1
|
Nørregaard R, Mutsaers HAM, Frøkiær J, Kwon TH. Obstructive nephropathy and molecular pathophysiology of renal interstitial fibrosis. Physiol Rev 2023; 103:2827-2872. [PMID: 37440209 PMCID: PMC10642920 DOI: 10.1152/physrev.00027.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023] Open
Abstract
The kidneys play a key role in maintaining total body homeostasis. The complexity of this task is reflected in the unique architecture of the organ. Ureteral obstruction greatly affects renal physiology by altering hemodynamics, changing glomerular filtration and renal metabolism, and inducing architectural malformations of the kidney parenchyma, most importantly renal fibrosis. Persisting pathological changes lead to chronic kidney disease, which currently affects ∼10% of the global population and is one of the major causes of death worldwide. Studies on the consequences of ureteral obstruction date back to the 1800s. Even today, experimental unilateral ureteral obstruction (UUO) remains the standard model for tubulointerstitial fibrosis. However, the model has certain limitations when it comes to studying tubular injury and repair, as well as a limited potential for human translation. Nevertheless, ureteral obstruction has provided the scientific community with a wealth of knowledge on renal (patho)physiology. With the introduction of advanced omics techniques, the classical UUO model has remained relevant to this day and has been instrumental in understanding renal fibrosis at the molecular, genomic, and cellular levels. This review details key concepts and recent advances in the understanding of obstructive nephropathy, highlighting the pathophysiological hallmarks responsible for the functional and architectural changes induced by ureteral obstruction, with a special emphasis on renal fibrosis.
Collapse
Affiliation(s)
- Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | - Jørgen Frøkiær
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
| |
Collapse
|
2
|
Tofteng SS, Nilsson L, Mogensen AK, Nørregaard R, Nüsing R, Diatchikhine M, Lund L, Bistrup C, Jensen BL, Madsen K. Increased COX-2 after ureter obstruction attenuates fibrosis and is associated with EP 2 receptor upregulation in mouse and human kidney. Acta Physiol (Oxf) 2022; 235:e13828. [PMID: 35543087 PMCID: PMC9542224 DOI: 10.1111/apha.13828] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 12/20/2022]
Abstract
AIM Cyclooxygenase-2 (COX-2) activity protects against oxidative stress and apoptosis early in experimental kidney injury. The present study was designed to test the hypothesis that COX-2 activity attenuates fibrosis and preserves microvasculature in injured kidney. The murine unilateral ureteral-obstruction (UUO) model of kidney fibrosis was employed and compared with human nephrectomy tissue with and without chronic hydronephrosis. METHODS Fibrosis and angiogenic markers were quantified in kidney tissue from wild-type and COX-2-/- mice subjected to UUO for 7 days and in human kidney tissue. COX-enzymes, prostaglandin (PG) synthases, PG receptors, PGE2 , and thromboxane were determined in human tissue. RESULTS COX-2 immunosignal was observed in interstitial fibroblasts at baseline and after UUO. Fibronectin, collagen I, III, alpha-smooth muscle actin, and fibroblast specific protein-1 mRNAs increased significantly more after UUO in COX-2-/- vs wild-type mice. In vitro, fibroblasts from COX-2-/- kidneys showed higher matrix synthesis. Compared to control, human hydronephrotic kidneys showed (i) fibrosis, (ii) no significant changes in COX-2, COX-1, PGE2 -, and prostacyclin synthases, and prostacyclin and thromboxane receptor mRNAs, (iii) increased mRNA and protein of PGE2 -EP2 receptor level but unchanged PGE2 tissue concentration, and (iv) two- to threefold increased thromboxane synthase mRNA and protein levels, and increased thromboxane B2 tissue concentration in cortex and outer medulla. CONCLUSION COX-2 protects in the early phase against obstruction-induced fibrosis and maintains angiogenic factors. Increased PGE2 -EP2 receptor in obstructed human and murine kidneys could contribute to protection.
Collapse
Affiliation(s)
- Signe S. Tofteng
- Department of Cardiovascular and Renal Research, Institute of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
| | - Line Nilsson
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Amalie K. Mogensen
- Department of Cardiovascular and Renal Research, Institute of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
| | | | - Rolf Nüsing
- Institute of Clinical PharmacologyGoethe UniversityFrankfurtGermany
| | | | - Lars Lund
- Department of UrologyOdense University HospitalOdenseDenmark,Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
| | - Claus Bistrup
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark,Department of NephrologyOdense University HospitalOdenseDenmark
| | - Boye L. Jensen
- Department of Cardiovascular and Renal Research, Institute of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
| | - Kirsten Madsen
- Department of Cardiovascular and Renal Research, Institute of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark,Department of PathologyOdense University HospitalOdenseDenmark
| |
Collapse
|
3
|
Kresse J, Mutsaers HAM, Jensen MS, Tingskov SJ, Madsen MG, Nejsum LN, Prætorius H, Nørregaard R. EP 1 receptor antagonism mitigates early and late stage renal fibrosis. Acta Physiol (Oxf) 2022; 234:e13780. [PMID: 34989478 PMCID: PMC9286353 DOI: 10.1111/apha.13780] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/09/2021] [Accepted: 01/01/2022] [Indexed: 12/23/2022]
Abstract
AIM Renal fibrosis is a major driver of chronic kidney disease, yet current treatment strategies are ineffective in attenuating fibrogenesis. The cyclooxygenase/prostaglandin system plays a key role in renal injury and holds great promise as a therapeutic target. Here, we used a translational approach to evaluate the role of the PGE2 -EP1 receptor in the pathogenesis of renal fibrosis in several models of kidney injury, including human (fibrotic) kidney slices. METHODS The anti-fibrotic efficacy of a selective EP1 receptor antagonist (SC-19220) was studied in mice subjected to unilateral ureteral obstruction (UUO), healthy and fibrotic human precision-cut kidney slices (PCKS), Madin-Darby Canine Kidney (MDCK) cells and primary human renal fibroblasts (HRFs). Fibrosis was evaluated on gene and protein level using qPCR, western blot and immunostaining. RESULTS EP1 receptor inhibition diminished fibrosis in UUO mice, illustrated by a decreased protein expression of fibronectin (FN) and α-smooth muscle actin (αSMA) and a reduction in collagen deposition. Moreover, treatment of healthy human PCKS with SC-19220 reduced TGF-β-induced fibrosis as shown by decreased expression of collagen 1A1, FN and αSMA as well as reduced collagen deposition. Similar observations were made using fibrotic human PCKS. In addition, SC-19220 reduced TGF-β-induced FN expression in MDCK cells and HRFs. CONCLUSION This study highlights the EP1 receptor as a promising target for preventing both the onset and late stage of renal fibrosis. Moreover, we provide strong evidence that the effect of SC-19220 may translate to clinical care since its effects were observed in UUO mice, cells and human kidney slices.
Collapse
Affiliation(s)
| | | | | | | | | | - Lene N. Nejsum
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | | | | |
Collapse
|
4
|
Hu C, Lakshmipathi J, Stuart D, Peti-Peterdi J, Gyarmati G, Hao CM, Hansell P, Kohan DE. Renomedullary Interstitial Cell Endothelin A Receptors Regulate BP and Renal Function. J Am Soc Nephrol 2020; 31:1555-1568. [PMID: 32487560 DOI: 10.1681/asn.2020020232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/06/2020] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND The physiologic role of renomedullary interstitial cells, which are uniquely and abundantly found in the renal inner medulla, is largely unknown. Endothelin A receptors regulate multiple aspects of renomedullary interstitial cell function in vitro. METHODS To assess the effect of targeting renomedullary interstitial cell endothelin A receptors in vivo, we generated a mouse knockout model with inducible disruption of renomedullary interstitial cell endothelin A receptors at 3 months of age. RESULTS BP and renal function were similar between endothelin A receptor knockout and control mice during normal and reduced sodium or water intake. In contrast, on a high-salt diet, compared with control mice, the knockout mice had reduced BP; increased urinary sodium, potassium, water, and endothelin-1 excretion; increased urinary nitrite/nitrate excretion associated with increased noncollecting duct nitric oxide synthase-1 expression; increased PGE2 excretion associated with increased collecting duct cyclooxygenase-1 expression; and reduced inner medullary epithelial sodium channel expression. Water-loaded endothelin A receptor knockout mice, compared with control mice, had markedly enhanced urine volume and reduced urine osmolality associated with increased urinary endothelin-1 and PGE2 excretion, increased cyclooxygenase-2 protein expression, and decreased inner medullary aquaporin-2 protein content. No evidence of endothelin-1-induced renomedullary interstitial cell contraction was observed. CONCLUSIONS Disruption of renomedullary interstitial cell endothelin A receptors reduces BP and increases salt and water excretion associated with enhanced production of intrinsic renal natriuretic and diuretic factors. These studies indicate that renomedullary interstitial cells can modulate BP and renal function under physiologic conditions.
Collapse
Affiliation(s)
- Chunyan Hu
- Division of Nephrology, University of Utah Health Center, Salt Lake City, Utah
| | | | - Deborah Stuart
- Division of Nephrology, University of Utah Health Center, Salt Lake City, Utah
| | - Janos Peti-Peterdi
- Departments of Physiology and Neuroscience and Medicine, University of Southern California, Los Angeles, California
| | - Georgina Gyarmati
- Departments of Physiology and Neuroscience and Medicine, University of Southern California, Los Angeles, California
| | - Chuan-Ming Hao
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Peter Hansell
- Department of Medical Cell Biology, Section of Integrative Physiology, Uppsala University Biomedical Center, Uppsala, Sweden
| | - Donald E Kohan
- Division of Nephrology, University of Utah Health Center, Salt Lake City, Utah
| |
Collapse
|
5
|
Figueroa SM, Lozano M, Lobos C, Hennrikus MT, Gonzalez AA, Amador CA. Upregulation of Cortical Renin and Downregulation of Medullary (Pro)Renin Receptor in Unilateral Ureteral Obstruction. Front Pharmacol 2019; 10:1314. [PMID: 31803050 PMCID: PMC6868519 DOI: 10.3389/fphar.2019.01314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/15/2019] [Indexed: 12/14/2022] Open
Abstract
Chronic kidney disease (CKD) is characterized by renal dysfunction, which is a common feature of other major diseases, such as hypertension and diabetes. Unilateral ureteral obstruction (UUO) has been used as a model of CKD in experimental animals and consists of total obstruction of one kidney ureter. The UUO decreases renal blood flow, which promotes the synthesis of renin in the juxtaglomerular apparatus, the first step in renin–angiotensin system (RAS) cascade. RAS induces inflammation and remodeling, along with reduced renal function. However, it remains unknown whether intrarenal RAS (iRAS) is activated in early stages of CKD. Our objective was to characterize different iRAS components in the renal cortex and in the medulla in an early phase of UUO. Male C57BL/6 mice (8–12 weeks old) were subjected to UUO in the left kidney, or to sham surgery, and were euthanized after 7 days (n = 5/group). Renal function, renal inflammatory/remodeling processes, and iRAS expression were evaluated. UUO increased plasma creatinine, right renal hypertrophy (9.08 ± 0.31, P < 0.05 vs. Sham), and tubular dilatation in the left kidney cortex (42.42 ± 8.19µm, P < 0.05 vs. Sham). This correlated with the increased mRNA of IL-1β (1.73 ± 0.14, P < 0.01 vs. Sham, a pro-inflammatory cytokine) and TGF-β1 (1.76 ± 0.10, P < 0.001 vs. Sham, a pro-fibrotic marker). In the renal cortex of the left kidney, UUO increased the mRNA and protein levels of renin (in 35% and 28%, respectively, P < 0.05 vs. Sham). UUO decreased mRNA and protein levels for the (pro)renin receptor in the renal medulla (0.67 ± 0.036 and 0.88 ± 0.028, respectively, P < 0.05 vs. Sham). Our results suggest that modulation of iRAS components depends on renal localization and occurs in parallel with remodeling and pro-inflammatory/pro-fibrotic mechanisms.
Collapse
Affiliation(s)
- Stefanny M Figueroa
- Laboratorio de Fisiopatología Renal, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.,Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Mauricio Lozano
- Laboratorio de Fisiopatología Renal, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Carolina Lobos
- Laboratorio de Fisiopatología Renal, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Matthew T Hennrikus
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Cristián A Amador
- Laboratorio de Fisiopatología Renal, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
6
|
Chen HA, Chen CM, Guan SS, Chiang CK, Wu CT, Liu SH. The antifibrotic and anti-inflammatory effects of icariin on the kidney in a unilateral ureteral obstruction mouse model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 59:152917. [PMID: 30978648 DOI: 10.1016/j.phymed.2019.152917] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 03/09/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The pathology change of renal tubulointerstitial fibrosis is a critical feature of chronic kidney disease (CKD), regardless of the primary insults. The infiltration of inflammatory cells and the consecutive secretion of profibrotic factors are frequently and conspicuously observed during the development of renal fibrosis. Icariin, an active polyphenol of the Epimedium genus, has been found to alleviate the symptoms of chronic diseases like diabetes, neurodegeneration, and heart and renal diseases. The effect and mechanism of icariin on the prevention of CKD-associated renal fibrosis still needed clarification. PURPOSE The aims of this study were to investigate whether icariin treatment improves the development of CKD-associated renal fibrosis and its possible mechanism. METHODS An experimental unilateral ureteral obstruction (UUO)-induced chronic renal fibrosis mouse model was used. Mice were orally administered with icariin (20 mg/kg/day) for 3 consecutive days before and 14 consecutive days after UUO surgery. RESULTS The pathological changes, collagen deposition, and protein expressions of profibrotic factors (transforming growth factor-β and connective tissue growth factor) and fibrotic markers (α-smooth muscle actin and fibronectin), which were significantly elevated in the kidneys of UUO mice, could be significantly reversed by icariin treatment. Icariin treatment also significantly inhibited the increased Smad2/3 and decreased E-cadherin protein expressions in the kidneys of UUO mice. Icariin treatment prominently mitigated the protein expression of proinflammatory factors like nuclear factor-κB, cyclooxygenase-2, interleukin 1-β and prooxidative enzyme (NADPH oxidase-4), and it increased the protein expression of antioxidative enzymes (superoxide dismutase and catalase). CONCLUSION Icariin treatment protects against CKD-associated renal fibrosis via its antifibrotic and anti-inflammatory properties. Icariin may serve as a therapeutic agent in the prevention of CKD-associated renal fibrosis.
Collapse
Affiliation(s)
- Hsin-An Chen
- Graduate Institute of Clinical Medicine and Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Chang-Mu Chen
- Department of Surgery, College of Medicine and Hospital, National Taiwan University, Taipei, Taiwan
| | - Siao-Syun Guan
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Chih-Kang Chiang
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Integrated Diagnostics & Therapeutics, College of Medicine and Hospital, National Taiwan University, Taipei, Taiwan
| | - Cheng-Tien Wu
- Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Department of Paediatrics, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
7
|
Liu M, Sun Y, Xu M, Yu X, Zhang Y, Huang S, Ding G, Zhang A, Jia Z. Role of mitochondrial oxidative stress in modulating the expressions of aquaporins in obstructive kidney disease. Am J Physiol Renal Physiol 2018; 314:F658-F666. [PMID: 29357430 DOI: 10.1152/ajprenal.00234.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Downregulation of aquaporins (AQPs) in obstructive kidney disease has been well demonstrated with elusive mechanisms. Our previous study indicated that mitochondrial dysfunction played a crucial role in this process. However, it is still uncertain how mitochondrial dysfunction affected the AQPs in obstructive kidney disease. This study investigated the role of mitochondria-derived oxidative stress in mediating obstruction-induced downregulation of AQPs. After unilateral ureteral obstruction for 7 days, renal superoxide dismutase 2 (SOD2; mitochondria-specific SOD) was reduced by 85%. Meanwhile, AQP1, AQP2, AQP3, and AQP4 were remarkably downregulated as determined by Western blotting and/or quantitative real-time PCR. Administration of the SOD2 mimic manganese (III) tetrakis(4-benzoic acid)porphyrin chloride (MnTBAP) significantly attenuated AQP2 downregulation in line with complete blockade of thiobarbituric acid-reactive substances elevation, whereas the reduction of AQP1, AQP3, and AQP4 was not affected. The cyclooxygenase (COX)-2/prostaglandin (PG) E2 pathway has been well documented as a contributor of AQP reduction in obstructed kidney; thus, we detected the levels of COX-1/2 and microsomal prostaglandin E synthase 1 (mPGES-1) in kidney and PGE2 secretion in urine. Significantly, MnTBAP partially suppressed the elevation of COX-2, mPGES-1, and PGE2. Moreover, a marked decrease of V2 receptor was significantly restored after MnTBAP treatment. However, the fibrotic response and renal tubular damage were unaffected by MnTBAP in obstructed kidneys. Collectively, these findings suggested an important role of mitochondrial oxidative stress in mediating AQP2 downregulation in obstructed kidney, possibly via modulating the COX-2/mPGES-1/PGE2/V2 receptor pathway.
Collapse
Affiliation(s)
- Mi Liu
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Sun
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Man Xu
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Xiaowen Yu
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Songming Huang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Guixia Ding
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Albuminuria confers renal resistance to loop diuretics via the stimulation of NLRP3 inflammasome/prostaglandin signaling in thick ascending limb. Oncotarget 2016; 8:75808-75821. [PMID: 29100270 PMCID: PMC5652664 DOI: 10.18632/oncotarget.10257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/05/2016] [Indexed: 12/26/2022] Open
Abstract
Renal resistance to loop diuretics is a frequent complication in a number of kidney disease patients with elusive mechanism. Employing human renal biopsy specimens, albumin overload mouse model, and primary cultures of mouse renal tubular cells, albuminuria effect on NKCC2 expression and function and the underlying mechanisms were investigated. In the renal biopsy specimens of albuminuric patients, we found that NKCC2 was significantly downregulated with a negative correlation with albuminuria severity as examined by immunohistochemistry. Meanwhile, NLRP3 and mPGES-1 were stimulated in NKCC2 positive tubules (thick ascending limb, TAL) paralleled with increased urinary PGE2 excretion. To examine the role of albuminuria in the downregulation of NKCC2 and the potential role of NLRP3/prostaglandin signaling in NKCC2 downregulation, an albumin overload mouse model was employed. Interestingly, we discovered that albuminuria downregulated NKCC2 protein expression in murine kidney and impaired the renal response to loop diuretic furosemide. Specifically, albuminuria suppressed NKCC2 expression and function through NLRP3/prostaglandin dependent signaling in TAL. In primary cultures of renal tubular cells, albumin directly reduced NKCC2 but enhanced NLRP3, COX-2, and mPGES-1 expression. These novel findings demonstrated that albuminuria is of importance in mediating the renal resistance to loop diuretics via NLRP3/prostaglandin signaling-dependent NKCC2 downregulation in TAL. This may also offer novel, effective targets for dealing with the resistance of loop diuretics in proteinuric renal diseases.
Collapse
|
9
|
Yang T, Li C. Role of COX-2 in unilateral ureteral obstruction: what is new? Am J Physiol Renal Physiol 2016; 310:F746-F747. [PMID: 26661655 DOI: 10.1152/ajprenal.00498.2015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/02/2015] [Indexed: 11/22/2022] Open
Affiliation(s)
- Tianxin Yang
- Department of Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah; and .,Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chunling Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Nørregaard R, Kwon TH, Frøkiær J. Physiology and pathophysiology of cyclooxygenase-2 and prostaglandin E2 in the kidney. Kidney Res Clin Pract 2015; 34:194-200. [PMID: 26779421 PMCID: PMC4688592 DOI: 10.1016/j.krcp.2015.10.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/13/2015] [Indexed: 01/12/2023] Open
Abstract
The cyclooxygenase (COX) enzyme system is the major pathway catalyzing the conversion of arachidonic acid into prostaglandins (PGs). PGs are lipid mediators implicated in a variety of physiological and pathophysiological processes in the kidney, including renal hemodynamics, body water and sodium balance, and the inflammatory injury characteristic in multiple renal diseases. Since the beginning of 1990s, it has been confirmed that COX exists in 2 isoforms, referred to as COX-1 and COX-2. Even though the 2 enzymes are similar in size and structure, COX-1 and COX-2 are regulated by different systems and have different functional roles. This review summarizes the current data on renal expression of the 2 COX isoforms and highlights mainly the role of COX-2 and PGE2 in several physiological and pathophysiological processes in the kidney.
Collapse
Affiliation(s)
- Rikke Nørregaard
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Korea
| | - Jørgen Frøkiær
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
11
|
Carlsen I, Frøkiær J, Nørregaard R. Quercetin attenuates cyclooxygenase-2 expression in response to acute ureteral obstruction. Am J Physiol Renal Physiol 2015; 308:F1297-305. [PMID: 25810437 DOI: 10.1152/ajprenal.00514.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 03/16/2015] [Indexed: 11/22/2022] Open
Abstract
Unilateral ureteral obstruction (UUO) is associated with increased hydrostatic pressure, inflammation, and oxidative stress in the renal parenchyma. Previous studies have demonstrated marked cyclooxygenase (COX)-2 induction in renal medullary interstitial cells (RMICs) in response to UUO. The aim of the present study was to evaluate the effect of quercetin, a naturally occurring antioxidant, on COX-2 induction in vivo and in vitro. Rats subjected to 24 h of UUO were treated intraperitoneally with quercetin (50 mg·kg(-1)·day(-1)). Quercetin partly prevented COX-2 induction in the renal inner medulla in response to UUO. Moreover, RMICs exposed to conditions associated with obstruction, inflammation (produced by IL-1β), oxidative stress (produced by H2O2), and mechanical stress (produced by stretch) showed increased COX-2 expression. Interestingly, quercetin reduced COX-2 induction in RMICs subjected to stretched. Similarly, PGE2 production was markedly increased in RMICs exposed to stretch and was reversed to control levels by quercetin treatment. Furthermore, stretch-induced phosphorylation of ERK1/2 was blocked by quercetin, and inhibition of ERK1/2 attenuated stretch-induced COX-2 induction in RMICs. These results indicate that quercetin attenuated the induction of COX-2 expression and activity in RMICs exposed to mechanical stress as a consequence of acute UUO and that the MAPK ERK1/2 pathway might be involved in this quercetin-mediated reduction in COX-2.
Collapse
Affiliation(s)
- Inge Carlsen
- Department of Clinical Medicine, Aarhus University, Aarhus University Hospital, Aarhus, Denmark
| | - Jørgen Frøkiær
- Department of Clinical Medicine, Aarhus University, Aarhus University Hospital, Aarhus, Denmark
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
12
|
Carrisoza-Gaytan R, Liu Y, Flores D, Else C, Lee HG, Rhodes G, Sandoval RM, Kleyman TR, Lee FYI, Molitoris B, Satlin LM, Rohatgi R. Effects of biomechanical forces on signaling in the cortical collecting duct (CCD). Am J Physiol Renal Physiol 2014; 307:F195-204. [PMID: 24872319 DOI: 10.1152/ajprenal.00634.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
An increase in tubular fluid flow rate (TFF) stimulates Na reabsorption and K secretion in the cortical collecting duct (CCD) and subjects cells therein to biomechanical forces including fluid shear stress (FSS) and circumferential stretch (CS). Intracellular MAPK and extracellular autocrine/paracrine PGE2 signaling regulate cation transport in the CCD and, at least in other systems, are affected by biomechanical forces. We hypothesized that FSS and CS differentially affect MAPK signaling and PGE2 release to modulate cation transport in the CCD. To validate that CS is a physiological force in vivo, we applied the intravital microscopic approach to rodent kidneys in vivo to show that saline or furosemide injection led to a 46.5 ± 2.0 or 170 ± 32% increase, respectively, in distal tubular diameter. Next, murine CCD (mpkCCD) cells were grown on glass or silicone coated with collagen type IV and subjected to 0 or 0.4 dyne/cm(2) of FSS or 10% CS, respectively, forces chosen based on prior biomechanical modeling of ex vivo microperfused CCDs. Cells exposed to FSS expressed an approximately twofold greater abundance of phospho(p)-ERK and p-p38 vs. static cells, while CS did not alter p-p38 and p-ERK expression compared with unstretched controls. FSS induced whereas CS reduced PGE2 release by ∼40%. In conclusion, FSS and CS differentially affect ERK and p38 activation and PGE2 release in a cell culture model of the CD. We speculate that TFF differentially regulates biomechanical signaling and, in turn, cation transport in the CCD.
Collapse
Affiliation(s)
| | - Yu Liu
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Daniel Flores
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Medicine, James J. Peters Veterans Affairs Medical Center, New York, New York
| | - Cindy Else
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Heon Goo Lee
- Department of Orthopedics, Robert Carroll and Jane Chace Carroll Laboratories, Columbia College of Physicians and Surgeons, New York, New York
| | - George Rhodes
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Ruben M Sandoval
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Thomas R Kleyman
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Francis Young-In Lee
- Department of Orthopedics, Robert Carroll and Jane Chace Carroll Laboratories, Columbia College of Physicians and Surgeons, New York, New York
| | - Bruce Molitoris
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Lisa M Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rajeev Rohatgi
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Medicine, James J. Peters Veterans Affairs Medical Center, New York, New York;
| |
Collapse
|
13
|
Stødkilde L, Palmfeldt J, Nilsson L, Carlsen I, Wang Y, Nørregaard R, Frøkiaer J. Proteomic identification of early changes in the renal cytoskeleton in obstructive uropathy. Am J Physiol Renal Physiol 2014; 306:F1429-41. [PMID: 24761003 DOI: 10.1152/ajprenal.00244.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Bilateral ureteral obstruction (BUO) is associated with renal damage and impaired ability to concentrate urine and is known to induce alterations in an array of kidney proteins. The aim of this study was to identify acute proteomic alterations induced by BUO. Rats were subjected to BUO for 2, 6, or 24 h. Mass spectrometry-based proteomics was performed on the renal inner medulla, and protein changes in the obstructed group were identified. Significant changes were successfully identified for 109 proteins belonging to different biological classes. Interestingly, proteins belonging to the cytoskeleton and proteins related to cytoskeletal regulation were found to be biologically enriched in BUO using online-accessible tools. Western blots confirmed the selected results, demonstrating acute downregulation of proteins belonging to all three cytoskeletal components. The microfilament protein β-actin and the intermediate filament proteins pankeratin and vimentin were all downregulated. β-Tubulin, an important microtubular protein, was found to be significantly downregulated after 24 h. Also, there was significant upregulation of cofilin, an actin-binding protein known to be upregulated in other nephropathy models. Furthermore, both upregulation and downregulation of cytoskeletal motor and regulatory proteins were observed. These findings were confirmed by immunohistochemistry, which clearly showed alterations in labeling in the inner medulla. Interestingly, we were able to confirm selected results in mpkCCD cells exposed to mechanical stretch. Our findings add to the knowledge of BUO-induced acute changes in the renal cytoskeleton and suggest that these molecular changes are partly mediated by increased stretch of the cells during obstruction.
Collapse
Affiliation(s)
- Lene Stødkilde
- Department of Clinical Physiology and Molecular Imaging, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine Aarhus University Hospital, Aarhus, Denmark
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark; and Department of Clinical Medicine Aarhus University Hospital, Aarhus, Denmark
| | - Line Nilsson
- Department of Clinical Medicine Aarhus University Hospital, Aarhus, Denmark
| | - Inge Carlsen
- Department of Clinical Physiology and Molecular Imaging, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine Aarhus University Hospital, Aarhus, Denmark
| | - Yan Wang
- Department of Clinical Physiology and Molecular Imaging, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine Aarhus University Hospital, Aarhus, Denmark
| | - Rikke Nørregaard
- Department of Clinical Medicine Aarhus University Hospital, Aarhus, Denmark
| | - Jørgen Frøkiaer
- Department of Clinical Physiology and Molecular Imaging, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
14
|
Østergaard M, Christensen M, Nilsson L, Carlsen I, Frøkiær J, Nørregaard R. ROS dependence of cyclooxygenase-2 induction in rats subjected to unilateral ureteral obstruction. Am J Physiol Renal Physiol 2014; 306:F259-70. [DOI: 10.1152/ajprenal.00352.2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Oxidative stress resulting from unilateral ureteral obstruction (UUO) may be aggravated by increased production of ROS. Previous studies have demonstrated increased cyclooxygenase (COX)-2 expression in renal medullary interstitial cells (RMICs) in response to UUO. We investigated, both in vivo and in vitro, the role of ROS in the induction of COX-2 in rats subjected to UUO and in RMICs exposed to oxidative and mechanical stress. Rats subjected to 3-day UUO were treated with two mechanistically distinct antioxidants, the NADPH oxidase inhibitor diphenyleneiodonium (DPI) and the complex I inhibitor rotenone (ROT), to interfere with ROS production. We found that UUO-mediated induction of COX-2 in the inner medulla was attenuated by both antioxidants. In addition, DPI and ROT reduced tubular damage and oxidative stress after UUO. Moreover, mechanical stretch induced COX-2 and oxidative stress in RMICs. Likewise, RMICs exposed to H2O2 as an inducer of oxidative stress showed increased COX-2 expression and activity, both of which were reduced by DPI and ROT. Similarly, ROS production, which was increased after exposure of RMICs to H2O2, was also reduced by DPI and ROT. Furthermore, oxidative stress-induced phosphorylation of ERK1/2 and p38 was blocked by both antioxidants, and inhibition of ERK1/2 and p38 attenuated the induction of COX-2 in RMICs. Notably, COX-2 inhibitors further exacerbated the oxidative stress level in H2O2-exposed RMICs. We conclude that oxidative stress as a consequence of UUO stimulates COX-2 expression through the activation of multiple MAPKs and that the induction of COX-2 may exert a cytoprotective function in RMICs.
Collapse
Affiliation(s)
- Martin Østergaard
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, Aarhus, Denmark; and
| | - Michael Christensen
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, Aarhus, Denmark; and
| | - Line Nilsson
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, Aarhus, Denmark; and
| | - Inge Carlsen
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, Aarhus, Denmark; and
| | - Jørgen Frøkiær
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, Aarhus, Denmark; and
- Department of Clinical Physiology, Aarhus University Hospital, Aarhus University, Aarhus, Denmark
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, Aarhus, Denmark; and
| |
Collapse
|
15
|
Carlsen I, Nilsson L, Frøkiaer J, Nørregaard R. Changes in phosphorylated heat-shock protein 27 in response to acute ureteral obstruction in rats. Acta Physiol (Oxf) 2013; 209:167-78. [PMID: 23834360 DOI: 10.1111/apha.12135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 09/18/2012] [Accepted: 06/05/2013] [Indexed: 12/19/2022]
Abstract
AIM In vivo, renal medullary interstitial cells (RMICs) and collecting duct principal cells (mpkCCD cells) are subjected to inflammatory, oxidative and mechanical stress as a result of unilateral ureteral obstruction (UUO). Because heat-shock protein (HSP) 27 and HSP70 are induced by cellular stresses and play a role in cytoprotection, we hypothesized that HSP27 and HSP70 are increased in rats subjected to acute UUO and in RMICs and mpkCCD cells exposed to inflammatory, oxidative or mechanical stress. METHODS Rats were subjected to acute UUO for 6 h and 12 h. To examine the expression of HSP27, phosphorylated HSP27 (pHSP27) and HSP70 in response to inflammatory, oxidative and mechanical stress in vitro, we exposed RMICs and mpkCCD cells to interleukin 1β (IL-1β), hydrogen peroxide (H2 O2 ), and stretch stimulation over time. RESULTS The phosphorylated form of HSP27 (pHSP27) was increased in the renal inner medulla (IM) after 6-h and 12-h UUO, while HSP27 and HSP70 were unchanged. Furthermore, after 6 h and 12 h of UUO, the expression of inflammatory (IL-1β) and oxidative [haem oxygenase 1 (HO-1)] markers was induced. Exposure to inflammatory, oxidative and mechanical stress changed HSP27 and pHSP27 expression in RMICs but not in mpkCCD cells, while HSP70 was not affected by any of the stress conditions. Exposure of RMICs to oxidative and mechanical stress induced HSP27 phosphorylation via a p38-dependent mechanism. CONCLUSION These data demonstrate that, in response to acute UUO, different forms of cellular stresses modulate HSP27 expression and phosphorylation in RMICs. This may affect the ability of renal cells to mount an effective cytoprotective response.
Collapse
Affiliation(s)
- I Carlsen
- The Water and Salt Research Center, Aarhus University, Aarhus, Denmark; Institute of Clinical Medicine, Aarhus University Hospital-Skejby, Aarhus, Denmark
| | | | | | | |
Collapse
|
16
|
Boesen EI. Chronic elevation of IL-1β induces diuresis via a cyclooxygenase 2-mediated mechanism. Am J Physiol Renal Physiol 2013; 305:F189-98. [PMID: 23657858 DOI: 10.1152/ajprenal.00075.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Chronic renal inflammation is an increasingly recognized phenomenon in multiple disease states, but the impact of specific cytokines on renal function is unclear. Previously, we found that 14-day interleukin-1β (IL-1β) infusion increased urine flow in mice. To determine the mechanism by which this occurs, the current study tested the possible involvement of three classical prodiuretic pathways. Chronic IL-1β infusion significantly increased urine flow (6.5 ± 1 ml/day at day 14 vs. 2.3 ± 0.3 ml/day in vehicle group; P < 0.05) and expression of cyclooxygenase (COX)-2, all three nitric oxide synthase (NOS) isoforms, and endothelin (ET)-1 in the kidney (P < 0.05 in all cases). Urinary prostaglandin E metabolite (PGEM) excretion was also significantly increased at day 14 of IL-1β infusion (1.21 ± 0.26 vs. 0.29 ± 0.06 ng/day in vehicle-infused mice; P = 0.001). The selective COX-2 inhibitor celecoxib markedly attenuated urinary PGEM excretion and abolished the diuretic response to chronic IL-1β infusion. In contrast, deletion of NOS3, or inhibition of NOS1 with L-VNIO, did not blunt the diuretic effect of IL-1β, nor did pharmacological blockade of endothelin ETA and ETB receptors with A-182086. Consistent with a primary effect on water transport, IL-1β infusion markedly reduced inner medullary aquaporin-2 expression (P < 0.05) and did not alter urinary Na⁺ or K⁺ excretion. These data indicate a critical role for COX-2 in mediating the effects of chronic IL-1β elevation on the kidney.
Collapse
Affiliation(s)
- E I Boesen
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
17
|
Chen CH, Cheng CY, Chen YC, Sue YM, Hsu YH, Tsai WL, Chen TH. Rosuvastatin inhibits pressure-induced fibrotic responses via the expression regulation of prostacyclin and prostaglandin E2 in rat renal tubular cells. Eur J Pharmacol 2012; 700:65-73. [PMID: 23276663 DOI: 10.1016/j.ejphar.2012.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 12/18/2012] [Accepted: 12/19/2012] [Indexed: 02/04/2023]
Abstract
Statins are reported to alleviate renal fibrosis in animal models with ureteral obstruction. However, the molecular mechanism of this antifibrotic effect is still unclear. Pressure force is an important mechanism contributing to induction and progression of tubulointerstitial fibrogenesis in ureteric obstruction. In this study, we investigated the influence of rosuvastatin on pressure-induced fibrotic responses in rat renal tubular cells (NRK-52E). We established an in vitro pressure culture system to study pressure-induced fibrotic responses in NRK-52E cells. When NRK-52E cells were cultured in the pressure culture system, 60 mm Hg of pressure induced the expression of connective tissue growth factor (CTGF), transforming growth factor (TGF)-β, fibronectin, Smad3, and phospho-Smad3. Rosuvastatin significantly reduced these pressure-induced fibrotic responses at concentrations above 10 μM. Rosuvastatin also reduced the TGF-β-induced expression of fibronectin and CTGF in NRK-52E cells. Pretreatment with rosuvastatin significantly induced prostacyclin (PGI(2)) generation, but reduced pressure-induced prostaglandin E(2) (PGE(2)). PGI(2) synthase small interfering RNA (siRNA) transfection significantly inhibited rosuvastatin-induced peroxisome proliferator-activated receptor α activation. The blockage of peroxisome proliferator-activated receptor α by siRNA transfection reduced the inhibitory effect of rosuvastatin on pressure-induced fibrotic responses. N-[2-(cyclohexyloxy)-4-nitrophenyl]-methanesulfonamide (NS398), a specific inhibitor of cyclooxygenase-2, diminished pressure-induced PGE(2) generation, and also reduced pressure-induced fibrotic responses. Additionally, PGE(2) decreased the antifibrotic effect of rosuvastatin. In conclusion, rosuvastatin reduces pressure-induced fibrotic responses in renal tubular cells by enhancing the PGI(2)-peroxisome proliferator-activated receptor α pathway and reducing PGE(2) generation.
Collapse
Affiliation(s)
- Cheng-Hsien Chen
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
18
|
The intrinsic prostaglandin E2-EP4 system of the renal tubular epithelium limits the development of tubulointerstitial fibrosis in mice. Kidney Int 2012; 82:158-71. [PMID: 22513820 DOI: 10.1038/ki.2012.115] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Inflammatory responses in the kidney lead to tubulointerstitial fibrosis, a common feature of chronic kidney diseases. Here we examined the role of prostaglandin E(2) (PGE(2)) in the development of tubulointerstitial fibrosis. In the kidneys of wild-type mice, unilateral ureteral obstruction leads to progressive tubulointerstitial fibrosis with macrophage infiltration and myofibroblast proliferation. This was accompanied by an upregulation of COX-2 and PGE(2) receptor subtype EP(4) mRNAs. In the kidneys of EP(4) gene knockout mice, however, obstruction-induced histological alterations were significantly augmented. In contrast, an EP(4)-specific agonist significantly attenuated these alterations in the kidneys of wild-type mice. The mRNAs for macrophage chemokines and profibrotic growth factors were upregulated in the kidneys of wild-type mice after ureteral obstruction. This was significantly augmented in the kidneys of EP(4)-knockout mice and suppressed by the EP(4) agonist but only in the kidneys of wild-type mice. Notably, COX-2 and MCP-1 proteins, as well as EP(4) mRNA, were localized in renal tubular epithelial cells after ureteral obstruction. In cultured renal fibroblasts, another EP(4)-specific agonist significantly inhibited PDGF-induced proliferation and profibrotic connective tissue growth factor production. Hence, an endogenous PGE(2)-EP(4) system in the tubular epithelium limits the development of tubulointerstitial fibrosis by suppressing inflammatory responses.
Collapse
|
19
|
Hamed MA, Ali SA, El-Rigal NS. Therapeutic potential of ginger against renal injury induced by carbon tetrachloride in rats. ScientificWorldJournal 2012; 2012:840421. [PMID: 22566780 PMCID: PMC3329925 DOI: 10.1100/2012/840421] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 12/19/2011] [Indexed: 11/20/2022] Open
Abstract
The objective of this study was to evaluate the potential of successive ginger extracts (petroleum ether, chloroform, and ethanol) against nephrotoxicity induced by CCl(4) in rats. The evaluation was done through measuring kidney antioxidant parameters: glutathione (GSH), lipid peroxides (LPO), and superoxide dismutase (SOD). Renal function test: urea, creatinine and serum protein values, were also evaluated. The work was extended to examine tissue inflammatory mediators, prostaglandin-E(2) (PGE(2)), collagen content and the kidney histopathology. Severe alterations in all biomarkers were observed after injury with CCl(4). Treatment with ginger extracts resulted in markedly decreased levels of LPO, PGE(2), collagen and kidney function tests, while increased levels of GSH, SOD and serum protein were observed. In conclusion, extracts of ginger, particularly the ethanol, resulted in an attractive candidate for the treatment of nephropathy induced by CCl(4) through scavenging free radicals, improved kidney functions, inhibition of inflammatory mediators, and normalizing the kidney histopathological architecture. Further studies are required in order to identify the molecules responsible of the pharmacological activity.
Collapse
Affiliation(s)
- Manal A Hamed
- Therapeutic Chemistry Department, National Research Center, Dokki 12311, Cairo, Egypt.
| | | | | |
Collapse
|