1
|
Evans LC, Dayton A, Osborn JW. Renal nerves in physiology, pathophysiology and interoception. Nat Rev Nephrol 2025; 21:57-69. [PMID: 39363020 DOI: 10.1038/s41581-024-00893-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/05/2024]
Abstract
Sympathetic efferent renal nerves have key roles in the regulation of kidney function and blood pressure. Increased renal sympathetic nerve activity is thought to contribute to hypertension by promoting renal sodium retention, renin release and renal vasoconstriction. This hypothesis led to the development of catheter-based renal denervation (RDN) for the treatment of hypertension. Two RDN devices that ablate both efferent and afferent renal nerves received FDA approval for this indication in 2023. However, in animal models, selective ablation of afferent renal nerves resulted in comparable anti-hypertensive effects to ablation of efferent and afferent renal nerves and was associated with a reduction in sympathetic nerve activity. Selective afferent RDN also improved kidney function in a chronic kidney disease model. Notably, the beneficial effects of RDN extend beyond hypertension and chronic kidney disease to other clinical conditions that are associated with elevated sympathetic nerve activity, including heart failure and arrhythmia. These findings suggest that the kidney is an interoceptive organ, as increased renal sensory nerve activity modulates sympathetic activity to other organs. Future studies are needed to translate this knowledge into novel therapies for the treatment of hypertension and other cardiorenal diseases.
Collapse
Affiliation(s)
- Louise C Evans
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Alex Dayton
- Division of Nephrology and Hypertension, University of Minnesota, Minneapolis, MN, USA
| | - John W Osborn
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
2
|
Frame AA, Nist KM, Kim K, Puleo F, Moreira JD, Swaldi H, McKenna J, Wainford RD. Integrated renal and sympathetic mechanisms underlying the development of sex- and age-dependent hypertension and the salt sensitivity of blood pressure. GeroScience 2024; 46:6435-6458. [PMID: 38976131 PMCID: PMC11494650 DOI: 10.1007/s11357-024-01266-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024] Open
Abstract
Aging is a non-modifiable understudied risk factor for hypertension. We hypothesized that sympathetically mediated activation of renal sodium reabsorption drives age-dependent hypertension and the salt sensitivity of blood pressure (BP). Using 3-, 8-, and 16-month-old male and female Sprague-Dawley rats as a model of normal aging, we assessed BP, indices of sympathetic tone, and the physiological responses to acute and chronic sodium challenge including sodium chloride cotransporter (NCC) regulation. The effects of renal nerve ablation and NCC antagonism were assessed in hypertensive male rats. We observed sex-dependent impaired renal sodium handling (24 h sodium balance (meq), male 3-month 0.36 ± 0.1 vs. 16-month 0.84 ± 0.2; sodium load excreted during 5% bodyweight isotonic saline volume expansion (%) male 3-month 77 ± 5 vs. 16-month 22 ± 8), hypertension (MAP (mmHg) male 3-month 123 ± 4 vs. 16-month 148 ± 6), and the salt sensitivity of BP in aged male, but not female, rats. Attenuated sympathoinhibitory afferent renal nerve (ARN) responses contributed to increased sympathetic tone and hypertension in male rats. Increased sympathetic tone contributes to renal sodium retention, in part through increased NCC activity via a dysfunctional with-no-lysine kinase-(WNK) STE20/SPS1-related proline/alanine-rich kinase signaling pathway, to drive hypertension and the salt sensitivity of BP in aged male rats. NCC antagonism and renal nerve ablation, which reduced WNK dysfunction and decreased NCC activity, attenuated age-dependent hypertension in male Sprague-Dawley rats. The contribution of an impaired sympathoinhibitory ARN reflex to sex- and age-dependent hypertension in an NCC-dependent manner, via an impaired WNK1/WNK4 dynamic, suggests this pathway as a mechanism-based target for the treatment of age-dependent hypertension.
Collapse
Affiliation(s)
- Alissa A Frame
- Department of Pharmacology & Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Kayla M Nist
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Kiyoung Kim
- Department of Pharmacology & Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Franco Puleo
- Department of Pharmacology & Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jesse D Moreira
- Department of Health Sciences, Sargent College, Boston University, Boston, MA, USA
| | - Hailey Swaldi
- Division of Cardiology, Emory University School of Medicine, 1750 Haygood Drive, Atlanta, GA, N22030322, USA
| | - James McKenna
- Division of Cardiology, Emory University School of Medicine, 1750 Haygood Drive, Atlanta, GA, N22030322, USA
| | - Richard D Wainford
- Department of Pharmacology & Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- Division of Cardiology, Emory University School of Medicine, 1750 Haygood Drive, Atlanta, GA, N22030322, USA.
| |
Collapse
|
3
|
Evans LC, Dailey-Krempel B, Lauar MR, Dayton A, Vulchanova L, Osborn JW. Renal interoception in health and disease. Auton Neurosci 2024; 255:103208. [PMID: 39128142 DOI: 10.1016/j.autneu.2024.103208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024]
Abstract
Catheter based renal denervation has recently been FDA approved for the treatment of hypertension. Traditionally, the anti-hypertensive effects of renal denervation have been attributed to the ablation of the efferent sympathetic renal nerves. In recent years the role of the afferent sensory renal nerves in the regulation of blood pressure has received increased attention. In addition, afferent renal denervation is associated with reductions in sympathetic nervous system activity. This suggests that reductions in sympathetic drive to organs other than the kidney may contribute to the non-renal beneficial effects observed in clinical trials of catheter based renal denervation. In this review we will provide an overview of the role of the afferent renal nerves in the regulation of renal function and the development of pathophysiologies, both renal and non-renal. We will also describe the central projections of the afferent renal nerves, to give context to the responses seen following their ablation and activation. Finally, we will discuss the emerging role of the kidney as an interoceptive organ. We will describe the potential role of the kidney in the regulation of interoceptive sensitivity and in this context, speculate on the possible pathological consequences of altered renal function.
Collapse
Affiliation(s)
- Louise C Evans
- Department of Surgery, University of Minnesota Medical School, Minneapolis 55455, United States of America
| | - Brianna Dailey-Krempel
- Department of Neuroscience, University of Minnesota, Minneapolis 55455, United States of America
| | - Mariana R Lauar
- Department of Surgery, University of Minnesota Medical School, Minneapolis 55455, United States of America
| | - Alex Dayton
- Division of Nephrology and Hypertension, University of Minnesota Medical School, Minneapolis 55455, United States of America
| | - Lucy Vulchanova
- Department of Neuroscience, University of Minnesota, Minneapolis 55455, United States of America
| | - John W Osborn
- Department of Surgery, University of Minnesota Medical School, Minneapolis 55455, United States of America.
| |
Collapse
|
4
|
Herring N, Ajijola OA, Foreman RD, Gourine AV, Green AL, Osborn J, Paterson DJ, Paton JFR, Ripplinger CM, Smith C, Vrabec TL, Wang HJ, Zucker IH, Ardell JL. Neurocardiology: translational advancements and potential. J Physiol 2024. [PMID: 39340173 DOI: 10.1113/jp284740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
In our original white paper published in the The Journal of Physiology in 2016, we set out our knowledge of the structural and functional organization of cardiac autonomic control, how it remodels during disease, and approaches to exploit such knowledge for autonomic regulation therapy. The aim of this update is to build on this original blueprint, highlighting the significant progress which has been made in the field since and major challenges and opportunities that exist with regard to translation. Imbalances in autonomic responses, while beneficial in the short term, ultimately contribute to the evolution of cardiac pathology. As our understanding emerges of where and how to target in terms of actuators (including the heart and intracardiac nervous system (ICNS), stellate ganglia, dorsal root ganglia (DRG), vagus nerve, brainstem, and even higher centres), there is also a need to develop sensor technology to respond to appropriate biomarkers (electrophysiological, mechanical, and molecular) such that closed-loop autonomic regulation therapies can evolve. The goal is to work with endogenous control systems, rather than in opposition to them, to improve outcomes.
Collapse
Affiliation(s)
- N Herring
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - O A Ajijola
- UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
| | - R D Foreman
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - A V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, University College London, London, UK
| | - A L Green
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - J Osborn
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - D J Paterson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - J F R Paton
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - C M Ripplinger
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - C Smith
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - T L Vrabec
- Department of Physical Medicine and Rehabilitation, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - H J Wang
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - I H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - J L Ardell
- UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
5
|
Baumann D, Van Helden D, Evans LC, Vulchanova L, Dayton A, Osborn JW. IL-1R Mediated Activation of Renal Sensory Nerves in DOCA-Salt Hypertension. Hypertension 2024; 81:1811-1821. [PMID: 38841853 PMCID: PMC11254549 DOI: 10.1161/hypertensionaha.123.22620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/20/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Clinical trials of renal denervation for the treatment of hypertension have shown a variety of off-target improvements in conditions associated with sympathetic overactivity. This may be due to the ablation of sympathoexcitatory afferent renal nerves, which are overactive under conditions of renal inflammation. Renal IL (interleukin)-1β is elevated in the deoxycorticosterone acetate-salt model of hypertension, and its activity may be responsible for the elevation in afferent renal nerve activity and arterial pressure. METHODS Continuous blood pressure recording of deoxycorticosterone acetate-salt mice with IL-1R (IL-1 receptor) knockout or antagonism was used individually and combined with afferent renal denervation (ARDN) to assess mechanistic overlap. Protein quantification and histological analysis of kidneys were performed to characterize renal inflammation. RESULTS ARDN attenuated deoxycorticosterone acetate-salt hypertension (-20±2-Δmm Hg mean arterial pressure [MAP] relative to control at study end) to a similar degree as total renal denervation (-21±2-Δmm Hg MAP), IL-1R knockout (-16±4-Δmm Hg MAP), or IL-1R antagonism (-20±3-Δmm Hg MAP). The combination of ARDN with knockout (-18±2-Δmm Hg MAP) or antagonism (-19±4-Δmm Hg MAP) did not attenuate hypertension any further than ARDN alone. IL-1R antagonism was found to have an acute depressor effect (-15±3-Δmm Hg MAP, day 10) in animals with intact renal nerves but not those with ARDN. CONCLUSIONS These findings suggest that IL-1R signaling is partially responsible for the elevated afferent renal nerve activity, which stimulates central sympathetic outflow to drive deoxycorticosterone acetate-salt hypertension.
Collapse
Affiliation(s)
- Daniel Baumann
- Graduate Program in Integrative Biology and Physiology (D.B.), University of Minnesota, Minneapolis
- Department of Surgery (D.B., D.V.H., L.C.E., J.W.O.), University of Minnesota, Minneapolis
| | - Dusty Van Helden
- Department of Surgery (D.B., D.V.H., L.C.E., J.W.O.), University of Minnesota, Minneapolis
| | - Louise C Evans
- Department of Surgery (D.B., D.V.H., L.C.E., J.W.O.), University of Minnesota, Minneapolis
| | - Lucy Vulchanova
- Department of Neuroscience (L.V.), University of Minnesota, Minneapolis
| | - Alex Dayton
- Division of Nephrology and Hypertension (A.D.), University of Minnesota, Minneapolis
| | - John W Osborn
- Department of Surgery (D.B., D.V.H., L.C.E., J.W.O.), University of Minnesota, Minneapolis
| |
Collapse
|
6
|
Tang M, Hu J, Li W, Zhang N, Ning S, Yan Y, Cui Z. Effects of Renal Denervation on Ouabain-Induced Hypertension in Rats. Int J Hypertens 2024; 2024:4763189. [PMID: 38957519 PMCID: PMC11217579 DOI: 10.1155/2024/4763189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/04/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024] Open
Abstract
Background Ouabain, a Na+, K+-ATPase inhibitor, is elevated in hypertensive patients. Evidence suggests ouabain contributes to hypertension mainly through activation of the sympathetic nervous system (SNS). Renal nerves play a vital role in the regulation of SNS activity, so we hypothesize that renal denervation may attenuate the development of ouabain-induced hypertension. Methods and Results Forty Sprague-Dawley rats were divided into following groups (n = 10 each): control group (sham surgery plus intraperitoneal saline injection), RDN group (renal denervation (RDN) plus intraperitoneal saline injection), ouabain group (sham surgery plus intraperitoneal ouabain injection), and ouabain + RDN group (RDN plus intraperitoneal ouabain injection). After eight weeks, compared with the control group, rats in the ouabain group exhibited elevated blood pressure (P < 0.05), increased plasma epinephrine, norepinephrine, angiotensin II, and aldosterone levels (P < 0.05). These indexes could be significantly ameliorated by RDN. RDN also reduced the thickening of aortic tunica media and downregulated the expression of proliferating cell nuclear antigen (PCNA) in the thoracic aorta induced by ouabain. Masson staining and echocardiography showed that myocardial fibrosis and increased left ventricular mass in the ouabain group could be attenuated by RDN. Conclusions The present study reveals that renal nerves play an important role in the development of ouabain-induced hypertension. RDN could inhibit the pressor effect and the myocardial remodeling induced by ouabain potentially via inhibiting catecholamine release and vascular smooth muscle cell proliferation. Clinical studies are needed to explore whether RDN may exhibit better antihypertensive effects on hypertensive patients with high plasma ouabain levels as compared to those with normal plasma ouabain levels.
Collapse
Affiliation(s)
- Minna Tang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Jialu Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Wenshu Li
- School of Public Health, Fudan University, Shanghai, 200032, China
| | - Ningzhi Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Sisi Ning
- Department of Cardiology, Shanghai Changning Tianshan Traditional Chinese Medicine Hospital, Shanghai 200051, China
| | - Yan Yan
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Zhaoqiang Cui
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| |
Collapse
|
7
|
Esler MD, Osborn JW, Schlaich MP. Sympathetic Pathophysiology in Hypertension Origins: The Path to Renal Denervation. Hypertension 2024; 81:1194-1205. [PMID: 38557153 DOI: 10.1161/hypertensionaha.123.21715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The importance of the sympathetic nervous system in essential hypertension has been recognized in 2 eras. The first was in early decades of the 20th century, through to the 1960s. Here, the sympathetic nervous system was identified as a target for the treatment of hypertension, and an extensive range of antiadrenergic therapies were developed. Then, after a period of lapsed interest, in a second era from 1985 on, the development of precise measures of human sympathetic nerve firing and transmitter release allowed demonstration of the importance of neural mechanisms in the initiation and maintenance of the arterial blood pressure elevation in hypertension. This led to the development of a device treatment of hypertension, catheter-based renal denervation, which we will discuss.
Collapse
Affiliation(s)
- Murray D Esler
- Human Neurotransmitter Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (M.D.E., M.P.S.)
| | - John W Osborn
- Department of Surgery, Medical School, University of Minnesota, Minneapolis (J.W.O.)
| | - Markus P Schlaich
- Human Neurotransmitter Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (M.D.E., M.P.S.)
- Dobney Hypertension Centre, Medical School, Royal Perth Hospital Unit and RPH Research Foundation, The University of Western Australia (M.P.S.)
| |
Collapse
|
8
|
Perrotta S, Carnevale D. Brain-Splenic Immune System Interactions in Hypertension: Cellular and Molecular Mechanisms. Arterioscler Thromb Vasc Biol 2024; 44:65-75. [PMID: 37942610 DOI: 10.1161/atvbaha.123.318230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/20/2023] [Indexed: 11/10/2023]
Abstract
Hypertension represents a major worldwide cause of death and disability, and it is becoming increasingly clear that available therapies are not sufficient to reduce the risk of major cardiovascular events. Various mechanisms contribute to blood pressure increase: neurohormonal activation, autonomic nervous system imbalance, and immune activation. Of note, the brain is an important regulator of blood pressure levels; it recognizes the peripheral perturbation and organizes a reflex response by modulating immune system and hormonal release to attempt at restoring the homeostasis. The connection between the brain and peripheral organs is mediated by the autonomic nervous system, which also modulates immune and inflammatory responses. Interestingly, an increased autonomic nervous system activity has been correlated with an altered immune response in cardiovascular diseases. The spleen is the largest immune organ exerting a potent influence on the cardiovascular system during disease and is characterized by a dense noradrenergic innervation. Taken together, these aspects led to hypothesize a key role of neuroimmune mechanisms in the onset and progression of hypertension. This review discusses how the nervous and splenic immune systems interact and how the mechanisms underlying the neuroimmune cross talk influence the disease progression.
Collapse
Affiliation(s)
- Sara Perrotta
- Department of Angiocardioneurology and Translational Medicine, Unit of Neuro and Cardiovascular Pathophysiology, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Neuromed, Pozzilli, Italy (S.P., D.C.)
| | - Daniela Carnevale
- Department of Angiocardioneurology and Translational Medicine, Unit of Neuro and Cardiovascular Pathophysiology, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Neuromed, Pozzilli, Italy (S.P., D.C.)
- Department of Molecular Medicine, "Sapienza" University of Rome, Italy (D.C.)
| |
Collapse
|
9
|
Lale N, Ditting T, Hilgers KF, Linz P, Ott C, Schmieder RE, Schiffer M, Amann K, Veelken R, Rodionova K. Afferent neurons of the kidney with impaired firing pattern in inflammation - role of sodium currents? Pflugers Arch 2023; 475:1329-1342. [PMID: 37672108 PMCID: PMC10567872 DOI: 10.1007/s00424-023-02852-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 09/07/2023]
Abstract
Peripheral neurons with renal afferents exhibit a predominantly tonic firing pattern of higher frequency that is reduced to low frequencies (phasic firing pattern) in renal inflammation. We wanted to test the hypothesis that the reduction in firing activity during inflammation is due to high-activity tonic neurons switching from higher to low frequencies depending on altered sodium currents. We identified and cultivated afferent sensory neurons with renal projections from the dorsal root ganglia (Th11-L2). Cultivated neurons were incubated with the chemokine CXCL1 (1,5 nmol/ml) for 12 h. We characterized neurons as "tonic," i.e., sustained action potential (AP) firing, or "phasic," i.e., < 5 APs upon stimulation in the current clamp. Their membrane currents were investigated in a voltage clamp. Data analyzed: renal vs. non-renal and tonic vs. phasic neurons. Renal afferent neurons exposed to CXCL1 showed a decrease in tonic firing pattern (CXCL1: 35,6% vs. control: 57%, P < 0.05). Na+ and K+ currents were not different between control renal and non-renal DRG neurons. Phasic neurons exhibited higher Na+ and K+ currents than tonic resulting in shorter APs (3.7 ± 0.3 vs. 6.1 ± 0.6 ms, P < 0.01). In neurons incubated with CXCL1, Na+ and K+ peak current density increased in phasic (Na+: - 969 ± 47 vs. - 758 ± 47 nA/pF, P < 0.01; K+: 707 ± 22 vs. 558 ± 31 nA/pF, P < 0.01), but were unchanged in tonic neurons. Phasic neurons exposed to CXCL1 showed a broader range of Na+ currents ([- 365- - 1429 nA] vs. [- 412- - 4273 nA]; P < 0.05) similar to tonic neurons. After CXCL1 exposure, significant changes in phasic neurons were observed in sodium activation/inactivation as well as a wider distribution of Na+ currents characteristic of tonic neurons. These findings indicate a subgroup of tonic neurons besides mere tonic or phasic neurons exists able to exhibit a phasic activity pattern under pathological conditions.
Collapse
Affiliation(s)
- Nena Lale
- Department of Internal Medicine 4 Nephrology and Hypertension, Friedrich-Alexander University Erlangen, 91054, Erlangen, Germany
| | - Tilmann Ditting
- Department of Internal Medicine 4 Nephrology and Hypertension, Friedrich-Alexander University Erlangen, 91054, Erlangen, Germany
- Department of Internal Medicine 4 - Nephrology and Hypertension, Paracelsus Private Medical School Nuremberg, Nuremberg, Germany
| | - Karl F Hilgers
- Department of Internal Medicine 4 Nephrology and Hypertension, Friedrich-Alexander University Erlangen, 91054, Erlangen, Germany
| | - Peter Linz
- Department of Radiology, Friedrich-Alexander University Erlangen, 91054, Erlangen, Germany
| | - Christian Ott
- Department of Internal Medicine 4 Nephrology and Hypertension, Friedrich-Alexander University Erlangen, 91054, Erlangen, Germany
- Department of Internal Medicine 4 - Nephrology and Hypertension, Paracelsus Private Medical School Nuremberg, Nuremberg, Germany
| | - Roland E Schmieder
- Department of Internal Medicine 4 Nephrology and Hypertension, Friedrich-Alexander University Erlangen, 91054, Erlangen, Germany
| | - Mario Schiffer
- Department of Internal Medicine 4 Nephrology and Hypertension, Friedrich-Alexander University Erlangen, 91054, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Friedrich-Alexander University Erlangen, 91054, Erlangen, Germany
| | - Roland Veelken
- Department of Internal Medicine 4 Nephrology and Hypertension, Friedrich-Alexander University Erlangen, 91054, Erlangen, Germany.
- Department of Internal Medicine 4 - Nephrology and Hypertension, Paracelsus Private Medical School Nuremberg, Nuremberg, Germany.
| | - Kristina Rodionova
- Department of Internal Medicine 4 Nephrology and Hypertension, Friedrich-Alexander University Erlangen, 91054, Erlangen, Germany
| |
Collapse
|
10
|
Lauar MR, Evans LC, Van Helden D, Fink GD, Banek CT, Menani JV, Osborn JW. Renal and hypothalamic inflammation in renovascular hypertension: role of afferent renal nerves. Am J Physiol Regul Integr Comp Physiol 2023; 325:R411-R422. [PMID: 37519252 PMCID: PMC10639016 DOI: 10.1152/ajpregu.00072.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/30/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Renal denervation (RDN) is a potential therapy for drug-resistant hypertension. However, whether its effects are mediated by ablation of efferent or afferent renal nerves is not clear. Previous studies have implicated that renal inflammation and the sympathetic nervous system are driven by the activation of afferent and efferent renal nerves. RDN attenuated the renal inflammation and sympathetic activity in some animal models of hypertension. In the 2 kidney,1 clip (2K1C) model of renovascular hypertension, RDN also decreased sympathetic activity; however, mechanisms underlying renal and central inflammation are still unclear. We tested the hypothesis that the mechanisms by which total RDN (TRDN; efferent + afferent) and afferent-specific RDN (ARDN) reduce arterial pressure in 2K1C rats are the same. Male Sprague-Dawley rats were instrumented with telemeters to measure mean arterial pressure (MAP), and after 7 days, a clip was placed on the left renal artery. Rats underwent TRDN, ARDN, or sham surgery of the clipped kidney and MAP was measured for 6 wk. Weekly measurements of water intake (WI), urine output (UO), and urinary copeptin were conducted, and urine was analyzed for cytokines/chemokines. Neurogenic pressor activity (NPA) was assessed at the end of the protocol calculated by the depressor response after intraperitoneal injection of hexamethonium. Rats were euthanized and the hypothalamus and kidneys removed for measurement of cytokine content. MAP, NPA, WI, and urinary copeptin were significantly increased in 2K1C-sham rats, and these responses were abolished by both TRDN and ARDN. 2K1C-sham rats presented with renal and hypothalamic inflammation and these responses were largely mitigated by TRDN and ARDN. We conclude that RDN attenuates 2K1C hypertension primarily by ablation of afferent renal nerves which disrupts bidirectional renal neural-immune pathways.NEW & NOTEWORTHY Hypertension resulting from reduced perfusion of the kidney is dependent on renal sensory nerves, which are linked to inflammation in the kidney and hypothalamus. Afferent renal nerves are required for chronic increases in both water intake and vasopressin release observed following renal artery stenosis. Findings from this study suggest an important role of renal sensory nerves that has previously been underestimated in the pathogenesis of 2K1C hypertension.
Collapse
Affiliation(s)
- Mariana R Lauar
- Department of Surgery, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
- Department of Physiology and Pathology, Dentistry School, São Paulo State University-UNESP, Araraquara, São Paulo, Brazil
| | - Louise C Evans
- Department of Surgery, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
| | - Dusty Van Helden
- Department of Surgery, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
| | - Gregory D Fink
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, United States
| | - Christopher T Banek
- Department of Physiology, University of Arizona Health Sciences, Tucson, Arizona, United States
| | - José V Menani
- Department of Physiology and Pathology, Dentistry School, São Paulo State University-UNESP, Araraquara, São Paulo, Brazil
| | - John W Osborn
- Department of Surgery, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
11
|
Parvin I, Gauthier MM, Dennis MR, Encinas NM, Nangia EL, Schwartz KL, Banek CT. Sequential afferent and sympathetic renal denervation impact on cardiovascular and renal homeostasis in the male Sprague-Dawley rat. Life Sci 2023; 325:121768. [PMID: 37169146 PMCID: PMC10225348 DOI: 10.1016/j.lfs.2023.121768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
Renal denervation (RDNx) is emerging as a promising treatment for cardiovascular disease, yet the underlying mechanisms and contributions of afferent (sensory) and efferent (sympathetic) renal nerves in healthy conditions remains limited. We hypothesize that sympathetic renal nerves contribute to long-term MAP and renal function, whereas afferent renal nerves do not contribute to the maintenance of cardiovascular and renal function. To test this hypothesis, we performed two experiments. In experiment one, we performed total renal denervation (T-RDNx), ablating afferent and sympathetic renal nerves, in normotensive adult SD rats to determine effects on MAP and renal function. Experiment 2 employed a sequential surgical ablation using: (1) afferent targeted renal denervation (A-RDNx), then (2) sympathetic (T-RDNx) denervation to determine the individual contributions to cardiovascular and renal homeostasis. In experiment 1, MAP decreased following T-RDNx and GFR increased. In experiment 2, A-RDNx led to an increase in MAP but did not change renal function. In contrast, T-RDNx decreased MAP and improved renal filtration. Together, these data partially support our hypothesis that renal sympathetic nerves contribute to the chronic regulation of arterial pressure and renal function. Contrary to the hypothesis, A-RDNx produced an increase in MAP without a detected change in renal function. We concluded that renal sympathetic nerves influence MAP and renal function regulation through a well-defined tonic contribution to renal vascular resistance and sodium reabsorption, whereas afferent renal nerves likely contribute to the maintenance of MAP through a tonic sympatho-inhibitory, negative feedback regulation in the normotensive, healthy rat.
Collapse
Affiliation(s)
- Irin Parvin
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Madeline M Gauthier
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Melissa R Dennis
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Noah M Encinas
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Ellen L Nangia
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Kyle L Schwartz
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Christopher T Banek
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ, USA.
| |
Collapse
|
12
|
Tyshynsky R, Sensarma S, Riedl M, Bukowy J, Schramm LP, Vulchanova L, Osborn JW. Periglomerular afferent innervation of the mouse renal cortex. Front Neurosci 2023; 17:974197. [PMID: 36777644 PMCID: PMC9909228 DOI: 10.3389/fnins.2023.974197] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Recent studies using a novel method for targeted ablation of afferent renal nerves have demonstrated their importance in the development and maintenance of some animal models of hypertension. However, relatively little is known about the anatomy of renal afferent nerves distal to the renal pelvis. Here, we investigated the anatomical relationship between renal glomeruli and afferent axons identified based on transient receptor potential vanilloid 1 channel (TRPV1) lineage or calcitonin gene related peptide (CGRP) immunolabeling. Analysis of over 6,000 (10,000 was accurate prior to the removal of the TH data during the review process) glomeruli from wildtype C57BL/6J mice and transgenic mice expressing tdTomato in TRPV1 lineage cells indicated that approximately half of all glomeruli sampled were closely apposed to tdTomato+ or CGRP+ afferent axons. Glomeruli were categorized as superficial, midcortical, or juxtamedullary based on their depth within the cortex. Juxtamedullary glomeruli were more likely to be closely apposed by afferent axon subtypes than more superficial glomeruli. High-resolution imaging of thick, cleared renal slices and subsequent distance transformations revealed that CGRP+ axons closely apposed to glomeruli were often found within 2 microns of nephrin+ labeling of glomerular podocytes. Furthermore, imaging of thick slices suggested that CGRP+ axon bundles can closely appose multiple glomeruli that share the same interlobular artery. Based on their expression of CGRP or tdTomato, prevalence near glomeruli, proximity to glomerular structures, and close apposition to multiple glomeruli within a module, we hypothesize that periglomerular afferent axons may function as mechanoreceptors monitoring glomerular pressure. These anatomical findings highlight the importance of further studies investigating the physiological role of periglomerular afferent axons in neural control of renal function in health and disease.
Collapse
Affiliation(s)
- Roman Tyshynsky
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Sulagna Sensarma
- Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Maureen Riedl
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - John Bukowy
- Department of Electrical Engineering and Computer Science, Milwaukee School of Engineering, Milwaukee, WI, United States
| | - Lawrence P. Schramm
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lucy Vulchanova
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States,Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - John W. Osborn
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States,Department of Surgery, University of Minnesota, Minneapolis, MN, United States,*Correspondence: John W. Osborn,
| |
Collapse
|
13
|
Zucker IH, Xia Z, Wang HJ. Potential Neuromodulation of the Cardio-Renal Syndrome. J Clin Med 2023; 12:803. [PMID: 36769450 PMCID: PMC9917464 DOI: 10.3390/jcm12030803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
The cardio-renal syndrome (CRS) type 2 is defined as a progressive loss of renal function following a primary insult to the myocardium that may be either acute or chronic but is accompanied by a decline in myocardial pump performance. The treatment of patients with CRS is difficult, and the disease often progresses to end-stage renal disease that is refractory to conventional therapy. While a good deal of information is known concerning renal injury in the CRS, less is understood about how reflex control of renal sympathetic nerve activity affects this syndrome. In this review, we provide insight into the role of the renal nerves, both from the afferent or sensory side and from the efferent side, in mediating renal dysfunction in CRS. We discuss how interventions such as renal denervation and abrogation of systemic reflexes may be used to alleviate renal dysfunction in the setting of chronic heart failure. We specifically focus on a novel cardiac sensory reflex that is sensitized in heart failure and activates the sympathetic nervous system, especially outflow to the kidney. This so-called Cardiac Sympathetic Afferent Reflex (CSAR) can be ablated using the potent neurotoxin resinferitoxin due to the high expression of Transient Receptor Potential Vanilloid 1 (TRPV1) receptors. Following ablation of the CSAR, several markers of renal dysfunction are reversed in the post-myocardial infarction heart failure state. This review puts forth the novel idea of neuromodulation at the cardiac level in the treatment of CRS Type 2.
Collapse
Affiliation(s)
- Irving H. Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zhiqiu Xia
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Han-Jun Wang
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
14
|
Contribution of afferent renal nerve signals to acute and chronic blood pressure regulation in stroke-prone spontaneously hypertensive rats. Hypertens Res 2023; 46:268-279. [PMID: 36369375 DOI: 10.1038/s41440-022-01091-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022]
Abstract
The activation of sympathetic nervous system plays a critical role in the development of hypertension. The input from afferent renal nerves may affect central sympathetic outflow; however, its contribution to the development of hypertension remains unclear. We investigated the role of afferent renal nerves in acute and chronic blood pressure regulation using normotensive Wistar-Kyoto rats (WKY) and stroke-prone spontaneously hypertensive rats (SHRSP). Acute chemical stimulation of afferent renal nerves elicited larger increases in blood pressure and renal sympathetic nerve activity in young 9-week-old SHRSP compared to WKY. Selective afferent renal denervation (ARDN) and conventional total renal denervation (TRDN) ablating both afferent and efferent nerves in young SHRSP revealed that only TRDN, but not ARDN, chronically attenuated blood pressure elevation. ARDN did not affect plasma renin activity or plasma angiotensin II levels, whereas TRDN decreased both. Neither TRDN nor ARDN affected central sympathetic outflow and systemic sympathetic activity determined by neuronal activity in the parvocellular region of hypothalamic paraventricular nucleus and rostral ventrolateral medulla and by plasma and urinary norepinephrine levels, respectively. Renal injury was not apparent in young SHRSP compared with WKY, suggesting that renal afferent input might not be activated in young SHRSP. In conclusion, the chronic input from afferent renal nerves does not contribute to the development of hypertension in SHRSP despite the increased blood pressure response to the acute stimulation of afferent renal nerves. Efferent renal nerves may be involved in the development of hypertension via activation of the renin-angiotensin system in SHRSP.
Collapse
|
15
|
Chaudhari S, Pham GS, Brooks CD, Dinh VQ, Young-Stubbs CM, Shimoura CG, Mathis KW. Should Renal Inflammation Be Targeted While Treating Hypertension? Front Physiol 2022; 13:886779. [PMID: 35770194 PMCID: PMC9236225 DOI: 10.3389/fphys.2022.886779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/17/2022] [Indexed: 11/28/2022] Open
Abstract
Despite extensive research and a plethora of therapeutic options, hypertension continues to be a global burden. Understanding of the pathological roles of known and underexplored cellular and molecular pathways in the development and maintenance of hypertension is critical to advance the field. Immune system overactivation and inflammation in the kidneys are proposed alternative mechanisms of hypertension, and resistant hypertension. Consideration of the pathophysiology of hypertension in chronic inflammatory conditions such as autoimmune diseases, in which patients present with autoimmune-mediated kidney inflammation as well as hypertension, may reveal possible contributors and novel therapeutic targets. In this review, we 1) summarize current therapies used to control blood pressure and their known effects on inflammation; 2) provide evidence on the need to target renal inflammation, specifically, and especially when first-line and combinatory treatment efforts fail; and 3) discuss the efficacy of therapies used to treat autoimmune diseases with a hypertension/renal component. We aim to elucidate the potential of targeting renal inflammation in certain subsets of patients resistant to current therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Keisa W. Mathis
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
16
|
Gauthier MM, Dennis MR, Morales MN, Brooks HL, Banek CT. Contribution of Afferent Renal Nerves to Cystogenesis and Arterial Pressure Regulation in a Preclinical Model of Autosomal Recessive Polycystic Kidney Disease. Am J Physiol Renal Physiol 2022; 322:F680-F691. [PMID: 35466689 PMCID: PMC9159540 DOI: 10.1152/ajprenal.00009.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Polycystic kidney disease (PKD) is the most common inheritable cause of kidney failure, and the underlying mechanisms remain incompletely uncovered. Renal nerves contribute to hypertension and chronic kidney disease - frequent complications of PKD. There is limited evidence that renal nerves may contribute to cardiorenal dysfunction in PKD, and no investigations of the role of sympathetic versus afferent nerves in PKD. Afferent renal nerve activity (ARNA) is elevated in models of renal disease and fibrosis. However, it remains unknown if this is true in PKD. We tested the hypothesis that ARNA is elevated in a preclinical model of autosomal recessive PKD (ARPKD), and that targeted renal nerve ablation would attenuate cystogenesis and cardiorenal dysfunction. We tested this by performing a total (T-RDNx) or afferent (A-RDNx) denervation in 4-week-old male and female PCK rats, then quantifying renal and cardiovascular responses 6 weeks following treatment. Cystogenesis was attenuated with A-RDNx and T-RDNx vs. sham controls, highlighting a crucial role for renal afferent nerves in cystogenesis. In contrast, blood pressure was improved with T-RDNx but not A-RDNx. Importantly, treatments produced similar results in both males and females. Direct renal afferent nerve recordings revealed that ARNA was 2-fold greater in PCK rats vs. non-cystic controls and was directly correlated to cystic severity. To our knowledge, we are the first to demonstrate that PCK rats have greater ARNA than non-cystic, age-matched controls. The findings of these studies support a novel and crucial role for renal afferent innervation in cystogenesis in the PCK rat.
Collapse
Affiliation(s)
- Madeline M Gauthier
- Department of Physiology, University of Arizona Health Sciences Center, Tucson, AZ, United States
| | - Melissa R Dennis
- Department of Physiology, University of Arizona Health Sciences Center, Tucson, AZ, United States
| | - Mark N Morales
- Department of Physiology, University of Arizona Health Sciences Center, Tucson, AZ, United States
| | - Heddwen L Brooks
- Department of Physiology, University of Arizona Health Sciences Center, Tucson, AZ, United States
| | - Christopher T Banek
- Department of Physiology, University of Arizona Health Sciences Center, Tucson, AZ, United States.,Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
17
|
Carnevale D. Neuroimmune axis of cardiovascular control: mechanisms and therapeutic implications. Nat Rev Cardiol 2022; 19:379-394. [PMID: 35301456 DOI: 10.1038/s41569-022-00678-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/07/2022] [Indexed: 12/21/2022]
Abstract
Cardiovascular diseases (CVDs) make a substantial contribution to the global burden of disease. Prevention strategies have succeeded in reducing the effect of acute CVD events and deaths, but the long-term consequences of cardiovascular risk factors still represent the major cause of disability and chronic illness, suggesting that some pathophysiological mechanisms might not be adequately targeted by current therapies. Many of the underlying causes of CVD have now been recognized to have immune and inflammatory components. However, inflammation and immune activation were mostly regarded as a consequence of target-organ damage. Only more recent findings have indicated that immune dysregulation can be pathogenic for CVD, identifying a need for novel immunomodulatory therapeutic strategies. The nervous system, through an array of afferent and efferent arms of the autonomic nervous system, profoundly affects cardiovascular function. Interestingly, the autonomic nervous system also innervates immune organs, and neuroimmune interactions that are biologically relevant to CVD have been discovered, providing the foundation to target neural reflexes as an immunomodulatory therapeutic strategy. This Review summarizes how the neural regulation of immunity and inflammation participates in the onset and progression of CVD and explores promising opportunities for future therapeutic strategies.
Collapse
Affiliation(s)
- Daniela Carnevale
- Department of Molecular Medicine, Sapienza University, Rome, Italy. .,Research Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Pozzilli, Italy.
| |
Collapse
|
18
|
Murray EC, Nosalski R, MacRitchie N, Tomaszewski M, Maffia P, Harrison DG, Guzik TJ. Therapeutic targeting of inflammation in hypertension: from novel mechanisms to translational perspective. Cardiovasc Res 2021; 117:2589-2609. [PMID: 34698811 PMCID: PMC9825256 DOI: 10.1093/cvr/cvab330] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 01/18/2023] Open
Abstract
Both animal models and human observational and genetic studies have shown that immune and inflammatory mechanisms play a key role in hypertension and its complications. We review the effects of immunomodulatory interventions on blood pressure, target organ damage, and cardiovascular risk in humans. In experimental and small clinical studies, both non-specific immunomodulatory approaches, such as mycophenolate mofetil and methotrexate, and medications targeting T and B lymphocytes, such as tacrolimus, cyclosporine, everolimus, and rituximab, lower blood pressure and reduce organ damage. Mechanistically targeted immune interventions include isolevuglandin scavengers to prevent neo-antigen formation, co-stimulation blockade (abatacept, belatacept), and anti-cytokine therapies (e.g. secukinumab, tocilizumab, canakinumab, TNF-α inhibitors). In many studies, trial designs have been complicated by a lack of blood pressure-related endpoints, inclusion of largely normotensive study populations, polypharmacy, and established comorbidities. Among a wide range of interventions reviewed, TNF-α inhibitors have provided the most robust evidence of blood pressure lowering. Treatment of periodontitis also appears to deliver non-pharmacological anti-hypertensive effects. Evidence of immunomodulatory drugs influencing hypertension-mediated organ damage are also discussed. The reviewed animal models, observational studies, and trial data in humans, support the therapeutic potential of immune-targeted therapies in blood pressure lowering and in hypertension-mediated organ damage. Targeted studies are now needed to address their effects on blood pressure in hypertensive individuals.
Collapse
Affiliation(s)
- Eleanor C Murray
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8TA Glasgow, UK
| | - Ryszard Nosalski
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8TA Glasgow, UK,Department of Internal Medicine, Collegium Medicum, Jagiellonian University, 31-008 Kraków, Poland
| | - Neil MacRitchie
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8TA Glasgow, UK
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, M13 9PL Manchester, UK,Manchester Heart Centre and Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, M13 9WL Manchester, UK
| | - Pasquale Maffia
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8TA Glasgow, UK,Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8TA Glasgow, UK,Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - David G Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbildt University Medical Centre, Nashville, 37232 TN, USA
| | - Tomasz J Guzik
- Corresponding author. Tel: +44 141 3307590; fax: +44 141 3307590, E-mail:
| |
Collapse
|
19
|
Rodionova K, Ditting T, Veelken R. Renal Nerve Ablation in Nephritis and Beyond. J Am Soc Nephrol 2021; 32:2393-2395. [PMID: 34599032 PMCID: PMC8722803 DOI: 10.1681/asn.2021060748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Kristina Rodionova
- Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany
| | - Tilmann Ditting
- Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany.,Department of Internal Medicine 4 (Nephrology und Hypertension), Paracelsus Private Medical School, Klinikum Nuremberg, Nuremberg, Germany
| | - Roland Veelken
- Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany .,Department of Internal Medicine 4 (Nephrology und Hypertension), Paracelsus Private Medical School, Klinikum Nuremberg, Nuremberg, Germany
| |
Collapse
|
20
|
Sata Y, Burke SL, Eikelis N, Watson AMD, Gueguen C, Jackson KL, Lambert GW, Lim K, Denton KM, Schlaich MP, Head GA. Renal Deafferentation Prevents Progression of Hypertension and Changes to Sympathetic Reflexes in a Rabbit Model of Chronic Kidney Disease. Hypertension 2021; 78:1310-1321. [PMID: 34538104 DOI: 10.1161/hypertensionaha.121.17037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Yusuke Sata
- Neuropharmacology Laboratory (Y.S., S.L.B., A.M.D.W., C.G., K.L.J., K.L., G.A.H.), Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Human Neurotransmitters Laboratory (Y.S., M.P.S., G.W.L., N.E.), Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Faculty of Medicine, Nursing and Health Sciences, Central Clinical School (Y.S.), Monash University, Melbourne, VIC, Australia.,Department of Cardiology, Alfred Hospital, Melbourne, VIC, Australia (Y.S.)
| | - Sandra L Burke
- Neuropharmacology Laboratory (Y.S., S.L.B., A.M.D.W., C.G., K.L.J., K.L., G.A.H.), Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Nina Eikelis
- Human Neurotransmitters Laboratory (Y.S., M.P.S., G.W.L., N.E.), Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Iverson Health Innovation Research Institute and School of Health Sciences, Swinburne University of Technology, Hawthorn, VIC, Australia (N.E., G.W.L.)
| | - Anna M D Watson
- Neuropharmacology Laboratory (Y.S., S.L.B., A.M.D.W., C.G., K.L.J., K.L., G.A.H.), Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Diabetes, Central Clinical School (A.M.D.W.), Monash University, Melbourne, VIC, Australia
| | - Cindy Gueguen
- Neuropharmacology Laboratory (Y.S., S.L.B., A.M.D.W., C.G., K.L.J., K.L., G.A.H.), Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Kristy L Jackson
- Neuropharmacology Laboratory (Y.S., S.L.B., A.M.D.W., C.G., K.L.J., K.L., G.A.H.), Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences (K.L.J), Monash University, Melbourne, VIC, Australia
| | - Gavin W Lambert
- Human Neurotransmitters Laboratory (Y.S., M.P.S., G.W.L., N.E.), Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Iverson Health Innovation Research Institute and School of Health Sciences, Swinburne University of Technology, Hawthorn, VIC, Australia (N.E., G.W.L.)
| | - Kyungjoon Lim
- Neuropharmacology Laboratory (Y.S., S.L.B., A.M.D.W., C.G., K.L.J., K.L., G.A.H.), Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia (K.L.)
| | - Kate M Denton
- Cardiovascular Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, Australia (K.M.D.)
| | - Markus P Schlaich
- Human Neurotransmitters Laboratory (Y.S., M.P.S., G.W.L., N.E.), Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Departments of Cardiology and Nephrology, Dobney Hypertension Centre, School of Medicine, Royal Perth Hospital Unit, University of Western Australia, Royal Perth Hospital (M.P.S.)
| | - Geoffrey A Head
- Neuropharmacology Laboratory (Y.S., S.L.B., A.M.D.W., C.G., K.L.J., K.L., G.A.H.), Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Pharmacology (G.A.H.), Monash University, Melbourne, VIC, Australia
| |
Collapse
|
21
|
Banek CT, Bradshaw JL, Coats LE, Alexander BT, Goulopoulou S. Getting it right: preventing drift in baseline cardiovascular phenotype when using Sprague-Dawley rats. Am J Physiol Heart Circ Physiol 2021; 321:H475-H478. [PMID: 34328344 DOI: 10.1152/ajpheart.00382.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Christopher T Banek
- Department of Physiology, University of Arizona Health Sciences Center, Tucson, Arizona
| | - Jessica L Bradshaw
- Department of Physiology and Anatomy, University of North Texas Health Sciences Center, Fort Worth, Texas
| | - Laura E Coats
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Barbara T Alexander
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Styliani Goulopoulou
- Department of Physiology and Anatomy, University of North Texas Health Sciences Center, Fort Worth, Texas
| |
Collapse
|
22
|
DeLalio LJ, Stocker SD. Impact of anesthesia and sex on sympathetic efferent and hemodynamic responses to renal chemo- and mechanosensitive stimuli. J Neurophysiol 2021; 126:668-679. [PMID: 34259043 DOI: 10.1152/jn.00277.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Activation of renal sensory nerves by chemo- and mechanosensitive stimuli produces changes in efferent sympathetic nerve activity (SNA) and arterial blood pressure (ABP). Anesthesia and sex influence autonomic function and cardiovascular hemodynamics, but it is unclear to what extent anesthesia and sex impact SNA and ABP responses to renal sensory stimuli. We measured renal, splanchnic, and lumbar SNA and ABP in male and female Sprague-Dawley rats during contralateral renal infusion of capsaicin and bradykinin or during elevation in renal pelvic pressure. Responses were evaluated with a decerebrate preparation or Inactin, urethane, or isoflurane anesthesia. Intrarenal arterial infusion of capsaicin (0.1-30.0 μM) increased renal SNA, splanchnic SNA, or ABP but decreased lumbar SNA in the Inactin group. Intrarenal arterial infusion of bradykinin (0.1-30.0 μM) increased renal SNA, splanchnic SNA, and ABP but decreased lumbar SNA in the Inactin group. Elevated renal pelvic pressure (0-20 mmHg, 30 s) significantly increased renal SNA and splanchnic SNA but not lumbar SNA in the Inactin group. In marked contrast, SNA and ABP responses to every renal stimulus were severely blunted in the urethane and decerebrate groups and absent in the isoflurane group. In the Inactin group, the magnitude of SNA responses to chemo- and mechanosensory stimuli were not different between male and female rats. Thus, chemo- and mechanosensitive stimuli produce differential changes in renal, splanchnic, and lumbar SNA. Experimentally, future investigations should consider Inactin anesthesia to examine sympathetic and hemodynamic responses to renal sensory stimuli.NEW & NOTEWORTHY The findings highlight the impact of anesthesia, and to a lesser extent sex, on sympathetic efferent and hemodynamic responses to chemosensory and mechanosensory renal stimuli. Sympathetic nerve activity (SNA) and arterial blood pressure (ABP) responses were present in Inactin-anesthetized rats but largely absent in decerebrate, isoflurane, or urethane preparations. Renal chemosensory stimuli differentially changed SNA: renal and splanchnic SNA increased, but lumbar SNA decreased. Future investigations should consider Inactin anesthesia to study SNA and hemodynamic responses to renal sensory nerve activation.
Collapse
Affiliation(s)
- Leon J DeLalio
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sean D Stocker
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
23
|
Rodionova K, Hilgers KF, Rafii-Tabrizi S, Doellner J, Cordasic N, Linz P, Karl AL, Ott C, Schmieder RE, Schiffer M, Amann K, Veelken R, Ditting T. Responsiveness of afferent renal nerve units in renovascular hypertension in rats. Pflugers Arch 2021; 473:1617-1629. [PMID: 34232378 PMCID: PMC8433106 DOI: 10.1007/s00424-021-02591-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/12/2021] [Accepted: 06/03/2021] [Indexed: 12/01/2022]
Abstract
Previous data suggest that renal afferent nerve activity is increased in hypertension exerting sympathoexcitatory effects. Hence, we wanted to test the hypothesis that in renovascular hypertension, the activity of dorsal root ganglion (DRG) neurons with afferent projections from the kidneys is augmented depending on the degree of intrarenal inflammation. For comparison, a nonhypertensive model of mesangioproliferative nephritis was investigated. Renovascular hypertension (2-kidney, 1-clip [2K1C]) was induced by unilateral clipping of the left renal artery and mesangioproliferative glomerulonephritis (anti-Thy1.1) by IV injection of a 1.75-mg/kg BW OX-7 antibody. Neuronal labeling (dicarbocyanine dye [DiI]) in all rats allowed identification of renal afferent dorsal root ganglion (DRG) neurons. A current clamp was used to characterize neurons as tonic (sustained action potential [AP] firing) or phasic (1–4 AP) upon stimulation by current injection. All kidneys were investigated using standard morphological techniques. DRG neurons exhibited less often tonic response if in vivo axonal input from clipped kidneys was received (30.4% vs. 61.2% control, p < 0.05). However, if the nerves to the left clipped kidneys were cut 7 days prior to investigation, the number of tonic renal neurons completely recovered to well above control levels. Interestingly, electrophysiological properties of neurons that had in vivo axons from the right non-clipped kidneys were not distinguishable from controls. Renal DRG neurons from nephritic rats also showed less often tonic activity upon current injection (43.4% vs. 64.8% control, p < 0.05). Putative sympathoexcitatory and impaired sympathoinhibitory renal afferent nerve fibers probably contribute to increased sympathetic activity in 2K1C hypertension.
Collapse
Affiliation(s)
- Kristina Rodionova
- Department of Internal Medicine 4 - Nephrology and Hypertension, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Karl F Hilgers
- Department of Internal Medicine 4 - Nephrology and Hypertension, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Salman Rafii-Tabrizi
- Department of Internal Medicine 4 - Nephrology and Hypertension, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Johannes Doellner
- Department of Internal Medicine 4 - Nephrology and Hypertension, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Nada Cordasic
- Department of Internal Medicine 4 - Nephrology and Hypertension, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Peter Linz
- Department of Radiology, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Anna-Lena Karl
- Department of Internal Medicine 4 - Nephrology and Hypertension, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Christian Ott
- Department of Internal Medicine 4 - Nephrology and Hypertension, Friedrich-Alexander University Erlangen, Erlangen, Germany.,Department of Internal Medicine 4 - Nephrology and Hypertension, Paracelsus Private Medical School Nuremberg, Nuremberg, Germany
| | - Roland E Schmieder
- Department of Internal Medicine 4 - Nephrology and Hypertension, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Mario Schiffer
- Department of Internal Medicine 4 - Nephrology and Hypertension, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Roland Veelken
- Department of Internal Medicine 4 - Nephrology and Hypertension, Friedrich-Alexander University Erlangen, Erlangen, Germany. .,Department of Radiology, Friedrich-Alexander University Erlangen, Erlangen, Germany.
| | - Tilmann Ditting
- Department of Internal Medicine 4 - Nephrology and Hypertension, Friedrich-Alexander University Erlangen, Erlangen, Germany.,Department of Internal Medicine 4 - Nephrology and Hypertension, Paracelsus Private Medical School Nuremberg, Nuremberg, Germany
| |
Collapse
|
24
|
Liang B, Liang Y, Li R, Gu N. Effect of renal denervation on long-term outcomes in patients with resistant hypertension. Cardiovasc Diabetol 2021; 20:117. [PMID: 34090434 PMCID: PMC8180124 DOI: 10.1186/s12933-021-01309-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Increasing studies strongly prove that renal denervation, a minimally invasive surgery, is a promising new non-drug treatment method that can effectively control blood pressure in patients with resistant hypertension, but the evaluation of the long-term blood pressure control effect of renal denervation for resistant hypertension is still lacking. Here, we critically review current long-term follow-up data about the use of renal denervation for RH to comprehensively evaluate the effectiveness of renal denervation for RH, and to provide practical guidance for practitioners who are establishing a renal denervation service. Limited by the current research, many problems need to be solved before renal denervation is applied to RH. In addition, ambulatory blood pressure should be the first choice for the evaluation of blood pressure. Finally, the continuous antihypertensive effect of renal denervation in different renal denervation systems also needs to be strictly compared.
Collapse
Affiliation(s)
- Bo Liang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Liang
- Southwest Medical University, Luzhou, China
| | - Rui Li
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Ning Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
25
|
Rodionova K, Hindermann M, Hilgers K, Ott C, Schmieder RE, Schiffer M, Amann K, Veelken R, Ditting T. AT II Receptor Blockade and Renal Denervation: Different Interventions with Comparable Renal Effects? Kidney Blood Press Res 2021; 46:331-341. [PMID: 34034251 DOI: 10.1159/000515616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/02/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Angiotensin II (Ang II) and the renal sympathetic nervous system exert a strong influence on renal sodium and water excretion. We tested the hypothesis that already low doses of an Ang II inhibitor (candesartan) will result in similar effects on tubular sodium and water reabsorption in congestive heart failure (CHF) as seen after renal denervation (DNX). METHODS Measurement of arterial blood pressure, heart rate (HR), renal sympathetic nerve activity (RSNA), glomerular filtration rate (GFR), renal plasma flow (RPF), urine volume, and urinary sodium. To assess neural control of volume homeostasis, 21 days after the induction of CHF via myocardial infarction rats underwent volume expansion (0.9% NaCL; 10% body weight) to decrease RSNA. CHF rat and controls with or without DNX or pretreated with the Ang II type-1 receptor antagonist candesartan (0.5 ug i.v.) were studied. RESULTS CHF rats excreted only 68 + 10.2% of the volume load (10% body weight) in 90 min. CHF rats pretreated with candesartan or after DNX excreted from 92 to 103% like controls. Decreases of RSNA induced by volume expansion were impaired in CHF rats but unaffected by candesartan pointing to an intrarenal drug effect. GFR and RPF were not significantly different in controls or CHF. CONCLUSION The prominent function of increased RSNA - retaining salt and water - could no longer be observed after renal Ang II receptor blockade in CHF rats.
Collapse
Affiliation(s)
- Kristina Rodionova
- Department of Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany
- Department of Department of Internal Medicine 4 (Nephrology und Hypertension), Paracelsus Private Medical School, Klinikum Nuremberg, Nuremberg, Germany
| | - Martin Hindermann
- Department of Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany
| | - Karl Hilgers
- Department of Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany
| | - Christian Ott
- Department of Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany
- Department of Department of Internal Medicine 4 (Nephrology und Hypertension), Paracelsus Private Medical School, Klinikum Nuremberg, Nuremberg, Germany
| | - Roland E Schmieder
- Department of Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany
| | - Mario Schiffer
- Department of Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, University of Erlangen, Erlangen, Germany
| | - Roland Veelken
- Department of Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany
- Department of Department of Internal Medicine 4 (Nephrology und Hypertension), Paracelsus Private Medical School, Klinikum Nuremberg, Nuremberg, Germany
| | - Tilmann Ditting
- Department of Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany
- Department of Department of Internal Medicine 4 (Nephrology und Hypertension), Paracelsus Private Medical School, Klinikum Nuremberg, Nuremberg, Germany
| |
Collapse
|
26
|
Soomro QH, Charytan DM. Cardiovascular autonomic nervous system dysfunction in chronic kidney disease and end-stage kidney disease: disruption of the complementary forces. Curr Opin Nephrol Hypertens 2021; 30:198-207. [PMID: 33395034 DOI: 10.1097/mnh.0000000000000686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Several nontraditional risk factors have been the focus of research in an attempt to understand the disproportionately high cardiovascular morbidity and mortality in chronic kidney disease (CKD) and end-stage kidney disease (ESKD) populations. One such category of risk factors is cardiovascular autonomic dysfunction. Its true prevalence in the CKD/ESKD population is unknown but existing evidence suggests it is common. Due to lack of standardized diagnostic and treatment options, this condition remains undiagnosed and untreated in many patients. In this review, we discuss current evidence pointing toward the role of autonomic nervous system (ANS) dysfunction in CKD, building off of crucial historical evidence and thereby highlighting the areas in need for future research interest. RECENT FINDINGS There are several key mediators and pathways leading to cardiovascular autonomic dysfunction in CKD and ESKD. We review studies exploring the mechanisms involved and discuss the current measurement tools and indices to evaluate the ANS and their pitfalls. There is a strong line of evidence establishing the temporal sequence of worsening autonomic function and kidney function and vice versa. Evidence linking ANS dysfunction and arrhythmia, sudden cardiac death, intradialytic hypotension, heart failure and hypertension are discussed. SUMMARY There is a need for early recognition and referral of CKD and ESKD patients suspected of cardiovascular ANS dysfunction to prevent the downstream effects described in this review.There are many unknowns in this area and a clear need for further research.
Collapse
Affiliation(s)
- Qandeel H Soomro
- Nephrology Division, Department of Medicine, NYU Langone Medical Center, New York, New York, USA
| | | |
Collapse
|
27
|
Osborn JW, Tyshynsky R, Vulchanova L. Function of Renal Nerves in Kidney Physiology and Pathophysiology. Annu Rev Physiol 2021; 83:429-450. [PMID: 33566672 DOI: 10.1146/annurev-physiol-031620-091656] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Renal sympathetic (efferent) nerves play an important role in the regulation of renal function, including glomerular filtration, sodium reabsorption, and renin release. The kidney is also innervated by sensory (afferent) nerves that relay information to the brain to modulate sympathetic outflow. Hypertension and other cardiometabolic diseases are linked to overactivity of renal sympathetic and sensory nerves, but our mechanistic understanding of these relationships is limited. Clinical trials of catheter-based renal nerve ablation to treat hypertension have yielded promising results. Therefore, a greater understanding of how renal nerves control the kidney under physiological and pathophysiological conditions is needed. In this review, we provide an overview of the current knowledge of the anatomy of efferent and afferent renal nerves and their functions in normal and pathophysiological conditions. We also suggest further avenues of research for development of novel therapies targeting the renal nerves.
Collapse
Affiliation(s)
- John W Osborn
- Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA;
| | - Roman Tyshynsky
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Lucy Vulchanova
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
28
|
Asirvatham-Jeyaraj N, Gauthier MM, Banek CT, Ramesh A, Garver H, Fink GD, Osborn JW. Renal Denervation and Celiac Ganglionectomy Decrease Mean Arterial Pressure Similarly in Genetically Hypertensive Schlager (BPH/2J) Mice. Hypertension 2021; 77:519-528. [PMID: 33390041 PMCID: PMC7803455 DOI: 10.1161/hypertensionaha.119.14069] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Supplemental Digital Content is available in the text. Renal denervation (RDNX) lowers mean arterial pressure (MAP) in patients with resistant hypertension. Less well studied is the effect of celiac ganglionectomy (CGX), a procedure which involves the removal of the nerves innervating the splanchnic vascular bed. We hypothesized that RDNX and CGX would both lower MAP in genetically hypertensive Schlager (BPH/2J) mice through a reduction in sympathetic tone. Telemeters were implanted into the femoral artery in mice to monitor MAP before and after RDNX (n=5), CGX (n=6), or SHAM (n=6). MAP, systolic blood pressure, diastolic blood pressure, and heart rate were recorded for 14 days postoperatively. The MAP response to hexamethonium (10 mg/kg, IP) was measured on control day 3 and postoperative day 10 as a measure of global neurogenic pressor activity. The efficacy of denervation was assessed by measurement of tissue norepinephrine. Control MAP was similar among the 3 groups before surgical treatments (≈130 mm Hg). On postoperative day 14, MAP was significantly lower in RDNX (−11±2 mm Hg) and CGX (−11±1 mm Hg) groups compared with their predenervation values. This was not the case in SHAM mice (−5±3 mm Hg). The depressor response to hexamethonium in the RDNX group was significantly smaller on postoperative day 10 (−10±5 mm Hg) compared with baseline control (−25±10 mm Hg). This was not the case in mice in the SHAM (day 10; −28±5 mm Hg) or CGX (day 10; −34±7 mm Hg) group. In conclusion, both renal and splanchnic nerves contribute to hypertension in BPH/2J mice, but likely through different mechanisms.
Collapse
Affiliation(s)
- Ninitha Asirvatham-Jeyaraj
- From the Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis (M.M.G., C.T.B., A.R., J.W.O.).,Department of Biotechnology, Indian Institute of Technology Madras, Chennai (N.A.-J.)
| | | | - Christopher T Banek
- From the Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis (M.M.G., C.T.B., A.R., J.W.O.).,Department of Physiology, University of Arizona, Tucson (M.M.G., C.T.B.)
| | - Abhismitha Ramesh
- From the Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis (M.M.G., C.T.B., A.R., J.W.O.)
| | - Hannah Garver
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing (H.G., G.D.F.)
| | - Gregory D Fink
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing (H.G., G.D.F.)
| | - John W Osborn
- From the Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis (M.M.G., C.T.B., A.R., J.W.O.)
| |
Collapse
|
29
|
Veiga AC, Milanez MIO, Campos RR, Bergamaschi CT, Nishi EE. The involvement of renal afferents in the maintenance of cardiorenal diseases. Am J Physiol Regul Integr Comp Physiol 2021; 320:R88-R93. [PMID: 33146555 DOI: 10.1152/ajpregu.00225.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Elevated sympathetic vasomotor activity is a common feature of cardiorenal diseases. Therefore, the sympathetic nervous system is an important therapeutic target, particularly the fibers innervating the kidneys. In fact, renal denervation has been applied clinically and shown promising results in patients with hypertension and chronic kidney disease. However, the underlying mechanisms involved in the cardiorenal protection induced by renal denervation have not yet been fully clarified. This mini-review highlights historical and recent aspects related to the role of renal sensory fibers in the control of cardiorenal function under normal conditions and in experimental models of cardiovascular disease. Results have demonstrated that alterations in renal sensory function participate in the maintenance of elevated sympathetic vasomotor activity and cardiorenal changes; as such, renal sensory fibers may be a potential therapeutic target for the treatment of cardiorenal diseases. Although it has not yet been applied in clinical practice, selective afferent renal denervation may be promising, since such an approach maintains efferent activity and can provide more refined control of renal function compared with total renal denervation. However, more studies are needed to understand the mechanisms by which renal afferents partially contribute to such changes, in addition to the need to evaluate the safety and advantages of the approach for application in the clinical practice.
Collapse
Affiliation(s)
- Amanda C Veiga
- Department of Physiology, Cardiovascular Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | - Maycon I O Milanez
- Department of Physiology, Cardiovascular Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | - Ruy R Campos
- Department of Physiology, Cardiovascular Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | - Cassia T Bergamaschi
- Department of Physiology, Cardiovascular Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | - Erika E Nishi
- Department of Physiology, Cardiovascular Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
30
|
Development and Evaluation of a Disease Large Animal Model for Preclinical Assessment of Renal Denervation Therapies. Animals (Basel) 2020; 10:ani10091446. [PMID: 32824935 PMCID: PMC7552649 DOI: 10.3390/ani10091446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 11/17/2022] Open
Abstract
New-generation catheters-based renal denervation (RDN) is under investigation for the treatment of uncontrolled hypertension (HTN). We assessed the feasibility of a large animal model of HTN to accommodate the human RDN devices. Ten minipigs were instrumented to measure blood pressure (BP) in an awake-state. HTN was induced with subcutaneous 11-deoxycorticosterone (DOCA, 100 mg/kg) implants. Five months after, the surviving animals underwent RDN with the Symplicity® system. Norepinephrine (NE) renal gradients were determined before and 1 month after RDN. Renal arteries were processed for histological (hematoxylin-eosin, Movat pentachrome) and immunohistochemical (S100, tyrosine-hydroxylase) analyses. BP significantly rose after DOCA implants. Six animals died prematurely, mainly from infectious causes. The surviving animals showed stable BP levels after 5 months. One month after RDN, nerve damage was showed in three animals, with impedance drop >10%, NE gradient drop and reduction in BP. The fourth animal showed no nerve damage, impedance drop <10%, NE gradient increase and no change in BP. In conclusion, the minipig model of DOCA-induced HTN is feasible, showing durable effects. High mortality should be addressed in next iterations of this model. RDN may partially offset the DOCA-induced HTN. Impedance drop and NE renal gradient could be markers of RDN success.
Collapse
|
31
|
Araujo M, Solis G, Welch WJ, Wilcox CS. Renal Nerve Deafferentation Attenuates the Fall in GFR during Intravenous Infusion of Furosemide in Anesthetized Rats. Kidney Blood Press Res 2020; 45:70-83. [PMID: 31896111 DOI: 10.1159/000504223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/17/2019] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Furosemide reduces the glomerular filtration rate (GFR) and increases the renal vascular resistance (RVR) despite inhibiting tubuloglomerular feedback but increases proximal tubule pressure, renin release, and renal nerve activity. OBJECTIVE This study tested the hypothesis that the fall in GFR with furosemide is due to volume depletion or activation of angiotensin type 1 (AT1) receptors or renal nerves. METHODS Furosemide was infused for 60 min at 1.0 mg·kg-1·h-1 in groups of 5-8 anesthetized rats. Additional groups received intravenous volume replacement to prevent fluid and Na+ losses or volume replacement plus losartan or plus sham denervation or plus renal denervation or renal nerve deafferentation. RESULTS At 60 min of infusion, furosemide alone reduced the GFR (-37 ± 4%; p < 0.01). This fall was not prevented by volume replacement or pretreatment with losartan, although losartan moderated the increase in RVR with furosemide (+44 ± 3 vs. +82 ± 7%; p < 0.01). Whereas the GFR fell after furosemide in rats after sham procedure (-31 ± 2%), it was not changed significantly after prior renal deafferentation. Proximal tubule pressure increased significantly but returned towards baseline over 60 min of furosemide, while urine output remained elevated, and GFR and renal blood flow depressed. CONCLUSIONS The fall in GFR over 60 min of furosemide infusion is independent of volume depletion or activation of AT1 receptors but is largely dependent on renal afferent nerves.
Collapse
Affiliation(s)
- Magali Araujo
- Hypertension Research Center andDivision of Nephrology and Hypertension, Georgetown University, Washington, District of Columbia, USA
| | - Glenn Solis
- Hypertension Research Center andDivision of Nephrology and Hypertension, Georgetown University, Washington, District of Columbia, USA
| | - William J Welch
- Hypertension Research Center andDivision of Nephrology and Hypertension, Georgetown University, Washington, District of Columbia, USA
| | - Christopher S Wilcox
- Hypertension Research Center andDivision of Nephrology and Hypertension, Georgetown University, Washington, District of Columbia, USA,
| |
Collapse
|
32
|
Dalmasso C, Leachman JR, Osborn JL, Loria AS. Sensory signals mediating high blood pressure via sympathetic activation: role of adipose afferent reflex. Am J Physiol Regul Integr Comp Physiol 2019; 318:R379-R389. [PMID: 31868518 DOI: 10.1152/ajpregu.00079.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Blood pressure regulation in health and disease involves a balance between afferent and efferent signals from multiple organs and tissues. Although there are numerous reviews focused on the role of sympathetic nerves in different models of hypertension, few have revised the contribution of afferent nerves innervating adipose tissue and their role in the development of obesity-induced hypertension. Both clinical and basic research support the beneficial effects of bilateral renal denervation in lowering blood pressure. However, recent studies revealed that afferent signals from adipose tissue, in an adipose-brain-peripheral pathway, could contribute to the increased sympathetic activation and blood pressure during obesity. This review focuses on the role of adipose tissue afferent reflexes and briefly describes a number of other afferent reflexes modulating blood pressure. A comprehensive understanding of how multiple afferent reflexes contribute to the pathophysiology of essential and/or obesity-induced hypertension may provide significant insights into improving antihypertensive therapeutic approaches.
Collapse
Affiliation(s)
- Carolina Dalmasso
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Jacqueline R Leachman
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Jeffrey L Osborn
- Department of Biology, College of Arts and Sciences, University of Kentucky, Lexington, Kentucky
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
33
|
Banek CT, Gauthier MM, Van Helden DA, Fink GD, Osborn JW. Renal Inflammation in DOCA-Salt Hypertension. Hypertension 2019; 73:1079-1086. [PMID: 30879356 DOI: 10.1161/hypertensionaha.119.12762] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent reports indicate that, in addition to treating hypertension, renal denervation (RDN) also mitigates renal inflammation. However, because RDN decreases renal perfusion pressure, it is unclear whether these effects are because of the direct effects of RDN on inflammatory signaling or secondary to decreased arterial pressure (AP). Therefore, this study was conducted to elucidate the contribution of renal nerves to renal inflammation in the deoxycorticosterone (DOCA)-salt rat, a model in which RDN decreases AP and abolishes renal inflammation. In Experiment 1, we assessed the temporal changes in renal inflammation by measuring renal cytokines and AP in DOCA-salt rats. Uninephrectomized (1K) adult male Sprague Dawley rats that received surgical RDN or sham (Sham) were administered DOCA (100 mg, SC) and 0.9% saline for 21 days. AP was measured by radiotelemetry, and urinary cytokine excretion was measured repeatedly. In Experiment 2, the contribution of renal nerves in renal inflammation was assessed in a 2-kidney DOCA-salt rat to control for renal perfusion pressure. DOCA-salt treatment was administered after unilateral (U-)RDN. In Experiment 1, DOCA-salt-induced increases in AP and renal inflammation (assessed by urinary cytokines) were attenuated by RDN versus Sham. In Experiment 2, GRO/KC (growth-related oncogene/keratinocyte chemoattractant), MCP (monocyte chemoattractant protein)-1, and macrophage infiltration were lower in the denervated kidney versus the contralateral Sham kidney. No differences in T-cell infiltration were observed. Together, these data support the hypothesis that renal nerves mediate, in part, the development of renal inflammation in the DOCA-salt rat independent of hypertension. The mechanisms and cell-specificity mediating these effects require further investigation.
Collapse
Affiliation(s)
- Christopher T Banek
- From the Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis (C.T.B., M.M.G., D.A.V.H., J.W.O.)
| | - Madeline M Gauthier
- From the Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis (C.T.B., M.M.G., D.A.V.H., J.W.O.)
| | - Dusty A Van Helden
- From the Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis (C.T.B., M.M.G., D.A.V.H., J.W.O.)
| | - Gregory D Fink
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing (G.D.F.)
| | - John W Osborn
- From the Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis (C.T.B., M.M.G., D.A.V.H., J.W.O.)
| |
Collapse
|
34
|
Abdulla MH, Brennan N, Ryan E, Sweeney L, Manning J, Johns EJ. Tacrolimus restores the high- and low-pressure baroreflex control of renal sympathetic nerve activity in cisplatin-induced renal injury rats. Exp Physiol 2019; 104:1726-1736. [PMID: 31468631 DOI: 10.1113/ep087829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 08/22/2019] [Indexed: 01/04/2025]
Abstract
NEW FINDINGS What is the central question of this study? Does immunosuppression restore the baroreflex control of renal sympathetic nerve activity (RSNA) in an animal model of kidney injury? What is the main finding and its importance? Tacrolimus, a calcineurin inhibitor, restored the high- and low-pressure baroreflex control of RSNA following cisplatin-induced renal injury. ABSTRACT Cisplatin administration causes depression of renal haemodynamic and excretory function and is associated with renal sympatho-excitation and loss of baroreflex regulation of renal sympathetic nerve activity (RSNA). This study investigated whether administration of the immunosuppressant tacrolimus in this cisplatin-mediated renal injury model could restore, or the acute intra-renal infusion of tumour necrosis factor α (TNF-α) could blunt, the high- or low-pressure baroreflex control of RSNA. Groups of control and cisplatin-treated (5 mg kg-1 , i.p. on day 0) rats received either saline or tacrolimus (0.25 mg kg-1 day-1 , i.p.) for 7 days prior to study. Rats were anaesthetised and prepared for measurement of mean arterial pressure (MAP), heart rate (HR) and RSNA. Baroreflex gain curves were generated and the degree of renal sympatho-inhibition determined (area under the curve (AUC) reported as %RSNA min) during acute volume expansion. Intrarenal TNF-α infusion (0.3 µg kg-1 h-1 ) in control rats decreased baroreflex gain by 32% (P < 0.05) compared to intra-renal saline infusion. In the cisplatin group (MAP: 98 ± 14 mmHg; HR: 391 ± 24beats min-1 ), the baroreflex gain for RSNA was 39% (P < 0.05) lower than that for the control group (MAP: 91 ± 7 mmHg; HR: 382 ± 29 beats min-1 ). In cisplatin-treated rats given daily tacrolimus (MAP: 84 ± 12 mmHg; HR: 357 ± 30 beats min-1 ), the baroreflex gain and renal sympatho-inhibition (AUC, 2440 ± 1071 vs. 635 ± 498% min) were restored to normal values. These findings provide evidence for the view that cisplatin administration initiates an injury involving inflammation which may contribute to the deranged baroreflex regulation of RSNA. This phenomenon appears mediated in part via the renal innervation.
Collapse
Affiliation(s)
- Mohammed H Abdulla
- Department of Physiology, Western Gateway Building, University College Cork, College Road, Cork, Ireland
| | - Nicola Brennan
- Department of Physiology, Western Gateway Building, University College Cork, College Road, Cork, Ireland
| | - Eimear Ryan
- Department of Physiology, Western Gateway Building, University College Cork, College Road, Cork, Ireland
| | - Linda Sweeney
- Department of Physiology, Western Gateway Building, University College Cork, College Road, Cork, Ireland
| | - Jennifer Manning
- Department of Physiology, Western Gateway Building, University College Cork, College Road, Cork, Ireland
| | - Edward J Johns
- Department of Physiology, Western Gateway Building, University College Cork, College Road, Cork, Ireland
| |
Collapse
|
35
|
Raikwar N, Braverman C, Snyder PM, Fenton RA, Meyerholz DK, Abboud FM, Harwani SC. Renal denervation and CD161a immune ablation prevent cholinergic hypertension and renal sodium retention. Am J Physiol Heart Circ Physiol 2019; 317:H517-H530. [PMID: 31172810 DOI: 10.1152/ajpheart.00234.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cholinergic receptor activation leads to premature development of hypertension and infiltration of proinflammatory CD161a+/CD68+ M1 macrophages into the renal medulla. Renal inflammation is implicated in renal sodium retention and the development of hypertension. Renal denervation is known to decrease renal inflammation. The objective of this study was to determine the role of CD161a+/CD68+ macrophages and renal sympathetic nerves in cholinergic-hypertension and renal sodium retention. Bilateral renal nerve denervation (RND) and immune ablation of CD161a+ immune cells were performed in young prehypertensive spontaneously hypertensive rat (SHR) followed by infusion of either saline or nicotine (15 mg·kg-1·day-1) for 2 wk. Immune ablation was conducted by injection of unconjugated azide-free antibody targeting rat CD161a+. Blood pressure was monitored by tail cuff plethysmography. Tissues were harvested at the end of infusion. Nicotine induced premature hypertension, renal expression of the sodium-potassium chloride cotransporter (NKCC2), increases in renal sodium retention, and infiltration of CD161a+/CD68+ macrophages into the renal medulla. All of these effects were abrogated by RND and ablation of CD161a+ immune cells. Cholinergic activation of CD161a+ immune cells with nicotine leads to the premature development of hypertension in SHR. The effects of renal sympathetic nerves on chemotaxis of CD161a+ macrophages to the renal medulla, increased renal expression of NKCC2, and renal sodium retention contribute to cholinergic hypertension. The CD161a+ immune cells are necessary and essential for this prohypertensive nicotine-mediated inflammatory response.NEW & NOTEWORTHY This is the first study that describes a novel integrative physiological interaction between the adrenergic, cholinergic, and renal systems in the development of hypertension, describing data for the role of each in a genetic model of essential hypertension. Noteworthy findings include the prevention of nicotine-mediated hypertension following successful immune ablation of CD161a+ immune cells and the necessary role these cells play in the overexpression of the sodium-potassium-chloride cotransporter (NKCC2) in the renal medulla and renal sodium retention. Renal infiltration of these cells is demonstrated to be dependent on the presence of renal adrenergic innervation. These data offer a fertile ground of therapeutic potential for the treatment of hypertension as well as open the door for further investigation into the mechanism involved in inflammation-mediated renal sodium transporter expression. Taken together, these findings suggest immune therapy, renal denervation, and, possibly, other new molecular targets as having a potential role in the development and maintenance of essential hypertension.
Collapse
Affiliation(s)
- Nandita Raikwar
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Cameron Braverman
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Peter M Snyder
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - David K Meyerholz
- Division of Comparative Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Francois M Abboud
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa.,Departments of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa.,Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Sailesh C Harwani
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa.,Center for Immunology and Immune Mediated Diseases, University of Iowa Carver College of Medicine, Iowa City, Iowa.,Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
36
|
Elkhatib SK, Case AJ. Autonomic regulation of T-lymphocytes: Implications in cardiovascular disease. Pharmacol Res 2019; 146:104293. [PMID: 31176794 DOI: 10.1016/j.phrs.2019.104293] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/22/2019] [Accepted: 05/31/2019] [Indexed: 12/20/2022]
Abstract
The nervous and immune systems both serve as essential assessors and regulators of physiological function. Recently, there has been a great interest in how the nervous and immune systems interact to modulate both physiological and pathological states. In particular, the autonomic nervous system has a direct line of communication with immune cells anatomically, and moreover, immune cells possess receptors for autonomic neurotransmitters. This circumstantial evidence is suggestive of a functional interplay between the two systems, and extensive research over the past few decades has demonstrated neurotransmitters such as the catecholamines (i.e. dopamine, norepinephrine, and epinephrine) and acetylcholine have potent immunomodulating properties. Furthermore, immune cells, particularly T-lymphocytes, have now been found to express the cellular machinery for both the synthesis and degradation of neurotransmitters, which suggests the ability for both autocrine and paracrine signaling from these cells independent of the nervous system. The details underlying the functional interplay of this complex network of neuroimmune communication are still unclear, but this crosstalk is suggestive of significant implications on the pathogenesis of a number of autonomic-dysregulated and inflammation-mediated diseases. In particular, it is widely accepted that numerous forms of cardiovascular diseases possess imbalanced autonomic tone as well as altered T-lymphocyte function, but a paucity of literature exists discussing the direct role of neurotransmitters in shaping the inflammatory microenvironment during the progression or therapeutic management of these diseases. This review seeks to provide a fundamental framework for this autonomic neuroimmune interaction within T-lymphocytes, as well as the implications this may have in cardiovascular diseases.
Collapse
Affiliation(s)
- Safwan K Elkhatib
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Adam J Case
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States.
| |
Collapse
|
37
|
Kiuchi MG, Esler MD, Fink GD, Osborn JW, Banek CT, Böhm M, Denton KM, DiBona GF, Everett TH, Grassi G, Katholi RE, Knuepfer MM, Kopp UC, Lefer DJ, Lohmeier TE, May CN, Mahfoud F, Paton JF, Schmieder RE, Pellegrino PR, Sharabi Y, Schlaich MP. Renal Denervation Update From the International Sympathetic Nervous System Summit. J Am Coll Cardiol 2019; 73:3006-3017. [DOI: 10.1016/j.jacc.2019.04.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 12/14/2022]
|