1
|
Zhu X, Liu X, Liu T, Ren X, Bai X. Sex differences in antioxidant ability and energy metabolism level resulting in the difference of hypoxia tolerance in red swamp crayfish (Procambarus clarkii). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 48:101136. [PMID: 37683360 DOI: 10.1016/j.cbd.2023.101136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023]
Abstract
Sexual dimorphism widely exists in crustaceans. However, sex differences in the hypoxia tolerance of crayfish have rarely been reported. In this study, the differences in hypoxia tolerance between the two sexes of crayfish were assessed according to mortality, pathological features of hepatopancreas, antioxidant enzyme activity and differentially expressed genes (DEGs) analysis using transcriptome. The results showed that male crayfish displayed significantly higher mortality than the female under hypoxia stress (p < 0.05). Furthermore, female crayfish demonstrated higher levels of antioxidant enzyme activity. Hematoxylin-eosin staining analysis revealed that the damage of hepatopancreas was more severe in the male crayfish compared to the female crayfish. Additionally, there was higher expression level of the DEGs in hypoxia-inducible factor (HIF) pathway and higher energy metabolism level in the female compared to the male. Together, these findings suggest that the female crayfish with higher antioxidant ability and energy metabolism level exhibits stronger hypoxia tolerance than the male crayfish, providing the theoretical support for investigating sex differences in hypoxia tolerance among crustaceans.
Collapse
Affiliation(s)
- Xintao Zhu
- National Key Laboratory of Crop Genetic Improvement, Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuewei Liu
- National Key Laboratory of Crop Genetic Improvement, Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Tiantian Liu
- National Key Laboratory of Crop Genetic Improvement, Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Ren
- National Key Laboratory of Crop Genetic Improvement, Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xufeng Bai
- National Key Laboratory of Crop Genetic Improvement, Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China.
| |
Collapse
|
2
|
Collins HE. Female cardiovascular biology and resilience in the setting of physiological and pathological stress. Redox Biol 2023; 63:102747. [PMID: 37216702 PMCID: PMC10209889 DOI: 10.1016/j.redox.2023.102747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/29/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023] Open
Abstract
For years, females were thought of as smaller men with complex hormonal cycles; as a result, females have been largely excluded from preclinical and clinical research. However, in the last ten years, with the increased focus on sex as a biological variable, it has become clear that this is not the case, and in fact, male and female cardiovascular biology and cardiac stress responses differ substantially. Premenopausal women are protected from cardiovascular diseases, such as myocardial infarction and resultant heart failure, having preserved cardiac function, reduced adverse remodeling, and increased survival. Many underlying biological processes that contribute to ventricular remodeling differ between the sexes, such as cellular metabolism; immune cell responses; cardiac fibrosis and extracellular matrix remodeling; cardiomyocyte dysfunction; and endothelial biology; however, it is unclear how these changes afford protection to the female heart. Although many of these changes are dependent on protection provided by female sex hormones, several of these changes occur independent of sex hormones, suggesting that the nature of these changes is more complex than initially thought. This may be why studies focused on the cardiovascular benefits of hormone replacement therapy in post-menopausal women have provided mixed results. Some of the complexity likely stems from the fact that the cellular composition of the heart is sexually dimorphic and that in the setting of MI, different subpopulations of these cell types are apparent. Despite the documented sex-differences in cardiovascular (patho)physiology, the underlying mechanisms that contribute are largely unknown due to inconsistent findings amongst investigators and, in some cases, lack of rigor in reporting and consideration of sex-dependent variables. Therefore, this review aims to describe current understanding of the sex-dependent differences in the myocardium in response to physiological and pathological stressors, with a focus on the sex-dependent differences that contribute to post-infarction remodeling and resultant functional decline.
Collapse
Affiliation(s)
- Helen E Collins
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, Delia B. Baxter Research Building, University of Louisville, 580 S. Preston S, Louisville, KY 40202, USA.
| |
Collapse
|
3
|
Mousavi SE, Purser GJ, Patil JG. Embryonic Onset of Sexually Dimorphic Heart Rates in the Viviparous Fish, Gambusia holbrooki. Biomedicines 2021; 9:165. [PMID: 33567532 PMCID: PMC7915484 DOI: 10.3390/biomedicines9020165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
In fish, little is known about sex-specific differences in physiology and performance of the heart and whether these differences manifest during development. Here for the first time, the sex-specific heart rates during embryogenesis of Gambusia holbrooki, from the onset of the heart rates (HRs) to just prior to parturition, was investigated using light cardiogram. The genetic sex of the embryos was post-verified using a sex-specific genetic marker. Results reveal that heart rates and resting time significantly increase (p < 0.05) with progressive embryonic development. Furthermore, both ventricular and atrial frequencies of female embryos were significantly higher (p < 0.05) than those of their male sibs at the corresponding developmental stages and remained so at all later developmental stages (p < 0.05). In concurrence, the heart rate and ventricular size of the adult females were also significantly (p < 0.05) higher and larger respectively than those of males. Collectively, the results suggest that the cardiac sex-dimorphism manifests as early as late-organogenesis and persists through adulthood in this species. These findings suggest that the cardiac measurements can be employed to non-invasively sex the developing embryos, well in advance of when their phenotypic sex is discernible. In addition, G. holbrooki could serve as a better model to study comparative vertebrate cardiovascular development as well as to investigate anthropogenic and climatic impacts on heart physiology of this species, that may be sex influenced.
Collapse
Affiliation(s)
- Seyed Ehsan Mousavi
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, TAS 7053, Australia;
| | - G. John Purser
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, TAS 7053, Australia;
| | - Jawahar G. Patil
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, TAS 7053, Australia;
- Inland Fisheries Service, New Norfolk, TAS 7140, Australia
| |
Collapse
|
4
|
Little AG, Hardison E, Kraskura K, Dressler T, Prystay TS, Hendriks B, Pruitt JN, Farrell AP, Cooke SJ, Patterson DA, Hinch SG, Eliason EJ. Reduced lactate dehydrogenase activity in the heart and suppressed sex hormone levels are associated with female-biased mortality during thermal stress in Pacific salmon. J Exp Biol 2020; 223:jeb214841. [PMID: 32561626 DOI: 10.1242/jeb.214841] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 06/10/2020] [Indexed: 11/20/2022]
Abstract
Female-biased mortality has been repeatedly reported in Pacific salmon during their upriver migration in both field studies and laboratory holding experiments, especially in the presence of multiple environmental stressors, including thermal stress. Here, we used coho salmon (Oncorhynchus kisutch) to test whether females exposed to elevated water temperatures (18°C) (i) suppress circulating sex hormones (testosterone, 11-ketotestosterone and estradiol), owing to elevated cortisol levels, (ii) have higher activities of enzymes supporting anaerobic metabolism (e.g. lactate dehydrogenase, LDH), (iii) have lower activities of enzymes driving oxidative metabolism (e.g. citrate synthase, CS) in skeletal and cardiac muscle, and (iv) have more oxidative stress damage and reduced capacity for antioxidant defense [lower catalase (CAT) activity]. We found no evidence that a higher susceptibility to oxidative stress contributes to female-biased mortality at warm temperatures. We did, however, find that females had significantly lower cardiac LDH and that 18°C significantly reduced plasma levels of testosterone and estradiol, especially in females. We also found that relative gonad size was significantly lower in the 18°C treatment regardless of sex, whereas relative liver size was significantly lower in females held at 18°C. Further, relative spleen size was significantly elevated in the 18°C treatments across both sexes, with larger warm-induced increases in females. Our results suggest that males may better tolerate bouts of cardiac hypoxia at high temperature, and that thermal stress may also disrupt testosterone- and estradiol-mediated protein catabolism, and the immune response (larger spleens), in migratory female salmon.
Collapse
Affiliation(s)
- A G Little
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - E Hardison
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - K Kraskura
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - T Dressler
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - T S Prystay
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - B Hendriks
- Fisheries and Oceans Canada, Cooperative Resource Management Institute, School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - J N Pruitt
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | - A P Farrell
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
- Department of Zoology and Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - S J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - D A Patterson
- Fisheries and Oceans Canada, Cooperative Resource Management Institute, School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - S G Hinch
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - E J Eliason
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
5
|
Dietrich MA, Hliwa P, Adamek M, Steinhagen D, Karol H, Ciereszko A. Acclimation to cold and warm temperatures is associated with differential expression of male carp blood proteins involved in acute phase and stress responses, and lipid metabolism. FISH & SHELLFISH IMMUNOLOGY 2018; 76:305-315. [PMID: 29544770 DOI: 10.1016/j.fsi.2018.03.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/08/2018] [Accepted: 03/10/2018] [Indexed: 06/08/2023]
Abstract
The environmental temperature affects plasma biochemical indicators, antioxidant status and hematological and immunological parameters in fish. So far, only single blood proteins have been identified in response to temperature changes. The aim of this study was to compare the proteome of carp blood plasma from males acclimated to warm (30 °C) and cold (10 °C) temperatures by two-dimensional differential gel electrophoresis followed by MALDI-TOF/TOF mass spectrometry. A total of 47 spots were found to be differentially regulated by temperature (>1.2-fold change, p < 0.05): 25 protein spots were more abundant in warm-acclimated males and 22 were enriched in cold-acclimated males. The majority of differentially regulated proteins were associated with acute phase response signalling involved in: i) activation of the complement system (complement C3-H1), ii) neutralization of proteolytic enzymes (inter-alpha inhibitor H3, fetuin, serpinA1, antithrombin, alpha2-macroglobulin), iii) scavenging of free hemoglobin and radicals (haptoglobin, Wap65 kDa), iv) clot-formation (fibrinogen beta and alpha chain, T-kininogen) and v) the host's immune response modulation (ApoA1 and ApoA2). However, quite different sets of these proteins or proteoforms were involved in response to cold and warm temperatures. In addition, cold acclimation seems to be related to the proteins involved in lipid metabolism (apolipoproteins A and 14 kDa) and stress response (corticosteroid binding globulin). We discovered a strongly regulated protein Cap31 upon cold acclimation, which can serve as a potential blood biomarker of cold response in carp. These studies significantly extend our knowledge concerning mechanisms underlying thermal adaptation in poikilotherms.
Collapse
Affiliation(s)
- Mariola A Dietrich
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.
| | - Piotr Hliwa
- Department of Ichthyology, University of Warmia and Mazury in Olsztyn, Poland
| | - Mikołaj Adamek
- University of Veterinary Medicine in Hanover, Fish Disease Research Unit, Germany
| | - Dieter Steinhagen
- University of Veterinary Medicine in Hanover, Fish Disease Research Unit, Germany
| | - Halina Karol
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Andrzej Ciereszko
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
6
|
Ward TD, Algera DA, Gallagher AJ, Hawkins E, Horodysky A, Jørgensen C, Killen SS, McKenzie DJ, Metcalfe JD, Peck MA, Vu M, Cooke SJ. Understanding the individual to implement the ecosystem approach to fisheries management. CONSERVATION PHYSIOLOGY 2016; 4:cow005. [PMID: 27293757 PMCID: PMC4825417 DOI: 10.1093/conphys/cow005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 01/25/2016] [Accepted: 02/08/2016] [Indexed: 05/20/2023]
Abstract
Ecosystem-based approaches to fisheries management (EAFMs) have emerged as requisite for sustainable use of fisheries resources. At the same time, however, there is a growing recognition of the degree of variation among individuals within a population, as well as the ecological consequences of this variation. Managing resources at an ecosystem level calls on practitioners to consider evolutionary processes, and ample evidence from the realm of fisheries science indicates that anthropogenic disturbance can drive changes in predominant character traits (e.g. size at maturity). Eco-evolutionary theory suggests that human-induced trait change and the modification of selective regimens might contribute to ecosystem dynamics at a similar magnitude to species extirpation, extinction and ecological dysfunction. Given the dynamic interaction between fisheries and target species via harvest and subsequent ecosystem consequences, we argue that individual diversity in genetic, physiological and behavioural traits are important considerations under EAFMs. Here, we examine the role of individual variation in a number of contexts relevant to fisheries management, including the potential ecological effects of rapid trait change. Using select examples, we highlight the extent of phenotypic diversity of individuals, as well as the ecological constraints on such diversity. We conclude that individual phenotypic diversity is a complex phenomenon that needs to be considered in EAFMs, with the ultimate realization that maintaining or increasing individual trait diversity may afford not only species, but also entire ecosystems, with enhanced resilience to environmental perturbations. Put simply, individuals are the foundation from which population- and ecosystem-level traits emerge and are therefore of central importance for the ecosystem-based approaches to fisheries management.
Collapse
Affiliation(s)
- Taylor D. Ward
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, CanadaK1S 5B6
- Corresponding author: Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6.
| | - Dirk A. Algera
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, CanadaK1S 5B6
| | - Austin J. Gallagher
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, CanadaK1S 5B6
| | - Emily Hawkins
- Department of Biology, University of Ottawa, 30 Marie-Curie Private, Ottawa, ON, CanadaK1N 9B4
| | - Andrij Horodysky
- Department of Marine and Environmental Science, Hampton University, Hampton, VA 23668, USA
| | - Christian Jørgensen
- Department of Biology and Hjort Centre for Marine Ecosystem Dynamics, University of Bergen, PO Box 7803, Bergen 5020, Norway
| | - Shaun S. Killen
- Institute of Biodiversity, Animal Health, and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - David J. McKenzie
- Equipe Diversité et Ecologie des Poissons, UMR5119 Ecologie des Systèmes Marins Côtiers, Université Montpellier, Place Eugène Bataillon, Montpellier cedex 5 34095, France
| | - Julian D. Metcalfe
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft Laboratory, Suffolk NR33 0HT, UK
| | - Myron A. Peck
- Institute of Hydrobiology and Fisheries Science, Center for Earth System Research and Sustainability, Olbersweg 24, Hamburg 22767, Germany
| | - Maria Vu
- Department of Biology, University of Ottawa, 30 Marie-Curie Private, Ottawa, ON, CanadaK1N 9B4
| | - Steven J. Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, CanadaK1S 5B6
| |
Collapse
|
7
|
Régnier T, Labonne J, Chat J, Yano A, Guiguen Y, Bolliet V. No early gender effects on energetic status and life history in a salmonid. ROYAL SOCIETY OPEN SCIENCE 2015; 2:150441. [PMID: 27019729 PMCID: PMC4807450 DOI: 10.1098/rsos.150441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/05/2015] [Indexed: 06/05/2023]
Abstract
Throughout an organism's early development, variations in physiology and behaviours may have long lasting consequences on individual life histories. While a large part of variation in critical life-history transitions remains unexplained, a significant proportion may be caused by early gender effects as part of gender-specific life histories shaped by sexual selection. In this study, we investigated the presence of early gender effects on the timing of emergence from gravel and the energetic status of brown trout (Salmo trutta) early stages. To investigate this question, individual measures of emergence timing, metabolic rate and energetic content were coupled for the first time with the use of a recent genetic marker for sdY (sexually dimorphic on the Y-chromosome), a master sex-determining gene. Our results show that gender does not influence the energetic content of emerging juveniles or their emergence timing. These findings suggest that gender differences may appear later throughout salmonid life history and that selective pressures associated with the critical period of emergence from gravel may shape early life-history traits similarly in both males and females.
Collapse
Affiliation(s)
- Thomas Régnier
- INRA, UMR 1224 Ecobiop, Aquapôle, St Pée sur Nivelle 64310, France
- Université Pau & Pays Adour, UMR 1224 Ecobiop, UFR Sciences et Techniques Côte Basque, Anglet, France
| | - Jacques Labonne
- INRA, UMR 1224 Ecobiop, Aquapôle, St Pée sur Nivelle 64310, France
- Université Pau & Pays Adour, UMR 1224 Ecobiop, UFR Sciences et Techniques Côte Basque, Anglet, France
| | - Joëlle Chat
- INRA, UMR 1224 Ecobiop, Aquapôle, St Pée sur Nivelle 64310, France
- Université Pau & Pays Adour, UMR 1224 Ecobiop, UFR Sciences et Techniques Côte Basque, Anglet, France
| | - Ayaka Yano
- INRA-UR1037, LPGP, Fish Physiology and Genomics, Rennes 35042, France
| | - Yann Guiguen
- INRA-UR1037, LPGP, Fish Physiology and Genomics, Rennes 35042, France
| | - Valérie Bolliet
- INRA, UMR 1224 Ecobiop, Aquapôle, St Pée sur Nivelle 64310, France
- Université Pau & Pays Adour, UMR 1224 Ecobiop, UFR Sciences et Techniques Côte Basque, Anglet, France
| |
Collapse
|
8
|
Battiprolu PK, Rodnick KJ. Dichloroacetate selectively improves cardiac function and metabolism in female and male rainbow trout. Am J Physiol Heart Circ Physiol 2014; 307:H1401-11. [PMID: 25217653 PMCID: PMC4233302 DOI: 10.1152/ajpheart.00755.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 09/11/2014] [Indexed: 01/08/2023]
Abstract
Cardiac tissue from female rainbow trout demonstrates a sex-specific preference for exogenous glucose and glycolysis, impaired Ca(2+) handling, and a greater tolerance for hypoxia and reoxygenation than cardiac tissue from male rainbow trout. We tested the hypothesis that dichloroacetate (DCA), an activator of pyruvate dehydrogenase, enhances cardiac energy metabolism and Ca(2+) handling in female preparations and provide cardioprotection for hypoxic male tissue. Ventricle strips from sexually immature fish with very low (male) and nondetectable (female) plasma sex steroids were electrically paced in oxygenated or hypoxic Ringer solution with or without 1 mM DCA. In the presence of 5 mM glucose, aerobic tissue from male trout could be paced at a higher frequency (1.79 vs. 1.36 Hz) with lower resting tension and less contractile dysfunction than female tissue. At 0.5 Hz, DCA selectively reduced resting tension below baseline values and lactate efflux by 75% in aerobic female ventricle strips. DCA improved the functional recovery of developed twitch force, reduced lactate efflux by 50%, and doubled citrate in male preparations after hypoxia-reoxygenation. Independent of female sex steroids, reduced myocardial pyruvate dehydrogenase activity and impaired carbohydrate oxidation might explain the higher lactate efflux, compromised function of the sarcoplasmic reticulum, and reduced mechanical performance of aerobic female tissue. Elevated oxidative metabolism and reduced glycolysis might also underlie the beneficial effects of DCA on the mechanical recovery of male cardiac tissue after hypoxia-reoxygenation. These results support the use of rainbow trout as an experimental model of sex differences of cardiovascular energetics and function, with the potential for modifying metabolic phenotypes and cardioprotection independent of sex steroids.
Collapse
Affiliation(s)
- Pavan K Battiprolu
- Department of Biological Sciences, Idaho State University, Pocatello, Idaho
| | - Kenneth J Rodnick
- Department of Biological Sciences, Idaho State University, Pocatello, Idaho
| |
Collapse
|
9
|
Bolinger MT, Rodnick KJ. Differential effects of temperature and glucose on glycogenolytic enzymes in tissues of rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol B Biochem Mol Biol 2014; 171:26-33. [PMID: 24704523 DOI: 10.1016/j.cbpb.2014.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/10/2014] [Accepted: 03/27/2014] [Indexed: 11/26/2022]
Abstract
The pathways and regulatory mechanisms of glycogenolysis remain relatively unexplored in non-mammalian vertebrates, especially poikilotherms. We studied the temperature sensitivity and inhibition of glycogenolytic enzymes in liver, ventricle, and white muscle of rainbow trout acclimated to 14 °C. Glycogen phosphorylase (GP) and acid α-glucosidase (GAA) activities were measured in homogenates of tissues at physiological temperatures (4, 14, and 24 °C), and in the presence of allosteric inhibitor, glucose. Higher GP versus GAA activity in all three tissues suggested a predominance of phosphorolytic glycogenolysis over the lysosomal glucosidic pathway. GP activities at 14 °C were ~2-fold higher in the ventricle and white muscle versus the liver and selectively increased by AMP in striated muscle. Conversely, the activities of GAA and lysosomal marker acid phosphatase were 8- to 10-fold higher in the liver compared with the ventricle and white muscle. Thermal sensitivity (Q10) was increased for GP in all tissues below 14 °C and decreased in striated muscle in the absence of AMP above 14 °C. GAA had lower Q10 values than GP below 14 °C, and, unlike GP, Q10s for GAA were not different between tissues or affected by temperature. Both GP (in the absence of AMP) and GAA were inhibited by glucose in a dose-dependent manner, with the lowest IC50 values observed in the white muscle (1.4 and 6.3 mM, respectively). In conclusion, despite comparatively low kinetic potential, lysosomal GAA might facilitate glycogenolysis at colder body temperatures in striated muscle and intracellular glucose could limit phosphorolytic and glucosidic glycogenolysis in multiple tissues of the rainbow trout.
Collapse
Affiliation(s)
- Mark T Bolinger
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209-8007, USA
| | - Kenneth J Rodnick
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209-8007, USA.
| |
Collapse
|
10
|
Rodnick KJ, Gamperl AK, Nash GW, Syme DA. Temperature and sex dependent effects on cardiac mitochondrial metabolism in Atlantic cod (Gadus morhua L.). J Therm Biol 2014; 44:110-8. [PMID: 25086981 DOI: 10.1016/j.jtherbio.2014.02.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 02/09/2014] [Accepted: 02/10/2014] [Indexed: 11/15/2022]
Abstract
To test the hypothesis that impaired mitochondrial respiration limits cardiac performance at warm temperatures, and examine if any effect(s) are sex-related, the consequences of high temperature on cardiac mitochondrial oxidative function were examined in 10°C acclimated, sexually immature, male and female Atlantic cod. Active (State 3) and uncoupled (States 2 and 4) respiration were measured in isolated ventricular mitochondria at 10, 16, 20, and 24°C using saturating concentrations of malate and pyruvate, but at a submaximal (physiological) level of ADP (200µM). In addition, citrate synthase (CS) activity was measured at these temperatures, and mitochondrial respiration and the efficiency of oxidative phosphorylation (P:O ratio) were determined at [ADP] ranging from 25-200µM at 10 and 20°C. Cardiac morphometrics and mitochondrial respiration at 10°C, and the thermal sensitivity of CS activity (Q10=1.51), were all similar between the sexes. State 3 respiration at 200µM ADP increased gradually in mitochondria from females between 10 and 24°C (Q10=1.48), but plateaued in males above 16°C, and this resulted in lower values in males vs. females at 20 and 24°C. At 10°C, State 4 was ~10% of State 3 values in both sexes [i.e. a respiratory control ratio (RCR) of ~10] and P:O ratios were approximately 1.5. Between 20 and 24°C, State 4 increased more than State 3 (by ~70 vs. 14%, respectively), and this decreased RCR to ~7.5. The P:O ratio was not affected by temperature at 200μM ADP. However, (1) the sensitivity of State 3 respiration to increasing [ADP] (from 25 to 200μM) was reduced at 20 vs. 10°C in both sexes (Km values 105±7 vs. 68±10μM, respectively); and (2) mitochondria from females had lower P:O values at 25 vs. 100μM ADP at 20°C, whereas males showed a similar effect at 10°C but a much more pronounced effect at 20°C (P:O 1.05 at 25μM ADP vs. 1.78 at 100μMADP). In summary, our results demonstrate several sex-related differences in ventricular mitochondrial function in Atlantic cod, and suggest that myocardial oxidative function and possibly phosphorylation efficiency may be limited at temperatures of 20°C or above, particularly in males. These observations could partially explain why cardiac function in Atlantic cod plateaus just below this species׳ critical thermal maximum (~22°C) and may contribute to yet unidentified sex differences in thermal tolerance and swimming performance.
Collapse
Affiliation(s)
- Kenneth J Rodnick
- Department of Biological Sciences, Idaho State University, 921 South 8th Avenue, Mail Stop 8007, Pocatello, ID 83209-8007, USA.
| | - A Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John׳s, NL, Canada A1C 5S7
| | - Gordon W Nash
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John׳s, NL, Canada A1C 5S7
| | - Douglas A Syme
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| |
Collapse
|
11
|
Becker TA, DellaValle B, Gesser H, Rodnick KJ. Limited effects of exogenous glucose during severe hypoxia and a lack of hypoxia-stimulated glucose uptake in isolated rainbow trout cardiac muscle. ACTA ACUST UNITED AC 2013; 216:3422-32. [PMID: 23685969 DOI: 10.1242/jeb.085688] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We examined whether exogenous glucose affects contractile performance of electrically paced ventricle strips from rainbow trout under conditions known to alter cardiomyocyte performance, ion regulation and energy demands. Physiological levels of d-glucose did not influence twitch force development for aerobic preparations (1) paced at 0.5 or 1.1 Hz, (2) at 15 or 23°C, (3) receiving adrenergic stimulation or (4) during reoxygenation with or without adrenaline after severe hypoxia. Contractile responses to ryanodine, an inhibitor of Ca(2+) release from the sarcoplasmic reticulum, were also not affected by exogenous glucose. However, glucose did attenuate the fall in twitch force during severe hypoxia. Glucose uptake was assayed in non-contracting ventricle strips using 2-[(3)H] deoxy-d-glucose (2-DG) under aerobic and hypoxic conditions, at different incubation temperatures and with different inhibitors. Based upon a lack of saturation of 2-DG uptake and incomplete inhibition of uptake by cytochalasin B and d-glucose, 2-DG uptake was mediated by a combination of facilitated transport and simple diffusion. Hypoxia stimulated lactate efflux sixfold to sevenfold with glucose present, but did not increase 2-DG uptake or reduce lactate efflux in the presence of cytochalasin B. Increasing temperature (14 to 24°C) also did not increase 2-DG uptake, but decreasing temperature (14 to 4°C) reduced 2-DG uptake by 45%. In conclusion, exogenous glucose improves mechanical performance under hypoxia but not under any of the aerobic conditions applied. The extracellular concentration of glucose and cold temperature appear to determine and limit cardiomyocyte glucose uptake, respectively, and together may help define a metabolic strategy that relies predominantly on intracellular energy stores.
Collapse
Affiliation(s)
- Tracy A Becker
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209-8007, USA
| | | | | | | |
Collapse
|
12
|
Battiprolu PK, Hojayev B, Jiang N, Wang ZV, Luo X, Iglewski M, Shelton JM, Gerard RD, Rothermel BA, Gillette TG, Lavandero S, Hill JA. Metabolic stress-induced activation of FoxO1 triggers diabetic cardiomyopathy in mice. J Clin Invest 2012; 122:1109-18. [PMID: 22326951 DOI: 10.1172/jci60329] [Citation(s) in RCA: 268] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 01/04/2012] [Indexed: 12/26/2022] Open
Abstract
The leading cause of death in diabetic patients is cardiovascular disease; diabetic cardiomyopathy is typified by alterations in cardiac morphology and function, independent of hypertension or coronary disease. However, the molecular mechanism that links diabetes to cardiomyopathy is incompletely understood. Insulin resistance is a hallmark feature of diabetes, and the FoxO family of transcription factors, which regulate cell size, viability, and metabolism, are established targets of insulin and growth factor signaling. Here, we set out to evaluate a possible role of FoxO proteins in diabetic cardiomyopathy. We found that FoxO proteins were persistently activated in cardiac tissue in mice with diabetes induced either genetically or by high-fat diet (HFD). FoxO activity was critically linked with development of cardiomyopathy: cardiomyocyte-specific deletion of FoxO1 rescued HFD-induced declines in cardiac function and preserved cardiomyocyte insulin responsiveness. FoxO1-depleted cells displayed a shift in their metabolic substrate usage, from free fatty acids to glucose, associated with decreased accumulation of lipids in the heart. Furthermore, we found that FoxO1-dependent downregulation of IRS1 resulted in blunted Akt signaling and insulin resistance. Together, these data suggest that activation of FoxO1 is an important mediator of diabetic cardiomyopathy and is a promising therapeutic target for the disease.
Collapse
Affiliation(s)
- Pavan K Battiprolu
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas 75390-8573, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Orrego R, Pandelides Z, Guchardi J, Holdway D. Effects of pulp and paper mill effluent extracts on liver anaerobic and aerobic metabolic enzymes in rainbow trout. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:761-768. [PMID: 21095004 DOI: 10.1016/j.ecoenv.2010.10.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 10/25/2010] [Accepted: 10/27/2010] [Indexed: 05/30/2023]
Abstract
This study investigates whether pulse exposure to Chilean pulp and paper mill effluent solid phase extracted (SPE) extracts via intraperitoneal injection (IP), would result in changes in the activities of the respiratory metabolic enzymes citrate synthase (CS) and lactate dehydrogenase (LDH) in rainbow trout livers. It also investigated if an alteration in liver metabolic capacity influenced the liver detoxification processes and estrogenic effects previously reported. Besides, a comparison of those enzymatic activities with fish IP injected with SPE extracts of two model effluents coming from industries that process 100% different type of feedstock (softwood, SW and hardwood, HW) was also evaluated. An initial induction of the anaerobic metabolism (increase in LDH enzymatic activity) was detected in all Chilean pulp mill effluent extracts evaluated, contrary to the initial unaltered aerobic metabolism (CS enzymatic activity) observed. A compensatory relationship in energy metabolism (Pasteur effect) was observed when comparing both enzymatic activities of fish exposed to those effluent extracts. LDH and CS activities observed in fish injected with Chilean extracts seem to be related to the effects observed in fish injected with SW extracts. This study showed that intraperitoneal injection of pulp and paper mill effluent extracts affected the anaerobic and aerobic metabolic capacities in rainbow trout livers, but this metabolic alteration did not affect detoxification capability or estrogenic effect previously reported.
Collapse
Affiliation(s)
- Rodrigo Orrego
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ont. L1H 7K4, Canada
| | | | | | | |
Collapse
|
14
|
Harmon KJ, Bolinger MT, Rodnick KJ. Carbohydrate energy reserves and effects of food deprivation in male and female rainbow trout. Comp Biochem Physiol A Mol Integr Physiol 2010; 158:423-31. [PMID: 21130180 DOI: 10.1016/j.cbpa.2010.11.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 11/22/2010] [Accepted: 11/24/2010] [Indexed: 11/18/2022]
Abstract
We investigated the effects of nutritional state on carbohydrate, lipid, and protein stores in the heart, liver, and white skeletal muscle of male and female rainbow trout. For fed animals we also partitioned glycogen into fractions based on acid solubility. Fish (10-14 months-old, ~400-500 g) were held at 14 °C and either fed (1% of body weight, every other day) or deprived of food for 14 days. Under fed conditions, glycogen was increased 54% in ventricles from males compared with females, and elevated in the liver (87%) and white muscle (70%) in sexually-maturing versus immature males. Acid soluble glycogen predominated over the acid insoluble fraction in all tissues and was similar between sexes. Food deprivation 1) selectively reduced glycogen and free glucose in male ventricles by ~30%, and 2) did not change glycogen in the liver or white muscle, or triglyceride, protein or water levels in any tissues for both sexes. These data highlight sex differences in teleost cardiac stores and the metabolism of carbohydrates, and contrast with mammals where cardiac glycogen increases during fasting and acid insoluble glycogen is a significant fraction. Increased glycogen in the hearts of male rainbow trout appears to pre-empt sex-specific cardiac growth while storage of acid soluble glycogen may reflect a novel strategy for efficient synthesis and mobilization of glycogen in fishes.
Collapse
Affiliation(s)
- Kelli J Harmon
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209-8007, USA
| | | | | |
Collapse
|
15
|
McCullough DA, Bartholow JM, Jager HI, Beschta RL, Cheslak EF, Deas ML, Ebersole JL, Foott JS, Johnson SL, Marine KR, Mesa MG, Petersen JH, Souchon Y, Tiffan KF, Wurtsbaugh WA. Research in Thermal Biology: Burning Questions for Coldwater Stream Fishes. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/10641260802590152] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Scaion D, Sébert P. Glycolytic fluxes in European silver eel, Anguilla anguilla: sex differences and temperature sensitivity. Comp Biochem Physiol A Mol Integr Physiol 2008; 151:687-90. [PMID: 18789394 DOI: 10.1016/j.cbpa.2008.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 08/12/2008] [Accepted: 08/18/2008] [Indexed: 11/25/2022]
Abstract
European silver eels migrate 6000 km to their supposed spawning area in the Sargasso sea. As the eel is fasting, this intense swimming activity is realised only with fat stores, involving mainly red muscle i.e. aerobic metabolism. However, eel migration is performed at depth and thus in cold water, both being known to induce changes in muscle energy metabolism. During migration, white and red muscles can operate together or separately in order to counteract the eventual effects of low temperatures and/or high pressures. We have studied the temperature sensitivity (5, 15, and 25 degrees C) of aerobic and anaerobic metabolism in both sexes. At the same temperature, migrating eels have a higher basal glycolytic flux. Moreover, there are temperature and sex effects: anaerobic glycolysis (JB) is more sensitive to cold water whereas aerobic (JA) is more affected by warm. Males, which are less sensitive to cold water, also have higher aerobic fluxes than females. As depth corresponds to low temperature, the possibility that males migrate more deeply than females is discussed. In an ecophysiological context, it is interesting to suppose that males and female eels migrate at different depths in order to optimize their energy utilization by aerobic and / or anaerobic pathways.
Collapse
Affiliation(s)
- Delphine Scaion
- Université Européenne de Bretagne, Université de Brest, Laboratoire ORPHY-EA4324, 6 Avenue Le Gorgeu, CS 93837, 29238 Brest Cedex 3, France
| | | |
Collapse
|
17
|
Gene expression in the liver of rainbow trout, Oncorhynchus mykiss, during the stress response. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2007; 2:303-15. [PMID: 20483302 DOI: 10.1016/j.cbd.2007.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 06/07/2007] [Accepted: 06/07/2007] [Indexed: 11/20/2022]
Abstract
To better appreciate the mechanisms underlying the physiology of the stress response, an oligonucleotide microarray and real-time RT-PCR (QRT-PCR) were used to study gene expression in the livers of rainbow trout (Oncorhynchus mykiss). For increased confidence in the discovery of candidate genes responding to stress, we conducted two separate experiments using fish from different year classes. In both experiments, fish exposed to a 3 h stressor were compared to control (unstressed) fish. In the second experiment some additional fish were exposed to only 0.5 h of stress and others were sampled 21 h after experiencing a 3 h stressor. This 21 h post-stress treatment was a means to study gene expression during recovery from stress. The genes we report as differentially expressed are those that responded similarly in both experiments, suggesting that they are robust indicators of stress. Those genes are a major histocompatibility complex class 1 molecule (MHC1), JunB, glucose 6-phosphatase (G6Pase), and nuclear protein 1 (Nupr1). Interestingly, Nupr1 gene expression was still elevated 21 h after stress, which indicates that recovery was incomplete at that time.
Collapse
|
18
|
Denton K, Baylis C. Physiological and molecular mechanisms governing sexual dimorphism of kidney, cardiac, and vascular function. Am J Physiol Regul Integr Comp Physiol 2007; 292:R697-9. [PMID: 17095645 DOI: 10.1152/ajpregu.00766.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kate Denton
- Department of Physiology, Bldg. 13F, Monash University, Clayton, Victoria, Australia.
| | | |
Collapse
|