central relay for the gustatory pathway, transfers taste information to various forebrain gustatory nuclei and to the gustatory cortex. The nucleus accumbens is one of the critical neural substrates of the reward system, and the nucleus accumbens shell region (NAcSh) is associated with feeding behavior. Taste-evoked neuronal responses of PbN neurons are modulated by descending projections from the gustatory nuclei in the forebrain. In the present study, we investigated whether taste-responsive neurons in the PbN project to the NAcSh and whether pontine gustatory neurons are subject to modulatory influence from the NAcSh in urethane-anesthetized hamsters. Extracellular single-unit activity was recorded in the PbN, and taste responses were confirmed by the delivery of 32 mM sucrose, NaCl, quinine hydrochloride, and 3.2 mM citric acid to the anterior tongue. The NAcSh was then stimulated (0.5 ms, ≤100 μA) bilaterally using concentric bipolar stimulating electrodes. A total of 98 taste neurons were recorded from the PbN. Eighteen neurons were antidromically invaded from the NAcSh, mostly the ipsilateral NAcSh ( n = 16). Stimulation of the ipsilateral and contralateral NAcSh suppressed the neuronal activity of 88 and 55 neurons, respectively; 52 cells were affected bilaterally. In a subset of pontine neurons tested, electrical stimulation of the NAcSh during taste stimulation also suppressed taste-evoked neuronal firing. These results demonstrated that taste-responsive neurons in the PbN not only project to the NAcSh but also are under substantial descending inhibitory influence from the bilateral NAcSh.
Collapse
Affiliation(s)
- Cheng-Shu Li
- Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale, Illinois
- Jiamusi Stomatological Hospital, School of Stomatology, Jiamusi University, Jiamusi, People's Republic of China
| | - Sooyoung Chung
- Center for Neural Science L7313, Korea Institute of Science and Technology, Seoul, Korea
| | - Da-Peng Lu
- Laboratory of Oral Cell Biology, Department of Emergency, Beijing Stomatological Hospital, and School of Stomatology, Capital Medical University, Beijing, People's Republic of China; and
| | - Young K. Cho
- Department of Physiology and Neuroscience, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University, Gangwon, Korea
| |
Collapse
|
28
|
Morganstern I, Barson JR, Leibowitz SF. Regulation of drug and palatable food overconsumption by similar peptide systems. ACTA ACUST UNITED AC 2012; 4:163-73. [PMID: 21999690 DOI: 10.2174/1874473711104030163] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 08/04/2011] [Accepted: 08/04/2011] [Indexed: 11/22/2022]
Abstract
This review is aimed at understanding some of the common neurochemical, behavioral and physiological determinants of drug and food overconsumption. Much current work has been devoted to determining the similarities between the brain circuits controlling excessive use of addictive drugs and the overconsumption of palatable foods. The brain systems involved likely include peptides of both mesolimbic and hypothalamic origin. Evidence gathered from expression and injection studies suggests that the consumption of drugs, such as ethanol and nicotine, and also of palatable foods rich in fat is stimulated by different orexigenic peptides, such as enkephalin, galanin, orexin, and melaninconcentrating hormone, acting within the hypothalamus or various limbic structures, while another peptide, neuropeptide Y, is closely related to carbohydrate consumption and shows an inverse relationship with ethanol and nicotine consumption. Moreover, studies in animal models suggest that a propensity to overconsume these reinforcing substances may result from preexisting disturbances in these same peptide systems. These neurochemical disturbances, in turn, may also be closely linked to specific behaviors associated with excessive consummatory behavior, such as hyperactivity or novelty-seeking, palatable food preference, and also fluctuations in circulating lipid levels. Clear understanding of the relationship between these various determinants of consummatory behavior will allow researchers to effectively predict and examine at early stages of exposure animals that are prone to drug and food overconsumption. This work may ultimately aid in the identification of inherent traits that increase the risk for drug abuse and palatable food overconsumption.
Collapse
Affiliation(s)
- Irene Morganstern
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA
| | | | | |
Collapse
|
29
|
An examination of the effects of subthalamic nucleus inhibition or μ-opioid receptor stimulation on food-directed motivation in the non-deprived rat. Behav Brain Res 2012; 230:365-73. [PMID: 22391117 DOI: 10.1016/j.bbr.2012.02.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 01/27/2012] [Accepted: 02/17/2012] [Indexed: 12/29/2022]
Abstract
The subthalamic nucleus (STN) serves important functions in regulating movement, cognition, and motivation and is connected with cortical and basal ganglia circuits that process reward and reinforcement. In order to further examine the role of the STN on motivation toward food in non-deprived rats, these experiments studied the effects of pharmacological inhibition or μ-opioid receptor stimulation of the STN on the 2-h intake of a sweetened fat diet, the amount of work exerted to earn sucrose on a progressive ratio 2 (PR-2) schedule of reinforcement, and performance on a differential reinforcement of low-rate responding (DRL) schedule for sucrose reward. Separate behavioral groups (N=6-9) were tested following bilateral inhibition of the STN with the GABA(A) receptor agonist muscimol (at 0-5 ng/0.5 μl/side) or following μ-opioid receptor stimulation with the agonist D-Ala², N-MePhe⁴, Gly-ol-enkephalin (DAMGO; at 0, 0.025 or 0.25 μg/0.5 μl/side). Although STN inhibition increased ambulatory behavior during 2-h feeding sessions, it did not significantly alter intake of the sweetened fat diet. STN inhibition also did not affect the breakpoint for sucrose pellets during a 1-h PR-2 reinforcement schedule or impact the number of reinforcers earned on a 1-h DRL-20s reinforcement schedule in non-deprived rats. In contrast, STN μ-opioid receptor stimulation significantly increased feeding on the palatable diet and reduced the reinforcers earned on a DRL-20 schedule, although DAMGO microinfusions had no effect on PR-2 performance. These data suggest that STN inhibition does not enhance incentive motivation for food in the absence of food restriction and that STN μ-opioid receptors play an important and unique role in motivational processes.
Collapse
|
30
|
Alhadeff AL, Rupprecht LE, Hayes MR. GLP-1 neurons in the nucleus of the solitary tract project directly to the ventral tegmental area and nucleus accumbens to control for food intake. Endocrinology 2012; 153:647-58. [PMID: 22128031 PMCID: PMC3275387 DOI: 10.1210/en.2011-1443] [Citation(s) in RCA: 347] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Central glucagon-like-peptide-1 (GLP-1) receptor activation reduces food intake; however, brain nuclei and mechanism(s) mediating this effect remain poorly understood. Although central nervous system GLP-1 is produced almost exclusively in the nucleus of the solitary tract in the hindbrain, GLP-1 receptors (GLP-1R) are expressed throughout the brain, including nuclei in the mesolimbic reward system (MRS), e.g. the ventral tegmental area (VTA) and the nucleus accumbens (NAc). Here, we examine the MRS as a potential site of action for GLP-1-mediated control of food intake and body weight. Double immunohistochemistry for Fluorogold (monosynaptic retrograde tracer) and GLP-1 neuron immunoreactivity indicated that GLP-1-producing nucleus tractus solitarius neurons project directly to the VTA, the NAc core, and the NAc shell. Pharmacological data showed that GLP-1R activation in the VTA, NAc core, and NAc shell decreased food intake, especially of highly-palatable foods, and body weight. Moreover, blockade of endogenous GLP-1R signaling in the VTA and NAc core resulted in a significant increase in food intake, establishing a physiological relevance for GLP-1 signaling in the MRS. Current data highlight these nuclei within the MRS as novel sites for GLP-1R-mediated control of food intake and body weight.
Collapse
Affiliation(s)
- Amber L Alhadeff
- Department of Psychiatry, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
31
|
Nogueiras R, Romero-Picó A, Vazquez MJ, Novelle MG, López M, Diéguez C. The opioid system and food intake: homeostatic and hedonic mechanisms. Obes Facts 2012; 5:196-207. [PMID: 22647302 DOI: 10.1159/000338163] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 08/09/2011] [Indexed: 12/23/2022] Open
Abstract
Opioids are important in reward processes leading to addictive behavior such as self-administration of opioids and other drugs of abuse including nicotine and alcohol. Opioids are also involved in a broadly distributed neural network that regulates eating behavior, affecting both homeostatic and hedonic mechanisms. In this sense, opioids are particularly implicated in the modulation of highly palatable foods, and opioid antagonists attenuate both addictive drug taking and appetite for palatable food. Thus, craving for palatable food could be considered as a form of opioid-related addiction. There are three main families of opioid receptors (µ, ĸ, and δ) of which µ-receptors are most strongly implicated in reward. Administration of selective µ-agonists into the NAcc of rodents induces feeding even in satiated animals, while administration of µ-antagonists reduces food intake. Pharmacological studies also suggest a role for ĸ- and δ-opioid receptors. Preliminary data from transgenic knockout models suggest that mice lacking some of these receptors are resistant to high-fat diet-induced obesity.
Collapse
Affiliation(s)
- Ruben Nogueiras
- Department of Physiology, School of Medicine, University of Santiago de Compostela - Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | | | | | | | | | | |
Collapse
|
32
|
Burkett JP, Spiegel LL, Inoue K, Murphy AZ, Young LJ. Activation of μ-opioid receptors in the dorsal striatum is necessary for adult social attachment in monogamous prairie voles. Neuropsychopharmacology 2011; 36:2200-10. [PMID: 21734650 PMCID: PMC3176565 DOI: 10.1038/npp.2011.117] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Despite significant evidence that opioids are involved in attachment by mediating social reward and motivation, the role of opioids in the formation of adult social attachments has not been explored. We used the socially monogamous prairie vole (Microtus ochrogaster) to explore the role of endogenous opioids in social bonding by examining partner preference formation in female prairie voles. We hypothesized that μ-opioid receptors (MORs) in the striatum have a critical role in partner preference formation. We therefore predicted that peripheral administration of an opioid receptor antagonist would inhibit partner preference formation, and more specifically, that μ-opioid selective receptor blockade within the striatum would inhibit partner preference formation. To test our hypotheses, we first administered the non-selective opioid antagonist naltrexone peripherally to females during an 18-h cohabitation with a male and later tested the female with a partner preference test (PPT). Females showed a dose schedule-dependent decrease in partner preference in the PPT, with females in the continuous dose group displaying stranger preferences. Next, we administered microinjections of the MOR selective antagonist D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP) into either the nucleus accumbens shell (NAS) or the caudate-putamen (CP) immediately before a 24-h cohabitation with a male, and later tested the female with a PPT. Females receiving CTAP into the CP, but not the NAS, showed no preference in the PPT, indicating an inhibition of partner preference formation. We show here for the first time that MORs modulate partner preference formation in female prairie voles by acting in the CP.
Collapse
Affiliation(s)
- James P Burkett
- Division of Behavioral Neuroscience and Psychiatric Disorders, Department of Psychiatry and Behavioral Sciences, Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA,Center for Behavioral Neuroscience, Atlanta, GA, USA
| | - Lauren L Spiegel
- Division of Behavioral Neuroscience and Psychiatric Disorders, Department of Psychiatry and Behavioral Sciences, Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Kiyoshi Inoue
- Division of Behavioral Neuroscience and Psychiatric Disorders, Department of Psychiatry and Behavioral Sciences, Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Anne Z Murphy
- Center for Behavioral Neuroscience, Atlanta, GA, USA,Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Larry J Young
- Division of Behavioral Neuroscience and Psychiatric Disorders, Department of Psychiatry and Behavioral Sciences, Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA,Center for Behavioral Neuroscience, Atlanta, GA, USA,Center for Behavioral Neuroscience, 954 Gatewood Road, Atlanta, GA 30329, USA. Tel: +1 404 727 8272; Fax: +1 404 727 8070; E-mail:
| |
Collapse
|
33
|
Barson JR, Morganstern I, Leibowitz SF. Similarities in hypothalamic and mesocorticolimbic circuits regulating the overconsumption of food and alcohol. Physiol Behav 2011; 104:128-37. [PMID: 21549731 DOI: 10.1016/j.physbeh.2011.04.054] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 04/26/2011] [Indexed: 12/26/2022]
Abstract
Historically, studies of food intake regulation started with the hypothalamus and gradually expanded to mesocorticolimbic regions, while studies of drug use began with mesocorticolimbic regions and now include the hypothalamus. As research on ingestive behavior has progressed, it has uncovered more and more similarities between the regulation of palatable food and drug intake. It has also identified specific neurochemicals involved in palatable food and drug intake. Hypothalamic orexigenic neurochemicals specifically involved in controlling fat ingestion, including galanin, enkephalin, orexin and melanin-concentrating hormone, show positive feedback with this macronutrient, with these peptides both increasing fat intake and being further stimulated by its intake. This positive relationship offers some explanation for why foods high in fat are so often overconsumed. Research in Bart Hoebel's laboratory in conjunction with our own has shown that consumption of ethanol, a drug of abuse that also contains calories, is similarly driven by these neurochemical systems involved in fat intake, consistent with evidence closely relating fat and ethanol consumption. Both fat and ethanol intake are also regulated by dopamine and acetylcholine acting in mesocorticolimbic nuclei. This close relationship of fat and ethanol is likely driven in part by circulating lipids, which are increased by fat and ethanol intake, known to increase expression and levels of the neurochemicals, and found to promote further intake of fat and ethanol. Compellingly, recent studies suggest that these systems may already be dysregulated in animals prone to consuming excess fat or ethanol, even before they have ever been exposed to these substances. Further understanding of these systems involved in consummatory behavior will allow researchers to develop effective therapies for the treatment of overeating as well as drug abuse.
Collapse
Affiliation(s)
- Jessica R Barson
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA
| | | | | |
Collapse
|
34
|
Peciña S, Smith KS. Hedonic and motivational roles of opioids in food reward: implications for overeating disorders. Pharmacol Biochem Behav 2010; 97:34-46. [PMID: 20580734 DOI: 10.1016/j.pbb.2010.05.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 05/11/2010] [Accepted: 05/14/2010] [Indexed: 01/19/2023]
Abstract
Food reward can be driven by separable mechanisms of hedonic impact (food 'liking') and incentive motivation (food 'wanting'). Brain mu-opioid systems contribute crucially to both forms of food reward. Yet, opioid signals for food 'liking' and 'wanting' diverge in anatomical substrates, in pathways connecting these sites, and in the firing profiles of single neurons. Divergent neural control of hedonic and motivational processes raises the possibility for joint or separable modulation of food intake in human disorders associated with excessive eating and obesity. Early findings confirm an important role for 'liking' and 'wanting' in human appetitive behaviors, and suggest the intriguing possibility that exaggerated signals for 'wanting,' and perhaps 'liking,' may contribute to forms of overeating.
Collapse
Affiliation(s)
- Susana Peciña
- Department of Behavioral Sciences, University of Michigan-Dearborn, Dearborn, MI 48128, USA.
| | | |
Collapse
|
35
|
Hipólito L, Sánchez-Catalán MJ, Zornoza T, Polache A, Granero L. Locomotor stimulant effects of acute and repeated intrategmental injections of salsolinol in rats: role of mu-opioid receptors. Psychopharmacology (Berl) 2010; 209:1-11. [PMID: 20084370 DOI: 10.1007/s00213-009-1751-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 11/18/2009] [Indexed: 12/31/2022]
Abstract
RATIONALE Microinjections of ethanol and acetaldehyde into ventral tegmental area (VTA) produce locomotor activation in rats through mechanisms dependent on the mu-opioid receptors. However, it is not clear how these drugs can interact with these receptors. It has been hypothesized that salsolinol could be the responsible for this interaction. OBJECTIVES The aim of the study was to investigate the ability of salsolinol to induce both motor activation and motor sensitization in rats after repeated intra-VTA administration. MATERIALS Rats received one microinjection into the posterior VTA of artificial cerebrospinal fluid (aCSF; 200 nL), salsolinol (0.3-3,000.0 pmol/200 nL), or salsolinol (30.0 pmol/200 nL) with either naltrexone (13.2 nmol/200 nL) or with the antagonist of the mu-opioid receptors, beta-funaltrexamine (beta-FNA; 2.5 nmol/300 nL). In the sensitization experiments, four microinjections of salsolinol (30.0 pmol/200 nL) or aCSF (200 nL) were performed over a 2-week period. This period was followed by a single challenge session, in which 0.3 pmol of salsolinol was microinjected to rats. Spontaneous activity was always monitored postinjection. RESULTS Intra-VTA salsolinol administration induces an increase of the spontaneous motor activity of the rats with the maximal effect at the dose of 30.0 pmol/200 nL. Salsolinol effects were blocked by the treatment with naltrexone or beta-FNA. Moreover, repeated injections of salsolinol produced locomotor sensitization. CONCLUSIONS Salsolinol induces locomotor activity and motor sensitization after intra-VTA administration. Moreover, the implication of the mu-opioid receptors was shown since the treatment with naltrexone or beta-FNA was able to suppress the salsolinol effects.
Collapse
Affiliation(s)
- Lucía Hipólito
- Departament de Farmacia i Tecnología Farmacèutica, Universitat de València, Burjassot, Spain
| | | | | | | | | |
Collapse
|
36
|
Chronic suppression of μ-opioid receptor signaling in the nucleus accumbens attenuates development of diet-induced obesity in rats. Int J Obes (Lond) 2010; 34:1001-10. [PMID: 20065959 PMCID: PMC2885588 DOI: 10.1038/ijo.2009.297] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Objective To test the hypothesis that mu-opioid receptor signaling in the nucleus accumbens contributes to hedonic (over)eating and obesity. To investigate the effects of chronic mu-opioid antagonism in the nucleus accumbens core or shell on intake of a palatable diet, and the development of diet-induced obesity in rats. Methods and Design Chronic blockade of mu-opioid receptor-signaling in the nucleus accumbens core or shell was achieved by means of repeated injections (every 4–5 days) of the irreversible receptor antagonist β-Funaltrexamine (BFNA) over 3–5 weeks. The diet consisted of either a choice of high-fat chow, chocolate-flavored Ensure, and regular chow (each nutritionally complete), or regular chow only. Intake of each food item, body weight, and body fat mass were monitored throughout the study. Results BFNA injections aimed at either the core or shell of the nucleus accumbens resulted in significantly attenuated intake of palatable diet, body weight gain, and fat accretion, compared with vehicle control injections. BFNA in the core did not significantly change these parameters in chow-fed control rats. BFNA in the core and shell differentially affected intake of the two palatable food items: in the core BFNA significantly reduced intake of high-fat, but not of Ensure, whereas in the shell, it significantly reduced intake of Ensure, but not of high-fat, compared with vehicle-treatment. Conclusions Endogenous mu-opioid receptor-signaling in the nucleus accumbens core and shell is necessary for palatable diet-induced hyperphagia and obesity to fully develop in rats. Sweet and non-sweet fatty foods may be differentially processed in subcomponents of the ventral striatum.
Collapse
|
37
|
Le Merrer J, Becker JAJ, Befort K, Kieffer BL. Reward processing by the opioid system in the brain. Physiol Rev 2009; 89:1379-412. [PMID: 19789384 DOI: 10.1152/physrev.00005.2009] [Citation(s) in RCA: 693] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The opioid system consists of three receptors, mu, delta, and kappa, which are activated by endogenous opioid peptides processed from three protein precursors, proopiomelanocortin, proenkephalin, and prodynorphin. Opioid receptors are recruited in response to natural rewarding stimuli and drugs of abuse, and both endogenous opioids and their receptors are modified as addiction develops. Mechanisms whereby aberrant activation and modifications of the opioid system contribute to drug craving and relapse remain to be clarified. This review summarizes our present knowledge on brain sites where the endogenous opioid system controls hedonic responses and is modified in response to drugs of abuse in the rodent brain. We review 1) the latest data on the anatomy of the opioid system, 2) the consequences of local intracerebral pharmacological manipulation of the opioid system on reinforced behaviors, 3) the consequences of gene knockout on reinforced behaviors and drug dependence, and 4) the consequences of chronic exposure to drugs of abuse on expression levels of opioid system genes. Future studies will establish key molecular actors of the system and neural sites where opioid peptides and receptors contribute to the onset of addictive disorders. Combined with data from human and nonhuman primate (not reviewed here), research in this extremely active field has implications both for our understanding of the biology of addiction and for therapeutic interventions to treat the disorder.
Collapse
Affiliation(s)
- Julie Le Merrer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Département Neurobiologie et Génétique, Illkirch, France
| | | | | | | |
Collapse
|
38
|
Feeding association between the nucleus of the solitary tract and the ventral tegmental area. Appetite 2009; 53:457-60. [DOI: 10.1016/j.appet.2009.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 08/31/2009] [Accepted: 09/06/2009] [Indexed: 11/23/2022]
|
39
|
From taste hedonics to motivational drive: central μ-opioid receptors and binge-eating behaviour. Int J Neuropsychopharmacol 2009; 12:995-1008. [PMID: 19433009 DOI: 10.1017/s146114570900039x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Endogenous opioids and μ-opioid receptors (MORs) have long been implicated in the mechanism of appetite control and, in particular, hedonic processes associated with food evaluation, consumption and orosensory reward processes. In animal models of binge eating, selective MOR antagonists suppress food consumption. In humans, non-selective opioid receptor antagonists reduce hedonic taste preferences and food intake, particularly for palatable foods, and cause short-term weight loss. These effects have been linked to direct stimulation of MORs and modulation of dopamine release within the reward circuitry including the nucleus accumbens. These findings suggest that reduction of MOR-mediated hedonic and motivation processes driving consumption of highly palatable foods may be a promising therapeutic approach and provide a strong rationale for developing safer and more selective MOR antagonists or inverse agonists for disorders of 'appetitive motivation' including obesity and binge-eating disorder.
Collapse
|
40
|
Sánchez-Catalán MJ, Hipólito L, Zornoza T, Polache A, Granero L. Motor stimulant effects of ethanol and acetaldehyde injected into the posterior ventral tegmental area of rats: role of opioid receptors. Psychopharmacology (Berl) 2009; 204:641-53. [PMID: 19238363 DOI: 10.1007/s00213-009-1495-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 02/09/2009] [Indexed: 10/21/2022]
Abstract
RATIONALE A recently published study has shown that microinjections of ethanol, or its metabolite, acetaldehyde into the substantia nigra pars reticulata, are able to produce behavioral activation in rats. Another brain site that could participate in such effects is the ventral tegmental area (VTA). OBJECTIVES We have investigated the locomotor-activating effects of local microinjections of ethanol and acetaldehyde into the posterior VTA of rats and the role of opioid receptors in such effects. MATERIALS Cannulae were placed into the posterior VTA to perform microinjections of ethanol (75 or 150 nmol) or acetaldehyde (25 or 250 nmol) in animals not previously microinjected or microinjected with either the nonselective opioid antagonist naltrexone (13.2 nmol) or the irreversible antagonist of the micro-opioid receptors beta-funaltrexamine (beta-FNA; 2.5 nmol). After injections, spontaneous activity was monitored for 60 min. RESULTS Injections of ethanol or acetaldehyde into the VTA increased the locomotor activity of rats with maximal effects at doses of 150 nmol for ethanol and 250 nmol for acetaldehyde. These locomotor-activating effects were reduced by previously administering naltrexone (13.2 nmol) or beta-FNA (2.5 nmol) into the VTA. CONCLUSIONS The posterior VTA is another brain region involved in the locomotor activation after the intracerebroventricular administration of ethanol or acetaldehyde. Our data indicate that opioid receptors, particularly the micro-opioid receptors, could be the target of the actions of these compounds in the VTA. These results are consistent with the hypothesis that acetaldehyde could be a mediator of some ethanol effects.
Collapse
Affiliation(s)
- María José Sánchez-Catalán
- Departament de Farmàcia i Tecnología Farmacèutica, Universitat de València, Avda Vicente Andrés Estellés s/n, 46100, Burjassot, Spain
| | | | | | | | | |
Collapse
|
41
|
Denbleyker M, Nicklous DM, Wagner PJ, Ward HG, Simansky KJ. Activating mu-opioid receptors in the lateral parabrachial nucleus increases c-Fos expression in forebrain areas associated with caloric regulation, reward and cognition. Neuroscience 2009; 162:224-33. [PMID: 19422884 DOI: 10.1016/j.neuroscience.2009.04.071] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 04/26/2009] [Accepted: 04/29/2009] [Indexed: 11/19/2022]
Abstract
The pontine parabrachial nucleus (PBN) has been implicated in the modulation of ingestion and contains high levels of mu-opioid receptors (MOPRs). In previous work, stimulating MOPRs by infusing the highly selective MOPR agonist [d-Ala2, N-Me-Phe4, Gly5-ol]enkephalin (DAMGO) into the lateral parabrachial region (LPBN) increased food intake. The highly selective MOPR antagonist d-Phe-Cys-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP) prevented the hyperphagic action of DAMGO. The present experiments aimed to analyze both the pattern of neural activation and the underlying cellular processes associated with MOPR activation in the LPBN. Male Sprague-Dawley rats received a unilateral microinfusion of a nearly maximal hyperphagic dose of DAMGO into the LPBN. We then determined the level of c-Fos immunoreactivity in regions throughout the brain. MOPR activation in the LPBN increased c-Fos in the LPBN and in the nucleus accumbens, hypothalamic arcuate nucleus, paraventricular nucleus of the thalamus and hippocampus. Pretreatment with CTAP prevented the increase in c-Fos translation in each of these areas. CTAP also prevented the coupling of MOPRs to their G-proteins which was measured by [(35)S] guanosine 5'-O-[gamma-thio]triphosphate ([(35)S]GTPgammaS) autoradiography. Together, these data strongly suggest that increasing the coupling of MOPRs to their G-proteins in the LPBN disinhibits parabrachial neurons which subsequently leads to excitation of neurons in regions associated with caloric regulation, ingestive reward and cognitive processes in feeding.
Collapse
Affiliation(s)
- M Denbleyker
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N 15th Street, 19 Floor MS 400, Philadelphia, PA 19102, USA
| | | | | | | | | |
Collapse
|
42
|
Taha SA, Katsuura Y, Noorvash D, Seroussi A, Fields HL. Convergent, not serial, striatal and pallidal circuits regulate opioid-induced food intake. Neuroscience 2009; 161:718-33. [PMID: 19336249 DOI: 10.1016/j.neuroscience.2009.03.057] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 02/23/2009] [Accepted: 03/21/2009] [Indexed: 12/16/2022]
Abstract
Mu opioid receptor (MOR) signaling in the nucleus accumbens (NAcc) elicits marked increases in the consumption of palatable tastants. However, the mechanism and circuitry underlying this effect are not fully understood. Multiple downstream target regions have been implicated in mediating this effect but the role of the ventral pallidum (VP), a primary target of NAcc efferents, has not been well defined. To probe the mechanisms underlying increased consumption, we identified behavioral changes in rats' licking patterns following NAcc MOR stimulation. Because the temporal structure of licking reflects the physiological substrates modulating consumption, these measures provide a useful tool in dissecting the cause of increased consumption following NAcc MOR stimulation. Next, we used a combination of pharmacological inactivation and lesions to define the role of the VP in hyperphagia following infusion of the MOR-specific agonist [D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO) into the NAcc. In agreement with previous studies, results from lick microstructure analysis suggest that NAcc MOR stimulation augments intake through a palatability-driven mechanism. Our results also demonstrate an important role for the VP in normal feeding behavior: pharmacological inactivation of the VP suppresses baseline and NAcc DAMGO-induced consumption. However, this interaction does not occur through a serial circuit requiring direct projections from the NAcc to the VP. Rather, our results indicate that NAcc and VP circuits converge on a common downstream target that regulates food intake.
Collapse
Affiliation(s)
- S A Taha
- Department of Physiology, University of Utah School of Medicine, Salt Lake City, UT 84108, USA.
| | | | | | | | | |
Collapse
|
43
|
Beckman TR, Shi Q, Levine AS, Billington CJ. Amygdalar opioids modulate hypothalamic melanocortin-induced anorexia. Physiol Behav 2008; 96:568-73. [PMID: 19136019 DOI: 10.1016/j.physbeh.2008.12.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 11/18/2008] [Accepted: 12/10/2008] [Indexed: 11/17/2022]
Abstract
We wanted to assess the possibility that opioid activity in the central amygdala (CeA) could modulate the feeding inhibition of melanocortin stimulation of the paraventricular hypothalamus (PVN). The melanocortin system is important in both the acute regulation of satiety and feeding behavior and in the integration of long-term appetite signals. Melanotan II (MTII) is a synthetic MC3R and MC4R agonist which reduces food intake when given intracerebroventricularly (ICV) and into the PVN. Tyr-D-Ala-Gly-(me) Phe-Gly-ol (DAMGO), a micro-opioid receptor agonist, increases food intake, while opioid antagonists, like naltrexone (NTX), inhibit food intake after injection into many brain sites involved in appetite regulation, including the CeA. In food-deprived male Sprague-Dawley rats, co-injected intra-PVN MTII partially blocked the orexigenic effect of co-injected intra-CeA DAMGO. Intra-CeA NTX co-injected with intra-PVN MTII reduced food intake significantly more than either alone. NTX administered intra-CeA reduced c-Fos-immunoreactivity (IR) in nucleus accumbens neurons significantly compared to the intra-PVN MTII treated animals, animals co-injected intra-PVN with MTII and intra-CeA with NTX animals, and control animals. Intra-PVN MTII induced c-Fos-IR in significantly more PVN neurons than observed in control animals. Intra-CeA NTX co-injected with intra-PVN MTII induced c-Fos-IR significantly in PVN neurons relative to control and intra-CeA NTX animals. Such data support the significance of opioid action within the CeA as a modulator of the feeding regulation action of melanocortins within the PVN, occurring within the context of a larger appetitive network.
Collapse
MESH Headings
- Amygdala/drug effects
- Amygdala/metabolism
- Analgesics, Opioid/metabolism
- Animals
- Appetite Regulation/drug effects
- Appetite Regulation/physiology
- Drug Interactions
- Eating/drug effects
- Eating/physiology
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Food Deprivation
- Hormones/pharmacology
- Male
- Melanocortins/metabolism
- Naltrexone/pharmacology
- Neural Pathways/physiology
- Neurotransmitter Agents/pharmacology
- Paraventricular Hypothalamic Nucleus/drug effects
- Paraventricular Hypothalamic Nucleus/metabolism
- Peptides, Cyclic/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Melanocortin, Type 3/drug effects
- Receptor, Melanocortin, Type 3/metabolism
- Receptor, Melanocortin, Type 4/drug effects
- Receptor, Melanocortin, Type 4/metabolism
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/metabolism
- alpha-MSH/analogs & derivatives
- alpha-MSH/pharmacology
Collapse
Affiliation(s)
- Tiffany R Beckman
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, United States.
| | | | | | | |
Collapse
|
44
|
Smith KS, Tindell AJ, Aldridge JW, Berridge KC. Ventral pallidum roles in reward and motivation. Behav Brain Res 2008; 196:155-67. [PMID: 18955088 DOI: 10.1016/j.bbr.2008.09.038] [Citation(s) in RCA: 395] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 09/22/2008] [Indexed: 10/21/2022]
Abstract
In recent years the ventral pallidum has become a focus of great research interest as a mechanism of reward and incentive motivation. As a major output for limbic signals, the ventral pallidum was once associated primarily with motor functions rather than regarded as a reward structure in its own right. However, ample evidence now suggests that ventral pallidum function is a major mechanism of reward in the brain. We review data indicating that (1) an intact ventral pallidum is necessary for normal reward and motivation, (2) stimulated activation of ventral pallidum is sufficient to cause reward and motivation enhancements, and (3) activation patterns in ventral pallidum neurons specifically encode reward and motivation signals via phasic bursts of excitation to incentive and hedonic stimuli. We conclude that the ventral pallidum may serve as an important 'limbic final common pathway' for mesocorticolimbic processing of many rewards.
Collapse
Affiliation(s)
- Kyle S Smith
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | |
Collapse
|
45
|
Terashvili M, Wu HE, Schwasinger ET, Hung KC, Hong JS, Tseng LF. (+)-Morphine attenuates the (-)-morphine-produced conditioned place preference and the mu-opioid receptor-mediated dopamine increase in the posterior nucleus accumbens of the rat. Eur J Pharmacol 2008; 587:147-54. [PMID: 18448094 PMCID: PMC2566855 DOI: 10.1016/j.ejphar.2008.03.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 01/08/2008] [Accepted: 03/10/2008] [Indexed: 11/18/2022]
Abstract
An unbiased conditioned place preference paradigm and the microdialysis technique was used to evaluate the effect of (+)-morphine pretreatment on the conditioned place preference produced by (-)-morphine and the increased release of the dopamine produced by mu-opioid ligand endomorphin-1, respectively, in the posterior nucleus accumbens shell of the male CD rat. (-)-Morphine (2.5-10 microg) microinjected into the posterior nucleus accumbens shell dose-dependently produced the conditioned place preference. Pretreatment with (+)-morphine (0.1-10 pg) given into the posterior accumbens shell for 45 min dose-dependently attenuated the conditioned place preference produced by (-)-morphine (5 microg) given into the same posterior accumbens shell. However, higher doses of (+)-morphine (0.1 and 1 ng) were less effective in attenuating the (-)-morphine-produced conditioned place preference. Thus, like given systemically, (+)-morphine given into the posterior nucleus accumbens shell also induces a U-shaped dose-response curve for attenuating the (-)-morphine-produced conditioned place preference. Microinjection of mu-opioid agonist endomorphin-1 (1-10 microg) given into the ventral tegmental area dose-dependently increased the release of the extracellular dopamine in the posterior nucleus accumbens shell in the urethane-anesthetized rats. The increased dopamine caused by endomorphin-1 (10 microg) was completed blocked by the (+)-morphine (10 pg) pretreatment given into ventral tegmental area. It is concluded that (+)-morphine attenuates the (-)-morphine-produced conditioned place preference and the mu-opioid receptor-mediated increase of extracellular dopamine in the posterior nucleus accumbens shell of the rat.
Collapse
Affiliation(s)
- Maia Terashvili
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Hsiang-En Wu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Emma T. Schwasinger
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Kuei-Chun Hung
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Jau-Shyong Hong
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC 27709
| | - Leon F. Tseng
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
46
|
Cottone P, Sabino V, Steardo L, Zorrilla EP. Opioid-dependent anticipatory negative contrast and binge-like eating in rats with limited access to highly preferred food. Neuropsychopharmacology 2008; 33:524-35. [PMID: 17443124 DOI: 10.1038/sj.npp.1301430] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Binge eating and an increased role for palatability in determining food intake are abnormal adaptations in feeding behavior linked to eating disorders and body weight dysregulation. The present study tested the hypothesis that rats with limited access to highly preferred food would develop analogous opioid-dependent learned adaptations in feeding behavior, with associated changes in metabolism and anxiety-like behavior. For this purpose, adolescent female Wistar rats were daily food deprived (2 h) and then offered 10-min access to a feeder containing chow followed sequentially by 10-min access to a different feeder containing either chow (chow/chow; n=7) or a highly preferred, but macronutrient-comparable, sucrose-rich diet (chow/preferred; n=8). Chow/preferred-fed rats developed binge-like hyperphagia of preferred diet from the second feeder and anticipatory chow hypophagia from the first feeder with a time course suggesting associative learning. The feeding adaptations were dissociable in onset, across individuals, and in their dose-response to the opioid-receptor antagonist nalmefene, suggesting that they represent distinct palatability-motivated processes. Chow/preferred-fed rats showed increased anxiety-like behavior in relation to their propensity to binge as well as increased feed efficiency, body weight, and visceral adiposity. Chow/preferred-fed rats also had increased circulating leptin levels and decreased growth hormone and 'active' ghrelin levels. Thus, the short-term control of food intake in rats with restricted access to highly preferred foods comes to rely more on hedonic, rather than nutritional, properties of food, through associative learning mechanisms. Such rats show changes in ingestive, metabolic, endocrine, and anxiety-related measures, which resemble features of binge eating disorders or obesity.
Collapse
Affiliation(s)
- Pietro Cottone
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
47
|
Cheido MA, Idova GV. The differential contribution of dopamine D(1) and D (2) receptors to mu-opioidergic immunomodulation. ACTA ACUST UNITED AC 2007; 37:721-4. [PMID: 17763992 DOI: 10.1007/s11055-007-0073-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Indexed: 10/22/2022]
Abstract
Activation of mu-opioid receptors (mu-OR) by the highly selective agonist DAGO (100 microg/kg) significantly increased the immune response in CBA mice. This effect of the mu agonist was prevented by prior blockade of dopamine D(2) receptors with haloperidol (2 mg/kg). In contrast, the selective D(1) receptor antagonist SCH 23390 (1 mg/kg) had no effect on the nature of the immune reaction in response to antigen (sheep erythrocytes, 5 x 10(8) cells). However, blockade of both types of dopamine receptor led to the same effect--immunosuppression. These data lead to the suggestion that D(1) and D(2) receptors make different contributions to modulating immunogenesis on activation of mu-OR.
Collapse
Affiliation(s)
- M A Cheido
- State Research Institute of Physiology, Siberian Branch, Russian Academy of Medical Sciences, 4 Timakov Street, 630117 Novosibirsk, Russia
| | | |
Collapse
|
48
|
Grimm JW, Manaois M, Osincup D, Wells B, Buse C. Naloxone attenuates incubated sucrose craving in rats. Psychopharmacology (Berl) 2007; 194:537-44. [PMID: 17628789 PMCID: PMC2881196 DOI: 10.1007/s00213-007-0868-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Accepted: 06/20/2007] [Indexed: 12/23/2022]
Abstract
RATIONALE Cue-induced craving precedes drug relapse and contributes to eating disorders. Opiate antagonists have been demonstrated to be effective at reducing cravings for drugs and food. Craving, as defined as responding for a stimulus previously associated with a reward, increases, or incubates, over forced abstinence in an animal model of relapse. OBJECTIVES This paper aims to determine anticraving effects of the opiate antagonist, naloxone, on the incubation of sucrose craving. METHODS 106 male Long-Evans rats lever pressed for 10% sucrose solution 2 h/day for 10 days. On either day 1 or 30 of forced abstinence, rats responded in extinction for 6 h and then were injected (ip) with either saline or naloxone (0.001, 0.01, 0.1, 1, or 10 mg/kg). The rats then responded for 1 h for presentation of a tone + light cue previously presented with every sucrose delivery during self-administration training. RESULTS The rats responded more in extinction and following saline on day 30 vs day 1 (an incubation of craving). Except for a trend for a decrease in responding following 10 mg/kg on day 1, naloxone was primarily effective on day 30. On day 30, naloxone significantly reduced responding at all doses except for 0.1 mg/kg. CONCLUSIONS The time-dependent increase in sensitivity to an opiate antagonist is consistent with time-dependent changes in the opiate system following forced abstinence from sucrose. These changes may partly underlie the incubation of sucrose craving. In addition, these findings could be used to support the use of naloxone as an anticraving medication in protracted abstinence.
Collapse
Affiliation(s)
- Jeffrey W Grimm
- Department of Psychology, Western Washington University, Bellingham, WA 98225-9089, USA.
| | | | | | | | | |
Collapse
|
49
|
Soria-Gómez E, Matias I, Rueda-Orozco PE, Cisneros M, Petrosino S, Navarro L, Di Marzo V, Prospéro-García O. Pharmacological enhancement of the endocannabinoid system in the nucleus accumbens shell stimulates food intake and increases c-Fos expression in the hypothalamus. Br J Pharmacol 2007; 151:1109-16. [PMID: 17549045 PMCID: PMC2042935 DOI: 10.1038/sj.bjp.0707313] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND AND PURPOSE Evidence indicates that the endocannabinoid, 2-arachidonoylglycerol (2-AG), increases food intake when injected into the nucleus accumbens shell (NAcS), thereby potentially activating hypothalamic nuclei involved in food intake regulation. We aimed to evaluate potential orexigenic effects of the endocannabinoid anandamide and of AA5HT, a fatty acid amide hydrolase (FAAH) inhibitor, and OMDM-1, an inhibitor of anandamide uptake, injected in the NAcS, as well as the effect of these treatments on activation of hypothalamic nuclei. EXPERIMENTAL APPROACH Drugs were given into the NAcS of rats and food intake quantified during the next 4 h. In other groups, after the same treatments the brains were processed for c-Fos immunohistochemistry with focus on hypothalamic nuclei. Additional groups were used to quantify endocannabinoid levels in the nucleus accumbens and the hypothalamus after AA5HT and OMDM-1 intra-NAcS injections. KEY RESULTS Our results indicate that the above treatments stimulate food intake during 4 h post-injection. They also increase c-Fos immunoreactivity in hypothalamic nuclei. The CB(1) antagonist, AM251, blocked these effects. Finally, we found elevated levels of 2-AG, but not anandamide, after intra-NAcS injections of AA5HT. CONCLUSIONS AND IMPLICATIONS These data support the involvement of the endocannabinoid system in feeding behavior at the level of the NAcS and hypothalamus. In addition, this is the first experimental demonstration that the pharmacological inhibition of endocannabinoid inactivation in the NAcS stimulates food intake, suggesting that the endocannabinoid degrading proteins can be a target for treating eating disorders.
Collapse
Affiliation(s)
- E Soria-Gómez
- Grupo de Neurociencias, Depto. de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México Mexico, Mexico
| | - I Matias
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche Pozzuoli (NA), Italy
| | - P E Rueda-Orozco
- Grupo de Neurociencias, Depto. de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México Mexico, Mexico
| | - M Cisneros
- Grupo de Neurociencias, Depto. de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México Mexico, Mexico
| | - S Petrosino
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche Pozzuoli (NA), Italy
| | - L Navarro
- Grupo de Neurociencias, Depto. de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México Mexico, Mexico
| | - V Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche Pozzuoli (NA), Italy
- Author for correspondence:
| | - O Prospéro-García
- Grupo de Neurociencias, Depto. de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México Mexico, Mexico
- Author for correspondence:
| |
Collapse
|
50
|
Smith KS, Berridge KC. Opioid limbic circuit for reward: interaction between hedonic hotspots of nucleus accumbens and ventral pallidum. J Neurosci 2007; 27:1594-605. [PMID: 17301168 PMCID: PMC6673729 DOI: 10.1523/jneurosci.4205-06.2007] [Citation(s) in RCA: 279] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 12/06/2006] [Accepted: 01/02/2007] [Indexed: 11/21/2022] Open
Abstract
Mu-opioid stimulation of cubic millimeter hedonic hotspots in either the nucleus accumbens shell (NAc) or the ventral pallidum (VP) amplifies hedonic "liking" reactions to sweetness and appetitive "wanting" for food reward. How do these two NAc-VP hotspots interact? To probe their interaction and limbic circuit properties, we assessed whether opioid activation of one hotspot recruited the other hotspot (neurobiologically) and whether opioid hedonic and incentive motivational amplification by either opioid hotspot required permissive opioid coactivation in the other (behaviorally). We found that NAc and VP hotspots reciprocally modulated Fos expression in each other and that the two hotspots were needed together to enhance sucrose "liking" reactions, essentially cooperating within a single hedonic NAc-VP circuit. In contrast, the NAc hotspot dominated for opioid stimulation of eating and food intake ("wanting"), independent of VP activation. This pattern reveals differences between limbic opioid circuits that control reward "liking" and "wanting" functions.
Collapse
Affiliation(s)
- Kyle S Smith
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | |
Collapse
|