1
|
Zhang XX, Iqbal J, Wang YC, Chang YW, Hu J, Du YZ. Integrated transcriptional and biochemical profiling suggests mechanisms associated with rapid cold hardening in adult Liriomyza trifolii (Burgess). Sci Rep 2024; 14:24033. [PMID: 39402107 PMCID: PMC11473728 DOI: 10.1038/s41598-024-75146-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 10/03/2024] [Indexed: 10/17/2024] Open
Abstract
The leafminer Liriomyza trifolii causes severe economic damage on ornamental and horticultural crops in China. Rapid cold hardening (RCH) is a phenomenon where cold tolerance in insects can be significantly enhanced after a short-term acclimation to low temperatures. In this study, the regulation of transcription in response to cold hardening was investigated in L. trifolii adults, and fatty acids and cryoprotectant levels were measured. The composition of fatty acids changed after RCH treatment, and glucose and trehalose levels showed significant accumulation after acclimation, thus indicating that changes in fatty acids and cryoprotectants contribute to RCH in L. trifolii. RNA-seq was used to analyze transcriptional regulation after a 4 h hardening period and showed that differentially expressed genes clustered in multiple metabolic pathways, which indicates the importance of transcriptional regulation in RCH. This study expands our knowledge of biochemical and transcriptional changes in L. trifolii during cold hardening and provides a basis for further investigations aimed at understanding thermal adaptation in insects.
Collapse
Affiliation(s)
- Xiao-Xiang Zhang
- College of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Junaid Iqbal
- College of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yu-Cheng Wang
- College of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Ya-Wen Chang
- College of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Jie Hu
- Plant Protection and Quarantine Station of Jiangsu Province, Nanjing, 210036, China
| | - Yu-Zhou Du
- College of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education, Yangzhou University, Yangzhou, China.
| |
Collapse
|
2
|
Tussey DA, Linthicum KJ, Hahn DA. Does severe hypoxia during irradiation of Aedes aegypti pupae improve sterile male performance? Parasit Vectors 2022; 15:446. [DOI: 10.1186/s13071-022-05577-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/28/2022] [Indexed: 11/29/2022] Open
Abstract
Abstract
Background
The yellow fever mosquito, Aedes aegypti, vectors several pathogens responsible for human diseases. As a result, this mosquito species is a priority for control by mosquito control districts in Florida. With insecticide resistance development becoming a concern, alternative control strategies are needed for Ae. aegypti. Sterile insect technique (SIT) is an increasingly popular option that is being explored as a practical area-wide control method. However, questions about sterile male performance persist. The objectives of this study were to determine the extent to which hypoxia exposure prior to and during irradiation effects the longevity, activity and mating competitiveness of sterile male Ae. aegypti.
Methods
Male longevity was monitored and analyzed using Cox regression. Mosquito activity was recorded by an infrared beam sensor rig that detected movement. Competing models were created to analyze movement data. Fecundity and fertility were measured in females mated with individual males by treatment and analyzed using one-way ANOVAs. Mating competition studies were performed to compare both hypoxia and normoxia treated sterile males to fertile males. Competitiveness of groups was compared using Fried’s competitiveness index.
Results
First, we found that subjecting Ae. aegypti pupae to 1 h of severe hypoxia (< 1 kPa O2) did not directly increase mortality. One hour of hypoxia was found to prevent decreases in longevity of irradiated males compared to males irradiated in normoxic conditions. Exposure to hypoxia prior to irradiation did not significantly improve activity of sterile males except at the highest doses of radiation. Hypoxia did significantly increase the required dose of radiation to achieve > 95% male sterility compared to males irradiated under normoxic conditions. Males sterilized after an hour in hypoxic conditions were significantly more competitive against fertile males compared to males irradiated under normoxic conditions despite requiring a higher dose of radiation to achieve sterility.
Conclusions
Hypoxia was found to greatly improve key performance metrics in sterile male Ae. aegypti without any significant drawbacks. Little work other than increasing the target dose for sterility needs to be conducted to incorporate hypoxia into SIT programs. These results suggest that SIT programs should consider including hypoxia in their sterile male production workflow.
Graphical Abstract
Collapse
|
3
|
Agwunobi DO, Wang T, Zhang M, Wang T, Jia Q, Zhang M, Shi X, Yu Z, Liu J. Functional implication of heat shock protein 70/90 and tubulin in cold stress of Dermacentor silvarum. Parasit Vectors 2021; 14:542. [PMID: 34666804 PMCID: PMC8527796 DOI: 10.1186/s13071-021-05056-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022] Open
Abstract
Background The tick Dermacentor silvarum Olenev (Acari: Ixodidae) is a vital vector tick species mainly distributed in the north of China and overwinters in the unfed adult stage. The knowledge of the mechanism that underlies its molecular adaptation against cold is limited. In the present study, genes of hsp70 and hsp90 cDNA, named Dshsp70 and Dshsp90, and tubulin were cloned and characterized from D. silvarum, and their functions in cold stress were further evaluated. Methods The genome of the heat shock proteins and tubulin of D. silvarum were sequenced and analyzed using bioinformatics methods. Each group of 20 ticks were injected in triplicate with Dshsp90-, Dshsp70-, and tubulin-derived dsRNA, whereas the control group was injected with GFP dsRNA. Then, the total RNA was extracted and cDNA was synthesized and subjected to RT-qPCR. After the confirmation of knockdown, the ticks were incubated for 24 h and were exposed to − 20 °C lethal temperature (LT50), and then the mortality was calculated. Results Results indicated that Dshsp70 and Dshsp90 contained an open reading frame of 345 and 2190 nucleotides that encoded 114 and 729 amino acid residues, respectively. The transcript Dshsp70 showed 90% similarity with that identified from Dermacentor variabilis, whereas Dshsp90 showed 85% similarity with that identified from Ixodes scapularis. Multiple sequence alignment indicates that the deduced amino acid sequences of D. silvarum Hsp90, Hsp70, and tubulin show very high sequence identity to their corresponding sequences in other species. Hsp90 and Hsp70 display highly conserved and signature amino acid sequences with well-conserved MEEVD motif at the C-terminal in Hsp90 and a variable C-terminal region with a V/IEEVD-motif in Hsp70 that bind to numerous co-chaperones. RNA interference revealed that the mortality of D. silvarum was significantly increased after injection of dsRNA of Dshsp70 (P = 0.0298) and tubulin (P = 0.0448), whereas no significant increases were observed after the interference of Dshsp90 (P = 0.0709). Conclusions The above results suggested that Dshsp70 and tubulin play an essential role in the low-temperature adaptation of ticks. The results of this study can contribute to the understanding of the survival and acclimatization of overwintering ticks. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05056-y.
Collapse
Affiliation(s)
- Desmond O Agwunobi
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Tongxuan Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Meng Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Tianhong Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Qingying Jia
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Miao Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xinyue Shi
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Zhijun Yu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
4
|
Ajayi OM, Gantz JD, Finch G, Lee RE, Denlinger DL, Benoit JB. Rapid stress hardening in the Antarctic midge improves male fertility by increasing courtship success and preventing decline of accessory gland proteins following cold exposure. J Exp Biol 2021; 224:271037. [PMID: 34297110 DOI: 10.1242/jeb.242506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/16/2021] [Indexed: 11/20/2022]
Abstract
Rapid hardening is a process that quickly improves an animal's performance following exposure to potentially damaging stress. In this study of the Antarctic midge, Belgica antarctica (Diptera, Chironomidae), we examined how rapid hardening in response to dehydration (RDH) or cold (RCH) improves male pre- and post-copulatory function when the insects are subsequently subjected to a damaging cold exposure. Neither RDH nor RCH improved survival in response to lethal cold stress, but male activity and mating success following sublethal cold exposure were enhanced. Egg viability decreased following direct exposure of the mating males to sublethal cold but improved following RCH and RDH. Sublethal cold exposure reduced the expression of four accessory gland proteins, while expression remained high in males exposed to RCH. Though rapid hardening may be cryptic in males, this study shows that it can be revealed by pre- and post-copulatory interactions with females.
Collapse
Affiliation(s)
- Oluwaseun M Ajayi
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - J D Gantz
- Department of Biology and Health Science, Hendrix College, Conway, AR 72032, USA
| | - Geoffrey Finch
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Richard E Lee
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - David L Denlinger
- Departments of Entomology and Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
5
|
Finch G, Nandyal S, Perretta C, Davies B, Rosendale AJ, Holmes CJ, Gantz JD, Spacht DE, Bailey ST, Chen X, Oyen K, Didion EM, Chakraborty S, Lee RE, Denlinger DL, Matter SF, Attardo GM, Weirauch MT, Benoit JB. Multi-level analysis of reproduction in an Antarctic midge identifies female and male accessory gland products that are altered by larval stress and impact progeny viability. Sci Rep 2020; 10:19791. [PMID: 33188214 PMCID: PMC7666147 DOI: 10.1038/s41598-020-76139-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
The Antarctic midge, Belgica antarctica, is a wingless, non-biting midge endemic to Antarctica. Larval development requires at least 2 years, but adults live only 2 weeks. The nonfeeding adults mate in swarms and females die shortly after oviposition. Eggs are suspended in a gel of unknown composition that is expressed from the female accessory gland. This project characterizes molecular mechanisms underlying reproduction in this midge by examining differential gene expression in whole males, females, and larvae, as well as in male and female accessory glands. Functional studies were used to assess the role of the gel encasing the eggs, as well as the impact of stress on reproductive biology. RNA-seq analyses revealed sex- and development-specific gene sets along with those associated with the accessory glands. Proteomic analyses were used to define the composition of the egg-containing gel, which is generated during multiple developmental stages and derived from both the accessory gland and other female organs. Functional studies indicate the gel provides a larval food source as well as a buffer for thermal and dehydration stress. All of these function are critical to juvenile survival. Larval dehydration stress directly reduces production of storage proteins and key accessory gland components, a feature that impacts adult reproductive success. Modeling reveals that bouts of dehydration may have a significant impact on population growth. This work lays a foundation for further examination of reproduction in midges and provides new information related to general reproduction in dipterans. A key aspect of this work is that reproduction and stress dynamics, currently understudied in polar organisms, are likely to prove critical in determining how climate change will alter their survivability.
Collapse
Affiliation(s)
- Geoffrey Finch
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Sonya Nandyal
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Carlie Perretta
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Benjamin Davies
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Andrew J Rosendale
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
- Department of Biology, Mount St. Joseph University, Cincinnati, OH, USA
| | - Christopher J Holmes
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - J D Gantz
- Department of Biology, Miami University, Oxford, OH, USA
- Department of Biology and Health Science, Hendrix College, Conway, AR, USA
| | - Drew E Spacht
- Departments of Entomology and Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Samuel T Bailey
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Kennan Oyen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Elise M Didion
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Souvik Chakraborty
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Richard E Lee
- Department of Biology, Miami University, Oxford, OH, USA
| | - David L Denlinger
- Departments of Entomology and Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Stephen F Matter
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Geoffrey M Attardo
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, 95616, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
6
|
Teets NM, Gantz JD, Kawarasaki Y. Rapid cold hardening: ecological relevance, physiological mechanisms and new perspectives. ACTA ACUST UNITED AC 2020; 223:223/3/jeb203448. [PMID: 32051174 DOI: 10.1242/jeb.203448] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rapid cold hardening (RCH) is a type of phenotypic plasticity that allows ectotherms to quickly enhance cold tolerance in response to brief chilling (lasting minutes to hours). In this Review, we summarize the current state of knowledge of this important phenotype and provide new directions for research. As one of the fastest adaptive responses to temperature known, RCH allows ectotherms to cope with sudden cold snaps and to optimize their performance during diurnal cooling cycles. RCH and similar phenotypes have been observed across a diversity of ectotherms, including crustaceans, terrestrial arthropods, amphibians, reptiles, and fish. In addition to its well-defined role in enhancing survival to extreme cold, RCH also protects against nonlethal cold injury by preserving essential functions following cold stress, such as locomotion, reproduction, and energy balance. The capacity for RCH varies across species and across genotypes of the same species, indicating that RCH can be shaped by selection and is likely favored in thermally variable environments. Mechanistically, RCH is distinct from other rapid stress responses in that it typically does not involve synthesis of new gene products; rather, the existing cellular machinery regulates RCH through post-translational signaling mechanisms. However, the protective mechanisms that enhance cold hardiness are largely unknown. We provide evidence that RCH can be induced by multiple triggers in addition to low temperature, and that rapidly induced tolerance and cross-tolerance to a variety of environmental stressors may be a general feature of stress responses that requires further investigation.
Collapse
Affiliation(s)
- Nicholas M Teets
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| | - J D Gantz
- Biology Department, Hendrix College, Conway, AK 72032, USA
| | - Yuta Kawarasaki
- Department of Biology, Gustavus Adolphus College, Saint Peter, MN 56082, USA
| |
Collapse
|
7
|
Nadeau EAW, Teets NM. Evidence for a rapid cold hardening response in cultured Drosophila S2 cells. ACTA ACUST UNITED AC 2020; 223:jeb.212613. [PMID: 31862846 DOI: 10.1242/jeb.212613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/18/2019] [Indexed: 11/20/2022]
Abstract
The ability to quickly respond to changes in environmental temperature is critical for organisms living in thermally variable environments. To cope with sudden drops in temperature, insects and other ectotherms are capable of rapid cold hardening (RCH), in which mild chilling significantly enhances cold tolerance within minutes. While the ecological significance of RCH is well established, the mechanisms underlying RCH are still poorly understood. Previous work has demonstrated that RCH is regulated at the cellular level by post-translational signaling mechanisms, and here we tested the hypothesis that cultured cells are capable of RCH. A 2 h cold shock at -8°C significantly reduced the metabolic viability of Drosophila S2 cells, but pre-treatment with RCH at 4°C for 2 h prevented this decrease in viability. Thus, S2 cells are capable of RCH in a similar manner to whole insects and provide a new system for investigating the cell biology of RCH.
Collapse
Affiliation(s)
- Emily A W Nadeau
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| | - Nicholas M Teets
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
8
|
Characterization of drought-induced rapid cold-hardening in the Antarctic midge, Belgica antarctica. Polar Biol 2019. [DOI: 10.1007/s00300-019-02503-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
9
|
Teets NM, Kawarasaki Y, Potts LJ, Philip BN, Gantz JD, Denlinger DL, Lee RE. Rapid cold hardening protects against sublethal freezing injury in an Antarctic insect. J Exp Biol 2019; 222:jeb.206011. [DOI: 10.1242/jeb.206011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/22/2019] [Indexed: 01/17/2023]
Abstract
Rapid cold hardening (RCH) is a type of beneficial phenotypic plasticity that occurs on extremely short time scales (minutes to hours) to enhance insects’ ability to cope with cold snaps and diurnal temperature fluctuations. RCH has a well-established role in extending lower lethal limits, but its ability to prevent sublethal cold injury has received less attention. The Antarctic midge, Belgica antarctica is Antarctica's only endemic insect and has a well-studied RCH response that extends freeze tolerance in laboratory conditions. However, the discriminating temperatures used in previous studies of RCH are far below those ever experienced in the field. Here, we tested the hypothesis that RCH protects against nonlethal freezing injury. Larvae of B. antarctica were exposed to either control (2°C), direct freezing (-9°C for 24 h), or RCH (-5°C for 2 h followed by -9°C for 24 h). All larvae survived both freezing treatments, but RCH larvae recovered more quickly from freezing stress and had significantly higher metabolic rates during recovery. RCH larvae also sustained less damage to fat body and midgut tissue and had lower expression of two heat shock protein transcripts (hsp60 and hsp90), which is consistent with RCH protecting against protein denaturation. The protection afforded by RCH resulted in energy savings; directly frozen larvae experienced a significant depletion in glycogen energy stores that was not observed in RCH larvae. Together, these results provide strong evidence that RCH protects against a variety of sublethal freezing injuries and allows insects to rapidly fine-tune their performance in thermally variable environments.
Collapse
Affiliation(s)
| | - Yuta Kawarasaki
- Department of Biology, Gustavus Adolphus College, Saint Peter, MN USA
| | - Leslie J. Potts
- Department of Entomology, University of Kentucky, Lexington, KY USA
| | | | - J. D. Gantz
- Department of Biology, Miami University, Oxford, OH USA
- Current address: Biology Department, Hendrix College, Conway, AR, USA
| | | | | |
Collapse
|
10
|
Cold exposure causes cell death by depolarization-mediated Ca 2+ overload in a chill-susceptible insect. Proc Natl Acad Sci U S A 2018; 115:E9737-E9744. [PMID: 30254178 DOI: 10.1073/pnas.1813532115] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cold tolerance of insects is arguably among the most important traits defining their geographical distribution. Even so, very little is known regarding the causes of cold injury in this species-rich group. In many insects it has been observed that cold injury coincides with a cellular depolarization caused by hypothermia and hyperkalemia that develop during chronic cold exposure. However, prior studies have been unable to determine if cold injury is caused by direct effects of hypothermia, by toxic effects of hyperkalemia, or by the depolarization that is associated with these perturbations. Here we use a fluorescent DNA-staining method to estimate cell viability of muscle and hindgut tissue from Locusta migratoria and show that the cellular injury is independent of the direct effects of hypothermia or toxic effects of hyperkalemia. Instead, we show that chill injury develops due to the associated cellular depolarization. We further hypothesized that the depolarization-induced injury was caused by opening of voltage-sensitive Ca2+ channels, causing a Ca2+ overload that triggers apoptotic/necrotic pathways. In accordance with this hypothesis, we show that hyperkalemic depolarization causes a marked increase in intracellular Ca2+ levels. Furthermore, using pharmacological manipulation of intra- and extracellular Ca2+ concentrations as well as Ca2+ channel conductance, we demonstrate that injury is prevented if transmembrane Ca2+ flux is prevented by removing extracellular Ca2+ or blocking Ca2+ influx. Together these findings demonstrate a causal relationship between cold-induced hyperkalemia, depolarization, and the development of chill injury through Ca2+-mediated necrosis/apoptosis.
Collapse
|
11
|
Huang W, Ren C, Li H, Huo D, Wang Y, Jiang X, Tian Y, Luo P, Chen T, Hu C. Transcriptomic analyses on muscle tissues of Litopenaeus vannamei provide the first profile insight into the response to low temperature stress. PLoS One 2017; 12:e0178604. [PMID: 28575089 PMCID: PMC5456072 DOI: 10.1371/journal.pone.0178604] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/16/2017] [Indexed: 01/31/2023] Open
Abstract
The Pacific white shrimp (Litopenaeus vannamei) is an important cultured crustacean species worldwide. However, little is known about the molecular mechanism of this species involved in the response to cold stress. In this study, four separate RNA-Seq libraries of L. vannamei were generated from 13°C stress and control temperature. Total 29,662 of Unigenes and overall of 19,619 annotated genes were obtained. Three comparisons were carried out among the four libraries, in which 72 of the top 20% of differentially-expressed genes were obtained, 15 GO and 5 KEGG temperature-sensitive pathways were fished out. Catalytic activity (GO: 0003824) and Metabolic pathways (ko01100) were the most annotated GO and KEGG pathways in response to cold stress, respectively. In addition, Calcium, MAPK cascade, Transcription factor and Serine/threonine-protein kinase signal pathway were picked out and clustered. Serine/threonine-protein kinase signal pathway might play more important roles in cold adaptation, while other three signal pathway were not widely transcribed. Our results had summarized the differentially-expressed genes and suggested the major important signaling pathways and related genes. These findings provide the first profile insight into the molecular basis of L. vannamei response to cold stress.
Collapse
Affiliation(s)
- Wen Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, Guangdong, China
| | - Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, Guangdong, China
| | - Hongmei Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Da Huo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yanhong Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Yushun Tian
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Peng Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, Guangdong, China
- * E-mail: (CH); (TC)
| | - Chaoqun Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, Guangdong, China
- * E-mail: (CH); (TC)
| |
Collapse
|
12
|
Affiliation(s)
- Johannes Overgaard
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark;
| | - Heath A. MacMillan
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
13
|
Zonato V, Fedele G, Kyriacou CP. An Intronic Polymorphism in couch potato Is Not Distributed Clinally in European Drosophila melanogaster Populations nor Does It Affect Diapause Inducibility. PLoS One 2016; 11:e0162370. [PMID: 27598401 PMCID: PMC5012703 DOI: 10.1371/journal.pone.0162370] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/22/2016] [Indexed: 12/24/2022] Open
Abstract
couch potato (cpo) encodes an RNA binding protein that has been reported to be expressed in the peripheral and central nervous system of embryos, larvae and adults, including the major endocrine organ, the ring gland. A polymorphism in the D. melanogaster cpo gene coding region displays a latitudinal cline in frequency in North American populations, but as cpo lies within the inversion In(3R)Payne, which is at high frequencies and itself shows a strong cline on this continent, interpretation of the cpo cline is not straightforward. A second downstream SNP in strong linkage disequilibrium with the first has been claimed to be primarily responsible for the latitudinal cline in diapause incidence in USA populations.Here, we investigate the frequencies of these two cpo SNPs in populations of Drosophila throughout continental Europe. The advantage of studying cpo variation in Europe is the very low frequency of In(3R)Payne, which we reveal here, does not appear to be clinally distributed. We observe a very different geographical scenario for cpo variation from the one in North America, suggesting that the downstream SNP does not play a role in diapause. In an attempt to verify whether the SNPs influence diapause we subsequently generated lines with different combinations of the two cpo SNPs on known timeless (tim) genetic backgrounds, because polymorphism in the clock gene tim plays a significant role in diapause inducibility. Our results reveal that the downstream cpo SNP does not seem to play any role in diapause induction in European populations in contrast to the upstream coding cpo SNP. Consequently, all future diapause studies on strains of D. melanogaster should initially determine their tim and cpo status.
Collapse
Affiliation(s)
- Valeria Zonato
- Department of Genetics, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Giorgio Fedele
- Department of Genetics, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Charalambos P. Kyriacou
- Department of Genetics, University of Leicester, Leicester, LE1 7RH, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Yi SX, Gantz JD, Lee RE. Desiccation enhances rapid cold-hardening in the flesh fly Sarcophaga bullata: evidence for cross tolerance between rapid physiological responses. J Comp Physiol B 2016; 187:79-86. [PMID: 27568301 DOI: 10.1007/s00360-016-1030-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/29/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
Abstract
Many insects use rapid cold-hardening (RCH), a physiological response to sub-lethal exposure to stressors, such as chilling and desiccation, to enhance their cold tolerance within minutes. Recently, drought-induced RCH, triggered by brief, mild desiccation, was described in larvae of the freeze-tolerant gall fly (Eurosta solidaginis). However, its prevalence and ecological significance in other insects is not known. Consequently, we used a freeze-intolerant model, the flesh fly, Sarcophaga bullata, to investigate the effects and mechanisms of drought-induced RCH. In addition, we investigated how drought- and cold-induced RCH interact by exposing flies to both desiccation and chilling. Desiccation for 3 h increased larval pupariation after cold shock from 28 to 40 %-the first example of drought-induced RCH in both a freeze-intolerant insect and in a non-overwintering life stage. We also found that desiccation and chilling together enhanced the cold hardiness of larvae and adults more than either did separately, suggesting that drought and cold trigger distinct physiological mechanisms that interact to afford greater cold tolerance. These results suggest that drought-induced RCH is a highly conserved response used by insects with diverse life history strategies. Furthermore, the protective interaction between drought- and cold-induced RCH suggests that, in nature, insects use multiple cues and physiological mechanisms to fine-tune their response to changing ambient conditions.
Collapse
Affiliation(s)
- Shu-Xia Yi
- Department of Biology, Miami University, 700 East High Street, Oxford, OH, 45056, USA.
| | - J D Gantz
- Department of Biology, Miami University, 700 East High Street, Oxford, OH, 45056, USA
| | - Richard E Lee
- Department of Biology, Miami University, 700 East High Street, Oxford, OH, 45056, USA
| |
Collapse
|
15
|
Teets NM, Denlinger DL. Quantitative Phosphoproteomics Reveals Signaling Mechanisms Associated with Rapid Cold Hardening in a Chill-Tolerant Fly. J Proteome Res 2016; 15:2855-62. [DOI: 10.1021/acs.jproteome.6b00427] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Nicholas M. Teets
- Department of Entomology and ‡Department of Evolution, Ecology, and Organismal
Biology, Ohio State University, Columbus, Ohio 43210, United States
| | - David L. Denlinger
- Department of Entomology and ‡Department of Evolution, Ecology, and Organismal
Biology, Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
16
|
Xiao R, Wang L, Cao Y, Zhang G. Transcriptome response to temperature stress in the wolf spider Pardosa pseudoannulata (Araneae: Lycosidae). Ecol Evol 2016; 6:3540-3554. [PMID: 27127612 PMCID: PMC4842027 DOI: 10.1002/ece3.2142] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/25/2016] [Accepted: 03/27/2016] [Indexed: 12/21/2022] Open
Abstract
The wolf spider Pardosa pseudoannulata is a dominant predator in paddy ecosystem and an important biological control agent of rice pests. Temperature represents a primary factor influencing its biology and behavior, although the underlying molecular mechanisms remain unknown. To understand the response of P. pseudoannulata to temperature stress, we performed comparative transcriptome analyses of spider adults exposed to 10°C and 40°C for 12 h. We obtained 67,725 assembled unigenes, 21,765 of which were annotated in P. pseudoannulata transcriptome libraries, and identified 905 and 834 genes significantly up- or down-regulated by temperature stress. Functional categorization revealed the differential regulation of transcription, signal transduction, and metabolism processes. Calcium signaling pathway and metabolic pathway involving respiratory chain components played important roles in adapting to low temperature, whereas at high temperature, oxidative phosphorylation and amino acid metabolism were critical. Differentially expressed ribosomal protein genes contributed to temperature stress adaptation, and heat shock genes were significantly up-regulated. This study represents the first report of transcriptome identification related to the Araneae species in response to temperature stress. These results will greatly facilitate our understanding of the physiological and biochemical mechanisms of spiders in response to temperature stress.
Collapse
Affiliation(s)
- Rong Xiao
- State Key Laboratory for BiocontrolSun Yat‐sen UniversityGuangzhouChina
| | - Liang Wang
- State Key Laboratory for BiocontrolSun Yat‐sen UniversityGuangzhouChina
| | - Yingshuai Cao
- State Key Laboratory for BiocontrolSun Yat‐sen UniversityGuangzhouChina
| | - Guren Zhang
- State Key Laboratory for BiocontrolSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
17
|
Abstract
The Antarctic region comprises the continent, the Maritime Antarctic, the sub-Antarctic islands, and the southern cold temperate islands. Continental Antarctica is devoid of insects, but elsewhere diversity varies from 2 to more than 200 species, of which flies and beetles constitute the majority. Much is known about the drivers of this diversity at local and regional scales; current climate and glacial history play important roles. Investigations of responses to low temperatures, dry conditions, and varying salinity have spanned the ecological to the genomic, revealing new insights into how insects respond to stressful conditions. Biological invasions are common across much of the region and are expected to increase as climates become warmer. The drivers of invasion are reasonably well understood, although less is known about the impacts of invasion. Antarctic entomology has advanced considerably over the past 50 years, but key areas, such as interspecific interactions, remain underexplored.
Collapse
Affiliation(s)
- Steven L Chown
- School of Biological Sciences, Monash University, Victoria 3800, Australia;
| | - Peter Convey
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, United Kingdom;
| |
Collapse
|
18
|
Boardman L, Sørensen JG, Terblanche JS. Physiological and molecular mechanisms associated with cross tolerance between hypoxia and low temperature in Thaumatotibia leucotreta. JOURNAL OF INSECT PHYSIOLOGY 2015; 82:75-84. [PMID: 26376454 DOI: 10.1016/j.jinsphys.2015.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/24/2015] [Accepted: 09/03/2015] [Indexed: 06/05/2023]
Abstract
Biochemical adaptations allow insects to withstand exposures to hypoxia and/or hypothermia. Exposure to hypoxia may interact either synergistically or antagonistically with standard low temperature stress responses yet this has not been systematically researched and no clear mechanism has been identified to date. Using larvae of false codling moth Thaumatotibia leucotreta, a pest of southern Africa, we investigated the physiological and molecular responses to hypoxia or temperature stress pre-treatments, followed by a standard low temperature exposure. Survival rates were significantly influenced by pre-treatment conditions, although T. leucotreta shows relatively high basal resistance to various stressors (4% variation in larval survival across all pre-treatments). Results showed that mild pre-treatments with chilling and hypoxia increased resistance to low temperatures and that these responses were correlated with increased membrane fluidity (increased UFA:SFA) and/or alterations in heat shock protein 70 (HSP70); while general mechanical stress (shaking) and heat (2h at 35°C) do not elicit cross tolerance (no change in survival or molecular responses). We therefore found support for some limited cold hardening and cross tolerance responses. Given that combined exposure to hypoxia and low temperature is used to sterilize commodities in post-harvest pest management programs, researchers can now exploit these mechanisms involved in cross tolerance to develop more targeted control methods.
Collapse
Affiliation(s)
- Leigh Boardman
- Department of Conservation Ecology and Entomology, Centre for Invasion Biology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - Jesper G Sørensen
- Section for Genetics, Ecology & Evolution, Department of Bioscience, Aarhus University, Ny Munkegade 116, DK-8000 Aarhus C, Denmark
| | - John S Terblanche
- Department of Conservation Ecology and Entomology, Centre for Invasion Biology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
19
|
Abstract
Since biotic interactions within the simple terrestrial communities on the Antarctic Peninsula are limited compared with tropical and temperate regions, survival is largely dictated by the numerous abiotic challenges. Our research focuses on adaptations to environmental stresses experienced by the Antarctic midge (Belgica antarctica Jacobs, 1900), the southernmost free-living insect. Midge larvae can survive freezing and anoxia year-round. Not only can frozen larvae undergo rapid cold-hardening (RCH) at temperatures as low as –12 °C, but RCH develops more rapidly in frozen compared with supercooled larvae. Whether larvae overwinter in a frozen state or cryoprotectively dehydrated may depend on hydration levels within their hibernacula. Larvae constitutively up-regulate genes encoding heat shock proteins, as well as the antioxidant enzymes superoxide dismutase and catalase. Larvae accumulate osmoprotectants in response to freezing, desiccation, and exposure to seawater; exposure to one of these osmotic stressors confers cross-tolerance to the others. Molecular responses to dehydration stress include extensive genome-wide changes that include differential expression of aquaporins among tissues, upregulation of pathways associated with autophagy, inhibition of apoptosis, and downregulation of metabolism and ATP production.
Collapse
Affiliation(s)
- R.E. Lee
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - D.L. Denlinger
- Department of Entomology and Department of Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
20
|
Gantz JD, Lee RE. The limits of drought-induced rapid cold-hardening: extremely brief, mild desiccation triggers enhanced freeze-tolerance in Eurosta solidaginis larvae. JOURNAL OF INSECT PHYSIOLOGY 2015; 73:30-6. [PMID: 25545423 DOI: 10.1016/j.jinsphys.2014.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/15/2014] [Accepted: 12/21/2014] [Indexed: 05/24/2023]
Abstract
Rapid cold-hardening (RCH) is a highly conserved response in insects that induces physiological changes within minutes to hours of exposure to low temperature and provides protection from chilling injury. Recently, a similar response, termed drought-induced RCH, was described following as little as 6h of desiccation, producing a loss of less than 10% of fresh mass. In this study, we investigated the limits and mechanisms of this response in larvae of the goldenrod gall fly Eurosta solidaginis (Diptera, Tephritidae). The cold-hardiness of larvae increased markedly after as few as 2h of desiccation and a loss of less than 1% fresh mass, as organismal survival increased from 8% to 41% following exposure to -18 °C. Tissue-level effects of desiccation were observed within 1h, as 87% of midgut cells from desiccated larvae remained viable following freezing compared to 57% of controls. We also demonstrated that drought-induced RCH occurs independently of neuroendocrine input, as midgut tissue desiccated ex vivo displayed improved freeze-tolerance relative to control tissue (78-11% survival, respectively). Finally, though there was an increase in hemolymph osmolality beyond the expected effects of the osmo-concentration of solutes during dehydration, we determined that this increase was not due to the synthesis of glycerol, glucose, sorbitol, or trehalose. Our results indicate that E. solidaginis larvae are extremely sensitive to desiccation, which is a triggering mechanism for one or more physiological pathways that confer enhanced freeze-tolerance.
Collapse
Affiliation(s)
- J D Gantz
- Miami University, Department of Biology, 501 East High Street, Oxford, OH 45056, United States.
| | - Richard E Lee
- Miami University, Department of Biology, 501 East High Street, Oxford, OH 45056, United States
| |
Collapse
|
21
|
Transcriptome-wide identification of the genes responding to replanting disease in Rehmannia glutinosa L. roots. Mol Biol Rep 2014; 42:881-92. [DOI: 10.1007/s11033-014-3825-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 11/10/2014] [Indexed: 01/22/2023]
|
22
|
Cui F, Wang H, Zhang H, Kang L. Anoxic stress and rapid cold hardening enhance cold tolerance of the migratory locust. Cryobiology 2014; 69:243-8. [PMID: 25086202 DOI: 10.1016/j.cryobiol.2014.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/10/2014] [Accepted: 07/23/2014] [Indexed: 12/21/2022]
Abstract
Anoxia and rapid cold hardening (RCH) can increase the cold tolerance of many animals. However, mechanisms underlying these two kinds of stresses remain unclear. In this study, we aimed to explore the relationship of acclimation to cold stress with acclimation to anoxic stress in the migratory locust, Locusta migratoria. RCH at 0°C for 3h promoted the survival of cold stress-exposed locusts. Anoxic hypercapnia (CO2 anoxic treatment) for 40 min exerted an effect similar to that of RCH. Anoxic hypercapnia within 1h can all promote the cold hardiness of locusts. We investigated the transcript levels of six heat shock protein (Hsp) genes, namely, Hsp20.5, Hsp20.6, Hsp20.7, Hsp40, Hsp70, and Hsp90. Four genes, namely, Hsp90, Hsp40, Hsp20.5, and Hsp20.7, showed differential responses to RCH and anoxic hypercapnia treatments. Under cold stress, locusts exposed to the two regimens showed different responses for Hsp90, Hsp20.5, and Hsp20.7. However, the varied responses disappeared after recovery from cold stress. Compared with the control group, the transcript levels of six Hsp genes were generally downregulated in locusts subjected to anoxic hypercapnia or/and RCH. These results indicate that anoxic stress and RCH have different mechanisms of regulating the transcription of Hsp family members even if the two treatments exerted similar effects on cold tolerance of the migratory locust. However, Hsps may not play a major role in the promotion of cold hardiness by the two treatments.
Collapse
Affiliation(s)
- Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongsheng Wang
- State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hanying Zhang
- State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
23
|
Everatt MJ, Convey P, Bale JS, Worland MR, Hayward SAL. Responses of invertebrates to temperature and water stress: A polar perspective. J Therm Biol 2014; 54:118-32. [PMID: 26615734 DOI: 10.1016/j.jtherbio.2014.05.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/20/2014] [Accepted: 05/20/2014] [Indexed: 10/25/2022]
Abstract
As small bodied poikilothermic ectotherms, invertebrates, more so than any other animal group, are susceptible to extremes of temperature and low water availability. In few places is this more apparent than in the Arctic and Antarctic, where low temperatures predominate and water is unusable during winter and unavailable for parts of summer. Polar terrestrial invertebrates express a suite of physiological, biochemical and genomic features in response to these stressors. However, the situation is not as simple as responding to each stressor in isolation, as they are often faced in combination. We consider how polar terrestrial invertebrates manage this scenario in light of their physiology and ecology. Climate change is also leading to warmer summers in parts of the polar regions, concomitantly increasing the potential for drought. The interaction between high temperature and low water availability, and the invertebrates' response to them, are therefore also explored.
Collapse
Affiliation(s)
- Matthew J Everatt
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Pete Convey
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK; National Antarctic Research Center, IPS Building, University Malaya, 50603 Kuala Lumpur, Malaysia; Gateway Antarctica, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Jeffrey S Bale
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - M Roger Worland
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Scott A L Hayward
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
24
|
Teets NM, Yi SX, Lee RE, Denlinger DL. Calcium signaling mediates cold sensing in insect tissues. Proc Natl Acad Sci U S A 2013; 110:9154-9. [PMID: 23671084 PMCID: PMC3670363 DOI: 10.1073/pnas.1306705110] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability to rapidly respond to changes in temperature is a critical adaptation for insects and other ectotherms living in thermally variable environments. In a process called rapid cold hardening (RCH), insects significantly enhance cold tolerance following brief (i.e., minutes to hours) exposure to nonlethal chilling. Although the ecological relevance of RCH is well-established, the underlying physiological mechanisms that trigger RCH are poorly understood. RCH can be elicited in isolated tissues ex vivo, suggesting cold-sensing and downstream hardening pathways are governed by brain-independent signaling mechanisms. We previously provided preliminary evidence that calcium is involved in RCH, and here we firmly establish that calcium signaling mediates cold sensing in insect tissues. In tracheal cells of the freeze-tolerant goldenrod gall fly, Eurosta solidaginis, chilling to 0 °C evoked a 40% increase in intracellular calcium concentration as determined by live-cell confocal imaging. Downstream of calcium entry, RCH conditions significantly increased the activity of calcium/calmodulin-dependent protein kinase II (CaMKII) while reducing phosphorylation of the inhibitory Thr306 residue. Pharmacological inhibitors of calcium entry, calmodulin activation, and CaMKII activity all prevented ex vivo RCH in midgut and salivary gland tissues, indicating that calcium signaling is required for RCH to occur. Similar results were obtained for a freeze-intolerant species, adults of the flesh fly, Sarcophaga bullata, suggesting that calcium-mediated cold sensing is a general feature of insects. Our results imply that insect tissues use calcium signaling to instantly detect decreases in temperature and trigger downstream cold-hardening mechanisms.
Collapse
Affiliation(s)
| | - Shu-Xia Yi
- Department of Zoology, Miami University, Oxford, OH 45056; and
| | - Richard E. Lee
- Department of Zoology, Miami University, Oxford, OH 45056; and
| | - David L. Denlinger
- Department of Entomology, Ohio State University, Columbus, OH 43210
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH 43210
| |
Collapse
|
25
|
Cold tolerance abilities of two entomopathogenic nematodes, Steinernema feltiae and Heterorhabditis bacteriophora. Cryobiology 2013; 66:24-9. [DOI: 10.1016/j.cryobiol.2012.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 10/11/2012] [Accepted: 10/15/2012] [Indexed: 11/20/2022]
|
26
|
Teets NM, Peyton JT, Ragland GJ, Colinet H, Renault D, Hahn DA, Denlinger DL. Combined transcriptomic and metabolomic approach uncovers molecular mechanisms of cold tolerance in a temperate flesh fly. Physiol Genomics 2012; 44:764-77. [DOI: 10.1152/physiolgenomics.00042.2012] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ability to respond rapidly to changes in temperature is critical for insects and other ectotherms living in variable environments. In a physiological process termed rapid cold-hardening (RCH), exposure to nonlethal low temperature allows many insects to significantly increase their cold tolerance in a matter of minutes to hours. Additionally, there are rapid changes in gene expression and cell physiology during recovery from cold injury, and we hypothesize that RCH may modulate some of these processes during recovery. In this study, we used a combination of transcriptomics and metabolomics to examine the molecular mechanisms of RCH and cold shock recovery in the flesh fly, Sarcophaga bullata. Surprisingly, out of ∼15,000 expressed sequence tags (ESTs) measured, no transcripts were upregulated during RCH, and likewise RCH had a minimal effect on the transcript signature during recovery from cold shock. However, during recovery from cold shock, we observed differential expression of ∼1,400 ESTs, including a number of heat shock proteins, cytoskeletal components, and genes from several cell signaling pathways. In the metabolome, RCH had a slight yet significant effect on several metabolic pathways, while cold shock resulted in dramatic increases in gluconeogenesis, amino acid synthesis, and cryoprotective polyol synthesis. Several biochemical pathways showed congruence at both the transcript and metabolite levels, indicating that coordinated changes in gene expression and metabolism contribute to recovery from cold shock. Thus, while RCH had very minor effects on gene expression, recovery from cold shock elicits sweeping changes in gene expression and metabolism along numerous cell signaling and biochemical pathways.
Collapse
Affiliation(s)
| | - Justin T. Peyton
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, Ohio
| | - Gregory J. Ragland
- Environmental Change Initiative and Department of Biology, University of Notre Dame, Notre Dame, Indiana
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida
| | - Herve Colinet
- Université de Rennes 1, Unite Mixté de Recherche Centre National de la Recherche Scientifique 6553 Ecobio, Rennes Cedex, France
- Earth and Life Institute ELI, Biodiversity Research Centre BDIV, Catholic University of Louvain, Louvain-la-Neuve, Belgium; and
| | - David Renault
- Université de Rennes 1, Unite Mixté de Recherche Centre National de la Recherche Scientifique 6553 Ecobio, Rennes Cedex, France
| | - Daniel A. Hahn
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida
| | - David L. Denlinger
- Department of Entomology, Ohio State University, Columbus, Ohio
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, Ohio
| |
Collapse
|
27
|
Everatt MJ, Worland MR, Bale JS, Convey P, Hayward SAL. Pre-adapted to the maritime Antarctic?--rapid cold hardening of the midge, Eretmoptera murphyi. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:1104-11. [PMID: 22684111 DOI: 10.1016/j.jinsphys.2012.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 05/05/2012] [Accepted: 05/14/2012] [Indexed: 05/26/2023]
Abstract
During the 1960s, the midge, Eretmoptera murphyi, was transferred from sub-Antarctic South Georgia (55°S 37°W) where it is endemic to a single location on maritime Antarctic Signy Island (60°S 45°W). Its distribution has since expanded considerably, suggesting that it is pre-adapted to the more severe conditions further south. To test one aspect of the level of its pre-adaptation, the rapid cold hardening (RCH) response in this species was investigated. When juvenile (L1-L2) and mature (L3-L4) larvae of E. murphyi were directly exposed to progressively lower temperatures for 8h, they exhibited Discriminating Temperatures (DTemp, temperature at which there is 10-20% survival of exposed individuals) of -11.5 and -12.5°C, respectively. The mean SCP was above -7.5°C in both larval groups, confirming the finding of previous studies that this species is freeze-tolerant. Following gradual cooling (0.2°Cmin(-1)), survival was significantly greater at the DTemp in both larval groups. The response was strong, lowering the lower lethal temperature (LLT) by up to 6.5°C and maintaining survival above 80% for at least 22h at the DTemp. RCH was also exhibited during the cooling phase of an ecologically relevant thermoperiodic cycle (+4°C to -3°C). Mechanistically, the response did not affect freezing, with no alteration in the supercooling point (SCP) found following gradual cooling, and was not induced while the organism was in a frozen state. These results are discussed in light of E. murphyi's pre-adaptation to conditions on Signy Island and its potential to colonize regions further south in the maritime Antarctic.
Collapse
Affiliation(s)
- M J Everatt
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | | | | | |
Collapse
|
28
|
Teets NM, Kawarasaki Y, Lee RE, Denlinger DL. Energetic consequences of repeated and prolonged dehydration in the Antarctic midge, Belgica antarctica. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:498-505. [PMID: 22133311 DOI: 10.1016/j.jinsphys.2011.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 11/09/2011] [Accepted: 11/14/2011] [Indexed: 05/31/2023]
Abstract
Larvae of the Antarctic midge, Belgica antarctica, routinely face periods of limited water availability in their natural environments on the Antarctic Peninsula. As a result, B. antarctica is one of the most dehydration-tolerant insects studied, surviving up to 70% loss of its body water. While previous studies have characterized the physiological effects of a single bout of dehydration, in nature larvae are likely to experience multiple bouts of dehydration throughout their lifetime. Thus, we examined the physiological consequences of repeated dehydration and compared results to larvae exposed to a single, prolonged period of dehydration. For the repeated dehydration experiment, larvae were exposed to 1-5 cycles of 24 h dehydration at 75% RH followed by 24 h rehydration. Each bout of dehydration resulted in 30-40% loss of body water, with a concomitant 2- to 3-fold increase in body fluid osmolality. While nearly 100% of larvae survived a single bout of dehydration, <65% of larvae survived five such cycles. Larvae subjected to multiple bouts of dehydration also experienced severe depletion of carbohydrate energy reserves; glycogen and trehalose content decreased with each successive cycle, with larvae losing 89% and 48% of their glycogen and trehalose, respectively, after five cycles of dehydration/rehydration. Larvae exposed to prolonged dehydration (99% RH for 10d) had 26% less water, 43% less glycogen, and 27% less lipid content than controls, but did not experience any mortality. Thus, both repeated and prolonged dehydration results in substantial energetic costs that are likely to negatively impact fitness.
Collapse
Affiliation(s)
- Nicholas M Teets
- Department of Entomology, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | |
Collapse
|
29
|
Storey KB, Storey JM. Insect cold hardiness: metabolic, gene, and protein adaptation1This review is part of a virtual symposium on recent advances in understanding a variety of complex regulatory processes in insect physiology and endocrinology, including development, metabolism, cold hardiness, food intake and digestion, and diuresis, through the use of omics technologies in the postgenomic era. CAN J ZOOL 2012. [DOI: 10.1139/z2012-011] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Winter survival for thousands of species of insects relies on adaptive strategies for cold hardiness. Two basic mechanisms are widely used (freeze avoidance by deep supercooling and freeze tolerance where insects endure ice formation in extracellular fluid spaces), whereas additional strategies (cryoprotective dehydration, vitrification) are also used by some polar species in extreme environments. This review assesses recent research on the biochemical adaptations that support insect cold hardiness. We examine new information about the regulation of cryoprotectant biosynthesis, mechanisms of metabolic rate depression, role of aquaporins in water and glycerol movement, and cell preservation strategies (chaperones, antioxidant defenses and metal binding proteins, mitochondrial suppression) for survival over the winter. We also review the new information coming from the use of genomic and proteomic screening methods that are greatly widening the scope for discovery of genes and proteins that support winter survival.
Collapse
Affiliation(s)
- Kenneth B. Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Janet M. Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
30
|
Kankare M, Salminen TS, Lampinen H, Hoikkala A. Sequence variation in couch potato and its effects on life-history traits in a northern malt fly, Drosophila montana. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:256-264. [PMID: 22138635 DOI: 10.1016/j.jinsphys.2011.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 05/31/2023]
Abstract
Couch potato (cpo) has previously been connected to reproductive diapause in several insect species including Drosophila melanogaster, where it has been suggested to provide a link between the insulin signalling pathway and the hormonal control of diapause. In the first part of the study we sequenced nearly 3.6 kb of this gene in a northern Drosophila species (Drosophila montana) with a robust photoperiodically determined diapause and found several types of polymorphisms along the sequenced area. We also found variation among five Drosophila virilis group species in the length of the 5th exon of cpo and in the site of the stop codon at the end of this exon. The second part of the study was targeted on a deletion of six amino acids located in the last section of exon 5, which in D. melanogaster, is translated only in one short transcript lacking the following exons. The studied deletion appeared to be extremely rare in the wild D. montana population where it was found, but its frequency rapidly increased during laboratory culture. qPCR analyses showed the expression level of the deletion allele to be significantly downregulated in both the diapausing and non-diapausing females compared to the wild type allele. At the phenotypic level, the deletion and the decreased expression of cpo transcript involving it did not have direct effect on the incidence of female reproductive diapause, but it was associated with a reduction in development time under diapause-inducing conditions. This suggests that while the cpo transcript containing the prolonged version of the 5th exon with a stop codon is clearly associated with fly development time, the exons with RNA domains included in other transcripts of the gene may be more directly related to diapause regulation.
Collapse
Affiliation(s)
- Maaria Kankare
- Centre of Excellence in Evolutionary Research, Department of Biological and Environmental Science, P.O. Box 35, 40014 University of Jyväskylä, Finland.
| | | | | | | |
Collapse
|
31
|
Boardman L, Sørensen JG, Johnson SA, Terblanche JS. Interactions between Controlled Atmospheres and Low Temperature Tolerance: A Review of Biochemical Mechanisms. Front Physiol 2011; 2:92. [PMID: 22144965 PMCID: PMC3228967 DOI: 10.3389/fphys.2011.00092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 11/15/2011] [Indexed: 11/13/2022] Open
Abstract
Controlled atmosphere treatments using carbon dioxide, oxygen, and/or nitrogen, together with controlled temperature and humidity, form an important method for post-harvest sterilization against insect-infested fruit. However, in insects, the cross tolerance and biochemical interactions between the various stresses of modified gas conditions and low temperature may either elicit or block standard stress responses which can potentiate (or limit) lethal low temperature exposure. Thus, the success of such treatments is sometimes erratic and does not always result in the desired pest mortality. This review focuses on the biochemical modes of action whereby controlled atmospheres affect insects low temperature tolerance, making them more (or occasionally, less) susceptible to cold sterilization. Insights into the integrated biochemical modes of action may be used together with the pests' low temperature tolerance physiology to determine which treatments may be of value in post-harvest sterilization.
Collapse
Affiliation(s)
- Leigh Boardman
- Department of Conservation Ecology and Entomology, Stellenbosch University Stellenbosch, South Africa
| | | | | | | |
Collapse
|
32
|
Yi SX, Benoit JB, Elnitsky MA, Kaufmann N, Brodsky JL, Zeidel ML, Denlinger DL, Lee RE. Function and immuno-localization of aquaporins in the Antarctic midge Belgica antarctica. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:1096-1105. [PMID: 21315725 PMCID: PMC8875278 DOI: 10.1016/j.jinsphys.2011.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/27/2011] [Accepted: 02/03/2011] [Indexed: 05/30/2023]
Abstract
Aquaporin (AQP) water channel proteins play key roles in water movement across cell membranes. Extending previous reports of cryoprotective functions in insects, this study examines roles of AQPs in response to dehydration, rehydration, and freezing, and their distribution in specific tissues of the Antarctic midge, Belgica antarctica (Diptera, Chironomidae). When AQPs were blocked using mercuric chloride, tissue dehydration tolerance increased in response to hypertonic challenge, and susceptibility to overhydration decreased in a hypotonic solution. Blocking AQPs decreased the ability of tissues from the midgut and Malpighian tubules to tolerate freezing, but only minimal changes were noted in cellular viability of the fat body. Immuno-localization revealed that a DRIP-like protein (a Drosophila aquaporin), AQP2- and AQP3 (aquaglyceroporin)-like proteins were present in most larval tissues. DRIP- and AQP2-like proteins were also present in the gut of adult midges, but AQP4-like protein was not detectable in any tissues we examined. Western blotting indicated that larval AQP2-like protein levels were increased in response to dehydration, rehydration and freezing, whereas, in adults DRIP-, AQP2-, and AQP3-like proteins were elevated by dehydration. These results imply a vital role for aquaporin/aquaglyceroporins in water relations and freezing tolerance in B. antarctica.
Collapse
Affiliation(s)
| | - Joshua B. Benoit
- Ohio State University, Columbus, OH 43210, USA
- Yale University, New Haven, CT 06510, USA
| | - Michael A. Elnitsky
- Miami University, Oxford, OH 45056, USA
- Mercyhurst College, Erie, PA 16546, USA
| | | | | | - Mark L. Zeidel
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | |
Collapse
|
33
|
Teets NM, Kawarasaki Y, Lee RE, Denlinger DL. Survival and energetic costs of repeated cold exposure in the Antarctic midge, Belgica antarctica: a comparison between frozen and supercooled larvae. J Exp Biol 2011; 214:806-14. [DOI: 10.1242/jeb.051912] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
SUMMARY
In this study, we examined the effects of repeated cold exposure (RCE) on the survival, energy content and stress protein expression of larvae of the Antarctic midge, Belgica antarctica (Diptera: Chironomidae). Additionally, we compared results between larvae that were frozen at –5°C in the presence of water during RCE and those that were supercooled at –5°C in a dry environment. Although >95% of larvae survived a single 12 h bout of freezing at –5°C, after five cycles of RCE survival of frozen larvae dropped below 70%. Meanwhile, the survival of control and supercooled larvae was unchanged, remaining around 90% for the duration of the study. At the tissue level, frozen larvae had higher rates of cell mortality in the midgut than control and supercooled larvae. Furthermore, larvae that were frozen during RCE experienced a dramatic reduction in energy reserves; after five cycles, frozen larvae had 25% less lipid, 30% less glycogen and nearly 40% less trehalose than supercooled larvae. Finally, larvae that were frozen during RCE had higher expression of hsp70 than those that were supercooled, indicating a higher degree of protein damage in the frozen group. Results were similar between larvae that had accumulated 60 h of freezing at –5°C over five cycles of RCE and those that were frozen continuously for 60 h, suggesting that the total time spent frozen determines the physiological response. Our results suggest that it is preferable, both from a survival and energetic standpoint, for larvae to seek dry microhabitats where they can avoid inoculative freezing and remain unfrozen during RCE.
Collapse
Affiliation(s)
- Nicholas M. Teets
- Department of Entomology, The Ohio State University, Columbus, OH 43210, USA
| | - Yuta Kawarasaki
- Department of Zoology, Miami University, Oxford, OH 45056, USA
| | - Richard E. Lee
- Department of Zoology, Miami University, Oxford, OH 45056, USA
| | - David L. Denlinger
- Department of Entomology, The Ohio State University, Columbus, OH 43210, USA
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
34
|
Arboleda-Bustos CE, Segarra C. The Dca Gene Involved in Cold Adaptation in Drosophila melanogaster Arose by Duplication of the Ancestral regucalcin Gene. Mol Biol Evol 2011; 28:2185-95. [DOI: 10.1093/molbev/msr040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
35
|
Macmillan HA, Sinclair BJ. Mechanisms underlying insect chill-coma. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:12-20. [PMID: 20969872 DOI: 10.1016/j.jinsphys.2010.10.004] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 10/12/2010] [Accepted: 10/12/2010] [Indexed: 05/30/2023]
Abstract
At their critical thermal minimum (CT(min)) insects enter chill-coma, a reversible state where neuromuscular transmission and movement cease. The physiological mechanisms responsible for the insect CT(min) remain poorly understood despite the regular use of chill-coma onset and recovery as a means to assess evolved or acquired variation in low temperature tolerance. In this review, we summarize the use of chill-coma as a metric of thermal tolerance to date, and synthesise current knowledge on the nature and plasticity of lower thermal limits to present probable physiological mechanisms of cold-induced failure. Chill-coma is likely to be driven by an inability to maintain ionic homeostasis through the effects of temperature on ion-motive ATPases, ion channel gating mechanisms, and/or the lipid membrane, leading to a loss of nerve and muscle excitability.
Collapse
Affiliation(s)
- Heath A Macmillan
- Department of Biology, The University of Western Ontario, London, ON, N6A 5B7, Canada.
| | | |
Collapse
|
36
|
Rapid cold-hardening blocks cold-induced apoptosis by inhibiting the activation of pro-caspases in the flesh fly Sarcophaga crassipalpis. Apoptosis 2011; 16:249-55. [DOI: 10.1007/s10495-010-0570-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Genetic variation in senescence marker protein-30 is associated with natural variation in cold tolerance in Drosophila. Genet Res (Camb) 2010; 92:103-13. [PMID: 20515514 DOI: 10.1017/s0016672310000108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A comprehensive understanding of the genetic basis of phenotypic adaptation in nature requires the identification of the functional allelic variation underlying adaptive phenotypes. The manner in which organisms respond to temperature extremes is an adaptation in many species. In the current study, we investigate the role of molecular variation in senescence marker protein-30 (Smp-30) on natural phenotypic variation in cold tolerance in Drosophila melanogaster. Smp-30 encodes a product that is thought to be involved in the regulation of Ca2+ ion homeostasis and has been shown previously to be differentially expressed in response to cold stress. Thus, we sought to assess whether molecular variation in Smp-30 was associated with natural phenotypic variation in cold tolerance in a panel of naturally derived inbred lines from a population in Raleigh, North Carolina. We identified four non-coding polymorphisms that were strongly associated with natural phenotypic variation in cold tolerance. Interestingly, two polymorphisms that were in close proximity to one another (2 bp apart) exhibited opposite phenotypic effects. Consistent with the maintenance of a pair of antagonistically acting polymorphisms, tests of molecular evolution identified a significant excess of maintained variation in this region, suggesting balancing selection is acting to maintain this variation. These results suggest that multiple mutations in non-coding regions can have significant effects on phenotypic variation in adaptive traits within natural populations, and that balancing selection can maintain polymorphisms with opposite effects on phenotypic variation.
Collapse
|
38
|
Kim M, Denlinger DL. Decrease in expression of beta-tubulin and microtubule abundance in flight muscles during diapause in adults of Culex pipiens. INSECT MOLECULAR BIOLOGY 2009; 18:295-302. [PMID: 19523062 DOI: 10.1111/j.1365-2583.2009.00870.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The cDNA encoding beta-tubulin in the mosquito Culex pipiens has high similarity with the beta-tubulins reported in other insects. In this study, we examine expression of this gene and microtubule abundance in relation to diapause and low temperature. While non-diapausing mosquitoes express beta-tubulin highly in their thoracic muscles, expression is quite low during adult diapause. The abundance of microtubules was also much lower in flight muscles of diapausing adults than in flight muscles from non-diapausing individuals, as confirmed by laser confocal microscopy of tubulins stained using indirect immunofluorescence. Low temperatures decreased microtubule abundance in midguts of non-diapausing mosquitoes, but microtubule abundance in diapausing mosquitoes was already low and remained unchanged by low temperature exposure. Overall, pixel intensity averages were higher in the flight muscles than in the midguts, and again low temperatures decreased microtubule abundance in the flight muscles of non-diapausing females, while levels remained consistently low in diapausing females. These results clearly indicate that a decrease in microtubule abundance is evoked both by the programming of diapause and, in non-diapausing females, by exposure to low temperatures. Quite possibly the reduced microtubule abundance in the flight muscles and reduced expression of beta-tubulin are functionally correlated to the reduction in flight activity that is associated with low temperature and diapause.
Collapse
Affiliation(s)
- M Kim
- Department of Entomology, The Ohio State University, Columbus, 43210, USA.
| | | |
Collapse
|