1
|
Appenroth D, Cázarez-Márquez F. Seasonal food intake and energy balance: Neuronal and non-neuronal control mechanisms. Neuropharmacology 2024; 257:110050. [PMID: 38914372 DOI: 10.1016/j.neuropharm.2024.110050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/05/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Animals inhabiting temperate and high latitudes undergo drastic seasonal changes in energy storage, facilitated by changes in food intake and body mass. Those seasonal changes in the animal's biology are not mere consequences of environmental energy availability but are anticipatory responses to the energetic requirements of the upcoming season and are actively timed by tracking the annual progression in photoperiod. In this review, we discuss how photoperiod is used to control energy balance seasonally and how this is distinct from energy homeostasis. Most notably, we suggest that photoperiodic control of food intake and body mass does not originate from the arcuate nucleus, as for homeostatic appetite control, but is rather to be found in hypothalamic tanycytes. Tanycytes are specialized ependymal cells lining the third ventricle, which can sense metabolites from the cerebrospinal fluid (e.g. glucose) and can control access of circulating signals to the brain. They are also essential in conveying time-of-year information by integrating photoperiod and altering hypothalamic thyroid metabolism, a feature that is conserved in seasonal vertebrates and connects to seasonal breeding and metabolism. We also discuss how homeostatic feedback signals are handled during times of rapid energetic transitions. Studies on leptin in seasonal mammals suggest a seasonal shift in central sensitivity and blood-brain transport, which might be facilitated by tanycytes. This article is part of the Special Issue on "Food intake and feeding states".
Collapse
Affiliation(s)
- Daniel Appenroth
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic Chronobiology & Physiology, Arctic & Marine Biology, BFE, UiT - Arctic University of Norway, Tromsø, Norway.
| | - Fernando Cázarez-Márquez
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic Chronobiology & Physiology, Arctic & Marine Biology, BFE, UiT - Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
2
|
Appenroth D, West AC, Wood SH, Hazlerigg DG. Tanycytes from a bird's eye view: gene expression profiling of the tanycytic region under different seasonal states in the Svalbard ptarmigan. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024:10.1007/s00359-024-01716-3. [PMID: 39299992 DOI: 10.1007/s00359-024-01716-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
In mammals and birds, tanycytes are known to regulate thyroid hormone conversion, and this process is central to the control of seasonal reproduction. In mammals, this cell type is also implicated in retinoic acid signalling, neurogenesis, and nutritional gatekeeping, all of which have been linked to hypothalamic regulation of energy metabolism. Less is known about these potential wider roles of tanycytes in birds. To address this gap, we combined LASER capture microdissection and transcriptomics to profile the tanycytic region in male Svalbard ptarmigan, a High Arctic species with photoperiod-dependent seasonal rhythms in reproductive activation and body mass. Short photoperiod (SP) adapted birds were transferred to constant light (LL) to trigger breeding and body mass loss. After five months under LL, the development of photorefractoriness led to spontaneous re-emergence of the winter phenotype, marked by the termination of breeding and gain in body mass. The transfer from SP to LL initiated gene expression changes in both thyroid hormone and retinoic acid pathways, as described in seasonal mammals. Furthermore, transcriptomic signatures of cell differentiation and migration were observed. Comparison to data from Siberian hamsters demonstrated that a photoperiod-dependent re-organisation of the hypothalamic tanycytic region is likely a conserved feature. Conversely, the spontaneous development of photorefractoriness showed a surprisingly small number of genes that reverted in expression level, despite reversal of the reproductive and metabolic phenotype. Our data suggest general conservation of tanycyte biology between photoperiodic birds and mammals and raise questions about the mechanistic origins of the photorefractory state.
Collapse
Affiliation(s)
- Daniel Appenroth
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic Chronobiology & Physiology, Arctic & Marine Biology, BFE, UiT - Arctic University of Norway, Tromsø, Norway.
| | - Alexander C West
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic Chronobiology & Physiology, Arctic & Marine Biology, BFE, UiT - Arctic University of Norway, Tromsø, Norway
| | - Shona H Wood
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic Chronobiology & Physiology, Arctic & Marine Biology, BFE, UiT - Arctic University of Norway, Tromsø, Norway
| | - David G Hazlerigg
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic Chronobiology & Physiology, Arctic & Marine Biology, BFE, UiT - Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
3
|
Colella JP, Blumstein DM, MacManes MD. Disentangling environmental drivers of circadian metabolism in desert-adapted mice. J Exp Biol 2021; 224:jeb242529. [PMID: 34495305 PMCID: PMC8502254 DOI: 10.1242/jeb.242529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/13/2021] [Indexed: 01/21/2023]
Abstract
Metabolism is a complex phenotype shaped by natural environmental rhythms, as well as behavioral, morphological and physiological adaptations. Metabolism has been historically studied under constant environmental conditions, but new methods of continuous metabolic phenotyping now offer a window into organismal responses to dynamic environments, and enable identification of abiotic controls and the timing of physiological responses relative to environmental change. We used indirect calorimetry to characterize metabolic phenotypes of the desert-adapted cactus mouse (Peromyscus eremicus) in response to variable environmental conditions that mimic their native environment versus those recorded under constant warm and constant cool conditions, with a constant photoperiod and full access to resources. We found significant sexual dimorphism, with males being more prone to dehydration than females. Under circadian environmental variation, most metabolic shifts occurred prior to physical environmental change and the timing was disrupted under both constant treatments. The ratio of CO2 produced to O2 consumed (the respiratory quotient) reached greater than 1.0 only during the light phase under diurnally variable conditions, a pattern that strongly suggests that lipogenesis contributes to the production of energy and endogenous water. Our results are consistent with historical descriptions of circadian torpor in this species (torpid by day, active by night), but reject the hypothesis that torpor is initiated by food restriction or negative water balance.
Collapse
Affiliation(s)
| | | | - Matthew D. MacManes
- University of New Hampshire, Department of Molecular, Cellular, and Biomedical Sciences, Durham, NH 03824, USA
| |
Collapse
|
4
|
Issad SM, Benhafri N, El Allali K, Farsi H, Ouali-Hassenaoui S, Dekar-Madoui A. Effects of prolonged night-time light exposure and traffic noise on the behavior and body temperature rhythmicity of the wild desert rodent, Gerbillus tarabuli. Chronobiol Int 2021; 38:415-425. [PMID: 33435744 DOI: 10.1080/07420528.2020.1862858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The aim of this study was to demonstrate for the first time in Tarabul's gerbils (Gerbillus tarabuli), the effects of simultaneous exposure to two major environmental stressors - light and noise pollutions - on the body temperature rhythm and anxious behavior. Seven groups, each consisting of 6 adult male gerbils, were subjected to a standard LD cycle (12 L:12D) with lights on at 08:00 h and off at 20:00 h, constant conditions (total darkness, DD), prolonged nighttime exposure to light (PEL: 18 L:6D) with lights on at 08:00 h and off at 02:00 h, mimicking prolonged exposure to light pollution in peri-urban areas, exposure to auditory stress (TNS) of 80 dB, and conditions combining PEL&TNS. The body temperature circadian rhythm was recorded, and behavioral tests were performed at the end of experimental phases. The results revealed the existence, for the first time in Gerbilus tarabuli, of an endogenous circadian rhythm of body temperature with a period of 23.8 ± 0.04 h. Prolonged exposure to light at night (PEL) induced a significant phase delay (02 h 09 min ± 0.16 h) of the rhythm, with an acrophase (peak time) occurring at 04:42 ± 0.13 h instead of 02:33 ± 0.21 h. Exposure to TNS for 4 hours per night induced a significant increase of the amplitude of the rhythm and a decrease of the rhythm regularity (robustness of 73.26% in TNS vs. 82.32 in control condition). While combining TNS and PEL significantly delayed the phase of the Tb rhythm by 3 h 10 min (acrophase at 06:39 ± 0.37 h instead of 02:33 ± 0.21 h), increased the amplitude, and significantly reduced the stability of the rhythm (robustness of 67.25% in PEL&TNS vs. 82.32 in control condition). PEL&TNS and TNS environments induce an important stress in gerbils highlighted by a significant decrease of the number of line crossings and time spent in the center area of the open field test. Furthermore, elevated plus maze test revealed gerbils of the PEL&TNS and TNS conditions significantly visited the lowest number of open arms and spent a shorter amount of time in it. In addition, these conditions were responsible for less activity (total number of entries in arms) than in the control and PEL conditions. These results indicate clearly that in the desert area, peri-urban light and noise pollutions disturb the circadian rhythm components and alter the behavior of Tarabul's gerbils inducing an anxious state.
Collapse
Affiliation(s)
- Salem Mamoun Issad
- Neurobiology Laboratory, Laboratory of Organism's Biology and Physiology, USTHB, Algiers, Algeria
| | - Nadir Benhafri
- Neurobiology Laboratory, Laboratory of Organism's Biology and Physiology, USTHB, Algiers, Algeria
| | - Khalid El Allali
- Comparative Anatomy Unit, Veterinary Medicine School, Hassan II Institute of Agronomy and Veterinary Medicine, Rabat, Morocco
| | - Hicham Farsi
- Comparative Anatomy Unit, Veterinary Medicine School, Hassan II Institute of Agronomy and Veterinary Medicine, Rabat, Morocco
| | - Saliha Ouali-Hassenaoui
- Neurobiology Laboratory, Laboratory of Organism's Biology and Physiology, USTHB, Algiers, Algeria
| | - Aicha Dekar-Madoui
- Neurobiology Laboratory, Laboratory of Organism's Biology and Physiology, USTHB, Algiers, Algeria
| |
Collapse
|
5
|
Cázarez-Márquez F, Laran-Chich MP, Klosen P, Kalsbeek A, Simonneaux V. RFRP3 increases food intake in a sex-dependent manner in the seasonal hamster Phodopus sungorus. J Neuroendocrinol 2020; 32:e12845. [PMID: 32291844 DOI: 10.1111/jne.12845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/11/2020] [Accepted: 03/12/2020] [Indexed: 12/15/2022]
Abstract
In addition to its regulatory role in luteinising hormone secretion, Rfamide-related peptide 3 (RFRP3) has also been reported to modulate food intake in several mammalian species. Djungarian hamsters (Phodopus sungorus), similar to other seasonal mammals, display a remarkable inhibition of RFRP3 expression in winter short-day conditions, associated with decreased food intake and bodyweight. This species is therefore a valuable model for assessing whether RFRP3 might be involved in the seasonal control of feeding behaviour and investigating its possible brain targets. We found that, although both male and female animals exhibit the same robust reduction in Rfrp expression in short- (SD) compared to long-day (LD) conditions, acute central administration of RFRP3 displays sex-dependent effects on food intake. RFRP3 increased food intake in female hamsters in SD or in LD dioestrus, but not in LD pro-oestrus, indicating that the orexigenic effect of RFRP3 is observed in conditions of low circulating oestradiol levels. In male hamsters, food intake was not changed by acute injections of RFRP3, regardless of whether animals were in SD or LD conditions. Analysing the gene expression of various metabolic neuropeptides in the brain of RFRP3-injected Djungarian hamsters revealed that Npy expression was increased in female but not in male animals. The present study suggests that, in Djungarian hamsters, RFRP3 exhibits a sex-dependent orexigenic effect possibly by inducing increased Npy expression.
Collapse
Affiliation(s)
- Fernando Cázarez-Márquez
- Institute of Cellular and Integrative Neurosciences (INCI), Strasbourg, France
- Netherlands Institute for Neuroscience (NIN), Amsterdam, The Netherlands
- Laboratory of Endocrinology, Amsterdam UMC, Amsterdam Gastroenterology & Metabolism, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Paul Klosen
- Institute of Cellular and Integrative Neurosciences (INCI), Strasbourg, France
| | - Andries Kalsbeek
- Netherlands Institute for Neuroscience (NIN), Amsterdam, The Netherlands
- Laboratory of Endocrinology, Amsterdam UMC, Amsterdam Gastroenterology & Metabolism, University of Amsterdam, Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Valérie Simonneaux
- Institute of Cellular and Integrative Neurosciences (INCI), Strasbourg, France
| |
Collapse
|
6
|
Lewis JE, Monnier C, Marshall H, Fowler M, Green R, Cooper S, Chiotellis A, Luckett J, Perkins AC, Coskun T, Adams AC, Samms RJ, Ebling FJP, Tsintzas K. Whole-body and adipose tissue-specific mechanisms underlying the metabolic effects of fibroblast growth factor 21 in the Siberian hamster. Mol Metab 2019; 31:45-54. [PMID: 31918921 PMCID: PMC6889485 DOI: 10.1016/j.molmet.2019.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/19/2019] [Accepted: 10/30/2019] [Indexed: 12/15/2022] Open
Abstract
Objective Fibroblast growth factor 21 (FGF21) has been shown to rapidly lower body weight in the Siberian hamster, a preclinical model of adiposity. This induced negative energy balance mediated by FGF21 is associated with both lowered caloric intake and increased energy expenditure. Previous research demonstrated that adipose tissue (AT) is one of the primary sites of FGF21 action and may be responsible for its ability to increase the whole-body metabolic rate. The present study sought to determine the relative importance of white (subcutaneous AT [sWAT] and visceral AT [vWAT]), and brown (interscapular brown AT [iBAT]) in governing FGF21-mediated metabolic improvements using the tissue-specific uptake of glucose and lipids as a proxy for metabolic activity. Methods We used positron emission tomography-computed tomography (PET-CT) imaging in combination with both glucose (18F-fluorodeoxyglucose) and lipid (18F-4-thiapalmitate) tracers to assess the effect of FGF21 on the tissue-specific uptake of these metabolites and compared responses to a control group pair-fed to match the food intake of the FGF21-treated group. In vivo imaging was combined with ex vivo tissue-specific functional, biochemical, and molecular analyses of the nutrient uptake and signaling pathways. Results Consistent with previous findings, FGF21 reduced body weight via reduced caloric intake and increased energy expenditure in the Siberian hamster. PET-CT studies demonstrated that FGF21 increased the uptake of glucose in BAT and WAT independently of reduced food intake and body weight as demonstrated by imaging of the pair-fed group. Furthermore, FGF21 increased glucose uptake in the primary adipocytes, confirming that these in vivo effects may be due to a direct action of FGF21 at the level of the adipocytes. Mechanistically, the effects of FGF21 are associated with activation of the ERK signaling pathway and upregulation of GLUT4 protein content in all fat depots. In response to treatment with FGF21, we observed an increase in the markers of lipolysis and lipogenesis in both the subcutaneous and visceral WAT depots. In contrast, FGF21 was only able to directly increase the uptake of lipid into BAT. Conclusions These data identify brown and white fat depots as primary peripheral sites of action of FGF21 in promoting glucose uptake and also indicate that FGF21 selectively stimulates lipid uptake in brown fat, which may fuel thermogenesis. FGF21 increases glucose and lipid uptake in adipose tissue. The selective FGF21-induced increase in lipid uptake in BAT may fuel thermogenesis. Unlike BAT, glucose uptake in WAT may be used for lipogenesis.
Collapse
Affiliation(s)
- Jo E Lewis
- Institute of Metabolic Sciences and MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, CB0 0QQ, UK
| | - Chloe Monnier
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Center, Nottingham, NG7 2UH, UK
| | - Hayley Marshall
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Center, Nottingham, NG7 2UH, UK
| | - Maxine Fowler
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Center, Nottingham, NG7 2UH, UK
| | - Rebecca Green
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Center, Nottingham, NG7 2UH, UK
| | - Scott Cooper
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Center, Nottingham, NG7 2UH, UK
| | - Aristeidis Chiotellis
- Radiological Sciences, School of Medicine, University of Nottingham, Queen's Medical Center, Nottingham, NG7 2UH, UK
| | - Jeni Luckett
- Radiological Sciences, School of Medicine, University of Nottingham, Queen's Medical Center, Nottingham, NG7 2UH, UK
| | - Alan C Perkins
- Radiological Sciences, School of Medicine, University of Nottingham, Queen's Medical Center, Nottingham, NG7 2UH, UK
| | - Tamer Coskun
- Eli Lilly and Company, Lilly Research Laboratories, Indianapolis, IN, 46285, USA
| | - Andrew C Adams
- Eli Lilly and Company, Lilly Research Laboratories, Indianapolis, IN, 46285, USA
| | - Ricardo J Samms
- Eli Lilly and Company, Lilly Research Laboratories, Indianapolis, IN, 46285, USA
| | - Francis J P Ebling
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Center, Nottingham, NG7 2UH, UK
| | - Kostas Tsintzas
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Center, Nottingham, NG7 2UH, UK.
| |
Collapse
|
7
|
Photoperiodic changes in adiposity increase sensitivity of female Siberian hamsters to systemic VGF derived peptide TLQP-21. PLoS One 2019; 14:e0221517. [PMID: 31465472 PMCID: PMC6715173 DOI: 10.1371/journal.pone.0221517] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 08/08/2019] [Indexed: 01/14/2023] Open
Abstract
TLQP-21, a peptide encoded by the highly conserved vgf gene, is expressed in neuroendocrine cells and has been the most prominent VGF-derived peptide studied in relation to control of energy balance. The recent discovery that TLQP-21 is the natural agonist for the complement 3a receptor 1 (C3aR1) has revived interest in this peptide as a potential drug target for obesity. We have investigated its function in Siberian hamsters (Phodopus sungorus), a rodent that displays natural seasonal changes in body weight and adiposity as an adaptation to survive winter. We have previously shown that intracerebroventricular administration of TLQP-21 reduced food intake and body weight in hamsters in their long-day fat state. The aim of our current study was to determine the systemic actions of TLQP-21 on food intake, energy expenditure and body weight, and to establish whether adiposity affected these responses. Peripheral infusion of TLQP-21 (1mg/kg/day for 7 days) in lean hamsters exposed to short photoperiods (SP) reduced cumulative food intake in the home cage (p<0.05), and intake when measured in metabolic cages (P<0.01). Energy expenditure was significantly increased (p<0.001) by TLQP-21 infusion, this was associated with a significant increase in uncoupling protein 1 mRNA in brown adipose tissue (BAT) (p<0.05), and body weight was significantly reduced (p<0.05). These effects of systemic TLQP-21 treatment were not observed in hamsters exposed to long photoperiod (LP) with a fat phenotype. C3aR1 mRNA and protein were abundantly expressed in the hypothalamus, brown and white adipose tissue in hamsters, but changes in expression cannot explain the differential response to TLQP-21 in lean and fat hamsters.
Collapse
|
8
|
Interscapular and Perivascular Brown Adipose Tissue Respond Differently to a Short-Term High-Fat Diet. Nutrients 2019; 11:nu11051065. [PMID: 31086124 PMCID: PMC6566556 DOI: 10.3390/nu11051065] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/18/2022] Open
Abstract
Brown adipose tissue (BAT) function may depend on its anatomical location and developmental origin. Interscapular BAT (iBAT) regulates acute macronutrient metabolism, whilst perivascular BAT (PVAT) regulates vascular function. Although phenotypically similar, whether these depots respond differently to acute nutrient excess is unclear. Given their distinct anatomical locations and developmental origins and we hypothesised that iBAT and PVAT would respond differently to brief period of nutrient excess. Sprague-Dawley rats aged 12 weeks (n=12) were fed either a standard (10% fat, n=6) or high fat diet (HFD: 45% fat, n=6) for 72h and housed at thermoneutrality. Following an assessment of whole body physiology, fat was collected from both depots for analysis of gene expression and the proteome. HFD consumption for 72h induced rapid weight gain (c. 2.6%) and reduced serum non-esterified fatty acids (NEFA) with no change in either total adipose or depot mass. In iBAT, an upregulation of genes involved in insulin signalling and lipid metabolism was accompanied by enrichment of lipid-related processes and functions, plus glucagon and peroxisome proliferator-activated receptor (PPAR) signalling pathways. In PVAT, HFD induced a pronounced down-regulation of multiple metabolic pathways which was accompanied with increased abundance of proteins involved in apoptosis (e.g., Hdgf and Ywaq) and toll-like receptor signalling (Ube2n). There was also an enrichment of DNA-related processes and functions (e.g., nucleosome assembly and histone exchange) and RNA degradation and cell adhesion pathways. In conclusion, we show that iBAT and PVAT elicit divergent responses to short-term nutrient excess highlighting early adaptations in these depots before changes in fat mass.
Collapse
|
9
|
Cázarez-Márquez F, Milesi S, Laran-Chich MP, Klosen P, Kalsbeek A, Simonneaux V. Kisspeptin and RFRP3 modulate body mass in Phodopus sungorus via two different neuroendocrine pathways. J Neuroendocrinol 2019; 31:e12710. [PMID: 30887598 DOI: 10.1111/jne.12710] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/09/2019] [Accepted: 03/14/2019] [Indexed: 01/15/2023]
Abstract
Many animals exhibit remarkable metabolic and reproductive adaptations to seasonal changes in their environment. When day length shortens, Djungarian hamsters (Phodopus sungorus) reduce their body weight and inhibit their reproductive activity, whereas the opposite occurs in springtime. These physiological adaptations are considered to depend on photoperiodic changes in hypothalamic genes encoding the peptides kisspeptin (Kp) and RFamide-related peptide 3 (RFRP3) for the control of reproduction, as well as pro-opiomelanocortin and somatostatin for metabolic regulation. The present study investigates the effect of Kp and RFRP3 on long-term body weight regulation, aiming to establish whether metabolic and reproductive hypothalamic networks may interact during adaptation to seasonal physiology. We found that chronic central administration of both Kp and RFRP3 in short photoperiod-adapted male Djungarian hamsters increased body weight, although via different pathways. The effect of Kp was dependent on testicular activity because castration prevented the body weight increase and was associated with an increase in pro-opiomelanocortin and neuropeptide Y expression. On the other hand, the orexigenic effect of RFRP3 was associated with an increase in circulating insulin and leptin levels, although it had no effect on any of the hypothalamic metabolic genes investigated, and did not change circulating levels of sex steroids. Notably, neither Kp, nor RFRP3 altered female hamster metabolic parameters. Thus, using a rodent model exhibiting seasonal changes in reproduction and metabolism, the present study demonstrates that, in addition to its role in the central control of reproduction, Kp also participates in body weight control in a sex-dependent manner via an anabolic action of testosterone. Conversely, RFRP3 affects body weight control in males mostly by acting on adiposity, with no overt effect on the reproductive system in both sexes.
Collapse
Affiliation(s)
- Fernando Cázarez-Márquez
- Institute of Cellular and Integrative Neurosciences (INCI), Strasbourg, France
- Netherlands Institute for Neuroscience (NIN), Amsterdam, The Netherlands
- Laboratory of Endocrinology, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sebastien Milesi
- Institute of Cellular and Integrative Neurosciences (INCI), Strasbourg, France
| | | | - Paul Klosen
- Institute of Cellular and Integrative Neurosciences (INCI), Strasbourg, France
| | - Andries Kalsbeek
- Netherlands Institute for Neuroscience (NIN), Amsterdam, The Netherlands
- Laboratory of Endocrinology, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Valérie Simonneaux
- Institute of Cellular and Integrative Neurosciences (INCI), Strasbourg, France
| |
Collapse
|
10
|
Wyse CA, Celis Morales CA, Ward J, Lyall D, Smith DJ, Mackay D, Curtis AM, Bailey MES, Biello S, Gill JMR, Pell JP. Population-level seasonality in cardiovascular mortality, blood pressure, BMI and inflammatory cells in UK biobank. Ann Med 2018; 50:410-419. [PMID: 29724143 DOI: 10.1080/07853890.2018.1472389] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION The risk of mortality from cardiovascular disease (CVD) is higher in wintertime throughout the world, but it is not known if this reflects annual changes in diet or lifestyle, or an endogenous photoperiodic mechanism that is sensitive to changes in day length. METHODS Phenotypic data on cardiometabolic and lifestyle factors were collected throughout a 4 year time period from 502,642 middle-aged participants in UK Biobank. To assess the impact of seasonal environmental changes on cardiovascular risk factors, we linked these data to the outdoor temperature and day length at the time of assessment. Self-reported information on physical activity, diet and disease status were used to adjust for confounding factors related to health and lifestyle. RESULTS Mortality related to CVD was higher in winter, as were risk factors for this condition including blood pressure, markers of inflammation and body mass index (BMI). These seasonal rhythms were significantly related to day length after adjustment for other factors that might affect seasonality including physical activity, diet and outdoor temperature. CONCLUSIONS The risk of CVD may be modulated by day length at temperate latitudes, and the implications of seasonality should be considered in all studies of human cardiometabolic health. Key messages In this cross-sectional study in UK Biobank, we report annual variations in cardiovascular risk factors and mortality that were associated with day length independent of environmental and lifestyle factors. These seasonal changes in day length might contribute to annual patterns in cardiovascular disease and mortality.
Collapse
Affiliation(s)
- Cathy A Wyse
- a Department of Molecular and Cellular Therapeutics Department , Royal College of Surgeons in Ireland (RCSI) , Dublin , Ireland.,b Institute of Biodiversity, Animal Health and Comparative Medicine , University of Glasgow , Glasgow , UK
| | - Carlos A Celis Morales
- c Institute of Cardiovascular and Medical Sciences , University of Glasgow , Glasgow , UK
| | - Joey Ward
- d Institute of Health and Wellbeing , University of Glasgow , Glasgow , UK
| | - Donald Lyall
- d Institute of Health and Wellbeing , University of Glasgow , Glasgow , UK
| | - Daniel J Smith
- d Institute of Health and Wellbeing , University of Glasgow , Glasgow , UK
| | - Daniel Mackay
- d Institute of Health and Wellbeing , University of Glasgow , Glasgow , UK
| | - Annie M Curtis
- a Department of Molecular and Cellular Therapeutics Department , Royal College of Surgeons in Ireland (RCSI) , Dublin , Ireland
| | - Mark E S Bailey
- e School of Life Sciences , University of Glasgow , Glasgow , UK
| | - Stephany Biello
- f Institute of Neuroscience and Psychology , University of Glasgow , Glasgow , UK
| | - Jason M R Gill
- c Institute of Cardiovascular and Medical Sciences , University of Glasgow , Glasgow , UK
| | - J P Pell
- d Institute of Health and Wellbeing , University of Glasgow , Glasgow , UK
| |
Collapse
|
11
|
Lewis JE, Samms RJ, Cooper S, Luckett JC, Perkins AC, Adams AC, Tsintzas K, Ebling FJP. Reduced adiposity attenuates FGF21 mediated metabolic improvements in the Siberian hamster. Sci Rep 2017; 7:4238. [PMID: 28652585 PMCID: PMC5484705 DOI: 10.1038/s41598-017-03607-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/05/2017] [Indexed: 11/26/2022] Open
Abstract
FGF21 exerts profound metabolic effects in Siberian hamsters exposed to long day (LD) photoperiods that increase appetite and adiposity, however these effects are attenuated in short day (SD) animals that display hypophagia and reduced adiposity. The aim of this study was to investigate whether the beneficial effects of a novel mimetic of FGF21 in the LD state are a consequence of increased adiposity or of the central photoperiodic state. This was achieved by investigating effects of FGF21 in aged hamsters, which is associated with reduced adiposity. In LD hamsters with increased adiposity, FGF21 lowered body weight as a result of both reduced daily food intake and increased caloric expenditure, driven by an increase in whole-body fat oxidation. However, in LD animals with reduced adiposity, the effect of FGF21 on body weight, caloric intake and fat oxidation were significantly attenuated or absent when compared to those with increased adiposity. These attenuated/absent effects were underpinned by the inability of FGF21 to increase the expression of key thermogenic genes in interscapular and visceral WAT. Our study demonstrates the efficacy of a novel FGF21 mimetic in hamsters, but reveals attenuated effects in the animal model where adiposity is reduced naturally independent of photoperiod.
Collapse
Affiliation(s)
- Jo E Lewis
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK.
| | | | - Scott Cooper
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Jeni C Luckett
- Radiological Sciences, School of Medicine, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Alan C Perkins
- Radiological Sciences, School of Medicine, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Andrew C Adams
- Lilly Research Laboratories, Indianapolis, IN, 46285, USA
| | - Kostas Tsintzas
- MRC/ARUK Centre for Musculoskeletal Ageing, School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Francis J P Ebling
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| |
Collapse
|
12
|
Tashiro A, Shibata S, Takai Y, Uchiwa T, Furuse M, Yasuo S. Changes in photoperiod alter Glut4 expression in skeletal muscle of C57BL/6J mice. Biochem Biophys Res Commun 2017; 485:82-88. [DOI: 10.1016/j.bbrc.2017.02.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 02/05/2017] [Indexed: 12/14/2022]
|
13
|
Hypothalamic over-expression of VGF in the Siberian hamster increases energy expenditure and reduces body weight gain. PLoS One 2017; 12:e0172724. [PMID: 28235047 PMCID: PMC5325529 DOI: 10.1371/journal.pone.0172724] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/08/2017] [Indexed: 12/16/2022] Open
Abstract
VGF (non-acronymic) was first highlighted to have a role in energy homeostasis through experiments involving dietary manipulation in mice. Fasting increased VGF mRNA in the Arc and levels were subsequently reduced upon refeeding. This anabolic role for VGF was supported by observations in a VGF null (VGF-/-) mouse and in the diet-induced and gold-thioglucose obese mice. However, this anabolic role for VGF has not been supported by a number of subsequent studies investigating the physiological effects of VGF-derived peptides. Intracerebroventricular (ICV) infusion of TLQP-21 increased resting energy expenditure and rectal temperature in mice and protected against diet-induced obesity. Similarly, ICV infusion of TLQP-21 into Siberian hamsters significantly reduced body weight, but this was due to a decrease in food intake, with no effect on energy expenditure. Subsequently NERP-2 was shown to increase food intake in rats via the orexin system, suggesting opposing roles for these VGF-derived peptides. Thus to further elucidate the role of hypothalamic VGF in the regulation of energy homeostasis we utilised a recombinant adeno-associated viral vector to over-express VGF in adult male Siberian hamsters, thus avoiding any developmental effects or associated functional compensation. Initially, hypothalamic over-expression of VGF in adult Siberian hamsters produced no effect on metabolic parameters, but by 12 weeks post-infusion hamsters had increased oxygen consumption and a tendency to increased carbon dioxide production; this attenuated body weight gain, reduced interscapular white adipose tissue and resulted in a compensatory increase in food intake. These observed changes in energy expenditure and food intake were associated with an increase in the hypothalamic contents of the VGF-derived peptides AQEE, TLQP and NERP-2. The complex phenotype of the VGF-/- mice is a likely consequence of global ablation of the gene and its derived peptides during development, as well as in the adult.
Collapse
|
14
|
Barnes AK, Smith SB, Datta S. Beyond Emotional and Spatial Processes: Cognitive Dysfunction in a Depressive Phenotype Produced by Long Photoperiod Exposure. PLoS One 2017; 12:e0170032. [PMID: 28060930 PMCID: PMC5218505 DOI: 10.1371/journal.pone.0170032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/27/2016] [Indexed: 01/04/2023] Open
Abstract
Cognitive dysfunction in depression has recently been given more attention and legitimacy as a core symptom of the disorder. However, animal investigations of depression-related cognitive deficits have generally focused on emotional or spatial memory processing. Additionally, the relationship between the cognitive and affective disturbances that are present in depression remains obscure. Interestingly, sleep disruption is one aspect of depression that can be related both to cognition and affect, and may serve as a link between the two. Previous studies have correlated sleep disruption with negative mood and impaired cognition. The present study investigated whether a long photoperiod-induced depressive phenotype showed cognitive deficits, as measured by novel object recognition, and displayed a cognitive vulnerability to an acute period of total sleep deprivation. Adult male Wistar rats were subjected to a long photoperiod (21L:3D) or a normal photoperiod (12L:12D) condition. Our results indicate that our long photoperiod exposed animals showed behaviors in the forced swim test consistent with a depressive phenotype, and showed significant deficits in novel object recognition. Three hours of total sleep deprivation, however, did not significantly change novel object recognition in either group, but the trends suggest that the long photoperiod and normal photoperiod groups had different cognitive responses to total sleep deprivation. Collectively, these results underline the extent of cognitive dysfunction present in depression, and suggest that altered sleep plays a role in generating both the affective and cognitive symptoms of depression.
Collapse
Affiliation(s)
- Abigail K. Barnes
- Department of Anesthesiology, Graduate School of Medicine, The University of Tennessee, Knoxville, TN, United States of America
- Department of Psychology, College of Arts and Sciences, The University of Tennessee, Knoxville, TN, United States of America
| | - Summer B. Smith
- Department of Psychology, College of Arts and Sciences, The University of Tennessee, Knoxville, TN, United States of America
| | - Subimal Datta
- Department of Anesthesiology, Graduate School of Medicine, The University of Tennessee, Knoxville, TN, United States of America
- Department of Psychology, College of Arts and Sciences, The University of Tennessee, Knoxville, TN, United States of America
- Program in Comparative and Experimental Medicine, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, United States of America
- * E-mail:
| |
Collapse
|
15
|
Liu XY, Yang DB, Xu YC, Gronning MOL, Zhang F, Wang DH, Speakman JR. Photoperiod induced obesity in the Brandt's vole (Lasiopodomys brandtii): a model of 'healthy obesity'? Dis Model Mech 2016; 9:1357-1366. [PMID: 27736740 PMCID: PMC5117229 DOI: 10.1242/dmm.026070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/23/2016] [Indexed: 11/20/2022] Open
Abstract
Brandt's voles have an annual cycle of body weight and adiposity. These changes can be induced in the laboratory by manipulation of photoperiod. In the present study, male captive-bred Brandt's voles aged 35 days were acclimated to a short day (SD) photoperiod (8L:16D) for 70 days. A subgroup of individuals (n=16) were implanted with transmitters to monitor physical activity and body temperature. They were then randomly allocated into long day (LD=16L:8D) (n=19, 8 with transmitters) and SD (n=18, 8 with transmitters) groups for an additional 70 days. We monitored aspects of energy balance, glucose and insulin tolerance (GTT and ITT), body composition and organ fat content after exposure to the different photoperiods. LD voles increased in weight for 35 days and then re-established stability at a higher level. At the end of the experiment LD-exposed voles had greater white adipose tissue mass than SD voles (P=0.003). During weight gain they did not differ in their food intake or digestive efficiency; however, daily energy expenditure was significantly reduced in the LD compared with SD animals (ANCOVA, P<0.05) and there was a trend to reduced resting metabolic rate RMR (P=0.075). Physical activity levels were unchanged. Despite different levels of fat storage, the GTT and ITT responses of SD and LD voles were not significantly different, and these traits were not correlated to body fatness. Hence, the photoperiod-induced obesity was independent on disruptions to glucose homeostasis, indicating a potential adaptive decoupling of these states in evolutionary time. Fat content in both the liver and muscle showed no significant difference between LD and SD animals. How voles overcome the common negative aspects of fat storage might make them a useful model for understanding the phenomenon of 'healthy obesity'.
Collapse
Affiliation(s)
- Xin-Yu Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Deng-Bao Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan-Chao Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Fang Zhang
- Diabetes Research Unit, Novo Nordisk A/S, Novo Nordisk Park, Måløv 2760, Denmark
| | - De-Hua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - John R Speakman
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China .,Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK
| |
Collapse
|
16
|
Prendergast BJ, Cable EJ, Stevenson TJ, Onishi KG, Zucker I, Kay LM. Circadian Disruption Alters the Effects of Lipopolysaccharide Treatment on Circadian and Ultradian Locomotor Activity and Body Temperature Rhythms of Female Siberian Hamsters. J Biol Rhythms 2016; 30:543-56. [PMID: 26566981 DOI: 10.1177/0748730415609450] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The effect of circadian rhythm (CR) disruption on immune function depends on the method by which CRs are disrupted. Behavioral and thermoregulatory responses induced by lipopolysaccharide (LPS) treatment were assessed in female Siberian hamsters in which circadian locomotor activity (LMA) rhythms were eliminated by exposure to a disruptive phase-shifting protocol (DPS) that sustains arrhythmicity even when hamsters are housed in a light-dark cycle. This noninvasive treatment avoids genome manipulations and neurological damage associated with other models of CR disruption. Circadian rhythmic (RHYTH) and arrhythmic (ARR) hamsters housed in a 16L:8D photocycle were injected with bacterial LPS near the onset of the light (zeitgeber time 1; ZT1) or dark (ZT16) phase. LPS injections at ZT16 and ZT1 elicited febrile responses in both RHYTH and ARR hamsters, but the effect was attenuated in the arrhythmic females. In ZT16, LPS inhibited LMA in the dark phase immediately after injection but not on subsequent nights in both chronotypes; in contrast, LPS at ZT1 elicited more enduring (~4 day) locomotor hypoactivity in ARR than in RHYTH hamsters. Power and period of dark-phase ultradian rhythms (URs) in LMA and Tb were markedly altered by LPS treatment, as was the power in the circadian waveform. Disrupted circadian rhythms in this model system attenuated responses to LPS in a trait- and ZT-specific manner; changes in UR period and power are novel components of the acute-phase response to infection that may affect energy conservation.
Collapse
Affiliation(s)
- Brian J Prendergast
- Department of Psychology, University of Chicago, Chicago, Illinois Committee on Neurobiology, University of Chicago, Chicago, Illinois
| | - Erin J Cable
- Department of Psychology, University of Chicago, Chicago, Illinois
| | | | - Kenneth G Onishi
- Department of Psychology, University of Chicago, Chicago, Illinois
| | - Irving Zucker
- Department of Psychology, University of California, Berkeley, California Department of Integrative Biology, University of California, Berkeley, California
| | - Leslie M Kay
- Department of Psychology, University of Chicago, Chicago, Illinois Committee on Neurobiology, University of Chicago, Chicago, Illinois
| |
Collapse
|
17
|
Samms RJ, Murphy M, Fowler MJ, Cooper S, Emmerson P, Coskun T, Adams AC, Kharitonenkov A, Ebling FJP, Tsintzas K. Dual effects of fibroblast growth factor 21 on hepatic energy metabolism. J Endocrinol 2015; 227:37-47. [PMID: 26294388 DOI: 10.1530/joe-15-0334] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/18/2015] [Indexed: 12/13/2022]
Abstract
The aim of this study was to investigate the mechanisms by which fibroblast growth factor 21 (FGF21) affects hepatic integration of carbohydrate and fat metabolism in Siberian hamsters, a natural model of adiposity. Twelve aged matched adult male Siberian hamsters maintained in their long-day fat state since birth were randomly assigned to one of two treatment groups and were continuously infused with either vehicle (saline; n=6) or recombinant human FGF21 protein (1 mg/kg per day; n=6) for 14 days. FGF21 administration caused a 40% suppression (P<0.05) of hepatic pyruvate dehydrogenase complex (PDC), the rate-limiting step in glucose oxidation, a 34% decrease (P<0.05) in hepatic acetylcarnitine accumulation, an index of reduced PDC flux, a 35% increase (P<0.05) in long-chain acylcarnitine content (an index of flux through β-oxidation) and a 47% reduction (P<0.05) in hepatic lipid content. These effects were underpinned by increased protein abundance of PD kinase-4 (PDK4, a negative regulator of PDC), the phosphorylated (inhibited) form of acetyl-CoA carboxylase (ACC, a negative regulator of delivery of fatty acids into the mitochondria) and the transcriptional co-regulators of energy metabolism peroxisome proliferator activated receptor gamma co-activator alpha (PGC1α) and sirtuin-1. These findings provide novel mechanistic basis to support the notion that FGF21 exerts profound metabolic benefits in the liver by modulating nutrient flux through both carbohydrate (mediated by a PDK4-mediated suppression of PDC activity) and fat (mediated by deactivation of ACC) metabolism, and therefore may be an attractive target for protection from increased hepatic lipid content and insulin resistance that frequently accompany obesity and diabetes.
Collapse
Affiliation(s)
- Ricardo J Samms
- School of Life SciencesQueen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UKLilly Research LaboratoriesIndianapolis, IN, USAChemistry DepartmentCollege of Arts and Sciences, Indiana University Bloomington, 800 East Kirkwood Avenue, Bloomington, IN 47405-7102, USA
| | - Michelle Murphy
- School of Life SciencesQueen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UKLilly Research LaboratoriesIndianapolis, IN, USAChemistry DepartmentCollege of Arts and Sciences, Indiana University Bloomington, 800 East Kirkwood Avenue, Bloomington, IN 47405-7102, USA
| | - Maxine J Fowler
- School of Life SciencesQueen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UKLilly Research LaboratoriesIndianapolis, IN, USAChemistry DepartmentCollege of Arts and Sciences, Indiana University Bloomington, 800 East Kirkwood Avenue, Bloomington, IN 47405-7102, USA
| | - Scott Cooper
- School of Life SciencesQueen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UKLilly Research LaboratoriesIndianapolis, IN, USAChemistry DepartmentCollege of Arts and Sciences, Indiana University Bloomington, 800 East Kirkwood Avenue, Bloomington, IN 47405-7102, USA
| | - Paul Emmerson
- School of Life SciencesQueen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UKLilly Research LaboratoriesIndianapolis, IN, USAChemistry DepartmentCollege of Arts and Sciences, Indiana University Bloomington, 800 East Kirkwood Avenue, Bloomington, IN 47405-7102, USA
| | - Tamer Coskun
- School of Life SciencesQueen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UKLilly Research LaboratoriesIndianapolis, IN, USAChemistry DepartmentCollege of Arts and Sciences, Indiana University Bloomington, 800 East Kirkwood Avenue, Bloomington, IN 47405-7102, USA
| | - Andrew C Adams
- School of Life SciencesQueen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UKLilly Research LaboratoriesIndianapolis, IN, USAChemistry DepartmentCollege of Arts and Sciences, Indiana University Bloomington, 800 East Kirkwood Avenue, Bloomington, IN 47405-7102, USA
| | - Alexei Kharitonenkov
- School of Life SciencesQueen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UKLilly Research LaboratoriesIndianapolis, IN, USAChemistry DepartmentCollege of Arts and Sciences, Indiana University Bloomington, 800 East Kirkwood Avenue, Bloomington, IN 47405-7102, USA
| | - Francis J P Ebling
- School of Life SciencesQueen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UKLilly Research LaboratoriesIndianapolis, IN, USAChemistry DepartmentCollege of Arts and Sciences, Indiana University Bloomington, 800 East Kirkwood Avenue, Bloomington, IN 47405-7102, USA
| | - Kostas Tsintzas
- School of Life SciencesQueen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UKLilly Research LaboratoriesIndianapolis, IN, USAChemistry DepartmentCollege of Arts and Sciences, Indiana University Bloomington, 800 East Kirkwood Avenue, Bloomington, IN 47405-7102, USA
| |
Collapse
|
18
|
Wang ZY, Cable EJ, Zucker I, Prendergast BJ. Pregnancy-induced changes in ultradian rhythms persist in circadian arrhythmic Siberian hamsters. Horm Behav 2014; 66:228-37. [PMID: 24798705 PMCID: PMC4372156 DOI: 10.1016/j.yhbeh.2014.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/14/2014] [Accepted: 04/28/2014] [Indexed: 11/18/2022]
Abstract
The impact of pregnancy and lactation on ultradian rhythms (URs) and circadian rhythms (CRs) of locomotor activity was assessed in circadian rhythmic and arrhythmic Siberian hamsters maintained in a long-day photoperiod (16h light/day). Progressive decrements in CR robustness and amplitude over the course of gestation were accompanied by enhanced URs. Dark-phase UR period and amplitude increased during early gestation and complexity and robustness increased during late gestation. The persistence of pregnancy-associated enhancements of URs in circadian arrhythmic (ARR) hamsters suggests that reproductive modulation of the UR waveform is not dependent on coherent circadian organization. The increased incidence of dark-phase URs appeared more rapidly in ARR dams than entrained (ENTR) dams. Throughout gestation, the percentage of dams with dark-phase URs was significantly greater in the ARR group. Gestational increases in UR complexity and robustness emerged earlier and were greater in ARR than ENTR dams. The attenuation of CRs during lactation is correlated with increased expression of URs. Relaxation of circadian control of the dam's behavior may increase fitness by permitting more efficient interactions with circadian arrhythmic pups.
Collapse
Affiliation(s)
- Z Yan Wang
- Committee on Neurobiology, University of Chicago, Chicago, IL 60637, USA.
| | - Erin J Cable
- Department of Psychology, University of Chicago, Chicago, IL 60637, USA
| | - Irving Zucker
- Department of Psychology, University of California, Berkeley, CA 94720, USA; Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Brian J Prendergast
- Committee on Neurobiology, University of Chicago, Chicago, IL 60637, USA; Department of Psychology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
19
|
Borniger JC, Maurya SK, Periasamy M, Nelson RJ. Acute dim light at night increases body mass, alters metabolism, and shifts core body temperature circadian rhythms. Chronobiol Int 2014; 31:917-25. [DOI: 10.3109/07420528.2014.926911] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Clarke IJ. Interface between metabolic balance and reproduction in ruminants: focus on the hypothalamus and pituitary. Horm Behav 2014; 66:15-40. [PMID: 24568750 DOI: 10.1016/j.yhbeh.2014.02.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 02/13/2014] [Accepted: 02/15/2014] [Indexed: 01/24/2023]
Abstract
This article is part of a Special Issue "Energy Balance". The interface between metabolic regulators and the reproductive system is reviewed with special reference to the sheep. Even though sheep are ruminants with particular metabolic characteristics, there is a broad consensus across species in the way that the reproductive system is influenced by metabolic state. An update on the neuroendocrinology of reproduction indicates the need to account for the way that kisspeptin provides major drive to gonadotropin releasing hormone (GnRH) neurons and also mediates the feedback effects of gonadal steroids. The way that kisspeptin function is influenced by appetite regulating peptides (ARP) is considered. Another newly recognised factor is gonadotropin inhibitory hormone (GnIH), which has a dual function in that it suppresses reproductive function whilst also acting as an orexigen. Our understanding of the regulation of food intake and energy expenditure has expanded exponentially in the last 3 decades and historical perspective is provided. The function of the regulatory factors and the hypothalamic cellular systems involved is reviewed with special reference to the sheep. Less is known of these systems in the cow, especially the dairy cow, in which a major fertility issue has emerged in parallel with selection for increased milk production. Other endocrine systems--the hypothalamo-pituitary-adrenal axis, the growth hormone (GH) axis and the thyroid hormones--are influenced by metabolic state and are relevant to the interface between metabolic function and reproduction. Special consideration is given to issues such as season and lactation, where the relationship between metabolic hormones and reproductive function is altered.
Collapse
Affiliation(s)
- Iain J Clarke
- Monash University, Department of Physiology, Wellington Road, Clayton 3168, Australia.
| |
Collapse
|
21
|
Prendergast BJ, Stevenson TJ, Zucker I. Sex differences in Siberian hamster ultradian locomotor rhythms. Physiol Behav 2013; 110-111:206-12. [PMID: 23333554 DOI: 10.1016/j.physbeh.2013.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/09/2013] [Accepted: 01/10/2013] [Indexed: 11/27/2022]
Abstract
Sex differences in ultradian activity rhythms (URs) and circadian rhythms (CRs) were assessed in Siberian hamsters kept in long day (LD) or short day (SD) photoperiods for 40 weeks. For both sexes URs of locomotor activity were more prevalent, greater in amplitude and more robust in SDs. The UR period was longer in females than males in both day lengths. The reproductive system underwent regression and body mass declined during the initial 10 weeks of SD treatment, and in both sexes these traits spontaneously reverted to the LD phenotype at or before 40 weeks in SD, reflecting the development of neuroendocrine refractoriness to SD patterns of melatonin secretion. Hamsters of both sexes, however, continued to display SD-like URs at the 40 weeks time point. CRs were less prevalent and the waveform less robust and lower in amplitude in SDs than LDs; the SD circadian waveform also did not revert to the long-day phenotype after 40 weeks of SD treatment. Short day lengths enhanced ultradian and diminished circadian rhythms in both sexes. Day length controls several UR characteristics via gonadal steroid and melatonin-independent mechanisms. Sex differences in ultradian timing may contribute to sex diphenisms in rhythms of sleep, food intake and exercise.
Collapse
|
22
|
Prendergast BJ, Cable EJ, Cisse YM, Stevenson TJ, Zucker I. Pineal and gonadal influences on ultradian locomotor rhythms of male Siberian hamsters. Horm Behav 2013; 63:54-64. [PMID: 23142326 PMCID: PMC3660102 DOI: 10.1016/j.yhbeh.2012.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/25/2012] [Accepted: 11/01/2012] [Indexed: 10/27/2022]
Abstract
The extent to which changes in ultradian and circadian rhythms (URs and CRs) reflect seasonal variations in pineal melatonin secretion was assessed in male Siberian hamsters transferred from long to short day lengths. The period of the locomotor activity UR increased from 2.5 h in long days to 4.5 h in short day lengths, but this and most other features of the short-day ultradian phenotype were unaffected by pinealectomy; only the short-day increase in UR amplitude was counteracted by pineal extirpation. Virtually all UR components were unaffected by gonadectomy or replacement testosterone or estradiol treatment; changes in testicular hormone secretion appear insufficient to account for seasonal fluctuation in URs. Pinealectomy did not affect activity onsets and offsets or phase angles of CR entrainment in short and long day lengths; the duration of nocturnal activity was equivalently longer in short than long days in both pinealectomized and pineal-intact hamsters. CR robustness of pinealectomized hamsters in short days was intermediate between values of long-day and short-day sham-pinealectomized males. Hourly nocturnal locomotor activity was markedly reduced in SD, and this effect was completely reversed by PINx. We conclude that seasonal transitions in UR and CR waveforms controlled by day length are mediated primarily by melatonin-independent mechanisms, with lesser contributions from melatonin-dependent processes. Most seasonal changes in ultradian and circadian rhythms in males of this species are not influenced by gonadal hormones. URs may allow animals to respond appropriately to changing environmental contingencies. In winter reduced activity combined with temporal restructuring of activity to include longer intervals of rest may be adaptive in maintaining body temperature at lower values and down-regulating energy expenditure when above ground temperatures are extremely low.
Collapse
|
23
|
Abstract
It has long been known that thyroid hormone has profound direct effects on metabolism and cardiovascular function. More recently, it was shown that the hormone also modulates these systems by actions on the central autonomic control. Recent studies that either manipulated thyroid hormone signalling in anatomical areas of the brain or analysed seasonal models with an endogenous fluctuation in hypothalamic thyroid hormone levels revealed that the hormone controls energy turnover. However, most of these studies did not progress beyond the level of anatomical nuclei; thus, the neuronal substrates as well as the molecular mechanisms remain largely enigmatic. This review summarises the evidence for a role of thyroid hormone in the central autonomic control of peripheral homeostasis and advocates novel strategies to address thyroid hormone action in the brain on a cellular level.
Collapse
Affiliation(s)
- Amy Warner
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | | |
Collapse
|
24
|
Ho JM, Smith NS, Adams SA, Bradshaw HB, Demas GE. Photoperiodic changes in endocannabinoid levels and energetic responses to altered signalling at CB1 receptors in Siberian hamsters. J Neuroendocrinol 2012; 24:1030-9. [PMID: 22420341 PMCID: PMC4060156 DOI: 10.1111/j.1365-2826.2012.02312.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Siberian hamsters (Phodopus sungorus) adapt to seasonal environmental conditions with marked changes in body mass, primarily in the form of adiposity. Winter-like conditions (e.g. short days) are sufficient to decrease body mass by approximately 30% in part via reductions in food intake. The neuroendocrine mechanisms responsible for these changes are not well understood, and homeostatic orexigenic/anorexigenic systems of the hypothalamus provide little explanation. We investigated the potential role of endocannabinoids, which are known modulators of appetite and metabolism, in mediating seasonal changes in energy balance. Specifically, we housed hamsters in long or short days for 0, 3, or 9 weeks and measured endocannabinoid levels in the hypothalamus, brainstem, liver and retroperitoneal white adipose tissue (RWAT). An additional group of males housed in short days for 25 weeks were also compared with long-day controls. Following 9 weeks in short days, levels of the endocannabinoid 2-arachidonoylglycerol (2-AG) were significantly elevated in RWAT and reduced in brainstem, although they returned to long-day levels by week 25 in short-day males that had cycled back to summer-like energy balance. Endocannabinoid levels in these tissues correlated significantly with adiposity and change in body mass. No photoperiodic changes were observed in the hypothalamus or liver; however, sex differences in 2-AG levels were found in the liver (males > females). We further tested the effects of CB(1) receptor signalling on ingestive behaviour. Five daily injections of CB(1) antagonist SR141716 significantly reduced food intake and body mass but not food hoarding. Although the CB(1) agonist arachidonyl-2-chloroethylamide did not appreciably affect either ingestive behaviour, body mass was significantly elevated following 2 days of injections. Taken altogether, these findings demonstrate that endocannabinoid levels vary with sex and photoperiod in a site-specific manner, and that altered signalling at CB(1) receptors affects energy balance in Siberian hamsters.
Collapse
Affiliation(s)
- J M Ho
- Department of Biology, Indiana University, Bloomington, IN, USA.
| | | | | | | | | |
Collapse
|
25
|
I'Anson H, Jethwa PH, Warner A, Ebling FJ. Histaminergic regulation of seasonal metabolic rhythms in Siberian hamsters. Physiol Behav 2011; 103:268-78. [PMID: 21362434 PMCID: PMC3094761 DOI: 10.1016/j.physbeh.2011.02.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 01/28/2011] [Accepted: 02/23/2011] [Indexed: 11/24/2022]
Abstract
We investigated whether histaminergic tone contributes to the seasonal catabolic state in Siberian hamsters by determining the effect of ablation of histaminergic neurons on food intake, metabolic rate and body weight. A ribosomal toxin (saporin) conjugated to orexin-B was infused into the ventral tuberomammillary region of the hypothalamus, since most histaminergic neurons express orexin receptors. This caused not only 75–80% loss of histaminergic neurons in the posterior hypothalamus, but also some loss of other orexin-receptor expressing cells e.g. MCH neurons. In the long-day anabolic state, lesions produced a transient post-surgical decrease in body weight, but the hamsters recovered and maintained constant body weight, whereas weight gradually increased in sham-lesioned hamsters. VO2 in the dark phase was significantly higher in the lesioned hamsters compared to shams, and locomotor activity also tended to be higher. In a second study in short days, sham-treated hamsters showed the expected seasonal decrease in body weight, but weight remained constant in the lesioned hamsters, as in the long-day study. Lesioned hamsters consumed more during the early dark phase and less during the light phase due to an increase in the frequency of meals during the dark and decreased meal size during the light, and their cumulative food intake in their home cages was greater than in the control hamsters. In summary, ablation of orexin-responsive cells in the posterior hypothalamus blocks the short-day induced decline in body weight by preventing seasonal hypophagia, evidence consistent with the hypothesis that central histaminergic mechanisms contribute to long-term regulation of body weight.
Collapse
Affiliation(s)
- Helen I'Anson
- Biology Department, Washington and Lee University, Lexington, VA, USA
| | - Preeti H. Jethwa
- School of Biomedical Sciences, University of Nottingham, UK
- Division of Nutritional Sciences, School of Biosciences, University of Nottingham, UK
| | - Amy Warner
- School of Biomedical Sciences, University of Nottingham, UK
| | - Francis J.P. Ebling
- School of Biomedical Sciences, University of Nottingham, UK
- Corresponding author at: School of Biomedical Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK. Tel.: + 44 115 8230164; fax: + 44 115 8230142.
| |
Collapse
|