1
|
Kerr NR, Kelty TJ, Mao X, Childs TE, Kline DD, Rector RS, Booth FW. Selective breeding for physical inactivity produces cognitive deficits via altered hippocampal mitochondrial and synaptic function. Front Aging Neurosci 2023; 15:1147420. [PMID: 37077501 PMCID: PMC10106691 DOI: 10.3389/fnagi.2023.1147420] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Abstract
Physical inactivity is the 4th leading cause of death globally and has been shown to significantly increase the risk for developing Alzheimer's Disease (AD). Recent work has demonstrated that exercise prior to breeding produces heritable benefits to the brains of offspring, suggesting that the physical activity status of previous generations could play an important role in one's brain health and their subsequent risk for neurodegenerative diseases. Thus, our study aimed to test the hypothesis that selective breeding for physical inactivity, or for high physical activity, preference produces heritable deficits and enhancements to brain health, respectively. To evaluate this hypothesis, male and female sedentary Low Voluntary Runners (LVR), wild type (WT), and High Voluntary Runner (HVR) rats underwent cognitive behavioral testing, analysis of hippocampal neurogenesis and mitochondrial respiration, and molecular analysis of the dentate gyrus. These analyses revealed that selecting for physical inactivity preference has produced major detriments to cognition, brain mitochondrial respiration, and neurogenesis in female LVR while female HVR display enhancements in brain glucose metabolism and hippocampal size. On the contrary, male LVR and HVR showed very few differences in these parameters relative to WT. Overall, we provide evidence that selective breeding for physical inactivity has a heritable and detrimental effect on brain health and that the female brain appears to be more susceptible to these effects. This emphasizes the importance of remaining physically active as chronic intergenerational physical inactivity likely increases susceptibility to neurodegenerative diseases for both the inactive individual and their offspring.
Collapse
Affiliation(s)
- Nathan R. Kerr
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
| | - Taylor J. Kelty
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Xuansong Mao
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
| | - Thomas E. Childs
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
| | - David D. Kline
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| | - R. Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Research Service, Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, MO, United States
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO, United States
| | - Frank W. Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
2
|
Kerr NR, Booth FW. Contributions of physical inactivity and sedentary behavior to metabolic and endocrine diseases. Trends Endocrinol Metab 2022; 33:817-827. [PMID: 36283907 DOI: 10.1016/j.tem.2022.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
Physical inactivity is the fourth leading global cause of death and is a major contributor to metabolic and endocrine diseases. In this review we provide a current update of the past 5 years in the field as it pertains to the most prevalent and deadly chronic diseases. Despite the prevalence of physical inactivity in modern society, it remains largely overlooked relative to other comparable risk factors such as obesity, and our molecular understanding of how physical inactivity impacts metabolism is still partially unknown. Therefore, we discuss current clinical inactivity models along with their most recent findings regarding health outcomes along with any discrepancies that are present in the field. Lastly, we discuss future directions and the need for translatable animal models of physical inactivity to discover novel molecular targets for the prevention of chronic disease.
Collapse
Affiliation(s)
- Nathan R Kerr
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, USA; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
3
|
O’Neil-Pirozzi TM, Cattaneo G, Solana-Sánchez J, Gomes-Osman J, Pascual-Leone A. The Importance of Motivation to Older Adult Physical and Cognitive Exercise Program Development, Initiation, and Adherence. FRONTIERS IN AGING 2022; 3:773944. [PMID: 35821853 PMCID: PMC9261340 DOI: 10.3389/fragi.2022.773944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/03/2022] [Indexed: 11/21/2022]
Abstract
Brain health is essential to successful aging, and exercise is essential to brain health. Evidence supports the benefits of regular physical and cognitive exercise in preventing or delaying progressin of mild cognitive impairment and dementia. Despite known benefits, motivation to initiate and adhere to an exercise program can be challenging to older adults. We propose that assessment of motivation in the older adult population be part of individualized physical and cognitive exercise program initial development and ongoing precision health coaching to facilitate initiation of—and adherence to—individualized multi-modal exercise programs and sustained exercise engagement. We suggest one published, physical exercise motivation questionnaire and present a new, psychometrically supported, parallel cognitive exercise questionnaire to do so. Needs for—and implications of—continued exercise motivation research using neurophysiologic and neuropsychologic metrics are discussed.
Collapse
Affiliation(s)
- Therese M. O’Neil-Pirozzi
- Cognitive-Community Integration Lab, Department of Communication Sciences and Disorders, Northeastern University, Boston, MA, United States
- *Correspondence: Therese M. O’Neil-Pirozzi,
| | - Gabriele Cattaneo
- Institut Guttmann, Institut Universitari de Neurorehabilitació Adscrit a La UAB, Badalona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Javier Solana-Sánchez
- Institut Guttmann, Institut Universitari de Neurorehabilitació Adscrit a La UAB, Badalona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Joyce Gomes-Osman
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
- Linus Health, Boston, MA, United States
| | - Alvaro Pascual-Leone
- Institut Guttmann, Institut Universitari de Neurorehabilitació Adscrit a La UAB, Badalona, Spain
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Plotkin DL, Roberts MD, Haun CT, Schoenfeld BJ. Muscle Fiber Type Transitions with Exercise Training: Shifting Perspectives. Sports (Basel) 2021; 9:sports9090127. [PMID: 34564332 PMCID: PMC8473039 DOI: 10.3390/sports9090127] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 11/22/2022] Open
Abstract
Human muscle fibers are generally classified by myosin heavy chain (MHC) isoforms characterized by slow to fast contractile speeds. Type I, or slow-twitch fibers, are seen in high abundance in elite endurance athletes, such as long-distance runners and cyclists. Alternatively, fast-twitch IIa and IIx fibers are abundant in elite power athletes, such as weightlifters and sprinters. While cross-sectional comparisons have shown marked differences between athletes, longitudinal data have not clearly converged on patterns in fiber type shifts over time, particularly between slow and fast fibers. However, not all fiber type identification techniques are created equal and, thus, may limit interpretation. Hybrid fibers, which express more than one MHC type (I/IIa, IIa/IIx, I/IIa/IIx), may make up a significant proportion of fibers. The measurement of the distribution of fibers would necessitate the ability to identify hybrid fibers, which is best done through single fiber analysis. Current evidence using the most appropriate techniques suggests a clear ability of fibers to shift between hybrid and pure fibers as well as between slow and fast fiber types. The context and extent to which this occurs, along with the limitations of current evidence, are discussed herein.
Collapse
Affiliation(s)
- Daniel L. Plotkin
- Health Sciences Department, CUNY Lehman College, Bronx, NY 10468, USA; (D.L.P.); (B.J.S.)
| | | | - Cody T. Haun
- Fitomics, LLC., Pelham, AL 35124, USA
- Correspondence:
| | - Brad J. Schoenfeld
- Health Sciences Department, CUNY Lehman College, Bronx, NY 10468, USA; (D.L.P.); (B.J.S.)
| |
Collapse
|
5
|
Zhang J, He ZX, Qu YS, Li LF, Wang LM, Yuan W, Hou WJ, Zhu YQ, Cai WQ, Zhang XN, Guo QQ, An SC, Jia R, Tai FD. Different baseline physical activity predicts susceptibility and resilience to chronic social defeat stress in mice: Involvement of dopamine neurons. Eur Neuropsychopharmacol 2021; 45:15-28. [PMID: 33730683 DOI: 10.1016/j.euroneuro.2021.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023]
Abstract
Physical inactivity, the fourth leading mortality risk factor worldwide, is associated with chronic mental illness. Identifying the mechanisms underlying different levels of baseline physical activity and the effects of these levels on the susceptibility to stress is very important. However, whether different levels of baseline physical activity influence the susceptibility and resilience to chronic social defeat stress (CSDS), and the underlying mechanisms in the brain remain unclear. The present study segregated wild-type mice into low baseline physical activity (LBPA) and high baseline physical activity (HBPA) groups based on short term voluntary wheel running (VWR). LBPA mice showed obvious susceptibility to CSDS, while HBPA mice were resilient to CSDS. In addition, the expression of tyrosine hydroxylase (TH) in the ventral tegmental area (VTA) was lower in LBPA mice than in HBPA mice. Furthermore, activation of TH neurons in the VTA of LBPA mice by chemogenetic methods increased the levels of VWR and resilience to CSDS. In contrast, inhibiting TH neurons in the VTA of HBPA mice lowered the levels of VWR and increased their susceptibility to CSDS. Thus, this study suggests that different baseline physical activities might be mediated by the dopamine system. This system also affects the susceptibility and resilience to CSDS, possibly via alteration of the baseline physical activity. This perspective on the neural control and impacts on VWR may aid the development of strategies to motivate and sustain voluntary physical activity. Furthermore, this can maximize the impacts of regular physical activity toward stress-reduction and health promotion.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China; School of Physical Education & Health, Nanning Normal University, Nanning 530100, China
| | - Zhi-Xiong He
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yi-Shan Qu
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Lai-Fu Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Li-Min Wang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Wei Yuan
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Wen-Juan Hou
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Ying-Qi Zhu
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Wen-Qi Cai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Xue-Ni Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Qian-Qian Guo
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Shu-Cheng An
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Rui Jia
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China; Cognition Neuroscience and Learning Division, Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an 710062, China.
| | - Fa-Dao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China; Cognition Neuroscience and Learning Division, Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
6
|
Kelty TJ, Brown JD, Kerr NR, Roberts MD, Childs TE, Cabrera OH, Manzella FM, Miller DK, Taylor GT, Booth FW. RNA-sequencing and behavioral testing reveals inherited physical inactivity co-selects for anxiogenic behavior without altering depressive-like behavior in Wistar rats. Neurosci Lett 2021; 753:135854. [PMID: 33785378 DOI: 10.1016/j.neulet.2021.135854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 11/15/2022]
Abstract
Physical inactivity is positively associated with anxiety and depression. Considering physical inactivity, anxiety, and depression each have a genetic basis for inheritance, our lab used artificial selectively bred low-voluntary running (LVR) and wild type (WT) female Wistar rats to test if physical inactivity genes selected over multiple generations would lead to an anxiety or depressive-like phenotype. We performed next generation RNA sequencing and immunoblotting on the dentate gyrus to reveal key biological functions from heritable physical inactivity. LVR rats did not display depressive-like behavior. However, LVR rats did display anxiogenic behavior with gene networks associated with reduced neuronal development, proliferation, and function compared to WT counterparts. Additionally, immunoblotting revealed LVR deficits in neuronal development and function. To our knowledge, this is the first study to show that by selectively breeding for physical inactivity genes, anxiety-like genes were co-selected. The study also reveals molecular insights to the genetic influences that physical inactivity has on anxiety-like behavior.
Collapse
Affiliation(s)
- Taylor J Kelty
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA.
| | - Jacob D Brown
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA
| | - Nathan R Kerr
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Michael D Roberts
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Tom E Childs
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Omar H Cabrera
- Department of Psychological Sciences, University of Missouri-St. Louis, St. Louis, MO 63110, USA
| | - Francesca M Manzella
- Department of Psychological Sciences, University of Missouri-St. Louis, St. Louis, MO 63110, USA
| | - Dennis K Miller
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - George T Taylor
- Department of Psychological Sciences, University of Missouri-St. Louis, St. Louis, MO 63110, USA
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, USA; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
7
|
Grigsby KB, Childs TE, Booth FW. The role of nucleus accumbens CREB attenuation in rescuing low voluntary running behavior in female rats. J Neurosci Res 2020; 98:2302-2316. [PMID: 32725625 DOI: 10.1002/jnr.24698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 01/30/2023]
Abstract
Given the integral role of nucleus accumbens (NAc) cAMP response element binding protein (CREB) activity in motivational processes, the goal of the current study was to determine whether blunting chronic NAc CREB activity could rescue the low physical activity motivation of female, low voluntary running (LVR) rats. NAc CREB phosphorylation is elevated in these rats, a state previously attributed to deficits in reward valuation. It was recently shown that overexpression of the upstream CREB inhibitor, protein kinase inhibitor alpha (PKIα), increased LVR nightly running by ~threefold. Therefore, the current study addresses the extent to which NAc CREB attenuation influences female LVR and wild-type (WT) wheel-running behavior. Inducible reductions in NAc neuronal activity using Gi-coupled hM4Di DREADDs increased running behavior in LVR, but not in WT, rats. Similarly, site-directed pharmacological inhibition of NAc CREB activity significantly increased LVR nightly running distance and time by ~twofold, with no effect in WT rats. Finally, environmentally enriched LVR rats exhibit higher levels of running compared to socially isolated rats in what appeared to be a CREB-related manner. Considering the positive outcomes of upstream CREB modulation and environmental enrichment on LVR behavior, we believe that blunting NAc CREB activity has the neuromolecular potential to partially reverse low physical activity motivation, as exemplified by the LVR model. The positive physical activity outcome of early life enrichment adds translatable value to human childhood enrichment and highlights its importance on motivational processes later in life.
Collapse
Affiliation(s)
- Kolter B Grigsby
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Thomas E Childs
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
- Department of Physiology, University of Missouri, Columbia, MO, USA
- Dalton Cardiovascular Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
8
|
Grigsby KB, Kovarik CM, Mao X, Booth FW. Medial preoptic estrogen receptor-beta blunts the estrogen receptor-alpha mediated increases in wheel-running behavior of female rats. Behav Brain Res 2020; 379:112341. [PMID: 31711895 DOI: 10.1016/j.bbr.2019.112341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/22/2019] [Accepted: 10/31/2019] [Indexed: 11/17/2022]
Abstract
Estrogens are believed to enhance rodent voluntary wheel-running through medial preoptic (mPOA) estrogen receptor α (ERα) signaling, with little role attributed to estrogen receptor β (ERβ). Systemic ERβ activation has been shown to mitigate ERα driven increases in wheel-running. Therefore, the present goal was to determine whether ERβ signaling in the mPOA plays a similar modulatory role over ERα. We utilized outbred wild-type (WT) and rats selectively bred for low voluntary running (LVR) behavior to address whether mPOA ERβ signaling blunts ERα driven wheel-running behavior and immediate-early gene (Fos, Zif268, and Homer1) mRNA induction. Further, we addressed baseline mPOA mRNA expressions and circulating 17β-estradiol levels between female WT and LVR rats. Following ovariectomy, WT rats reduced running behavior ∼40 %, with no effect in LVR rats. Intra-medial preoptic injection of the ERα-agonist propylpyrazoletriol (PPT) increased wheel-running ∼3.5-fold in WT rats, while injections of the ERβ-agonist diarylpropionitrile (DPN) or a combination of the two agonists had no effect. Similarly, ERα-agonism (PPT) increased Fos and Homer1 induction ∼3-fold in WT and LVR isolated mPOA neurons, with no effect of the ERβ-agonist DPN alone or in combination with PPT, suggesting medial-preoptic ERβ activity may blunt ERα signaling. LVR rats exhibited higher mPOA mRNA expressions of Esr1, Esr2 and Cyp19a1, lower normalized uterine wet weights and lower 17β-estradiol plasma levels compared to WT, suggesting their low running may be due to low circulating estrogen levels. Collectively, these findings highlight mPOA ERβ as a potential neuro-molecular modulator of the estrogenic control of wheel-running behavior.
Collapse
Affiliation(s)
- Kolter B Grigsby
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States.
| | - Cathleen M Kovarik
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
| | - Xuansong Mao
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
9
|
Romero MA, Mumford PW, Roberson PA, Osburn SC, Parry HA, Kavazis AN, Gladden LB, Schwartz TS, Baker BA, Toedebusch RG, Childs TE, Booth FW, Roberts MD. Five months of voluntary wheel running downregulates skeletal muscle LINE-1 gene expression in rats. Am J Physiol Cell Physiol 2019; 317:C1313-C1323. [PMID: 31618076 DOI: 10.1152/ajpcell.00301.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transposable elements (TEs) are mobile DNA and constitute approximately half of the human genome. LINE-1 (L1) is the only active autonomous TE in the mammalian genome and has been implicated in a number of diseases as well as aging. We have previously reported that skeletal muscle L1 expression is lower following acute and chronic exercise training in humans. Herein, we used a rodent model of voluntary wheel running to determine whether long-term exercise training affects markers of skeletal muscle L1 regulation. Selectively bred high-running female Wistar rats (n = 11 per group) were either given access to a running wheel (EX) or not (SED) at 5 wk of age, and these conditions were maintained until 27 wk of age. Thereafter, mixed gastrocnemius tissue was harvested and analyzed for L1 mRNA expression and DNA content along with other L1 regulation markers. We observed significantly (P < 0.05) lower L1 mRNA expression, higher L1 DNA methylation, and less L1 DNA in accessible chromatin regions in EX versus SED rats. We followed these experiments with 3-h in vitro drug treatments in L6 myotubes to mimic transient exercise-specific signaling events. The AMP-activated protein kinase (AMPK) agonist 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR; 4 mM) significantly decreased L1 mRNA expression in L6 myotubes. However, this effect was not facilitated through increased L1 DNA methylation. Collectively, these data suggest that long-term voluntary wheel running downregulates skeletal muscle L1 mRNA, and this may occur through chromatin modifications. Enhanced AMPK signaling with repetitive exercise bouts may also decrease L1 mRNA expression, although the mechanism of action remains unknown.
Collapse
Affiliation(s)
| | | | | | | | - Hailey A Parry
- School of Kinesiology, Auburn University, Auburn, Alabama
| | | | | | - Tonia S Schwartz
- Department of Biological Sciences, Auburn University, Auburn, Alabama
| | - Brent A Baker
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Ryan G Toedebusch
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Thomas E Childs
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama.,Edward Via College of Osteopathic Medicine-Auburn Campus, Auburn, Alabama
| |
Collapse
|
10
|
Heese AJ, Roberts CK, Hofheins JC, Brown JD, Ruegsegger GN, Toedebusch RG, Booth FW. Rats Selectively Bred for High Voluntary Physical Activity Behavior are Not Protected from the Deleterious Metabolic Effects of a Western Diet When Sedentary. Curr Dev Nutr 2019; 3:nzz017. [PMID: 31111117 PMCID: PMC6517781 DOI: 10.1093/cdn/nzz017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/28/2019] [Accepted: 03/18/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Physical activity and diet are well-established modifiable factors that influence chronic disease risk. We developed a selectively bred, polygenic model for high and low voluntary running (HVR and LVR, respectively) distances. After 8 generations, large differences in running distance were noted. Despite these inherent behavioral differences in physical activity levels, it is unknown whether HVR rats would be inherently protected from diet-induced metabolic dysfunction. OBJECTIVES The aim of this study was to determine whether HVR rats without voluntary running wheels would be inherently protected from diet-induced metabolic dysfunction. METHODS Young HVR, LVR, and a wild-type (WT) control group were housed with no running wheel access and fed either a normal diet (ND) or a high-sugar/fat Western diet (WD) for 8 wk. Body weight, percentage body fat (by dual-energy X-ray absorptiometry scan), blood lipids [total cholesterol, low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides (TGs), nonesterified fatty acids], and hepatic TG content were measured, and indices of insulin sensitivity were determined via an intravenous glucose tolerance test. Additionally, weekly energy intake and feed efficiency were calculated. RESULTS After 8 wk, significant differences in body weight and body fat percentage were noted in all WD animals compared with ND animals, with the LVR-WD exhibiting the greatest increase due, in part, to their enhanced feed efficiency. Lipid dysregulation was present in all WD rat lines compared with ND counterparts. Furthermore, LVR-WD rats had higher total cholesterol, HDL cholesterol, and TG concentrations, and higher areas under the curve (AUC) for insulin than HVR-WD and WT-WD, although HVR-WD animals had higher AUCglucose than both LVR-WD and WT-WD and higher LDL than WT-WD. CONCLUSIONS In the absence of high voluntary running behavior, the genetic predisposition for high running in HVR did not largely protect them from the deleterious effects of a WD compared with LVR, suggesting genetic factors influencing physical activity levels may, in part, be independent from genes influencing metabolism.
Collapse
Affiliation(s)
- Alexander J Heese
- Departments of Biomedical Sciences, University of Missouri, Columbia, MO
| | - Christian K Roberts
- Geriatrics, Research, Education and Clinical Center (GRECC), VA Greater Los Angeles Healthcare System, Los Angeles, CA
| | - John C Hofheins
- Departments of Biomedical Sciences, University of Missouri, Columbia, MO
| | - Jacob D Brown
- Departments of Biomedical Sciences, University of Missouri, Columbia, MO
| | | | - Ryan G Toedebusch
- Departments of Biomedical Sciences, University of Missouri, Columbia, MO
| | - Frank W Booth
- Departments of Biomedical Sciences, University of Missouri, Columbia, MO
- Departments of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
- Departments of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO
| |
Collapse
|
11
|
Blondeel A, Demeyer H, Janssens W, Troosters T. The role of physical activity in the context of pulmonary rehabilitation. COPD 2019; 15:632-639. [DOI: 10.1080/15412555.2018.1563060] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Astrid Blondeel
- Department of Rehabilitation Sciences, KU Leuven – University of Leuven, Leuven, Belgium
- Respiratory Division, University Hospitals Leuven, Leuven, Belgium
| | - Heleen Demeyer
- Department of Rehabilitation Sciences, KU Leuven – University of Leuven, Leuven, Belgium
- Respiratory Division, University Hospitals Leuven, Leuven, Belgium
| | - Wim Janssens
- Respiratory Division, University Hospitals Leuven, Leuven, Belgium
- Department of Chronic Diseases, Metabolism and Aging, KU Leuven – University of Leuven, Leuven, Belgium
| | - Thierry Troosters
- Department of Rehabilitation Sciences, KU Leuven – University of Leuven, Leuven, Belgium
- Respiratory Division, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Lee JR, Tapia MA, Nelson JR, Moore JM, Gereau GB, Childs TE, Vieira-Potter VJ, Booth FW, Will MJ. Sex dependent effects of physical activity on diet preference in rats selectively bred for high or low levels of voluntary wheel running. Behav Brain Res 2019; 359:95-103. [DOI: 10.1016/j.bbr.2018.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/15/2018] [Accepted: 10/12/2018] [Indexed: 12/20/2022]
|
13
|
Grigsby KB, Kelty TJ, Booth FW. Medial habenula maturational deficits associate with low motivation for voluntary physical activity. Brain Res 2018; 1698:187-194. [PMID: 30118717 DOI: 10.1016/j.brainres.2018.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/11/2018] [Accepted: 08/13/2018] [Indexed: 11/25/2022]
Abstract
The habenula is a small, diencephalic structure comprised of distinct subnuclei which receives inputs from the limbic forebrain and sends projections to various regions in the midbrain, making this region well positioned to influence reward and motivation. Genetic ablation of the dorsal medial habenula is known to decrease voluntary wheel-running in mice. However, the extent to which the medial habenula (MHb) mediates wheel-running motivation in the context of high or low motivation for voluntary physical activity remains to be determined. In so, we utilized 5-week-old female rats selectively bred to voluntarily run high (HVR) or low (LVR) distances in order to determine if inherent differences in medial habenula maturation accompany inherent differences in wheel-running motivation. We report a significantly higher expression of genes associated with MHb development (Brn3a, Nurr1, Tac1, and Kcnip) in HVR versus LVR rats. Furthermore, there was a positive correlation between Brn3a and Nurr1 expression and run distance in HVR, but not LVR rats. Similarly, NeuN and Synapsin 1, markers of neuronal maturation, were higher in HVR compared to LVR rats. Lastly, dendritic density was determined to be higher in the MHb of HVR versus LVR rats, while LVR rats showed a higher percentage of thin spines, suggesting a higher prevalence of immature dendrites in LVR rats. Taken together, the above findings highlight the involvement of MHb in driving the motivation to be physically active. Given pandemic levels of global physical inactivity, the role of the MHb offers a novel potential to improve our global health.
Collapse
Affiliation(s)
- Kolter B Grigsby
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States.
| | - Taylor J Kelty
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
14
|
Grigsby KB, Ruegsegger GN, Childs TE, Booth FW. Overexpression of Protein Kinase Inhibitor Alpha Reverses Rat Low Voluntary Running Behavior. Mol Neurobiol 2018; 56:1782-1797. [PMID: 29931508 DOI: 10.1007/s12035-018-1171-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/31/2018] [Indexed: 12/13/2022]
Abstract
A gene was sought that could reverse low voluntary running distances in a model of low voluntary wheel-running behavior. In order to confirm the low motivation to wheel-run in our model does not result from defects in reward valuation, we employed sucrose preference and conditioned place preference for voluntary wheel-access. We observed no differences between our model and wild-type rats regarding the aforementioned behavioral testing. Instead, low voluntary runners seemed to require less running to obtain similar rewards for low voluntary running levels compared to wild-type rats. Previous work in our lab identified protein kinase inhibitor alpha as being lower in low voluntary running than wild-type rats. Next, nucleus accumbens injections of an adenoviral-associated virus that overexpressed the protein kinase inhibitor alpha gene increased running distance in low voluntary running, but not wild-type rats. Endogenous mRNA levels for protein kinase inhibitor alpha, dopamine receptor D1, dopamine receptor D2, and Fos were all only lower in wild-type rats following overexpression compared to low voluntary runners, suggesting a potential molecular and behavioral resistance in wild-type rats. Utilizing a nucleus accumbens preparation, three intermediate early gene mRNAs increased in low voluntary running slices after dopamine receptor agonist SKF-38393 exposure, while wild-type had no response. In summary, the results suggest that protein kinase inhibitor alpha is a promising gene candidate to partially rescue physical activity in the polygenic model of low voluntary running. Importantly, there were divergent molecular responses to protein kinase inhibitor alpha overexpression in low voluntary runners compared to wild-type rats.
Collapse
Affiliation(s)
- Kolter B Grigsby
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Gregory N Ruegsegger
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA.,Division of Endocrinology, Diabetes and Nutrition, Mayo Clinic, Rochester, MN, 55905, USA
| | - Thomas E Childs
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA. .,Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, 65211, USA. .,Department of Physiology, University of Missouri, Columbia, MO, 65211, USA. .,Dalton Cardiovascular Center, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
15
|
Grigsby KB, Kovarik CM, Rottinghaus GE, Booth FW. High and low nightly running behavior associates with nucleus accumbens N-Methyl-d-aspartate receptor (NMDAR) NR1 subunit expression and NMDAR functional differences. Neurosci Lett 2018; 671:50-55. [PMID: 29425730 DOI: 10.1016/j.neulet.2018.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/03/2018] [Accepted: 02/05/2018] [Indexed: 11/19/2022]
Abstract
The extent to which N-Methyl-d-aspartate (NMDA) receptors facilitate the motivation to voluntarily wheel-run in rodents has yet to be determined. In so, we utilized female Wistar rats selectively bred to voluntarily run high (HVR) and low (LVR) nightly distances in order to examine if endogenous differences in nucleus accumbens (NAc) NMDA receptor expression and function underlies the propensity for high or low motivation to voluntarily wheel-run. 12-14 week old HVR and LVR females were used to examine: 1.) NAc mRNA and protein expression of NMDA subunits NR1, NR2A and NR2B; 2.) NMDA current responses in isolated medium spiny neurons (MSNs) and 3.) NMDA-evoked dopamine release in an ex vivo preparation of NAc punches. Expectedly, there was a large divergence in nightly running distance and time between HVR and LVR rats. We saw a significantly higher mRNA and protein expression of NR1 in HVR compared to LVR rats, while seeing no difference in the expression of NR2A or NR2B. There was a greater current response to a 500 ms application of 300 μM of NMDA in medium-spiny neurons isolated from the NAc HVR compared to LVR animals. On average, NMDA-evoked punches (50 μM of NMDA for 10 min) taken from HVR rats retained ∼54% of the dopamine content compared to their bilateral non-evoked sides, while evoked punches from LVR animals showed no statistical decrease in dopamine content compared to their non-evoked sides. Collectively, these data suggest a potential link between NAc NR1 subunit expression as well as NMDA function and the predisposition for nightly voluntary running behavior in rats. In light of the epidemic rise in physical inactivity, these findings have the potential to explain a neuro-molecular mechanism that regulates the motivation to be physically active.
Collapse
Affiliation(s)
- Kolter B Grigsby
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States.
| | - Cathleen M Kovarik
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
| | - George E Rottinghaus
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
16
|
Vellers HL, Kleeberger SR, Lightfoot JT. Inter-individual variation in adaptations to endurance and resistance exercise training: genetic approaches towards understanding a complex phenotype. Mamm Genome 2018; 29:48-62. [PMID: 29356897 PMCID: PMC5851699 DOI: 10.1007/s00335-017-9732-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/27/2017] [Indexed: 12/21/2022]
Abstract
Exercise training which meets the recommendations set by the National Physical Activity Guidelines ensues a multitude of health benefits towards the prevention and treatment of various chronic diseases. However, not all individuals respond well to exercise training. That is, some individuals have no response, while others respond poorly. Genetic background is known to contribute to the inter-individual (human) and -strain (e.g., mice, rats) variation with acute exercise and exercise training, though to date, no specific genetic factors have been identified that explain the differential responses to exercise. In this review, we provide an overview of studies in human and animal models that have shown a significant contribution of genetics in acute exercise and exercise training-induced adaptations with standardized endurance and resistance training regimens, and further describe the genetic approaches which have been used to demonstrate such responses. Finally, our current understanding of the role of genetics and exercise is limited primarily to the nuclear genome, while only a limited focus has been given to a potential role of the mitochondrial genome and its interactions with the nuclear genome to predict the exercise training-induced phenotype(s) responses. We therefore discuss the mitochondrial genome and literature that suggests it may play a significant role, particularly through interactions with the nuclear genome, in the inherent ability to respond to exercise.
Collapse
Affiliation(s)
- Heather L Vellers
- Immunity, Inflammation and, Disease Laboratory, National Institute of Environmental Health Sciences, 111 T.W. Alexander Dr., Building 101, E-224, Research Triangle Park, NC, 27709, USA.
| | - Steven R Kleeberger
- Immunity, Inflammation and, Disease Laboratory, National Institute of Environmental Health Sciences, 111 T.W. Alexander Dr., Building 101, E-224, Research Triangle Park, NC, 27709, USA
| | - J Timothy Lightfoot
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
17
|
Rosenfeld CS. Sex-dependent differences in voluntary physical activity. J Neurosci Res 2017; 95:279-290. [PMID: 27870424 DOI: 10.1002/jnr.23896] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 07/25/2016] [Accepted: 08/01/2016] [Indexed: 12/12/2022]
Abstract
Numbers of overweight and obese individuals are increasing in the United States and globally, and, correspondingly, the associated health care costs are rising dramatically. More than one-third of children are currently considered obese with a predisposition to type 2 diabetes, and it is likely that their metabolic conditions will worsen with age. Physical inactivity has also risen to be the leading cause of many chronic, noncommunicable diseases (NCD). Children are more physically inactive now than they were in past decades, which may be due to intrinsic and extrinsic factors. In rodents, the amount of time engaged in spontaneous activity within the home cage is a strong predictor of later adiposity and weight gain. Thus, it is important to understand primary motivators stimulating physical activity (PA). There are normal sex differences in PA levels in rodents and humans. The perinatal environment can induce sex-dependent differences in PA disturbances. This Review considers the current evidence for sex differences in PA in rodents and humans. The rodent studies showing that early exposure to environmental chemicals can shape later adult PA responses are discussed. Next, whether there are different motivators stimulating exercise in male vs. female humans are examined. Finally, the brain regions, genes, and pathways that modulate PA in rodents, and possibly by translation in humans, are described. A better understanding of why each sex remains physically active through the life span could open new avenues for preventing and treating obesity in children and adults. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri.,Bond Life Sciences Center University of Missouri, Columbia, Missouri.,Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, Missouri.,Genetics Area Program, University of Missouri, Columbia, Missouri
| |
Collapse
|
18
|
Martin JS, Kephart WC, Haun CT, McCloskey AE, Shake JJ, Mobley CB, Goodlett MD, Kavazis A, Pascoe DD, Zhang L, Roberts MD. Impact of external pneumatic compression target inflation pressure on transcriptome-wide RNA expression in skeletal muscle. Physiol Rep 2017; 4:4/22/e13029. [PMID: 27884954 PMCID: PMC5357997 DOI: 10.14814/phy2.13029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/03/2016] [Accepted: 10/12/2016] [Indexed: 11/24/2022] Open
Abstract
Next‐generation RNA sequencing was employed to determine the acute and subchronic impact of peristaltic pulse external pneumatic compression (PEPC) of different target inflation pressures on global gene expression in human vastus lateralis skeletal muscle biopsy samples. Eighteen (N = 18) male participants were randomly assigned to one of the three groups: (1) sham (n = 6), 2) EPC at 30–40 mmHg (LP‐EPC; n = 6), and 3) EPC at 70–80 mmHg (MP‐EPC; n = 6). One hour treatment with sham/EPC occurred for seven consecutive days. Vastus lateralis skeletal muscle biopsies were performed at baseline (before first treatment; PRE), 1 h following the first treatment (POST1), and 24 h following the last (7th) treatment (POST2). Changes from PRE in gene expression were analyzed via paired comparisons within each group. Genes were filtered to include only those that had an RPKM ≥ 1.0, a fold‐change of ≥1.5 and a paired t‐test value of <0.01. For the sham condition, two genes at POST1 and one gene at POST2 were significantly altered. For the LP‐EPC condition, nine genes were up‐regulated and 0 genes were down‐regulated at POST1 while 39 genes were up‐regulated and one gene down‐regulated at POST2. For the MP‐EPC condition, two genes were significantly up‐regulated and 21 genes were down‐regulated at POST1 and 0 genes were altered at POST2. Both LP‐EPC and MP‐EPC acutely alter skeletal muscle gene expression, though only LP‐EPC appeared to affect gene expression with subchronic application. Moreover, the transcriptome response to EPC demonstrated marked heterogeneity (i.e., genes and directionality) with different target inflation pressures.
Collapse
Affiliation(s)
- Jeffrey S Martin
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine - Auburn Campus, Auburn, Alabama .,School of Kinesiology, Auburn University, Auburn, Alabama
| | | | - Cody T Haun
- School of Kinesiology, Auburn University, Auburn, Alabama
| | | | - Joshua J Shake
- School of Kinesiology, Auburn University, Auburn, Alabama
| | | | - Michael D Goodlett
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine - Auburn Campus, Auburn, Alabama.,Athletics Department, Auburn University, Auburn, Alabama
| | - Andreas Kavazis
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine - Auburn Campus, Auburn, Alabama.,School of Kinesiology, Auburn University, Auburn, Alabama
| | - David D Pascoe
- School of Kinesiology, Auburn University, Auburn, Alabama
| | - Lee Zhang
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama
| | - Michael D Roberts
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine - Auburn Campus, Auburn, Alabama.,School of Kinesiology, Auburn University, Auburn, Alabama
| |
Collapse
|
19
|
Roberts MD, Ruegsegger GN, Brown JD, Booth FW. Mechanisms Associated With Physical Activity Behavior: Insights From Rodent Experiments. Exerc Sport Sci Rev 2017; 45:217-222. [DOI: 10.1249/jes.0000000000000124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Booth FW, Roberts CK, Thyfault JP, Ruegsegger GN, Toedebusch RG. Role of Inactivity in Chronic Diseases: Evolutionary Insight and Pathophysiological Mechanisms. Physiol Rev 2017; 97:1351-1402. [PMID: 28814614 PMCID: PMC6347102 DOI: 10.1152/physrev.00019.2016] [Citation(s) in RCA: 356] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 12/13/2022] Open
Abstract
This review proposes that physical inactivity could be considered a behavior selected by evolution for resting, and also selected to be reinforcing in life-threatening situations in which exercise would be dangerous. Underlying the notion are human twin studies and animal selective breeding studies, both of which provide indirect evidence for the existence of genes for physical inactivity. Approximately 86% of the 325 million in the United States (U.S.) population achieve less than the U.S. Government and World Health Organization guidelines for daily physical activity for health. Although underappreciated, physical inactivity is an actual contributing cause to at least 35 unhealthy conditions, including the majority of the 10 leading causes of death in the U.S. First, we introduce nine physical inactivity-related themes. Next, characteristics and models of physical inactivity are presented. Following next are individual examples of phenotypes, organ systems, and diseases that are impacted by physical inactivity, including behavior, central nervous system, cardiorespiratory fitness, metabolism, adipose tissue, skeletal muscle, bone, immunity, digestion, and cancer. Importantly, physical inactivity, itself, often plays an independent role as a direct cause of speeding the losses of cardiovascular and strength fitness, shortening of healthspan, and lowering of the age for the onset of the first chronic disease, which in turn decreases quality of life, increases health care costs, and accelerates mortality risk.
Collapse
Affiliation(s)
- Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Geriatrics, Research, Education and Clinical Center (GRECC), VA Greater Los Angeles Healthcare System, Los Angeles, California; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and Cardiovascular Division, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Christian K Roberts
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Geriatrics, Research, Education and Clinical Center (GRECC), VA Greater Los Angeles Healthcare System, Los Angeles, California; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and Cardiovascular Division, Department of Medicine, University of Missouri, Columbia, Missouri
| | - John P Thyfault
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Geriatrics, Research, Education and Clinical Center (GRECC), VA Greater Los Angeles Healthcare System, Los Angeles, California; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and Cardiovascular Division, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Gregory N Ruegsegger
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Geriatrics, Research, Education and Clinical Center (GRECC), VA Greater Los Angeles Healthcare System, Los Angeles, California; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and Cardiovascular Division, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Ryan G Toedebusch
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Geriatrics, Research, Education and Clinical Center (GRECC), VA Greater Los Angeles Healthcare System, Los Angeles, California; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and Cardiovascular Division, Department of Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
21
|
Ruegsegger GN, Grigsby KB, Kelty TJ, Zidon TM, Childs TE, Vieira-Potter VJ, Klinkebiel DL, Matheny M, Scarpace PJ, Booth FW. Maternal Western diet age-specifically alters female offspring voluntary physical activity and dopamine- and leptin-related gene expression. FASEB J 2017; 31:5371-5383. [PMID: 28794174 DOI: 10.1096/fj.201700389r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/25/2017] [Indexed: 01/30/2023]
Abstract
Prenatal overnutrition affects development into adulthood and influences risk of obesity. We assessed the transgenerational effect of maternal Western diet (WD) consumption on offspring physical activity. Voluntary wheel running was increased in juvenile (4-7 wk of age), but decreased in adult (16-19 wk of age), F1 female WD offspring In contrast, no wheel-running differences in F1 male offspring were observed. Increased wheel running in juvenile female WD offspring was associated with up-regulated dopamine receptor (DRD)-1 and -2 in the nucleus accumbens (NAc) and with down-regulated Lepr in the ventral tegmental area (VTA). Conversely, decreased wheel running by adult female WD offspring was associated with down-regulated DRD1 in the NAc and with up-regulated Lepr in the VTA. Body fat, leptin, and insulin were increased in male, but not in female, F1 WD offspring. Recombinant virus (rAAV) leptin antagonism in the VTA decreased wheel running in standard diet but not in WD F1 female offspring. Analysis of F2 offspring found no differences in wheel running or adiposity in male or female offspring, suggesting that changes in the F1 generation were related to in utero somatic reprogramming. Our findings indicate prenatal WD exposure leads to age-specific changes in voluntary physical activity in female offspring that are differentially influenced by VTA leptin antagonism.-Ruegsegger, G. N., Grigsby, K. B., Kelty, T. J., Zidon, T. M., Childs, T. E., Vieira-Potter, V. J., Klinkebiel, D. L., Matheny, M., Scarpace, P. J., Booth, F. W. Maternal Western diet age-specifically alters female offspring voluntary physical activity and dopamine- and leptin-related gene expression.
Collapse
Affiliation(s)
- Gregory N Ruegsegger
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Kolter B Grigsby
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Taylor J Kelty
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Terese M Zidon
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, USA
| | - Thomas E Childs
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Victoria J Vieira-Potter
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, USA
| | - David L Klinkebiel
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Michael Matheny
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, USA
| | - Phillip J Scarpace
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, USA
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, USA; .,Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, USA.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
22
|
Ruegsegger GN, Toedebusch RG, Braselton JF, Childs TE, Booth FW. Left ventricle transcriptomic analysis reveals connective tissue accumulation associates with initial age-dependent decline in V̇o2peak from its lifetime apex. Physiol Genomics 2016; 49:53-66. [PMID: 27913688 DOI: 10.1152/physiolgenomics.00083.2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/08/2016] [Accepted: 11/28/2016] [Indexed: 12/17/2022] Open
Abstract
Peak oxygen consumption (V̇o2peak) strongly predicts morbidity and mortality better than other established risk factors, yet mechanisms associated with its age-associated decline are unknown. Our laboratory has shown that V̇o2peak first begins to decrease at the same age of 19-20 wk in both sedentary and wheel-running, female Wistar rats (Toedebusch et al., Physiol Genomics 48: 101-115, 2016). Here, we employed a total systemic approach using unsupervised interrogation of mRNA with RNA sequencing. The purpose of our study was to analyze transcriptomic profiles from both sedentary (SED) and wheel-running (RUN) conditions as a strategy to identify pathways in the left ventricle that may contribute to the initial reductions in V̇o2peak occurring between 19 and 27 wk of age. Transcriptomic comparisons were made within both SED and RUN rats between 19 and 27 wk (n = 5-8). Analysis of mRNAs shared in SED and RUN between 19 and 27 wk found 17 upregulated (e.g., Adra1d, Rpl17, Xpo7) and 8 downregulated (e.g., Cdo1, Ctfg, Sfrp1) mRNAs, at 19 wk, respectively. Furthermore, bioinformatics analysis of mRNAs common to SED and RUN produced networks suggestive of increased connective tissue development at 27 vs. 19 wk. Additionally, Ctfg mRNA was negatively associated with V̇o2peak in both SED and RUN (P < 0.05). In summary, transcriptomic analysis revealed mRNAs and networks associated with increased connective tissue development, decreased α-adrenergic activity, and decreased protein translation in the left ventricle that could, in part, potentially influence the initiation of the lifelong reduction in V̇o2peak, independent of physical activity levels.
Collapse
Affiliation(s)
| | - Ryan G Toedebusch
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Joshua F Braselton
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Thomas E Childs
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; .,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri.,Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; and.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
23
|
Mu-opioid receptor inhibition decreases voluntary wheel running in a dopamine-dependent manner in rats bred for high voluntary running. Neuroscience 2016; 339:525-537. [DOI: 10.1016/j.neuroscience.2016.10.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/15/2016] [Accepted: 10/03/2016] [Indexed: 01/06/2023]
|
24
|
Smethells JR, Zlebnik NE, Miller DK, Will MJ, Booth F, Carroll ME. Cocaine self-administration and reinstatement in female rats selectively bred for high and low voluntary running. Drug Alcohol Depend 2016; 167:163-8. [PMID: 27567437 PMCID: PMC5037047 DOI: 10.1016/j.drugalcdep.2016.08.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/15/2016] [Accepted: 08/09/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Previous research has found that rats behaviorally screened for high (vs. low) wheel running were more vulnerable to cocaine abuse. To assess the extent to which a genetic component is involved in this drug-abuse vulnerability, rats selectively bred for high or low voluntary running (HVR or LVR, respectively) were examined for differences in cocaine seeking in the present study. METHODS Female rats were trained to lever press for food and then were assessed for differences in acquisition of cocaine (0.4mg/kg; i.v.) self-administration across 10 sessions. Once acquired, rats self-administered cocaine for a 14-day maintenance phase, followed by a 14-day extinction phase when cocaine was no longer available. Subsequently, reinstatement of cocaine seeking was examined with priming injections of cocaine (5, 10 & 15mg/kg), caffeine (30mg/kg), yohimbine (2.5mg/kg) and cocaine-paired cues. RESULTS A greater percentage of LVR rats met the acquisition criteria for cocaine self-administration and in fewer sessions than HVR rats. No differences in responding for cocaine were observed between phenotypes during maintenance. However, during extinction LVR rats initially responded at higher rates and persisted in cocaine seeking for a greater number of sessions. No phenotype differences were observed following drug and cue-primed reinstatement of cocaine seeking. CONCLUSIONS In general, LVR rats were more sensitive to the reinforcing effects of cocaine than HVR rats during periods of transition into and out of cocaine self-administration. Thus, LVR rats sometimes showed a greater vulnerability cocaine seeking than HVR rats.
Collapse
Affiliation(s)
- J. R. Smethells
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN
| | - N. E. Zlebnik
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN
| | - D. K. Miller
- Department of Psychological Sciences, University of Missouri, Columbia, MO
| | - M. J. Will
- Department of Psychological Sciences, University of Missouri, Columbia, MO
| | - F. Booth
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO,Department of Biomedical Science, University of Missouri, Columbia, MO,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO,Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO
| | - M. E. Carroll
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN
| |
Collapse
|
25
|
Ruegsegger GN, Toedebusch RG, Childs TE, Grigsby KB, Booth FW. Loss of Cdk5 function in the nucleus accumbens decreases wheel running and may mediate age-related declines in voluntary physical activity. J Physiol 2016; 595:363-384. [PMID: 27461471 DOI: 10.1113/jp272489] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/20/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Physical inactivity, which drastically increases with advancing age, is associated with numerous chronic diseases. The nucleus accumbens (the pleasure and reward 'hub' in the brain) influences wheel running behaviour in rodents. RNA-sequencing and subsequent bioinformatics analysis led us to hypothesize a potential relationship between the regulation of dendritic spine density, the molecules involved in synaptic transmission, and age-related reductions in wheel running. Upon completion of follow-up studies, we developed the working model that synaptic plasticity in the nucleus accumbens is central to age-related changes in voluntary running. Testing this hypothesis, inhibition of Cdk5 (comprising a molecule central to the processes described above) in the nucleus accumbens reduced wheel running. The results of the present study show that reductions in synaptic transmission and Cdk5 function are related to decreases in voluntary running behaviour and provide guidance for understanding the neural mechanisms that underlie age-dependent reductions in the motivation to be physically active. ABSTRACT Increases in age are often associated with reduced levels of physical activity, which, in turn, associates with the development of numerous chronic diseases. We aimed to assess molecular differences in the nucleus accumbens (NAc) (a specific brain nucleus postulated to influence rewarding behaviour) with respect to wheel running and sedentary female Wistar rats at 8 and 14 weeks of age. RNA-sequencing was used to interrogate transcriptomic changes between 8- and 14-week-old wheel running rats, and select transcripts were later analysed by quantitative RT-PCR in age-matched sedentary rats. Voluntary wheel running was greatest at 8 weeks and had significantly decreased by 12 weeks. From 619 differentially expressed mRNAs, bioinformatics suggested that cAMP-mediated signalling, dopamine- and cAMP-regulated neuronal phosphoprotein of 32 kDa feedback, and synaptic plasticity were greater in 8- vs. 14-week-old rats. In depth analysis of these networks showed significant (∼20-30%; P < 0.05) decreases in cell adhesion molecule (Cadm)4 and p39 mRNAs, as well as their proteins from 8 to 14 weeks of age in running and sedentary rats. Furthermore, Cadm4, cyclin-dependent kinase 5 (Cdk5) and p39 mRNAs were significantly correlated with voluntary running distance. Analysis of dendritic spine density in the NAc showed that wheel access increased spine density (P < 0.001), whereas spine density was lower in 14- vs. 8-week-old sedentary rats (P = 0.03). Intriguingly, intra-NAc injection of the Cdk5 inhibitor roscovitine, dose-dependently decreased wheel running. Collectively, these experiments suggest that an age-dependent loss in synaptic function and Cdk5/p39 activity in the NAc may be partially responsible for age-related declines in voluntary running behaviour.
Collapse
Affiliation(s)
| | - Ryan G Toedebusch
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Thomas E Childs
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Kolter B Grigsby
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.,Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
26
|
Effects of a maternal high-fat diet on offspring behavioral and metabolic parameters in a rodent model. J Dev Orig Health Dis 2016; 8:75-88. [DOI: 10.1017/s2040174416000490] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Maternal diet-induced obesity can cause detrimental developmental origins of health and disease in offspring. Perinatal exposure to a high-fat diet (HFD) can lead to later behavioral and metabolic disturbances, but it is not clear which behaviors and metabolic parameters are most vulnerable. To address this critical gap, biparental and monogamous oldfield mice (Peromyscus polionotus), which may better replicate most human societies, were used in the current study. About 2 weeks before breeding, adult females were placed on a control or HFD and maintained on the diets throughout gestation and lactation. F1 offspring were placed at weaning (30 days of age) on the control diet and spatial learning and memory, anxiety, exploratory, voluntary physical activity, and metabolic parameters were tested when they reached adulthood (90 days of age). Surprisingly, maternal HFD caused decreased latency in initial and reverse Barnes maze trials in male, but not female, offspring. Both male and female HFD-fed offspring showed increased anxiogenic behaviors, but decreased exploratory and voluntary physical activity. Moreover, HFD offspring demonstrated lower resting energy expenditure (EE) compared with controls. Accordingly, HFD offspring weighed more at adulthood than those from control fed dams, likely the result of reduced physical activity and EE. Current findings indicate a maternal HFD may increase obesity susceptibility in offspring due to prenatal programming resulting in reduced physical activity and EE later in life. Further work is needed to determine the underpinning neural and metabolic mechanisms by which a maternal HFD adversely affects neurobehavioral and metabolic pathways in offspring.
Collapse
|
27
|
Park YM, Kanaley JA, Padilla J, Zidon T, Welly RJ, Will MJ, Britton SL, Koch LG, Ruegsegger GN, Booth FW, Thyfault JP, Vieira-Potter VJ. Effects of intrinsic aerobic capacity and ovariectomy on voluntary wheel running and nucleus accumbens dopamine receptor gene expression. Physiol Behav 2016; 164:383-9. [PMID: 27297873 DOI: 10.1016/j.physbeh.2016.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/18/2016] [Accepted: 06/07/2016] [Indexed: 12/29/2022]
Abstract
UNLABELLED Rats selectively bred for high (HCR) and low (LCR) aerobic capacity show a stark divergence in wheel running behavior, which may be associated with the dopamine (DA) system in the brain. HCR possess greater motivation for voluntary running along with greater brain DA activity compared to LCR. We recently demonstrated that HCR are not immune to ovariectomy (OVX)-associated reductions in spontaneous cage (i.e. locomotor) activity. Whether HCR and LCR rats differ in their OVX-mediated voluntary wheel running response is unknown. PURPOSE To determine whether HCR are protected from OVX-associated reduction in voluntary wheel running. METHODS Forty female HCR and LCR rats (age ~27weeks) had either SHM or OVX operations, and given access to a running wheel for 11weeks. Weekly wheel running distance was monitored throughout the intervention. Nucleus accumbens (NAc) was assessed for mRNA expression of DA receptors at sacrifice. RESULTS Compared to LCR, HCR ran greater distance and had greater ratio of excitatory/inhibitory DA mRNA expression (both line main effects, P<0.05). Wheel running distance was significantly, positively correlated with the ratio of excitatory/inhibitory DA mRNA expression across animals. In both lines, OVX reduced wheel running (P<0.05). Unexpectedly, although HCR started with significantly greater voluntary wheel running, they had greater OVX-induced reduction in wheel running than LCR such that no differences were found 11weeks after OVX between HCROVX and LCROVX (interaction, P<0.05). This significant reduction in wheel running in HCR was associated with an OVX-mediated reduction in the ratio of excitatory/inhibitory DA mRNA expression. CONCLUSION The DA system in the NAc region may play a significant role in motivation to run in female rats. Compared to LCR, HCR rats run significantly more, which associates with greater ratio of excitatory/inhibitory DA mRNA expression. However, despite greater inherent motivation to run and an associated brain DA mRNA expression profile, HCR rats are not protected against OVX-induced reduction in wheel running or OVX-mediated reduction in the ratio of excitatory/inhibitory DA receptor mRNA expression. OVX-mediated reduction in motivated physical activity may be partially explained by a reduced ratio of excitatory/inhibitory DA receptor mRNA expression for which intrinsic fitness does not confer protection.
Collapse
Affiliation(s)
- Young-Min Park
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Jill A Kanaley
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Jaume Padilla
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA; Child Health, University of Missouri, Columbia, MO, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Terese Zidon
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Rebecca J Welly
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Matthew J Will
- Psychological Sciences, University of Missouri, Columbia, MO, USA
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lauren G Koch
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Frank W Booth
- Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - John P Thyfault
- Department of Molecular Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | | |
Collapse
|
28
|
Murakami H, Zempo H, Miyamoto-Mikami E, Kikuchi N, Fuku N. Heritability of physical fitness and exercise behavior. ACTA ACUST UNITED AC 2016. [DOI: 10.7600/jspfsm.65.277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Haruka Murakami
- Department of Exercise and Health Promotion, National Institute of Health and Nutrition, NIBIOHN
| | - Hirofumi Zempo
- Graduate School of Health and Sports Science, Juntendo University
- Japan Society for the Promotion of Science
| | | | - Naoki Kikuchi
- Sports Training Center, Nippon Sport Science University
| | - Noriyuki Fuku
- Graduate School of Health and Sports Science, Juntendo University
| |
Collapse
|
29
|
Rapid Alterations in Perirenal Adipose Tissue Transcriptomic Networks with Cessation of Voluntary Running. PLoS One 2015; 10:e0145229. [PMID: 26678390 PMCID: PMC4683046 DOI: 10.1371/journal.pone.0145229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/30/2015] [Indexed: 12/20/2022] Open
Abstract
In maturing rats, the growth of abdominal fat is attenuated by voluntary wheel running. After the cessation of running by wheel locking, a rapid increase in adipose tissue growth to a size that is similar to rats that have never run (i.e. catch-up growth) has been previously reported by our lab. In contrast, diet-induced increases in adiposity have a slower onset with relatively delayed transcriptomic responses. The purpose of the present study was to identify molecular pathways associated with the rapid increase in adipose tissue after ending 6 wks of voluntary running at the time of puberty. Age-matched, male Wistar rats were given access to running wheels from 4 to 10 weeks of age. From the 10th to 11th week of age, one group of rats had continued wheel access, while the other group had one week of wheel locking. Perirenal adipose tissue was extracted, RNA sequencing was performed, and bioinformatics analyses were executed using Ingenuity Pathway Analysis (IPA). IPA was chosen to assist in the understanding of complex ‘omics data by integrating data into networks and pathways. Wheel locked rats gained significantly more fat mass and significantly increased body fat percentage between weeks 10–11 despite having decreased food intake, as compared to rats with continued wheel access. IPA identified 646 known transcripts differentially expressed (p < 0.05) between continued wheel access and wheel locking. In wheel locked rats, IPA revealed enrichment of transcripts for the following functions: extracellular matrix, macrophage infiltration, immunity, and pro-inflammatory. These findings suggest that increases in visceral adipose tissue that accompanies the cessation of pubertal physical activity are associated with the alteration of multiple pathways, some of which may potentiate the development of pubertal obesity and obesity-associated systemic low-grade inflammation that occurs later in life.
Collapse
|
30
|
Ruegsegger GN, Toedebusch RG, Braselton JF, Roberts CK, Booth FW. Reduced metabolic disease risk profile by voluntary wheel running accompanying juvenile Western diet in rats bred for high and low voluntary exercise. Physiol Behav 2015; 152:47-55. [DOI: 10.1016/j.physbeh.2015.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 08/27/2015] [Accepted: 09/01/2015] [Indexed: 12/14/2022]
|
31
|
Hyatt HW, Toedebusch RG, Ruegsegger G, Mobley CB, Fox CD, McGinnis GR, Quindry JC, Booth FW, Roberts MD, Kavazis AN. Comparative adaptations in oxidative and glycolytic muscle fibers in a low voluntary wheel running rat model performing three levels of physical activity. Physiol Rep 2015; 3:3/11/e12619. [PMID: 26603455 PMCID: PMC4673647 DOI: 10.14814/phy2.12619] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 10/15/2015] [Indexed: 01/06/2023] Open
Abstract
A unique polygenic model of rat physical activity has been recently developed where rats were selected for the trait of low voluntary wheel running. We utilized this model to identify differences in soleus and plantaris muscles of sedentary low voluntary wheel running rats and physically active low voluntary wheel running rats exposed to moderate amounts of treadmill training. Three groups of 28-day-old male Wistar rats were used: (1) rats without a running wheel (SEDENTARY, n = 7), (2) rats housed with a running wheel (WHEEL, n = 7), and (3) rats housed with a running wheel and exercised on the treadmill (5 days/week for 20 min/day at 15.0 m/min) (WHEEL + TREADMILL, n = 7). Animals were euthanized 5 weeks after the start of the experiment and the soleus and plantaris muscles were excised and used for analyses. Increases in skeletal muscle gene expression of peroxisome proliferator-activated receptor gamma coactivator 1 alpha and fibronectin type III domain-containing protein 5 in WHEEL + TREADMILL group were observed. Also, WHEEL + TREADMILL had higher protein levels of superoxide dismutase 2 and decreased levels of oxidative damage. Our data demonstrate that the addition of treadmill training induces beneficial muscular adaptations compared to animals with wheel access alone. Furthermore, our data expand our understanding of differential muscular adaptations in response to exercise in mitochondrial, antioxidant, and metabolic markers.
Collapse
Affiliation(s)
- Hayden W Hyatt
- School of Kinesiology, Auburn University, Auburn, Alabama
| | - Ryan G Toedebusch
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Greg Ruegsegger
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | | | - Carlton D Fox
- School of Kinesiology, Auburn University, Auburn, Alabama
| | | | - John C Quindry
- School of Kinesiology, Auburn University, Auburn, Alabama
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | | | | |
Collapse
|
32
|
Toedebusch RG, Ruegsegger GN, Braselton JF, Heese AJ, Hofheins JC, Childs TE, Thyfault JP, Booth FW. AMPK agonist AICAR delays the initial decline in lifetime-apex V̇o2 peak, while voluntary wheel running fails to delay its initial decline in female rats. Physiol Genomics 2015; 48:101-15. [PMID: 26578698 DOI: 10.1152/physiolgenomics.00078.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/11/2015] [Indexed: 11/22/2022] Open
Abstract
There has never been an outcome measure for human health more important than peak oxygen consumption (V̇o2 peak), yet little is known regarding the molecular triggers for its lifetime decline with aging. We examined the ability of physical activity or 5 wk of 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) administration to delay the initial aging-induced decline in lifetime-apex V̇o2 peak and potential underlying molecular mechanisms. Experiment 1 consisted of female rats with (RUN) and without (NO RUN) running wheels, while experiment 2 consisted of female nonrunning rats getting the AMPK agonist AICAR (0.5 mg/g/day) subcutaneously for 5 wk beginning at 17 wk of age. All rats underwent frequent, weekly or biweekly V̇o2 peak tests beginning at 10 wk of age. In experiment 1, lifetime-apex V̇o2 peak occurred at 19 wk of age in both RUN and NO RUN and decreased thereafter. V̇o2 peak measured across experiment 1 was ∼25% higher in RUN than in NO RUN. In experiment 2, AICAR delayed the chronological age observed in experiment 1 by 1 wk, from 19 wk to 20 wk of age. RUN and NO RUN showed different skeletal muscle transcriptomic profiles both pre- and postapex. Additionally, growth and development pathways are differentially regulated between RUN and NO RUN. Angiomotin mRNA was downregulated postapex in RUN and NO RUN. Furthermore, strong significant correlations to V̇o2 peak and trends for decreased protein concentration supports angiomotin's potential importance in our model. Contrary to our primary hypothesis, wheel running was not sufficient to delay the chronological age of lifetime-apex V̇o2 peak decline, whereas AICAR delayed it 1 wk.
Collapse
Affiliation(s)
- Ryan G Toedebusch
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | | | - Joshua F Braselton
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Alexander J Heese
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - John C Hofheins
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Tom E Childs
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - John P Thyfault
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
33
|
Sex-dependent effects of developmental exposure to bisphenol A and ethinyl estradiol on metabolic parameters and voluntary physical activity. J Dev Orig Health Dis 2015; 6:539-52. [PMID: 26378919 DOI: 10.1017/s2040174415001488] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Endocrine disrupting chemicals (EDC) have received considerable attention as potential obesogens. Past studies examining obesogenic potential of one widespread EDC, bisphenol A (BPA), have generally focused on metabolic and adipose tissue effects. However, physical inactivity has been proposed to be a leading cause of obesity. A paucity of studies has considered whether EDC, including BPA, affects this behavior. To test whether early exposure to BPA and ethinyl estradiol (EE, estrogen present in birth control pills) results in metabolic and such behavioral disruptions, California mice developmentally exposed to BPA and EE were tested as adults for energy expenditure (indirect calorimetry), body composition (echoMRI) and physical activity (measured by beam breaks and voluntary wheel running). Serum glucose and metabolic hormones were measured. No differences in body weight or food consumption were detected. BPA-exposed females exhibited greater variation in weight than females in control and EE groups. During the dark and light cycles, BPA females exhibited a higher average respiratory quotient than control females, indicative of metabolizing carbohydrates rather than fats. Various assessments of voluntary physical activity in the home cage confirmed that during the dark cycle, BPA and EE-exposed females were significantly less active in this setting than control females. Similar effects were not observed in BPA or EE-exposed males. No significant differences were detected in serum glucose, insulin, adiponectin and leptin concentrations. Results suggest that females developmentally exposed to BPA exhibit decreased motivation to engage in voluntary physical activity and altered metabolism of carbohydrates v. fats, which could have important health implications.
Collapse
|
34
|
Ruegsegger GN, Toedebusch RG, Will MJ, Booth FW. Mu opioid receptor modulation in the nucleus accumbens lowers voluntary wheel running in rats bred for high running motivation. Neuropharmacology 2015; 97:171-81. [PMID: 26044640 DOI: 10.1016/j.neuropharm.2015.05.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/24/2015] [Accepted: 05/19/2015] [Indexed: 01/03/2023]
Abstract
The exact role of opioid receptor signaling in mediating voluntary wheel running is unclear. To provide additional understanding, female rats selectively bred for motivation of low (LVR) versus high voluntary running (HVR) behaviors were used. Aims of this study were 1) to identify intrinsic differences in nucleus accumbens (NAc) mRNA expression of opioid-related transcripts and 2) to determine if nightly wheel running is differently influenced by bilateral NAc injections of either the mu-opioid receptor agonist D-Ala2, NMe-Phe4, Glyo5-enkephalin (DAMGO) (0.25, 2.5 μg/side), or its antagonist, naltrexone (5, 10, 20 μg/side). In Experiment 1, intrinsic expression of Oprm1 and Pdyn mRNAs were higher in HVR compared to LVR. Thus, the data imply that line differences in opioidergic mRNA in the NAc could partially contribute to differences in wheel running behavior. In Experiment 2, a significant decrease in running distance was present in HVR rats treated with 2.5 μg DAMGO, or with 10 μg and 20 μg naltrexone between hours 0-1 of the dark cycle. Neither DAMGO nor naltrexone had a significant effect on running distance in LVR rats. Taken together, the data suggest that the high nightly voluntary running distance expressed by HVR rats is mediated by increased endogenous mu-opioid receptor signaling in the NAc, that is disturbed by either agonism or antagonism. In summary, our findings on NAc opioidergic mRNA expression and mu-opioid receptor modulations suggest HVR rats, compared to LVR rats, express higher running levels mediated by an increase in motivation driven, in part, by elevated NAc opioidergic signaling.
Collapse
Affiliation(s)
- Gregory N Ruegsegger
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States.
| | - Ryan G Toedebusch
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
| | - Matthew J Will
- Department of Psychological Sciences, University of Missouri, Columbia, MO, United States; Christopher Bond Life Sciences Center, University of Missouri, Columbia MO, United States
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
35
|
Konczal M, Babik W, Radwan J, Sadowska ET, Koteja P. Initial Molecular-Level Response to Artificial Selection for Increased Aerobic Metabolism Occurs Primarily through Changes in Gene Expression. Mol Biol Evol 2015; 32:1461-73. [DOI: 10.1093/molbev/msv038] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
36
|
Cocaine-induced locomotor activity in rats selectively bred for low and high voluntary running behavior. Psychopharmacology (Berl) 2015; 232:673-81. [PMID: 25106389 DOI: 10.1007/s00213-014-3698-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 07/28/2014] [Indexed: 02/06/2023]
Abstract
RATIONALE The rewarding effects of physical activity and abused drugs are caused by stimulation of similar brain pathways. Low (LVR) and high (HVR) voluntary running lines were developed by selectively breeding Wistar rats on running distance performance on postnatal days 28-34. We hypothesized that LVR rats would be more sensitive to the locomotor-activating effects of cocaine than HVR rats due to their lower motivation for wheel running. OBJECTIVES We investigated how selection for LVR or HVR behavior affects inherited activity responses: (a) open field activity levels, (b) habituation to an open field environment, and (c) the locomotor response to cocaine. METHODS Open field activity was measured for 80 min on three successive days (days 1-3). Data from the first 20 min were analyzed to determine novelty-induced locomotor activity (day 1) and the habituation to the environment (days 1-3). On day 3, rats were acclimated to the chamber for 20 min and then received saline or cocaine (10, 20, or 30 mg/kg) injection. Dopamine transporter (DAT) protein in the nucleus accumbens was measured via Western blot. RESULTS Selecting for low and high voluntary running behavior co-selects for differences in inherent (HVR > LVR) and cocaine-induced (LVR > HVR) locomotor activity levels. The differences in the selected behavioral measures do not appear to correlate with DAT protein levels. CONCLUSIONS LVR and HVR rats are an intriguing physical activity model for studying the interactions between genes related to the motivation to run, to use drugs of abuse, and to exhibit locomotor activity.
Collapse
|
37
|
Nagao M, Asai A, Sugihara H, Oikawa S. Transgenerational changes of metabolic phenotypes in two selectively bred mouse colonies for different susceptibilities to diet-induced glucose intolerance. Endocr J 2015; 62:371-8. [PMID: 25736065 DOI: 10.1507/endocrj.ej14-0241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We recently established 2 mouse lines with different susceptibilities (prone and resistant) to high-fat diet (HFD)-induced glucose intolerance by selective breeding (designated selectively bred diet-induced glucose intolerance-prone [SDG-P] and -resistant [SDG-R], respectively). In the present study, we analyzed transgenerational changes in metabolic phenotypes in these 2 mouse colonies to explore how the distinct phenotypes have emerged through the repetitive selection. Using C57BL/6, C3H, and AKR as background strains, mice showing inferior and superior glucose tolerance after HFD feeding were selected and bred repetitively over 20 generations to produce SDG-P and SDG-R, respectively. In addition to the blood glucose levels, HFD intake and body weight were also measured over the selective breeding period. As the generations proceeded, SDG-P mice became more susceptible to HFD-induced glucose intolerance and body weight gain, whereas SDG-R mice had gradually reduced HFD intake. The differences in fasting and post-glucose challenge blood glucose levels, body weight, and HFD intake became more evident between the 2 colonies through the selective breeding, mainly due to the HFD-induced glucose metabolism impairment and body weight gain in SDG-P mice and the reduction of HFD intake in SDG-R mice. These transgenerational changes in the metabolic phenotypes suggest that the genetic loci associated with the quantitative traits have been selectively enriched in SDG-P and SDG-R.
Collapse
Affiliation(s)
- Mototsugu Nagao
- Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | | | | | | |
Collapse
|
38
|
Monroe DC, Holmes PV, Koch LG, Britton SL, Dishman RK. Striatal enkephalinergic differences in rats selectively bred for intrinsic running capacity. Brain Res 2014; 1572:11-7. [PMID: 24842004 DOI: 10.1016/j.brainres.2014.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 04/28/2014] [Accepted: 05/10/2014] [Indexed: 10/25/2022]
Abstract
UNLABELLED Rats selectively bred for high- and low-capacity for running on a treadmill (HCR; LCR) also differ in wheel-running behavior, but whether wheel-running can be explained by intrinsic or adaptive brain mechanisms is not as yet understood. It is established that motivation of locomotory behavior is driven by dopaminergic transmission in mesolimbic and mesostriatal systems. However, whether voluntary wheel running is associated with enkephalinergic activity in the ventral striatum is not known. MATERIALS AND METHODS 40 male (20 HCR and 20 LCR) and 40 female (20 HCR and 20 LCR) rats were randomly assigned to 3 weeks of activity wheel exposure or sedentary conditions without wheel access. After 3 weeks of activity-wheel running, rats were decapitated and brains were extracted. Coronal sections were analyzed utilizing in situ hybridization histochemistry for enkephalin (ENK) mRNA in the ventral striatum. RESULTS HCR rats expressed less ENK than LCR rats in the nucleus accumbens among females (p<0.01) and in the olfactory tubercle among both females (p<0.05) and males (p<0.05). There was no effect of wheel running on ENK mRNA expression. CONCLUSION Line differences in ENK expression in the olfactory tubercle, and possibly the nucleus accumbens, partly explain divergent wheel-running behavior. The lower striatal ENK in the HCR line is consistent with enhanced dopaminergic tone, which may explain the increased motivation for wheel running observed in the HCR line.
Collapse
Affiliation(s)
- Derek C Monroe
- Department of Kinesiology, University of Georgia, 330 River Road, Athens, GA 30602-6554, USA.
| | - Philip V Holmes
- Psychology Department, University of Georgia, Athens, GA, USA.
| | - Lauren G Koch
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA.
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA.
| | - Rodney K Dishman
- Department of Kinesiology, University of Georgia, 330 River Road, Athens, GA 30602-6554, USA.
| |
Collapse
|
39
|
Aaltonen S, Kujala UM, Kaprio J. Factors behind leisure-time physical activity behavior based on Finnish twin studies: the role of genetic and environmental influences and the role of motives. BIOMED RESEARCH INTERNATIONAL 2014; 2014:931820. [PMID: 24809061 PMCID: PMC3997869 DOI: 10.1155/2014/931820] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/18/2014] [Accepted: 03/06/2014] [Indexed: 01/01/2023]
Abstract
Different approaches are being taken to clarify the role of various factors in the development of physical activity behaviors. Genetic studies are a new area of physical activity research and also the motives for physical activity have been widely studied. The purpose of this paper is to review the findings emerging from the longitudinal genetic studies on leisure-time physical activity and to evaluate the associations between motivational factors and leisure-time physical activity. The focus is to review recent findings of longitudinal Finnish twin studies. The results of the latest longitudinal Finnish twin studies point to the existence of age-specific genetic and environmental influences on leisure-time physical activity. Variations in environmental factors seem to explain the observed deterioration in leisure-time physical activity levels. A decline in genetic influences is seen first from adolescence to young adulthood and again from the age of thirty to the mid-thirties. In the Finnish twin participants, mastery, physical fitness, and psychological state were the major motivation factors associated with consistent leisure-time physical activity behavior. The results also indicate that intrinsic motivation factors may be important for engagement in leisure-time physical activity.
Collapse
Affiliation(s)
- Sari Aaltonen
- Department of Public Health, The Hjelt Institute, University of Helsinki, P.O. Box 41, Mannerheimintie 172, 00014 Helsinki, Finland
- Department of Health Sciences, University of Jyväskylä P.O. Box 35, 40014 Jyväskylä, Finland
| | - Urho M. Kujala
- Department of Health Sciences, University of Jyväskylä P.O. Box 35, 40014 Jyväskylä, Finland
| | - Jaakko Kaprio
- Department of Public Health, The Hjelt Institute, University of Helsinki, P.O. Box 41, Mannerheimintie 172, 00014 Helsinki, Finland
- Institute for Molecular Medicine, University of Helsinki, P.O. Box 21, Tukholmankatu 8, 00014 Helsinki, Finland
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, P.O. Box 30, 00271 Helsinki, Finland
| |
Collapse
|
40
|
Roberts MD, Toedebusch RG, Wells KD, Company JM, Brown JD, Cruthirds CL, Heese AJ, Zhu C, Rottinghaus GE, Childs TE, Booth FW. Nucleus accumbens neuronal maturation differences in young rats bred for low versus high voluntary running behaviour. J Physiol 2014; 592:2119-35. [PMID: 24665095 DOI: 10.1113/jphysiol.2013.268805] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We compared the nucleus accumbens (NAc) transcriptomes of generation 8 (G8), 34-day-old rats selectively bred for low (LVR) versus high voluntary running (HVR) behaviours in rats that never ran (LVR(non-run) and HVR(non-run)), as well as in rats after 6 days of voluntary wheel running (LVR(run) and HVR(run)). In addition, the NAc transcriptome of wild-type Wistar rats was compared. The purpose of this transcriptomics approach was to generate testable hypotheses as to possible NAc features that may be contributing to running motivation differences between lines. Ingenuity Pathway Analysis and Gene Ontology analyses suggested that 'cell cycle'-related transcripts and the running-induced plasticity of dopamine-related transcripts were lower in LVR versus HVR rats. From these data, a hypothesis was generated that LVR rats might have less NAc neuron maturation than HVR rats. Follow-up immunohistochemistry in G9-10 LVR(non-run) rats suggested that the LVR line inherently possessed fewer mature medium spiny (Darpp-32-positive) neurons (P < 0.001) and fewer immature (Dcx-positive) neurons (P < 0.001) than their G9-10 HVR counterparts. However, voluntary running wheel access in our G9-10 LVRs uniquely increased their Darpp-32-positive and Dcx-positive neuron densities. In summary, NAc cellularity differences and/or the lack of running-induced plasticity in dopamine signalling-related transcripts may contribute to low voluntary running motivation in LVR rats.
Collapse
Affiliation(s)
- Michael D Roberts
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Ryan G Toedebusch
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Kevin D Wells
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Joseph M Company
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Jacob D Brown
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Clayton L Cruthirds
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Alexander J Heese
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Conan Zhu
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - George E Rottinghaus
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Thomas E Childs
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Frank W Booth
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
41
|
Toedebusch RG, Roberts MD, Wells KD, Company JM, Kanosky KM, Padilla J, Jenkins NT, Perfield JW, Ibdah JA, Booth FW, Rector RS. Unique transcriptomic signature of omental adipose tissue in Ossabaw swine: a model of childhood obesity. Physiol Genomics 2014; 46:362-75. [PMID: 24642759 DOI: 10.1152/physiolgenomics.00172.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
To better understand the impact of childhood obesity on intra-abdominal adipose tissue phenotype, a complete transcriptomic analysis using deep RNA-sequencing (RNA-seq) was performed on omental adipose tissue (OMAT) obtained from lean and Western diet-induced obese juvenile Ossabaw swine. Obese animals had 88% greater body mass, 49% greater body fat content, and a 60% increase in OMAT adipocyte area (all P < 0.05) compared with lean pigs. RNA-seq revealed a 37% increase in the total transcript number in the OMAT of obese pigs. Ingenuity Pathway Analysis showed transcripts in obese OMAT were primarily enriched in the following categories: 1) development, 2) cellular function and maintenance, and 3) connective tissue development and function, while transcripts associated with RNA posttranslational modification, lipid metabolism, and small molecule biochemistry were reduced. DAVID and Gene Ontology analyses showed that many of the classically recognized gene pathways associated with adipose tissue dysfunction in obese adults including hypoxia, inflammation, angiogenesis were not altered in OMAT in our model. The current study indicates that obesity in juvenile Ossabaw swine is characterized by increases in overall OMAT transcript number and provides novel data describing early transcriptomic alterations that occur in response to excess caloric intake in visceral adipose tissue in a pig model of childhood obesity.
Collapse
Affiliation(s)
| | | | - Kevin D Wells
- Animal Sciences, University of Missouri, Columbia, Missouri
| | | | - Kayla M Kanosky
- Internal Medicine-Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri
| | - Jaume Padilla
- Child Health, University of Missouri, Columbia, Missouri; Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | | | - James W Perfield
- Department of Food Science, University of Missouri, Columbia, Missouri; Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Jamal A Ibdah
- Internal Medicine-Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri; Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Frank W Booth
- Biomedical Sciences, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - R Scott Rector
- Internal Medicine-Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri; Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Research Service, Harry S. Truman Memorial VA Medical Center, University of Missouri, Columbia, Missouri; and
| |
Collapse
|
42
|
Company JM, Roberts MD, Toedebusch RG, Cruthirds CL, Booth FW. Sudden decrease in physical activity evokes adipocyte hyperplasia in 70- to 77-day-old rats but not 49- to 56-day-old rats. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1465-78. [PMID: 24089381 DOI: 10.1152/ajpregu.00139.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cessation of physical activity in rodents and humans initiates obesogenic mechanisms. The overall purpose of the current study was to determine how the cessation of daily physical activity in rats at 49-56 days of age and at 70-77 days of age via wheel lock (WL) affects adipose tissue characteristics. Male Wistar rats began voluntary running at 28 days old and were either killed at 49-56 days old or at 70-77 days old. Two cohorts of rats always had wheel access (RUN), a second two cohorts of rats had wheel access restricted during the last 7 days (7d-WL), and a third two cohorts of rats did not have access to a voluntary running wheel after the first 6 days of (SED). We observed more robust changes with WL in the 70- to 77-day-old rats. Compared with RUN rats, 7d-WL rats exhibited greater rates of gain in fat mass and percent body fat, increased adipocyte number, higher percentage of small adipocytes, and greater cyclin A1 mRNA in epididymal and perirenal adipose tissue. In contrast, 49- to 56-day-old rats had no change in most of the same characteristics. There was no increase in inflammatory mRNA expression in either cohort with WL. These findings suggest that adipose tissue in 70- to 77-day-old rats is more protected from WL than 49- to 56-day-old rats and responds by expansion via hyperplasia.
Collapse
Affiliation(s)
- Joseph M Company
- Department of Biomedical Science, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | | | | | | | | |
Collapse
|