1
|
Rivi V, Batabyal A, Benatti C, Sarti P, Blom JMC, Tascedda F, Lukowiak K. A translational and multidisciplinary approach to studying the Garcia effect, a higher form of learning with deep evolutionary roots. J Exp Biol 2024; 227:jeb247325. [PMID: 38639079 DOI: 10.1242/jeb.247325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Animals, including humans, learn and remember to avoid a novel food when its ingestion is followed, hours later, by sickness - a phenomenon initially identified during World War II as a potential means of pest control. In the 1960s, John Garcia (for whom the effect is now named) demonstrated that this form of conditioned taste aversion had broader implications, showing that it is a rapid but long-lasting taste-specific food aversion with a fundamental role in the evolution of behaviour. From the mid-1970s onward, the principles of the Garcia effect were translated to humans, showing its role in different clinical conditions (e.g. side-effects linked to chemotherapy). However, in the last two decades, the number of studies on the Garcia effect has undergone a considerable decline. Since its discovery in rodents, this form of learning was thought to be exclusive to mammals; however, we recently provided the first demonstration that a Garcia effect can be formed in an invertebrate model organism, the pond snail Lymnaea stagnalis. Thus, in this Commentary, after reviewing the experiments that led to the first characterization of the Garcia effect in rodents, we describe the recent evidence for the Garcia effect in L. stagnalis, which may pave the way for future studies in other invertebrates and mammals. This article aims to inspire future translational and ecological studies that characterize the conserved mechanisms underlying this form of learning with deep evolutionary roots, which can be used to address a range of different biological questions.
Collapse
Affiliation(s)
- Veronica Rivi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Anuradha Batabyal
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada, T2N 1N4
- Department of Physical and Natural Sciences, FLAME University, Pune - 412115, Maharashtra, India
| | - Cristina Benatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Pierfrancesco Sarti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Johanna Maria Catharina Blom
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Fabio Tascedda
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- CIB, Consorzio Interuniversitario Biotecnologie, 34148 Trieste, Italy
| | - Ken Lukowiak
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada, T2N 1N4
| |
Collapse
|
2
|
Walmsley R, Chong L, Hii MW, Brown RM, Sumithran P. The effect of bariatric surgery on the expression of gastrointestinal taste receptors: A systematic review. Rev Endocr Metab Disord 2024; 25:421-446. [PMID: 38206483 PMCID: PMC10942945 DOI: 10.1007/s11154-023-09865-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/12/2024]
Abstract
Gastrointestinal nutrient sensing via taste receptors may contribute to weight loss, metabolic improvements, and a reduced preference for sweet and fatty foods following bariatric surgery. This review aimed to investigate the effect of bariatric surgery on the expression of oral and post-oral gastrointestinal taste receptors and associations between taste receptor alterations and clinical outcomes of bariatric surgery. A systematic review was conducted to capture data from both human and animal studies on changes in the expression of taste receptors in oral or post-oral gastrointestinal tissue following any type of bariatric surgery. Databases searched included Medline, Embase, Emcare, APA PsychInfo, Cochrane Library, and CINAHL. Two human and 21 animal studies were included. Bariatric surgery alters the quantity of many sweet, umami, and fatty acid taste receptors in the gastrointestinal tract. Changes to the expression of sweet and amino acid receptors occur most often in intestinal segments surgically repositioned more proximally, such as the alimentary limb after gastric bypass. Conversely, changes to fatty acid receptors were observed more frequently in the colon than in the small intestine. Significant heterogeneity in the methodology of included studies limited conclusions regarding the direction of change in taste receptor expression induced by bariatric surgeries. Few studies have investigated associations between taste receptor expression and clinical outcomes of bariatric surgery. As such, future studies should look to investigate the relationship between bariatric surgery-induced changes to gut taste receptor expression and function and the impact of surgery on taste preferences, food palatability, and eating behaviour.Registration code in PROSPERO: CRD42022313992.
Collapse
Affiliation(s)
- Rosalind Walmsley
- Department of Medicine, St Vincent's Hospital Melbourne, University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Surgery, St Vincent's Hospital Melbourne, University of Melbourne, Victoria, Australia
| | - Lynn Chong
- Department of Surgery, St Vincent's Hospital Melbourne, University of Melbourne, Victoria, Australia
| | - Michael W Hii
- Department of Surgery, St Vincent's Hospital Melbourne, University of Melbourne, Victoria, Australia
| | - Robyn M Brown
- Department of Pharmacology and Biochemistry, University of Melbourne, Victoria, Australia
| | - Priya Sumithran
- Department of Medicine, St Vincent's Hospital Melbourne, University of Melbourne, Parkville, VIC, 3052, Australia.
- Department of Surgery, Central Clinical School, Monash University, Victoria, Australia.
- Department of Endocrinology and Diabetes, Alfred Health, Victoria, Australia.
| |
Collapse
|
3
|
Gutierrez VA, Martin LE, Torregrossa AM. Salivary proteins rescue within-session suppression and conditioned avoidance in response to an intragastric quinine infusion. Physiol Behav 2024; 274:114430. [PMID: 38070721 PMCID: PMC11171411 DOI: 10.1016/j.physbeh.2023.114430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/04/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
A subset of salivary proteins (SPs) upregulates in response to a quinine-containing diet. The presence of these SPs then results in decreased bitter taste responding and taste nerve signaling. Bitter taste receptors in the oral cavity are also found in the stomach and intestines and contribute to behaviors that are influenced by post-oral signaling. It has been previously demonstrated that after several pairings of post-orally infused bitter stimuli and a neutral flavor, animals learn to avoid the flavor that was paired with gastric bitter, this is referred to as conditioned avoidance. Furthermore, animals will decrease licking of a neutral solution within a test session, when licking is paired with an intragastric bitter infusion; this has been described as within-session suppression. We used these paradigms to test the role of SPs in behaviors influenced by post-oral signaling. In both paradigms, the animal is given a test solution directly into the stomach (with or without quinine, and with or without SPs), and the infusions are self-administered by licking to a neutral solution (Kool-Aid). Quinine successfully conditioned a flavor avoidance, but, in a separate trial, we were unable to detect conditioning in the presence of SPs from donor animals. Likewise, quinine was able to suppress licking within the conditioned suppression paradigm, but the effect of the bitter was blocked in the presence of saliva containing SPs. Together, these data suggest that behaviors driven by post-oral signaling can be altered by SPs.
Collapse
Affiliation(s)
- V Ascencio Gutierrez
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - L E Martin
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, 97331, USA
| | - A-M Torregrossa
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY, 14260, USA; University at Buffalo Center for Ingestive Behavior Research, Buffalo, New York, 14260, USA.
| |
Collapse
|
4
|
Tsan L, Chometton S, Hayes AM, Klug ME, Zuo Y, Sun S, Bridi L, Lan R, Fodor AA, Noble EE, Yang X, Kanoski SE, Schier LA. Early-life low-calorie sweetener consumption disrupts glucose regulation, sugar-motivated behavior, and memory function in rats. JCI Insight 2022; 7:e157714. [PMID: 36099052 PMCID: PMC9714783 DOI: 10.1172/jci.insight.157714] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 09/12/2022] [Indexed: 01/12/2023] Open
Abstract
Low-calorie sweetener (LCS) consumption in children has increased dramatically due to its widespread presence in the food environment and efforts to mitigate obesity through sugar replacement. However, mechanistic studies on the long-term impact of early-life LCS consumption on cognitive function and physiological processes are lacking. Here, we developed a rodent model to evaluate the effects of daily LCS consumption (acesulfame potassium, saccharin, or stevia) during adolescence on adult metabolic, behavioral, gut microbiome, and brain transcriptomic outcomes. Results reveal that habitual early-life LCS consumption impacts normal postoral glucose handling and impairs hippocampal-dependent memory in the absence of weight gain. Furthermore, adolescent LCS consumption yielded long-term reductions in lingual sweet taste receptor expression and brought about alterations in sugar-motivated appetitive and consummatory responses. While early-life LCS consumption did not produce robust changes in the gut microbiome, brain region-specific RNA-Seq analyses reveal LCS-induced changes in collagen- and synaptic signaling-related gene pathways in the hippocampus and nucleus accumbens, respectively, in a sex-dependent manner. Collectively, these results reveal that habitual early-life LCS consumption has long-lasting implications for glucoregulation, sugar-motivated behavior, and hippocampal-dependent memory in rats, which may be based in part on changes in nutrient transporter, sweet taste receptor, and central gene pathway expression.
Collapse
Affiliation(s)
- Linda Tsan
- Neuroscience Graduate Program and
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, California, USA
| | - Sandrine Chometton
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, California, USA
| | - Anna M.R. Hayes
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, California, USA
| | - Molly E. Klug
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, California, USA
| | - Yanning Zuo
- Department of Integrative Biology and Physiology, University of California at Los Angeles, Los Angeles, California, USA
| | - Shan Sun
- Department of Bioinformatics and Genomics at the University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Lana Bridi
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, California, USA
| | - Rae Lan
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, California, USA
| | - Anthony A. Fodor
- Department of Bioinformatics and Genomics at the University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Emily E. Noble
- Department of Nutritional Sciences, University of Georgia, Athens, Georgia, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California at Los Angeles, Los Angeles, California, USA
| | - Scott E. Kanoski
- Neuroscience Graduate Program and
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, California, USA
| | - Lindsey A. Schier
- Neuroscience Graduate Program and
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
5
|
Hamdard E, Lv Z, Jiang J, Wei Q, Shi Z, Malyar RM, Yu D, Shi F. Responsiveness Expressions of Bitter Taste Receptors Against Denatonium Benzoate and Genistein in the Heart, Spleen, Lung, Kidney, and Bursa Fabricius of Chinese Fast Yellow Chicken. Animals (Basel) 2019; 9:E532. [PMID: 31390726 PMCID: PMC6719124 DOI: 10.3390/ani9080532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/28/2019] [Accepted: 07/29/2019] [Indexed: 01/24/2023] Open
Abstract
The present study was conducted to investigate the responsiveness expressions of ggTas2Rs against denatonium benzoate (DB) and genistein (GEN) in several organs of the Chinese Fast Yellow Chicken. A total of 300 one-day-old chicks that weighed an average of 32 g were randomly allocated into five groups with five replicates for 56 consecutive days. The dietary treatments consisted of basal diet, denatonium benzoate (5 mg/kg, 20 mg/kg, and 100 mg/kg), and genistein 25 mg/kg. The results of qRT-PCR indicated significantly (p < 0.05) high-level expressions in the heart, spleen, and lungs in the starter and grower stages except for in bursa Fabricius. The responsiveness expressions of ggTas2Rs against DB 100 mg/kg and GEN 25 mg/kg were highly dose-dependent in the heart, spleen, lungs, and kidneys in the starter and grower stages, but dose-independent in the bursa Fabricius in the finisher stage. The ggTas2Rs were highly expressed in lungs and the spleen, but lower in the bursa Fabricius among the organs. However, the organ growth performance significantly (p < 0.05) increased in the groups administered DB 5 mg/kg and GEN 25 mg/kg; meanwhile, the DB 20 mg/kg and DB 100 mg/kg treatments significantly reduced the growth of all the organs, respectively. These findings indicate that responsiveness expressions are dose-dependent, and bitterness sensitivity consequently decreases in aged chickens. Therefore, these findings may improve the production of new feedstuffs for chickens according to their growing stages.
Collapse
Affiliation(s)
- Enayatullah Hamdard
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zengpeng Lv
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingle Jiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Quanwei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhicheng Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Rahmani Mohammad Malyar
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Debing Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
6
|
Schier LA, Spector AC. The Functional and Neurobiological Properties of Bad Taste. Physiol Rev 2019; 99:605-663. [PMID: 30475657 PMCID: PMC6442928 DOI: 10.1152/physrev.00044.2017] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 05/18/2018] [Accepted: 06/30/2018] [Indexed: 12/12/2022] Open
Abstract
The gustatory system serves as a critical line of defense against ingesting harmful substances. Technological advances have fostered the characterization of peripheral receptors and have created opportunities for more selective manipulations of the nervous system, yet the neurobiological mechanisms underlying taste-based avoidance and aversion remain poorly understood. One conceptual obstacle stems from a lack of recognition that taste signals subserve several behavioral and physiological functions which likely engage partially segregated neural circuits. Moreover, although the gustatory system evolved to respond expediently to broad classes of biologically relevant chemicals, innate repertoires are often not in register with the actual consequences of a food. The mammalian brain exhibits tremendous flexibility; responses to taste can be modified in a specific manner according to bodily needs and the learned consequences of ingestion. Therefore, experimental strategies that distinguish between the functional properties of various taste-guided behaviors and link them to specific neural circuits need to be applied. Given the close relationship between the gustatory and visceroceptive systems, a full reckoning of the neural architecture of bad taste requires an understanding of how these respective sensory signals are integrated in the brain.
Collapse
Affiliation(s)
- Lindsey A Schier
- Department of Biological Sciences, University of Southern California , Los Angeles, California ; and Department of Psychology and Program in Neuroscience, Florida State University , Tallahassee, Florida
| | - Alan C Spector
- Department of Biological Sciences, University of Southern California , Los Angeles, California ; and Department of Psychology and Program in Neuroscience, Florida State University , Tallahassee, Florida
| |
Collapse
|
7
|
Travers S, Breza J, Harley J, Zhu J, Travers J. Neurons with diverse phenotypes project from the caudal to the rostral nucleus of the solitary tract. J Comp Neurol 2018; 526:2319-2338. [PMID: 30325514 PMCID: PMC6193849 DOI: 10.1002/cne.24501] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 07/05/2018] [Accepted: 07/08/2018] [Indexed: 12/31/2022]
Abstract
The nucleus of the solitary tract is a potential site for taste-visceral interactions. Connections from the caudal, visceral area of the nucleus (cNST) to the rostral, gustatory zone (rNST) have been described, but the phenotype of cells giving rise to the projection(s) and their distribution among rNST subdivisions are unknown. To determine these characteristics of the intrasolitary pathway, we injected pan-neuronal and floxed AAV viruses into the cNST of mice expressing cre in glutamatergic, GABAergic, or catecholaminergic neurons. Particular attention was paid to the terminal field distribution in rNST subdivisions by simultaneously visualizing P2X2 localized to gustatory afferent terminals. All three phenotypically identified pathways terminated in rNST, with the density greatest for glutamatergic and sparsest for catecholaminergic projections, observations supported by retrograde tracing. Interestingly, cNST neurons had more prominent projections to rNST regions medial and ventral to P2X2 staining, i.e., the medial and ventral subdivisions. In addition, GABAergic neurons projected robustly to the lateral subdivision and adjacent parts of the reticular formation and spinal trigeminal nucleus. Although cNST neurons also projected to the P2X2-rich central subdivision, such projections were sparser. These findings suggest that cNST visceral signals exert stronger excitatory and inhibitory influences on local autonomic and reflex pathways associated with the medial and ventral subdivisions compared to weaker modulation of ascending pathways arising from the central subdivision and ultimately destined for the forebrain.
Collapse
Affiliation(s)
- Susan Travers
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Joseph Breza
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Jacob Harley
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - JiuLin Zhu
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Joseph Travers
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| |
Collapse
|
8
|
Deloose E, Corsetti M, Van Oudenhove L, Depoortere I, Tack J. Intragastric infusion of the bitter tastant quinine suppresses hormone release and antral motility during the fasting state in healthy female volunteers. Neurogastroenterol Motil 2018; 30. [PMID: 28776826 DOI: 10.1111/nmo.13171] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/29/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Intragastric administration of the bitter tastant denatonium benzoate inhibits the increase of motilin plasma levels and antral contractility. While these findings suggest that gastrointestinal bitter taste receptors could be new targets to modulate gastrointestinal motility and hormone release, they need confirmation with other bitter receptor agonists. The primary aim was to evaluate the effect of intragastric administration of the bitter tastant quinine-hydrochloride (QHCl) on motilin and ghrelin plasma levels. Secondly, we studied the effect on interdigestive motility. METHODS Ten healthy female volunteers were recruited (33±4 y; 22±0.5 kg/m²). Placebo or QHCl (10 μmol/kg) was administered intragastrically through a nasogastric feeding tube after an overnight fast in a single-blind randomized fashion. Administration started 20 min after the first phase III of the migrating motor complex. The measurement continued for another 2 h after the administration. Blood samples were collected every 10 min with the baseline sample taken 10 min prior to administration. KEY RESULTS The increase in plasma levels of motilin (administration; P=.04) and total ghrelin (administration; P=.02) was significantly lower after QHCl. The fluctuation of octanoylated ghrelin was reduced after QHCl (time by administration; P=.03). Duodenal motility did not differ. The fluctuation of antral activity differed over time between placebo and QHCl (time by administration; P=.03). CONCLUSIONS AND INFERENCES QHCl suppresses the increase of both motilin and ghrelin plasma levels. Moreover, QHCl reduced the fluctuation of antral motility. These findings confirm the potential of bitter taste receptors as targets for modifying interdigestive motility in man.
Collapse
Affiliation(s)
- E Deloose
- Translational Research Centre for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - M Corsetti
- Translational Research Centre for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium.,National Institute for Health Research, Nottingham Digestive Diseases Biomedical Research Unit, Nottingham University Hospitals NHS Trust, University of Nottingham, Nottingham, UK
| | - L Van Oudenhove
- Translational Research Centre for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - I Depoortere
- Translational Research Centre for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - J Tack
- Translational Research Centre for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Deloose E, Janssen P, Corsetti M, Biesiekierski J, Masuy I, Rotondo A, Van Oudenhove L, Depoortere I, Tack J. Intragastric infusion of denatonium benzoate attenuates interdigestive gastric motility and hunger scores in healthy female volunteers. Am J Clin Nutr 2017; 105:580-588. [PMID: 28148502 DOI: 10.3945/ajcn.116.138297] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 12/19/2016] [Indexed: 11/14/2022] Open
Abstract
Background: Denatonium benzoate (DB) has been shown to influence ongoing ingestive behavior and gut peptide secretion.Objective: We studied how the intragastric administration of DB affects interdigestive motility, motilin and ghrelin plasma concentrations, hunger and satiety ratings, and food intake in healthy volunteers.Design: Lingual bitter taste sensitivity was tested with the use of 6 concentrations of DB in 65 subjects. A placebo or 1 μmol DB/kg was given intragastrically to assess its effect on fasting gastrointestinal motility and hunger ratings, motilin and ghrelin plasma concentrations, satiety, and caloric intake.Results: Women (n = 39) were more sensitive toward a lingual bitter stimulus (P = 0.005) than men (n = 26). In women (n = 10), intragastric DB switched the origin of phase III contractions from the stomach to the duodenum (P = 0.001) and decreased hunger ratings (P = 0.04). These effects were not observed in men (n = 10). In women (n = 12), motilin (P = 0.04) plasma concentrations decreased after intragastric DB administration, whereas total and octanoylated ghrelin were not affected. The intragastric administration of DB decreased hunger (P = 0.008) and increased satiety ratings (P = 0.01) after a meal (500 kcal) in 13 women without affecting gastric emptying in 6 women. Caloric intake tended to decrease after DB administration compared with the placebo (mean ± SEM: 720 ± 58 compared with 796 ± 45 kcal; P = 0.08) in 20 women.Conclusions: Intragastric DB administration decreases both antral motility and hunger ratings during the fasting state, possibly because of a decrease in motilin release. Moreover, DB decreases hunger and increases satiety ratings after a meal and shows potential for decreasing caloric intake. This trial was registered at clinicaltrials.gov as NCT02759926.
Collapse
Affiliation(s)
- Eveline Deloose
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium; and
| | - Pieter Janssen
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium; and
| | - Maura Corsetti
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium; and.,National Institute for Health Research, Nottingham Digestive Diseases Biomedical Research Unit, Nottingham University Hospitals National Health Service Trust, University of Nottingham, Nottingham, United Kingdom
| | - Jessica Biesiekierski
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium; and
| | - Imke Masuy
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium; and
| | - Alessandra Rotondo
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium; and
| | - Lukas Van Oudenhove
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium; and
| | - Inge Depoortere
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium; and
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium; and
| |
Collapse
|
10
|
Peters HP, Koppenol W, Schuring EA, Gouka R, Mela DJ, Blom WA. The effect of two weeks ingestion of a bitter tastant mixture on energy intake in overweight females. Appetite 2016; 107:268-273. [DOI: 10.1016/j.appet.2016.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/04/2016] [Accepted: 08/09/2016] [Indexed: 11/17/2022]
|
11
|
Schier LA, Spector AC. Post-oral sugar detection rapidly and chemospecifically modulates taste-guided behavior. Am J Physiol Regul Integr Comp Physiol 2016; 311:R742-R755. [PMID: 27511277 DOI: 10.1152/ajpregu.00155.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/03/2016] [Indexed: 12/31/2022]
Abstract
Several recent studies have shown that post-oral sugar sensing rapidly stimulates ingestion. Here, we explored the specificity with which early-phase post-oral sugar sensing influenced ingestive motivation. In experiment 1, rats were trained to associate the consumption of 0.3 M sucrose with injections of LiCl (3.0 meq/kg ip, conditioned taste aversion) or given equivalent exposures to the stimuli, but in an unpaired fashion. Then, all rats were subjected to two brief-access tests to assess appetitive and consummatory responses to the taste properties of sucrose (0.01-1.0 M), 0.12 M NaCl, and dH2O (in 10-s trials in randomized blocks). Intraduodenal infusions of either 0.3 M sucrose or equiosmolar 0.15 M NaCl (3.0 ml) were administered, beginning just before each test. For unpaired rats, intraduodenal sucrose specifically enhanced licking for 0.03-1.0 M sucrose, with no effect on trial initiation, relative to intraduodenal NaCl. Rats with an aversion to sucrose suppressed licking responses to sucrose in a concentration-dependent manner, as expected, but the intraduodenal sucrose preload did not appear to further influence licking responses; instead, intraduodenal sucrose attenuated trial initiation. Using a serial taste reactivity (TR) paradigm, however, experiment 2 demonstrated that intraduodenal sucrose preloads suppressed ingestive oromotor responses to intraorally delivered sucrose in rats with a sucrose aversion. Finally, experiment 3 showed that intraduodenal sucrose preloads enhanced preferential licking to some representative tastants tested (sucrose, Polycose, and Intralipid), but not others (NaCl, quinine). Together, the results suggest that the early phase-reinforcing efficacy of post-oral sugar is dependent on the sensory and motivational properties of the ingesta.
Collapse
Affiliation(s)
- Lindsey A Schier
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida
| | - Alan C Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida
| |
Collapse
|
12
|
Malach E, Shaul ME, Peri I, Huang L, Spielman AI, Seger R, Naim M. Membrane-permeable tastants amplify β2-adrenergic receptor signaling and delay receptor desensitization via intracellular inhibition of GRK2's kinase activity. Biochim Biophys Acta Gen Subj 2015; 1850:1375-88. [PMID: 25857770 DOI: 10.1016/j.bbagen.2015.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/24/2015] [Accepted: 03/30/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND Amphipathic sweet and bitter tastants inhibit purified forms of the protein kinases GRK2, GRK5 and PKA activities. Here we tested whether membrane-permeable tastants may intracellularly interfere with GPCR desensitization at the whole cell context. METHODS β2AR-transfected cells and cells containing endogenous β2AR were preincubated with membrane-permeable or impermeable tastants and then stimulated with isoproterenol (ISO). cAMP formation, β2AR phosphorylation and β2AR internalization were monitored in response to ISO stimulation. IBMX and H89 inhibitors and GRK2 silencing were used to explore possible roles of PDE, PKA, and GRK2 in the tastants-mediated amplification of cAMP formation and the tastant delay of β2AR phosphorylation and internalization. RESULTS Membrane-permeable but not impermeable tastants amplified the ISO-stimulated cAMP formation in a concentration- and time-dependent manner. Without ISO stimulation, amphipathic tastants, except caffeine, had no effect on cAMP formation. The amplification of ISO-stimulated cAMP formation by the amphipathic tastants was not affected by PDE and PKA activities, but was completely abolished by GRK2 silencing. Amphipathic tastants delayed the ISO-induced GRK-mediated phosphorylation of β2ARs and GRK2 silencing abolished it. Further, tastants also delayed the ISO-stimulated β2AR internalization. CONCLUSION Amphipathic tastants significantly amplify β2AR signaling and delay its desensitization via their intracellular inhibition of GRK2. GENERAL SIGNIFICANCE Commonly used amphipathic tastants may potentially affect similar GPCR pathways whose desensitization depends on GRK2's kinase activity. Because GRK2 also modulates phosphorylation of non-receptor components in multiple cellular pathways, these gut-absorbable tastants may permeate into various cells, and potentially affect GRK2-dependent phosphorylation processes in these cells as well.
Collapse
Affiliation(s)
- Einav Malach
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Merav E Shaul
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Irena Peri
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Liquan Huang
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | | | - Rony Seger
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | - Michael Naim
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
13
|
Davidson TL, Tracy AL, Schier LA, Swithers SE. A view of obesity as a learning and memory disorder. JOURNAL OF EXPERIMENTAL PSYCHOLOGY. ANIMAL LEARNING AND COGNITION 2014; 40:261-79. [PMID: 25453037 PMCID: PMC4247176 DOI: 10.1037/xan0000029] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This articles describes how a cascade of associative relationships involving the sensory properties of foods, the nutritional consequences of their consumption, and perceived internal states may play an important role in the learned control of energy intake and body weight regulation. In addition, we describe ways in which dietary factors in the current environment can promote excess energy intake and body weight gain by degrading these relationships or by interfering with the neural substrates that underlie the ability of animals to use them to predict the nutritive or energetic consequences of intake. We propose that an expanded appreciation of the diversity of orosensory, gastrointestinal, and energy state signals about which animals learn, combined with a greater understanding of predictive relationships in which these cues are embedded, will help generate new information and novel approaches to addressing the current global problems of obesity and metabolic disease.
Collapse
|
14
|
Ueno A, Lazaro R, Wang PY, Higashiyama R, Machida K, Tsukamoto H. Mouse intragastric infusion (iG) model. Nat Protoc 2012; 7:771-81. [PMID: 22461066 DOI: 10.1038/nprot.2012.014] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Direct intragastric delivery of a diet, nutrient or test substance can be achieved in rodents (mice and rats) on a long-term (2-3 months) basis using a chronically implanted gastrostomy catheter and a flow-through swivel system. This rodent intragastric infusion (iG) model has broad applications in research on food intake, gastrointestinal (GI) physiology, GI neuroendocrinology, drug metabolism and toxicity, obesity and liver disease. It achieves maximal control over the rate and pattern of delivery and it can be combined with normal ad libitum feeding of solid diet if so desired. It may be adopted to achieve infusion at other sites of the GI system to test the role of a bypassed GI segment in neuroendocrine physiology, and its use in genetic mouse models facilitates the genetic analysis of a central question under investigation.
Collapse
Affiliation(s)
- Akiko Ueno
- Southern California Research Center for ALPD and Cirrhosis, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | | | | | | | | | | |
Collapse
|
15
|
Schier LA, Davidson TL, Powley TL. Rapid stimulus-bound suppression of intake in response to an intraduodenal nonnutritive sweetener after training with nutritive sugars predicting malaise. Am J Physiol Regul Integr Comp Physiol 2012; 302:R1351-63. [PMID: 22422670 DOI: 10.1152/ajpregu.00702.2011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In a previous report (Schier et al., Am J Physiol Regul Integr Comp Physiol 301: R1557-R1568, 2011), we demonstrated with a new behavioral procedure that rats exhibit stimulus-bound suppression of intake in response to an intraduodenal (ID) bitter tastant predicting subsequent malaise. With the use of the same modified taste aversion procedure, the present experiments evaluated whether the sweet taste properties of ID stimuli are likewise detected and encoded. Thirsty rats licked at sipper spouts for hypotonic NaCl for 30 min and received brief (first 6 min) yoked ID infusions of either the same NaCl or an isomolar lithium chloride (LiCl) solution in each session. An intestinal taste cue was mixed directly into the LiCl infusate for aversion training. Results showed that rats failed to detect intestinal sweet taste alone (20 mM Sucralose) but clearly suppressed licking in response to a nutritive sweet taste stimulus (234 mM sucrose) in the intestine that had been repeatedly paired with LiCl. Rats trained with ID sucrose in LiCl subsequently generalized responding to ID Sucralose alone at test. Replicating this, rats trained with ID Sucralose in compound with 80 mM Polycose rapidly suppressed licking to the 20 mM Sucralose alone in a later test. Furthermore, ID sweet taste signaling did not support the rapid negative feedback of sucrose or Polycose on intake when their digestion and transport were blocked. Together, these results suggest that other signaling pathways and/or transporters engaged by caloric carbohydrate stimuli potentiate detection of sweet taste signals in the intestine.
Collapse
Affiliation(s)
- Lindsey A Schier
- Dept. of Psychology, Program in Neuroscience, Florida State Univ., 1107 W. Call St., Tallahassee, FL 32306, USA.
| | | | | |
Collapse
|