1
|
Ryan MJ, Clemmer JS, Mathew RO, Faulkner JL, Taylor EB, Abais-Battad JM, Hollis F, Sullivan JC. Revisiting sex as a biological variable in hypertension research. J Clin Invest 2024; 134:e180078. [PMID: 39225093 PMCID: PMC11364402 DOI: 10.1172/jci180078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Half of adults in the United States have hypertension as defined by clinical practice guidelines. Interestingly, women are generally more likely to be aware of their hypertension and have their blood pressure controlled with treatment compared with men, yet hypertension-related mortality is greater in women. This may reflect the fact that the female sex remains underrepresented in clinical and basic science studies investigating the effectiveness of therapies and the mechanisms controlling blood pressure. This Review provides an overview of the impact of the way hypertension research has explored sex as a biological variable (SABV). Emphasis is placed on epidemiological studies, hypertension clinical trials, the genetics of hypertension, sex differences in immunology and gut microbiota in hypertension, and the effect of sex on the central control of blood pressure. The goal is to offer historical perspective on SABV in hypertension, highlight recent studies that include SABV, and identify key gaps in SABV inclusion and questions that remain in the field. Through continued awareness campaigns and engagement/education at the level of funding agencies, individual investigators, and in the editorial peer review system, investigation of SABV in the field of hypertension research will ultimately lead to improved clinical outcomes.
Collapse
Affiliation(s)
- Michael J. Ryan
- Columbia VA Health Care System, Columbia, South Carolina, USA
- University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - John S. Clemmer
- University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Roy O. Mathew
- Loma Linda VA Health Care System, Loma Linda, California, USA
| | | | - Erin B. Taylor
- University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | | - Fiona Hollis
- University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | | |
Collapse
|
2
|
Montenegro L, Costa I, Maltez L, Evaristo V, Dias IR, Martins C, Borges I, Morinha F, Pereira R, Neto N, Oliveira C, Martins-Bessa A. Unusual sex chromosomal DSD in a domestic Shorthair cat with a 37,X/38,XY mosaic karyotype. BMC Vet Res 2024; 20:298. [PMID: 38971779 PMCID: PMC11227180 DOI: 10.1186/s12917-024-04164-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Sex chromosome abnormalities associated with disorders of sexual development (DSD) are rarely described in cats, mainly due to the lack of chromossome studies that precisely reveal the condition. Genetic approaches are therefore required in order to detect sex chromossomes abnormalities as variations in the number and structure of chromosomes, or the presence of a second cell line as mosaicim or chimerism. CASE PRESENTATION A male Shorthair cryptorchid cat was presented with clinical signs of anorexia, tenesmus and hyperthermia. Ultrasonography revealed a fluid-filled structure, with approximately 1 cm in diameter, adjacent to the descending colon. Computed tomography evidenced a tubular structure, ventral to the descending colon and caudal to the bladder, which extended cranially, through two branches. Histopathological evaluation confirmed the presence of two atrophic uterine horns and one hypoplastic testicle with epididymis at the end of one of the uterine horns. The end of the other uterine horn was attached to a structure composed by a mass of adipocytes. Cytogenetic analysis revealed a mosaic 37,X/38,XY karyotype. The two cell lines were found in 15% and 85% of the lymphocytes, respectively. Genetic analysis confirmed the presence of SRY and ZFY genes in blood and hair bulbs, and revealed a marked reduction in SRY expression in the testicle. Additionally, this case presented exceptionally rare features, such as a Leydig' cell tumour and a chronic endometritis in both uterine horns. CONCLUSIONS Complete imaging workup, cytogenetic analysis and SRY gene expression should be systematically realized, in order to properly classify disorders of sexual development (DSD) in cats.
Collapse
Affiliation(s)
- L Montenegro
- Veterinary Hospital Referência Veterinária Montenegro, Porto, 4000-395, Portugal
- Animal and Veterinary Research Center (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, 5000-801, Portugal
- AL4AnimalS-Associate Laboratory for Animal and Veterinary Sciences, UTAD, Vila Real, 5000-801, Portugal
| | - I Costa
- Veterinary Hospital Referência Veterinária Montenegro, Porto, 4000-395, Portugal
| | - L Maltez
- Animal and Veterinary Research Center (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, 5000-801, Portugal
- AL4AnimalS-Associate Laboratory for Animal and Veterinary Sciences, UTAD, Vila Real, 5000-801, Portugal
| | - V Evaristo
- Veterinary Hospital Referência Veterinária Montenegro, Porto, 4000-395, Portugal
| | - I R Dias
- Animal and Veterinary Research Center (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, 5000-801, Portugal
- AL4AnimalS-Associate Laboratory for Animal and Veterinary Sciences, UTAD, Vila Real, 5000-801, Portugal
| | - C Martins
- Canidelo Veterinary Clinic - OneVet Group, Vila Nova de Gaia, 4400-710, Portugal
| | - I Borges
- Cedivet, Lionessa Business Hub, Leça do Balio, 4465-671, Portugal
| | - F Morinha
- Morinha Lab- Laboratory of Biodiversity and Molecular Genetics, Vila Real, 5000-562, Portugal
| | - R Pereira
- Laboratory of Cell Biology, Department of Microscopy, ICBAS‑School of Medicine and Biomedical Sciences, University of Porto, Porto, 4050‑313, Portugal
- UMIB‑Unit for Multidisciplinary Research in Biomedicine, ICBAS‑UP/ ITR‑Laboratory for Integrative and Translational Research in Population Health, University of Porto, Porto, 4050‑313, Portugal
| | - N Neto
- UMIB‑Unit for Multidisciplinary Research in Biomedicine, ICBAS‑UP/ ITR‑Laboratory for Integrative and Translational Research in Population Health, University of Porto, Porto, 4050‑313, Portugal
- Laboratory of Cytogenetics, Department of Microscopy, ICBAS‑School of Medicine and Biomedical Sciences, University of Porto, Porto, 4050‑313, Portugal
| | - C Oliveira
- UMIB‑Unit for Multidisciplinary Research in Biomedicine, ICBAS‑UP/ ITR‑Laboratory for Integrative and Translational Research in Population Health, University of Porto, Porto, 4050‑313, Portugal
- Laboratory of Cytogenetics, Department of Microscopy, ICBAS‑School of Medicine and Biomedical Sciences, University of Porto, Porto, 4050‑313, Portugal
| | - A Martins-Bessa
- Animal and Veterinary Research Center (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, 5000-801, Portugal.
- AL4AnimalS-Associate Laboratory for Animal and Veterinary Sciences, UTAD, Vila Real, 5000-801, Portugal.
| |
Collapse
|
3
|
Del Puerto HL, Miranda APGS, Qutob D, Ferreira E, Silva FHS, Lima BM, Carvalho BA, Roque-Souza B, Gutseit E, Castro DC, Pozzolini ET, Duarte NO, Lopes TBG, Taborda DYO, Quirino SM, Elgerbi A, Choy JS, Underwood A. Clinical Correlation of Transcription Factor SOX3 in Cancer: Unveiling Its Role in Tumorigenesis. Genes (Basel) 2024; 15:777. [PMID: 38927713 PMCID: PMC11202618 DOI: 10.3390/genes15060777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Members of the SOX (SRY-related HMG box) family of transcription factors are crucial for embryonic development and cell fate determination. This review investigates the role of SOX3 in cancer, as aberrations in SOX3 expression have been implicated in several cancers, including osteosarcoma, breast, esophageal, endometrial, ovarian, gastric, hepatocellular carcinomas, glioblastoma, and leukemia. These dysregulations modulate key cancer outcomes such as apoptosis, epithelial-mesenchymal transition (EMT), invasion, migration, cell cycle, and proliferation, contributing to cancer development. SOX3 exhibits varied expression patterns correlated with clinicopathological parameters in diverse tumor types. This review aims to elucidate the nuanced role of SOX3 in tumorigenesis, correlating its expression with clinical and pathological characteristics in cancer patients and cellular modelsBy providing a comprehensive exploration of SOX3 involvement in cancer, this review underscores the multifaceted role of SOX3 across distinct tumor types. The complexity uncovered in SOX3 function emphasizes the need for further research to unravel its full potential in cancer therapeutics.
Collapse
Affiliation(s)
- Helen Lima Del Puerto
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Ana Paula G. S. Miranda
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Dinah Qutob
- Department of Biological Sciences, Kent State University at Stark, North Canton, OH 44720, USA;
| | - Enio Ferreira
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Felipe H. S. Silva
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Bruna M. Lima
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Barbara A. Carvalho
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Bruna Roque-Souza
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Eduardo Gutseit
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Diego C. Castro
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Emanuele T. Pozzolini
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Nayara O. Duarte
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Thacyana B. G. Lopes
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Daiana Y. O. Taborda
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Stella M. Quirino
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Ahmed Elgerbi
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - John S. Choy
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - Adam Underwood
- Division of Mathematics and Sciences, Walsh University, North Canton, OH 44720, USA;
| |
Collapse
|
4
|
Wu XN, Wang MZ, Zhang N, Zhang W, Dong J, Ke MY, Xiang JX, Ma F, Xue F, Hou JJ, Ma ZJ, Wang FM, Liu XM, Wu R, Pawlik TM, Ye K, Yu J, Zhang XF, Lyu Y. Sex-determining region Y gene promotes liver fibrosis and accounts for sexual dimorphism in its pathophysiology. J Hepatol 2024; 80:928-940. [PMID: 38336346 DOI: 10.1016/j.jhep.2024.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/13/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND & AIMS Men are more prone to develop and die from liver fibrosis than women. In this study, we aim to investigate how sex-determining region Y gene (SRY) in hepatocytes promotes liver fibrosis. METHODS Hepatocyte-specific Sry knock-in (KI), Sry knockout (KO), and Sry KI with platelet-derived growth factor receptor α (Pdgfrα) KO mice were generated. Liver fibrosis was induced in mice by bile duct ligation for 2 weeks or carbon tetrachloride treatment for 6 weeks. In addition, primary hepatocytes, hepatic stellate cells (HSCs), and immortalized cell lines were used for in vitro studies and mechanistic investigation. RESULTS Compared to females, the severity of toxin- or cholestasis-induced liver fibrosis is similarly increased in castrated and uncastrated male mice. Among all Y chromosome-encoded genes, SRY was the most significantly upregulated and consistently increased gene in fibrotic/cirrhotic livers in male patients and in mouse models. Sry KI mice developed exacerbated liver fibrosis, whereas Sry KO mice had alleviated liver fibrosis, compared to age- and sex-matched control mice after bile duct ligation or administration of carbon tetrachloride. Mechanistically, both our in vivo and in vitro studies illustrated that SRY in hepatocytes can transcriptionally regulate Pdgfrα expression, and promote HMGB1 (high mobility group box 1) release and subsequent HSC activation. Pdgfrα KO or treatment with the SRY inhibitor DAX1 in Sry KI mice abolished SRY-induced HMGB1 secretion and liver fibrosis. CONCLUSIONS SRY is a strong pro-fibrotic factor and accounts for the sex disparity observed in liver fibrosis, suggesting its critical role as a potentially sex-specific therapeutic target for prevention and treatment of the disease. IMPACT AND IMPLICATION We identified that a male-specific gene, sex-determining region Y gene (SRY), is a strong pro-fibrotic gene that accounts for the sex disparity observed in liver fibrosis. As such, SRY might be an appropriate target for surveillance and treatment of liver fibrosis in a sex-specific manner. Additionally, SRY might be a key player in the sexual dimorphism observed in hepatic pathophysiology more generally.
Collapse
Affiliation(s)
- Xiao-Ning Wu
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Meng-Zhou Wang
- National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Nan Zhang
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Wei Zhang
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jian Dong
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Meng-Yun Ke
- National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jun-Xi Xiang
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Feng Ma
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Feng Xue
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jing-Jing Hou
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Zhi-Jie Ma
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Fu-Min Wang
- National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xue-Min Liu
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Rongqian Wu
- National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Timothy M Pawlik
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Kai Ye
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, China; Genome Institute, The First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Xu-Feng Zhang
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
| | - Yi Lyu
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
| |
Collapse
|
5
|
Pathak D, Baksi A, Vasan SS, Dighe RR. Molecular and Functional Characterization of Human Sex-Determining Region on the Y Chromosome Variants Using Protamine 1 Promoter. DNA Cell Biol 2024; 43:12-25. [PMID: 38170186 DOI: 10.1089/dna.2022.0619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
The male sex-determining gene, sex-determining region on the Y chromosome (SRY), is expressed in adult testicular germ cells; however, its role in regulating spermatogenesis remains unclear. The role of SRY in the postmeiotic gene expression was investigated by determining the effect of SRY on the promoter of the haploid-specific Protamine 1 (PRM1) gene, which harbors five distinct SRY-binding motifs. In a luciferase reporter assay system, SRY upregulates PRM1 promoter activity in vitro in a dose-dependent manner. Through a gel-shift assay involving a 31-bp DNA fragment encompassing the SRY element within the PRM1 promoter, the third SRY-binding site on the sense strand (-373/-367) was identified as crucial for PRM1 promoter activation. This assay was extended to analyze 9 SRY variants found in the testicular DNA of 44 azoospermia patients. The findings suggest that SRY regulates PRM1 promoter activity by directly binding to its specific motif within the PRM1 promoter.
Collapse
Affiliation(s)
- Deepali Pathak
- School of Sciences, Jain (Deemed-to-Be University), Bengaluru, Karnataka, India
| | - Arka Baksi
- Institute of Physiological Chemistry, Faculty of Medicine, University Hospital Carl Gustav Carus, TU-Dresden, Saxony, Germany
| | - S S Vasan
- Manipal Ankur Fertility, Bengaluru, Karnataka, India
| | - Rajan R Dighe
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
6
|
Curtis LM. Sex and Gender Differences in AKI. KIDNEY360 2024; 5:160-167. [PMID: 37990360 PMCID: PMC10833607 DOI: 10.34067/kid.0000000000000321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023]
Abstract
Sex differences in AKI continue to be identified. Generally, women are protected from AKI when compared to men. Much of the protection exhibited in women is diminished after menopause. These sex and age effects have also been noted in animal models of AKI. Gonadal hormones, as modifiers of incidence, severity, and progression of AKI, have been offered as likely contributors to this sex and age effect. In animal models of AKI, estrogen and testosterone seem to modulate susceptibility. Questions remain however regarding cellular and molecular changes that are initiated by modulation of these hormones because both estrogen and testosterone have effects across cell types that play a role in AKI. Although findings have largely been informed by studies in males, molecular pathways that are involved in the initiation and progression of AKI may be modulated by gonadal hormones. Compounding the hormone-receptor effects are developmental effects of sex chromosomal complement and epigenetic influences that may confer sex-based baseline differences in gene and protein expression, and gene dosage effects of X inactivation and escape on molecular pathways. Elucidation of sex-based protection may afford a more complete view of AKI and potential therapeutic interventions. Furthermore, the effect on susceptibility to AKI in transgender patients, who receive life-altering and essential gender-affirming hormone therapy, requires greater attention. In this review, several potential contributors to the sex differences observed in humans and animal models are discussed.
Collapse
Affiliation(s)
- Lisa M Curtis
- Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
7
|
Wits M, Becher C, de Man F, Sanchez-Duffhues G, Goumans MJ. Sex-biased TGFβ signalling in pulmonary arterial hypertension. Cardiovasc Res 2023; 119:2262-2277. [PMID: 37595264 PMCID: PMC10597641 DOI: 10.1093/cvr/cvad129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/21/2023] [Accepted: 07/04/2023] [Indexed: 08/20/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare cardiovascular disorder leading to pulmonary hypertension and, often fatal, right heart failure. Sex differences in PAH are evident, which primarily presents with a female predominance and increased male severity. Disturbed signalling of the transforming growth factor-β (TGFβ) family and gene mutations in the bone morphogenetic protein receptor 2 (BMPR2) are risk factors for PAH development, but how sex-specific cues affect the TGFβ family signalling in PAH remains poorly understood. In this review, we aim to explore the sex bias in PAH by examining sex differences in the TGFβ signalling family through mechanistical and translational evidence. Sex hormones including oestrogens, progestogens, and androgens, can determine the expression of receptors (including BMPR2), ligands, and soluble antagonists within the TGFβ family in a tissue-specific manner. Furthermore, sex-related genetic processes, i.e. Y-chromosome expression and X-chromosome inactivation, can influence the TGFβ signalling family at multiple levels. Given the clinical and mechanistical similarities, we expect that the conclusions arising from this review may apply also to hereditary haemorrhagic telangiectasia (HHT), a rare vascular disorder affecting the TGFβ signalling family pathway. In summary, we anticipate that investigating the TGFβ signalling family in a sex-specific manner will contribute to further understand the underlying processes leading to PAH and likely HHT.
Collapse
Affiliation(s)
- Marius Wits
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Clarissa Becher
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Frances de Man
- Department of Pulmonary Medicine, Amsterdam University Medical Center (UMC) (Vrije Universiteit), 1081 HV Amsterdam, The Netherlands
| | - Gonzalo Sanchez-Duffhues
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
8
|
Nevola R, Tortorella G, Rosato V, Rinaldi L, Imbriani S, Perillo P, Mastrocinque D, La Montagna M, Russo A, Di Lorenzo G, Alfano M, Rocco M, Ricozzi C, Gjeloshi K, Sasso FC, Marfella R, Marrone A, Kondili LA, Esposito N, Claar E, Cozzolino D. Gender Differences in the Pathogenesis and Risk Factors of Hepatocellular Carcinoma. BIOLOGY 2023; 12:984. [PMID: 37508414 PMCID: PMC10376683 DOI: 10.3390/biology12070984] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023]
Abstract
Several chronic liver diseases are characterized by a clear gender disparity. Among them, hepatocellular carcinoma (HCC) shows significantly higher incidence rates in men than in women. The different epidemiological distribution of risk factors for liver disease and HCC only partially accounts for these gender differences. In fact, the liver is an organ with recognized sexual dysmorphism and is extremely sensitive to the action of androgens and estrogens. Sex hormones act by modulating the risk of developing HCC and influencing its aggressiveness, response to treatments, and prognosis. Furthermore, androgens and estrogens are able to modulate the action of other factors and cofactors of liver damage (e.g., chronic HBV infection, obesity), significantly influencing their carcinogenic power. The purpose of this review is to examine the factors related to the different gender distribution in the incidence of HCC as well as the pathophysiological mechanisms involved, with particular reference to the central role played by sex hormones.
Collapse
Affiliation(s)
- Riccardo Nevola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy
| | - Giovanni Tortorella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Valerio Rosato
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Simona Imbriani
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | | | | | - Marco La Montagna
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Antonio Russo
- Department of Mental Health and Public Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Giovanni Di Lorenzo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Maria Alfano
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Maria Rocco
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Carmen Ricozzi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Klodian Gjeloshi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Aldo Marrone
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | | | | | - Ernesto Claar
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy
| | - Domenico Cozzolino
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| |
Collapse
|
9
|
Master-Key Regulators of Sex Determination in Fish and Other Vertebrates-A Review. Int J Mol Sci 2023; 24:ijms24032468. [PMID: 36768795 PMCID: PMC9917144 DOI: 10.3390/ijms24032468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
In vertebrates, mainly single genes with an allele ratio of 1:1 trigger sex-determination (SD), leading to initial equal sex-ratios. Such genes are designated master-key regulators (MKRs) and are frequently associated with DNA structural variations, such as copy-number variation and null-alleles. Most MKR knowledge comes from fish, especially cichlids, which serve as a genetic model for SD. We list 14 MKRs, of which dmrt1 has been identified in taxonomically distant species such as birds and fish. The identification of MKRs with known involvement in SD, such as amh and fshr, indicates that a common network drives SD. We illustrate a network that affects estrogen/androgen equilibrium, suggesting that structural variation may exert over-expression of the gene and thus form an MKR. However, the reason why certain factors constitute MKRs, whereas others do not is unclear. The limited number of conserved MKRs suggests that their heterologous sequences could be used as targets in future searches for MKRs of additional species. Sex-specific mortality, sex reversal, the role of temperature in SD, and multigenic SD are examined, claiming that these phenomena are often consequences of artificial hybridization. We discuss the essentiality of taxonomic authentication of species to validate purebred origin before MKR searches.
Collapse
|
10
|
Helman TJ, Headrick JP, Vider J, Peart JN, Stapelberg NJC. Sex-specific behavioral, neurobiological, and cardiovascular responses to chronic social stress in mice. J Neurosci Res 2022; 100:2004-2027. [PMID: 36059192 DOI: 10.1002/jnr.25115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023]
Abstract
Psychosocial stress promotes and links mood and cardiovascular disorders in a sex-specific manner. However, findings in animal models are equivocal, in some cases opposing human dimorphisms. We examined central nervous system (CNS), behavioral, endocrine, cardiac, and hepatic outcomes in male or female C57Bl/6 mice subjected to chronic social stress (56 days of social isolation, with intermittent social confrontation encounters twice daily throughout the final 20 days). Females exhibited distinct physiological and behavioral changes, including relative weight loss, and increases in coronary resistance, hepatic inflammation, and thigmotaxic behavior in the open field. Males evidence reductions in coronary resistance and cardiac ischemic tolerance, with increased circulating and hippocampal monoamine levels and emerging anhedonia. Shared CNS gene responses include reduced hippocampal Maoa and increased Htr1b expression, while unique responses include repression of hypothalamic Ntrk1 and upregulation of cortical Nrf2 and Htr1b in females; and repression of hippocampal Drd1 and hypothalamic Gabra1 and Oprm in males. Declining cardiac stress resistance in males was associated with repression of cardiac leptin levels and metabolic, mitochondrial biogenesis, and anti-inflammatory gene expression. These integrated data reveal distinct biological responses to social stress in males and females, and collectively evidence greater biological disruption or allostatic load in females (consistent with propensities to stress-related mood and cardiovascular disorders in humans). Distinct stress biology, and molecular to organ responses, emphasize the importance of sex-specific mechanisms and potential approaches to stress-dependent disease.
Collapse
Affiliation(s)
- Tessa J Helman
- School of Pharmacy and Medical Sciences, Griffith University, Southport, Queensland, Australia
| | - John P Headrick
- School of Pharmacy and Medical Sciences, Griffith University, Southport, Queensland, Australia
| | - Jelena Vider
- School of Pharmacy and Medical Sciences, Griffith University, Southport, Queensland, Australia
| | - Jason N Peart
- School of Pharmacy and Medical Sciences, Griffith University, Southport, Queensland, Australia
| | - Nicolas J C Stapelberg
- Faculty of Health Sciences and Medicine, Bond University, Robina, Queensland, Australia.,Gold Coast Hospital and Health Service, Southport, Queensland, Australia
| |
Collapse
|
11
|
Hao Z, Huang X, Liu X, He F, Shao H. Association Analysis Between Different Diabetic Family History and Gender with Diagnosed Age of Type 2 Diabetes Mellitus: A Cross-Sectional Study in Tianjin, China. INQUIRY : A JOURNAL OF MEDICAL CARE ORGANIZATION, PROVISION AND FINANCING 2022; 59:469580221086364. [PMID: 35348394 PMCID: PMC8969500 DOI: 10.1177/00469580221086364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background Type 2 diabetes mellitus (T2DM) was previously considered a common disease in middle-aged and older people, but the age of diagnosis of T2DM is advancing every year, and the trend toward a younger age is obvious. Early-onset T2DM is a clinical syndrome caused by genetic and environmental factors. This study aimed to investigate the association between diabetic family history and gender with the diagnosed age of T2DM. Methods The newly diagnosed T2DM patients admitted to the diabetes identification center of Tianjin 4th Central Hospital (TJ4thch) from October 2017 to June 2020 were registered. According to whether the diagnosis age is over 40 years old, patients were divided into 2 groups (early-onset T2DM group and late-onset T2DM group). In the study, the T2DM family history was divided into 5 types: (a) Father T2DM: father with T2DM, but not the mother; (b) Mother T2DM: mother with T2DM, but not the father; (c) Both parents with T2DM; (d) Another relative(s) (other than the parents) with a history of T2DM; and (e) Without a family history of T2DM. The diagnosed age with different genders and diabetic family history was compared. Multivariate logistic regression analysis was used to investigate the association factors of early-onset T2DM. Results A total of 3725 patients completed the survey. There were 589 patients (15.8%) with early-onset T2DM, and 2469 patients (66.3%) had a diabetic family history. The T2DM-diagnosed age in males was lower than in females (51.7 ± 11.2 vs 54.0 ± 10.2, P = .000). The result was also reflected in the different T2DM family histories (with Both parents T2DM, 46.7 ± 11.1 vs 48.5 ± 10.3, P = .271; with Father T2DM, 46.8 ± 10.8 vs 49.8 ± 11.3, P = .005; with Mother T2DM, 50.4 ± 10.6 vs 52.3 ± 10.2, P = .019; with Other T2DM family history, 54.0 ± 10.8 vs 55.7 ± 9.5, P = .008; with no T2DM family history, 53.0 ± 11.0 vs 55.9 ± 9.3, P = .000). The order of the T2DM-diagnosed age in the different groups was Both parents T2DM (47.5 ± 11.0) and Father T2DM (47.9 ± 11.1) family history < that with Mother T2DM family history (51.1 ± 10.5) < that with Other T2DM family history (54.7 ± 10.3) and no T2DM family history (54.1 ± 10.5). Logistic regression analysis indicated that gender (OR, 1.733; P = .000), Father T2DM history (OR, 2.738; P = .000), Mother T2DM history (OR, 1.536; P = .001), Both parents T2DM (OR, 2.866; P = .000) and body mass index (OR, 1.108, P = .000) were correlated with early-onset T2DM. Conclusion Patients with early-onset T2DM tend to have a more obvious T2DM family history in China. This survey shows that when a parent has a T2DM family history, especially the father with T2DM, male patients are diagnosed with T2DM earlier. We need more intensive screening for diabetes in children with a family history of diabetes, especially in male children.
Collapse
Affiliation(s)
- Zhaohu Hao
- Department of Metabolic Disease Management Center, Tianjin 4th Central Hospital, The 4th Central Hospital Affiliated to Nankai University, 159424The 4th Center Clinical College of Tianjin Medical University, Tianjin, China
| | - Xiao Huang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Xiaohui Liu
- Department of Endocrinology, 159423Tianjin Fourth Central Hospital, Tianjin, China
| | - Feng He
- Department of Cardiology, 159423Tianjin Fourth Central Hospital, Tianjin, China
| | - Hailin Shao
- Department of Metabolic Disease Management Center, Tianjin 4th Central Hospital, The 4th Central Hospital Affiliated to Nankai University, 159424The 4th Center Clinical College of Tianjin Medical University, Tianjin, China
| |
Collapse
|
12
|
Segura-Bautista D, Maya-Nunez G, Aguilar-Rojas A, Huerta-Reyes M, Pérez-Solis MA. Contribution of Stemness-linked Transcription Regulators to the Progression of Breast Cancer. Curr Mol Med 2021; 22:766-778. [PMID: 34819003 DOI: 10.2174/1566524021666211124154803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/05/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022]
Abstract
Although there are currently several factors that allow measuring the risk of having breast cancer or predicting its progression, the underlying causes of this malignancy have remained unknown. Several molecular studies have described some mechanisms involved in the progress of breast cancer. These have helped in identifying new targets with therapeutic potential. However, despite the therapeutic strategies implemented from the advances achieved in breast cancer research, a large percentage of patients with breast cancer die due to the spread of malignant cells to other tissues or organs, such as bones and lungs. Therefore, determining the processes that promote the migration of malignant cells remains one of the greatest challenges for oncological research. Several research groups have reported evidence on how the dedifferentiation of tumor cells leads to the acquisition of stemness characteristics, such as invasion, metastasis, the capability to evade the immunological response, and resistance to several cytotoxic drugs. These phenotypic changes have been associated with a complex reprogramming of gene expression in tumor cells during the Epithelial-Mesenchymal Transition (EMT). Considering the determining role that the transcriptional regulation plays in the expression of the specific characteristics and attributes of breast cancer during ETM, in the present work, we reviewed and analyzed several transcriptional mechanisms that support the mesenchymal phenotype. In the same way, we established the importance of transcription factors with a therapeutic perspective in the progress of breast cancer.
Collapse
Affiliation(s)
- David Segura-Bautista
- Medical Research Unit in Reproductive Medicine, UMAE Hospital de Gineco Obstetricia no. 4 'Luis Castelazo-Ayala', Instituto Mexicano del Seguro Social, Mexico City. Mexico
| | - Guadalupe Maya-Nunez
- Medical Research Unit in Reproductive Medicine, UMAE Hospital de Gineco Obstetricia no. 4 'Luis Castelazo-Ayala', Instituto Mexicano del Seguro Social, Mexico City. Mexico
| | - Arturo Aguilar-Rojas
- Medical Research Unit in Reproductive Medicine, UMAE Hospital de Gineco Obstetricia no. 4 'Luis Castelazo-Ayala', Instituto Mexicano del Seguro Social, Mexico City. Mexico
| | - Maira Huerta-Reyes
- Medical Research Unit in Nephrological Diseases, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City. Mexico
| | - Marco Allan Pérez-Solis
- Medical Research Unit in Reproductive Medicine, UMAE Hospital de Gineco Obstetricia no. 4 'Luis Castelazo-Ayala', Instituto Mexicano del Seguro Social, Mexico City. Mexico
| |
Collapse
|
13
|
Curzon AY, Shirak A, Benet-Perlberg A, Naor A, Low-Tanne SI, Sharkawi H, Ron M, Seroussi E. Gene Variant of Barrier to Autointegration Factor 2 ( Banf2w) Is Concordant with Female Determination in Cichlids. Int J Mol Sci 2021; 22:7073. [PMID: 34209244 PMCID: PMC8268354 DOI: 10.3390/ijms22137073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 11/15/2022] Open
Abstract
Oreochromis fishes exhibit variability of sex-determination (SD) genes whose characterization contributes to understanding of the sex differentiation network, and to effective tilapia farming, which requires all-male culture. However, O. niloticus (On) amh is the only master-key regulator (MKR) of SD that has been mapped (XY/XX SD-system on LG23). In O. aureus (Oa), LG3 controls a WZ/ZZ SD-system that has recently been delimited to 9.2 Mbp, with an embedded interval rich with female-specific variation, harboring two paics genes and banf2. Developing genetic markers within this interval and using a hybrid Oa stock that demonstrates no recombination repression in LG3, we mapped the critical SD region to 235 Kbp on the orthologous On physical map (p < 1.5 × 10-26). DNA-seq assembly and peak-proportion analysis of variation based on Sanger chromatograms allowed the characterization of copy-number variation (CNV) of banf2. Oa males had three exons capable of encoding 90-amino-acid polypeptides, yet in Oa females, we found an extra copy with an 89-amino-acid polypeptide and three non-conservative amino acid substitutions, designated as banf2w. CNV analysis suggested the existence of two to five copies of banf2 in diploidic Cichlidae. Disrupting the Hardy-Weinberg equilibrium (p < 4.2 × 10-3), banf2w was concordant with female determination in Oa and in three cichlids with LG3 WZ/ZZ SD-systems (O. tanganicae, O. hornorum and Pelmatolapia mariae). Furthermore, exclusive RNA-seq expression in Oa females strengthened the candidacy of banf2w as the long-sought LG3 SD MKR. As banf genes mediate nuclear assembly, chromatin organization, gene expression and gonad development, banf2w may play a fundamental role inducing female nucleus formation that is essential for WZ/ZZ SD.
Collapse
Affiliation(s)
- Arie Yehuda Curzon
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 7528809, Israel; (A.Y.C.); (A.S.); (M.R.)
- Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Andrey Shirak
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 7528809, Israel; (A.Y.C.); (A.S.); (M.R.)
| | - Ayana Benet-Perlberg
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Alon Naor
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Shai Israel Low-Tanne
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Haled Sharkawi
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Micha Ron
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 7528809, Israel; (A.Y.C.); (A.S.); (M.R.)
| | - Eyal Seroussi
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 7528809, Israel; (A.Y.C.); (A.S.); (M.R.)
| |
Collapse
|
14
|
Alternate Roles of Sox Transcription Factors beyond Transcription Initiation. Int J Mol Sci 2021; 22:ijms22115949. [PMID: 34073089 PMCID: PMC8198692 DOI: 10.3390/ijms22115949] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022] Open
Abstract
Sox proteins are known as crucial transcription factors for many developmental processes and for a wide range of common diseases. They were believed to specifically bind and bend DNA with other transcription factors and elicit transcriptional activation or repression activities in the early stage of transcription. However, their functions are not limited to transcription initiation. It has been showed that Sox proteins are involved in the regulation of alternative splicing regulatory networks and translational control. In this review, we discuss the current knowledge on how Sox transcription factors such as Sox2, Sry, Sox6, and Sox9 allow the coordination of co-transcriptional splicing and also the mechanism of SOX4-mediated translational control in the context of RNA polymerase III.
Collapse
|
15
|
Hartog N, Faber W, Frisch A, Bauss J, Bupp CP, Rajasekaran S, Prokop JW. SARS-CoV-2 infection: molecular mechanisms of severe outcomes to suggest therapeutics. Expert Rev Proteomics 2021; 18:105-118. [PMID: 33779460 PMCID: PMC8022340 DOI: 10.1080/14789450.2021.1908894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
Introduction:The year 2020 was defined by the 29,903 base pairs of RNA that codes for the SARS-CoV-2 genome. SARS-CoV-2 infects humans to cause COVID-19, spreading from patient-to-patient yet impacts patients very divergently.Areas covered: Within this review, we address the known molecular mechanisms and supporting data for COVID-19 clinical course and pathology, clinical risk factors and molecular signatures, therapeutics of severe COVID-19, and reinfection/vaccination. Literature and published datasets were reviewed using PubMed, Google Scholar, and NCBI SRA tools. The combination of exaggerated cytokine signaling, pneumonia, NETosis, pyroptosis, thrombocytopathy, endotheliopathy, multiple organ dysfunction syndrome (MODS), and acute respiratory distress syndrome (ARDS) create a positive feedback loop of severe damage in patients with COVID-19 that impacts the entire body and may persist for months following infection. Understanding the molecular pathways of severe COVID-19 opens the door for novel therapeutic design. We summarize the current insights into pathology, risk factors, secondary infections, genetics, omics, and drugs being tested to treat severe COVID-19.Expert opinion: A growing level of support suggests the need for stronger integration of biomarkers and precision medicine to guide treatment strategies of severe COVID-19, where each patient has unique outcomes and thus require guided treatment.
Collapse
Affiliation(s)
- Nicholas Hartog
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
- Allergy & Immunology, Spectrum Health, Grand Rapids, MI, USA
| | - William Faber
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
- Department of Chemistry, Grand Rapids Community College, Grand Rapids, MI, USA
| | - Austin Frisch
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Jacob Bauss
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Caleb P Bupp
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
- Spectrum Health Medical Genetics, Grand Rapids, MI, USA
| | - Surender Rajasekaran
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
- Pediatric Intensive Care Unit, Helen DeVos Children’s Hospital, Grand Rapids, MI, USA
- Office of Research, Office of Research, Spectrum Health, Grand Rapids, MI, USA
| | - Jeremy W Prokop
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
16
|
|
17
|
Alsubaie LM, Alsuwat HS, Almandil NB, AlSulaiman A, AbdulAzeez S, Borgio JF. Risk Y-haplotypes and pathogenic variants of Arab-ancestry boys with autism by an exome-wide association study. Mol Biol Rep 2020; 47:7623-7632. [DOI: 10.1007/s11033-020-05832-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022]
|
18
|
Olney KC, Brotman SM, Andrews JP, Valverde-Vesling VA, Wilson MA. Reference genome and transcriptome informed by the sex chromosome complement of the sample increase ability to detect sex differences in gene expression from RNA-Seq data. Biol Sex Differ 2020; 11:42. [PMID: 32693839 PMCID: PMC7374973 DOI: 10.1186/s13293-020-00312-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Human X and Y chromosomes share an evolutionary origin and, as a consequence, sequence similarity. We investigated whether the sequence homology between the X and Y chromosomes affects the alignment of RNA-Seq reads and estimates of differential expression. We tested the effects of using reference genomes and reference transcriptomes informed by the sex chromosome complement of the sample's genome on the measurements of RNA-Seq abundance and sex differences in expression. RESULTS The default genome includes the entire human reference genome (GRCh38), including the entire sequence of the X and Y chromosomes. We created two sex chromosome complement informed reference genomes. One sex chromosome complement informed reference genome was used for samples that lacked a Y chromosome; for this reference genome version, we hard-masked the entire Y chromosome. For the other sex chromosome complement informed reference genome, to be used for samples with a Y chromosome, we hard-masked only the pseudoautosomal regions of the Y chromosome, because these regions are duplicated identically in the reference genome on the X chromosome. We analyzed the transcript abundance in the whole blood, brain cortex, breast, liver, and thyroid tissues from 20 genetic female (46, XX) and 20 genetic male (46, XY) samples. Each sample was aligned twice: once to the default reference genome and then independently aligned to a reference genome informed by the sex chromosome complement of the sample, repeated using two different read aligners, HISAT and STAR. We then quantified sex differences in gene expression using featureCounts to get the raw count estimates followed by Limma/Voom for normalization and differential expression. We additionally created sex chromosome complement informed transcriptome references for use in pseudo-alignment using Salmon. Transcript abundance was quantified twice for each sample: once to the default target transcripts and then independently to target transcripts informed by the sex chromosome complement of the sample. CONCLUSIONS We show that regardless of the choice of the read aligner, using an alignment protocol informed by the sex chromosome complement of the sample results in higher expression estimates on the pseudoautosomal regions of the X chromosome in both genetic male and genetic female samples, as well as an increased number of unique genes being called as differentially expressed between the sexes. We additionally show that using a pseudo-alignment approach informed on the sex chromosome complement of the sample eliminates Y-linked expression in female XX samples.
Collapse
Affiliation(s)
- Kimberly C Olney
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ, 85287-4501, USA.,Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85282, USA
| | - Sarah M Brotman
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ, 85287-4501, USA.,Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jocelyn P Andrews
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ, 85287-4501, USA.,College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766, USA
| | | | - Melissa A Wilson
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ, 85287-4501, USA. .,Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85282, USA. .,Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, AZ, 85282, USA.
| |
Collapse
|
19
|
Tahira AC, Barbosa AR, Feltrin AS, Gastaldi VD, de Toledo VHC, de Carvalho Pereira JG, Lisboa BCG, de Souza Reis VN, dos Santos ACF, Maschietto M, Brentani H. Putative contributions of the sex chromosome proteins SOX3 and SRY to neurodevelopmental disorders. Am J Med Genet B Neuropsychiatr Genet 2019; 180:390-414. [PMID: 30537354 PMCID: PMC6767407 DOI: 10.1002/ajmg.b.32704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022]
Abstract
The male-biased prevalence of certain neurodevelopmental disorders and the sex-biased outcomes associated with stress exposure during gestation have been previously described. Here, we hypothesized that genes distinctively targeted by only one or both homologous proteins highly conserved across therian mammals, SOX3 and SRY, could induce sexual adaptive changes that result in a differential risk for neurodevelopmental disorders. ChIP-seq/chip data showed that SOX3/SRY gene targets were expressed in different brain cell types in mice. We used orthologous human genes in rodent genomes to extend the number of SOX3/SRY set (1,721). These genes were later found to be enriched in five modules of coexpressed genes during the early and mid-gestation periods (FDR < 0.05), independent of sexual hormones. Genes with differential expression (24, p < 0.0001) and methylation (40, p < 0.047) between sexes were overrepresented in this set. Exclusive SOX3 or SRY target genes were more associated with the late gestational and postnatal periods. Using autism as a model sex-biased disorder, the SOX3/SRY set was enriched in autism gene databases (FDR ≤ 0.05), and there were more de novo variations from the male autism spectrum disorder (ASD) samples under the SRY peaks compared to the random peaks (p < 0.024). The comparison of coexpressed networks of SOX3/SRY target genes between male autism and control samples revealed low preservation in gene modules related to stress response (99 genes) and neurogenesis (78 genes). This study provides evidence that while SOX3 is a regulatory mechanism for both sexes, the male-exclusive SRY also plays a role in gene regulation, suggesting a potential mechanism for sex bias in ASD.
Collapse
Affiliation(s)
- Ana Carolina Tahira
- LIM23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | - André Rocha Barbosa
- LIM23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
- Inter‐institutional Grad Program on BioinformaticsUniversity of São PauloSão PauloSPBrazil
| | | | - Vinicius Daguano Gastaldi
- LIM23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | - Victor Hugo Calegari de Toledo
- LIM23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | | | - Bianca Cristina Garcia Lisboa
- LIM23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | - Viviane Neri de Souza Reis
- LIM23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | - Ana Cecília Feio dos Santos
- LIM23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
- Laboratório de Pesquisas Básicas em Malária – EntomologiaSeção de Parasitologia – Instituto Evandro Chagas/SVS/MSAnanindeuaPABrazil
| | - Mariana Maschietto
- Brazilian Biosciences National Laboratory (LNBio)Brazilian Center for Research in Energy and Materials (CNPEM)CampinasSPBrazil
| | - Helena Brentani
- LIM23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
- Inter‐institutional Grad Program on BioinformaticsUniversity of São PauloSão PauloSPBrazil
- Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSPBrazil
- National Institute of Developmental Psychiatry for Children and Adolescents (INPD)Sao PauloSPBrazil
- Faculdade de Medicina FMUSPUniversidade de Sao PauloSao PauloSPBrazil
| |
Collapse
|
20
|
Khan SI, Andrews KL, Jennings GL, Sampson AK, Chin-Dusting JPF. Y Chromosome, Hypertension and Cardiovascular Disease: Is Inflammation the Answer? Int J Mol Sci 2019; 20:ijms20122892. [PMID: 31200567 PMCID: PMC6627840 DOI: 10.3390/ijms20122892] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/23/2019] [Accepted: 04/26/2019] [Indexed: 01/17/2023] Open
Abstract
It is now becomingly increasingly evident that the functions of the mammalian Y chromosome are not circumscribed to the induction of male sex. While animal studies have shown variations in the Y are strongly accountable for blood pressure (BP), this is yet to be confirmed in humans. We have recently shown modulation of adaptive immunity to be a significant mechanism underpinning Y-chromosome-dependent differences in BP in consomic strains. This is paralleled by studies in man showing Y chromosome haplogroup is a significant predictor for coronary artery disease through influencing pathways of immunity. Furthermore, recent studies in mice and humans have shown that Y chromosome lineage determines susceptibility to autoimmune disease. Here we review the evidence in animals and humans that Y chromosome lineage influences hypertension and cardiovascular disease risk, with a novel focus on pathways of immunity as a significant pathway involved.
Collapse
Affiliation(s)
- Shanzana I Khan
- Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia.
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia.
| | - Karen L Andrews
- Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia.
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia.
| | - Garry L Jennings
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia.
| | - Amanda K Sampson
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia.
| | - Jaye P F Chin-Dusting
- Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia.
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia.
| |
Collapse
|
21
|
Pan JS, Sheikh-Hamad D. Mitochondrial dysfunction in acute kidney injury and sex-specific implications. MEDICAL RESEARCH ARCHIVES 2019; 7. [PMID: 31276028 DOI: 10.18103/mra.v7i2.1898] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The kidney is one of the most energy-demanding organs in the human body, and the maintenance of mitochondrial homeostasis is central to kidney function. Recent advances have led to a greater appreciation of how mitochondrial dysfunction contributes to the pathogenesis of AKI, from decreased ATP production, to enhanced mitochondrial oxidative stress, cell necrosis and apoptosis. Accumulating evidence suggests sexual dimorphism in the response to AKI with males demonstrating greater risk for developing ischemia-reperfusion and sepsis-induced kidney injury. In contrast, females may be more susceptible to nephrotoxic-AKI. There are important sex-related differences in mitochondrial respiration, biogenesis and dynamics that likely contribute to the observed sexual dimorphism in AKI. Sex hormones mediate many of these differences with multiple preclinical studies demonstrating the renoprotective actions of estrogen in many rodent models of AKI. Estrogenic control of mitochondrial biogenesis, function and reactive oxygen species (ROS) generation is discussed. Furthermore, the potential role for sex chromosomes in mediating sex differences in AKI is examined. Novel animal models such as the "four core genotypes" (FCG) mouse model provide us with important tools to study sex chromosome effects in kidney health and disease. By understanding the influences of sexual dimorphism or sex hormones on mitochondrial homeostasis and disease manifestations, we may be able to identify novel therapeutic targets and improve existing treatment options for AKI.
Collapse
Affiliation(s)
- Jenny S Pan
- Section of Nephrology and Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA.,Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - David Sheikh-Hamad
- Section of Nephrology and Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA.,Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
22
|
Minato Y, Kuwahara-Otani S, Maeda S, Yagi H. Platelet-derived growth factor receptor α gene is regulated by multiple first exons. Biochem Biophys Res Commun 2019; 510:489-494. [PMID: 30654933 DOI: 10.1016/j.bbrc.2019.01.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 01/05/2019] [Indexed: 10/27/2022]
Abstract
Transcription of the platelet-derived growth factor receptor α (PDGFRA/Pdgfra) gene is considered to be precisely regulated. We have previously reported that the PDGFRA/Pdgfra gene is regulated by a dual promoter system in human and mouse, in which a novel PDGFRA/Pdgfra transcript has a first exon (exon 1β) different from that of the canonical PDGFRA/Pdgfra transcript (exon 1α). To elucidate the function of each transcript, we first investigated the contribution of different PDGFRA transcripts to final protein levels. Notably, knockdown experiments suggested the existence of other PDGFRA transcripts, and we identified five additional first exons (exons 1γ, 1δ, 1ε, 1ζ, and 1η) in intron 1 in both the human and mouse genes. The first exons of the mouse Pdgfra gene showed unique expression patterns: exon 1α was broadly expressed; exon 1β was highly expressed in embryos; exon 1γ was observed at relatively high levels in the adult central nervous system (CNS); and exon 1δ was expressed at relatively high levels in the developing CNS. Furthermore, in silico analysis of common putative transcription factor binding sites in the upstream regions of the first exons of both human and mouse PDGFRA/Pdgfra genes predicted common (such as Sry, Mzf1, and Cdx) and unique (such as Sox5, Lmo2, and GATA) transcription factors. Our findings show the diversity of the transcriptional regulation of the PDGFRA/Pdgfra gene.
Collapse
Affiliation(s)
- Yusuke Minato
- Department of Anatomy and Cell Biology, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Sachi Kuwahara-Otani
- Department of Anatomy and Cell Biology, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, 663-8501, Japan
| | - Seishi Maeda
- Department of Anatomy and Cell Biology, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, 663-8501, Japan
| | - Hideshi Yagi
- Department of Anatomy and Cell Biology, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, 663-8501, Japan.
| |
Collapse
|
23
|
Xiao J, Cao K, Zou Y, Xiao S, Wang Z, Cai M. Sex-biased gene discovery from the gonadal transcriptomes of the large yellow croaker (Larimichthys crocea). AQUACULTURE AND FISHERIES 2019. [DOI: 10.1016/j.aaf.2019.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Liu ZY, Pan HW, Cao Y, Zheng J, Zhang Y, Tang Y, He J, Hu YJ, Wang CL, Zou QC, Fu QH, Zhang L, Peng JQ, Ling J, Peng N, Rong JJ, Zheng ZF. Downregulated microRNA-330 suppresses left ventricular remodeling via the TGF-β1/Smad3 signaling pathway by targeting SRY in mice with myocardial ischemia-reperfusion injury. J Cell Physiol 2018; 234:11440-11450. [PMID: 30548582 DOI: 10.1002/jcp.27800] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022]
Abstract
microRNAs (miRs) are essential in the development of heart failure. The aim of this study is to investigate the effect of microRNA-330 (miR-330) on left ventricular remodeling via the TGF-β1/Smad3 signaling pathway by targeting the sex-determining region Y (SRY) in mice with myocardial ischemia-reperfusion injury (MIRI). Differentially expressed gene (DEG) in myocardial ischemia-reperfusion (IR) was screened out and the miR that targeted the DEG was also predicted and verified. A model of MIRI was established to detect the expression of miR-330, SRY, transforming growth factor-β (TGF-β1), and Sekelsky mothers against dpp3 (Smad3). To further investigate the role of miR-330 in MIRI with the involvement of SRY and TGF-β1/Smad3 signaling pathway, the modeled mice were treated with different mimic, inhibitor, or small interfering RNA (siRNA) to observe the changes of the related gene expression, as well as the myocardial infarction size and volume of myocardial collagen. SRY was screened out and verified as a target gene of miR-330. The MIRI mice showed enlarged myocardial infarction size, increased volume of myocardial collagen, increased expression of miR-330, TGF-β1 and Smad3, while decreased the expression of SRY. The MIRI mice treated with miR-330 inhibitor showed decreased myocardial infarction size, the volume of myocardial collagen, and expression of TGF-β1 and Smad3 but promoted expression of SRY. Our findings demonstrated that downregulated miR-330 could suppress left ventricular remodeling to inhibit the activation of the TGF-β1/Smad3 signaling pathway via negatively targeting of SRY in mice with MIRI. This can be a potential target in the strategy to attenuate patient suffering.
Collapse
Affiliation(s)
- Zheng-Yu Liu
- Department of Cardiology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Hong-Wei Pan
- Department of Cardiology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China.,Clinical Interventional and Medical Research Center of Hunan Province, Changsha, China
| | - Yan Cao
- Department of Emergency, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China.,Emergency and Critical Care Metabolomic Key Lab of Hunan Province, Changsha, China
| | - Jiao Zheng
- Institute of Clinical Pharmacology Research, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Yu Zhang
- Department of Cardiology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Yi Tang
- Department of Cardiology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Jin He
- Department of Cardiology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Yong-Jun Hu
- Department of Cardiology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Chang-Lu Wang
- Department of Cardiology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Qiong-Chao Zou
- Department of Cardiology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Qing-Hua Fu
- Department of Cardiology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Le Zhang
- Department of Cardiology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Jian-Qiang Peng
- Department of Cardiology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Jing Ling
- Medical College, Hunan Normal University, Changsha, China
| | - Ning Peng
- Medical College, Hunan Normal University, Changsha, China
| | - Jing-Jing Rong
- Department of Cardiology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Zhao-Fen Zheng
- Department of Cardiology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China.,Clinical Interventional and Medical Research Center of Hunan Province, Changsha, China
| |
Collapse
|
25
|
Liu C, Ren YF, Dong J, Ke MY, Ma F, Monga SPS, Wu R, Lv Y, Zhang XF. Activation of SRY accounts for male-specific hepatocarcinogenesis: Implication in gender disparity of hepatocellular carcinoma. Cancer Lett 2017; 410:20-31. [PMID: 28942012 DOI: 10.1016/j.canlet.2017.09.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/31/2017] [Accepted: 09/15/2017] [Indexed: 02/08/2023]
Abstract
Sex affects the risk, treatment responses and outcome of many types of cancers. The mechanism of gender disparity in development of hepatocellular carcinoma (HCC) remains obscure. Sex-determining region on Y chromosome (SRY) was overexpressed in approximate 84% male patient HCC. Moreover, we are the first to generate a liver-specific transgenic (TG) murine model with overexpression of the male specific gene SRY. Subject to a single intraperitoneal injection N-nitrosodiethylamine (DEN) at day 14, TG and wildtype (WT) mice of both genders were sacrificed at different time points (6-13.5 months). Overexpression of SRY in male TG and ectopic expression of SRY in female TG livers promoted DEN-induced hepatocarcinogenesis compared to age- and sex-matched WT. This accelerated tumorigenesis in TG of both genders was a consequence of increased injury and inflammation, fibrosis, and compensatory enhancement in hepatocytes proliferation secondary to activation of downstream targets Sox9 and platelet-derived growth factor receptor α (PDGFRα)/phosphoinositide 3-kinase (PI3K)/Akt and c-myc/CyclinD1. In conclusion, activation of SRY and its downstream Sox9 and PDGFRα pathways are commonly involved in male hepatocarcinogenesis, which provides novel insights into gender disparity and sex-specific therapeutic strategies of HCC.
Collapse
Affiliation(s)
- Chang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China; Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China; Shaanxi Provincial Regenerative Medicine and Surgical Engineering Research Center, Xi'an, Shaanxi Province, 710061, China
| | - Yi-Fan Ren
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China; Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China; Shaanxi Provincial Regenerative Medicine and Surgical Engineering Research Center, Xi'an, Shaanxi Province, 710061, China
| | - Jian Dong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China; Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China; Shaanxi Provincial Regenerative Medicine and Surgical Engineering Research Center, Xi'an, Shaanxi Province, 710061, China
| | - Meng-Yun Ke
- Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China; Shaanxi Provincial Regenerative Medicine and Surgical Engineering Research Center, Xi'an, Shaanxi Province, 710061, China
| | - Feng Ma
- Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China; Shaanxi Provincial Regenerative Medicine and Surgical Engineering Research Center, Xi'an, Shaanxi Province, 710061, China
| | - Satdarshan P S Monga
- Department of Pathology and Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Rongqian Wu
- Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China; Shaanxi Provincial Regenerative Medicine and Surgical Engineering Research Center, Xi'an, Shaanxi Province, 710061, China
| | - Yi Lv
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China; Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China; Shaanxi Provincial Regenerative Medicine and Surgical Engineering Research Center, Xi'an, Shaanxi Province, 710061, China.
| | - Xu-Feng Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China; Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China; Shaanxi Provincial Regenerative Medicine and Surgical Engineering Research Center, Xi'an, Shaanxi Province, 710061, China.
| |
Collapse
|
26
|
Jeong YH, Lu H, Park CH, Li M, Luo H, Kim JJ, Liu S, Ko KH, Huang S, Hwang IS, Kang MN, Gong D, Park KB, Choi EJ, Park JH, Jeong YW, Moon C, Hyun SH, Kim NH, Jeung EB, Yang H, Hwang WS, Gao F. Stochastic anomaly of methylome but persistent SRY hypermethylation in disorder of sex development in canine somatic cell nuclear transfer. Sci Rep 2016; 6:31088. [PMID: 27501986 PMCID: PMC4977463 DOI: 10.1038/srep31088] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 07/13/2016] [Indexed: 12/30/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) provides an excellent model for studying epigenomic reprogramming during mammalian development. We mapped the whole genome and whole methylome for potential anomalies of mutations or epimutations in SCNT-generated dogs with XY chromosomal sex but complete gonadal dysgenesis, which is classified as 78, XY disorder of sex development (DSD). Whole genome sequencing revealed no potential genomic variations that could explain the pathogenesis of DSD. However, extensive but stochastic anomalies of genome-wide DNA methylation were discovered in these SCNT DSD dogs. Persistent abnormal hypermethylation of the SRY gene was observed together with its down-regulated mRNA and protein expression. Failure of SRY expression due to hypermethylation was further correlated with silencing of a serial of testis determining genes, including SOX9, SF1, SOX8, AMH and DMRT1 in an early embryonic development stage at E34 in the XY(DSD) gonad, and high activation of the female specific genes, including FOXL2, RSPO1, CYP19A1, WNT4, ERα and ERβ, after one postnatal year in the ovotestis. Our results demonstrate that incomplete demethylation on the SRY gene is the driving cause of XY(DSD) in these XY DSD dogs, indicating a central role of epigenetic regulation in sex determination.
Collapse
Affiliation(s)
| | - Hanlin Lu
- BGI-Shenzhen, Shenzhen, China.,Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Chi-Hun Park
- Sooam Biotech Research Foundation, Seoul 152-904, Korea.,Animal Bioscience and Biotechnology Laboratory, United States Department of Agriculture, Beltsville, MD, 20705, USA.,Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | | | | | - Joung Joo Kim
- Sooam Biotech Research Foundation, Seoul 152-904, Korea
| | | | - Kyeong Hee Ko
- Sooam Biotech Research Foundation, Seoul 152-904, Korea
| | | | - In Sung Hwang
- Sooam Biotech Research Foundation, Seoul 152-904, Korea
| | - Mi Na Kang
- Sooam Biotech Research Foundation, Seoul 152-904, Korea
| | - Desheng Gong
- BGI-Shenzhen, Shenzhen, China.,Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Kang Bae Park
- Sooam Biotech Research Foundation, Seoul 152-904, Korea
| | - Eun Ji Choi
- Sooam Biotech Research Foundation, Seoul 152-904, Korea
| | | | | | - Changjong Moon
- College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, Korea
| | - Sang-Hwan Hyun
- Sooam Biotech Research Foundation, Seoul 152-904, Korea.,College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763, Korea
| | - Nam Hyung Kim
- College of Animal Sciences, Chungbuk National University, Cheongju, Chungbuk 361-763, Korea
| | - Eui-Bae Jeung
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763, Korea
| | | | - Woo Suk Hwang
- Sooam Biotech Research Foundation, Seoul 152-904, Korea
| | - Fei Gao
- BGI-Shenzhen, Shenzhen, China.,Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
27
|
Dhanoa JK, Mukhopadhyay CS, Arora JS. Y-chromosomal genes affecting male fertility: A review. Vet World 2016; 9:783-91. [PMID: 27536043 PMCID: PMC4983133 DOI: 10.14202/vetworld.2016.783-791] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/23/2016] [Indexed: 12/30/2022] Open
Abstract
The mammalian sex-chromosomes (X and Y) have evolved from autosomes and are involved in sex determination and reproductive traits. The Y-chromosome is the smallest chromosome that consists of 2-3% of the haploid genome and may contain between 70 and 200 genes. The Y-chromosome plays major role in male fertility and is suitable to study the evolutionary relics, speciation, and male infertility and/or subfertility due to its unique features such as long non-recombining region, abundance of repetitive sequences, and holandric inheritance pattern. During evolution, many holandric genes were deleted. The current review discusses the mammalian holandric genes and their functions. The commonly encountered infertility and/or subfertility problems due to point or gross mutation (deletion) of the Y-chromosomal genes have also been discussed. For example, loss or microdeletion of sex-determining region, Y-linked gene results in XY males that exhibit female characteristics, deletion of RNA binding motif, Y-encoded in azoospermic factor b region results in the arrest of spermatogenesis at meiosis. The holandric genes have been covered for associating the mutations with male factor infertility.
Collapse
Affiliation(s)
- Jasdeep Kaur Dhanoa
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana - 141 004, Punjab, India
| | - Chandra Sekhar Mukhopadhyay
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana - 141 004, Punjab, India
| | - Jaspreet Singh Arora
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana - 141 004, Punjab, India
| |
Collapse
|
28
|
Prokop JW, Tsaih SW, Faber AB, Boehme S, Underwood AC, Troyer S, Playl L, Milsted A, Turner ME, Ely D, Martins AS, Tutaj M, Lazar J, Dwinell MR, Jacob HJ. The phenotypic impact of the male-specific region of chromosome-Y in inbred mating: the role of genetic variants and gene duplications in multiple inbred rat strains. Biol Sex Differ 2016; 7:10. [PMID: 26848384 PMCID: PMC4740989 DOI: 10.1186/s13293-016-0064-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/26/2016] [Indexed: 12/22/2022] Open
Abstract
Backgound The male-specific region of chromosome-Y (MSY) contributes to phenotypes outside of testis development and has a high rate of evolution between mammalian species. With a lack of genomic crossover, MSY is one of the few genomic areas under similar variation and evolutionary selection in inbred and outbred animal populations, allowing for an assessment of evolutionary mechanisms to translate between the populations. Methods Using next-generation sequencing, MSY consomic strains, molecular characterization, and large-scale phenotyping, we present here regions of MSY that contribute to inbred strain phenotypes. Results We have shown that (1) MSY of rat has nine autosomal gene transposition events with strain-specific selection; (2) sequence variants in MSY occur with a 1.98-fold higher number of variants than other chromosomes in seven sequenced rat strains; (3) Sry, the most studied MSY gene, has undergone extensive gene duplications, driving ubiquitous expression not seen in human or mouse; (4) the expression profile of Sry in the rat is driven by the insertion of the Sry2 copy into an intron of the ubiquitously expressed Kdm5d gene in antisense orientation, but due to several loss of function mutations in the Sry2 protein, nuclear localization and transcriptional control are decreased; (5) expression of Sry copies other than Sry2 in the rat overlaps with the expression profile for human SRY; (6) gene duplications and sequence variants (P76T) of Sry can be selected for phenotypes such as high blood pressure and androgen receptor signaling within inbred mating; and most importantly, (7) per chromosome size, MSY contributes to higher strain-specific phenotypic variation relative to all other chromosomes, with 53 phenotypes showing both a male to female and consomic cross significance. Conclusion The data presented supports a high probability of MSY genetic variation altering a broad range of inbred rat phenotypes. Electronic supplementary material The online version of this article (doi:10.1186/s13293-016-0064-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jeremy W Prokop
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806 USA ; Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI 53226 USA ; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226 USA
| | - Shirng-Wern Tsaih
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI 53226 USA
| | - Allison B Faber
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI 53226 USA ; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226 USA
| | - Shannon Boehme
- Department of Biology, The University of Akron, Akron, OH 44325 USA
| | - Adam C Underwood
- Department of Mathematics and Science, Walsh University, North Canton, OH 44720 USA
| | - Samuel Troyer
- Department of Biology, The University of Akron, Akron, OH 44325 USA
| | - Lauren Playl
- Department of Biology, The University of Akron, Akron, OH 44325 USA
| | - Amy Milsted
- Department of Biology, The University of Akron, Akron, OH 44325 USA
| | - Monte E Turner
- Department of Biology, The University of Akron, Akron, OH 44325 USA
| | - Daniel Ely
- Department of Biology, The University of Akron, Akron, OH 44325 USA
| | - Almir S Martins
- Núcleo de Fisiologia Geral e Genômica Funcional-ICB-Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais Brazil
| | - Marek Tutaj
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI 53226 USA
| | - Jozef Lazar
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806 USA ; Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI 53226 USA ; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226 USA
| | - Melinda R Dwinell
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI 53226 USA ; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226 USA
| | - Howard J Jacob
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806 USA ; Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI 53226 USA ; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226 USA
| |
Collapse
|
29
|
Prokop JW, Deschepper CF. Chromosome Y genetic variants: impact in animal models and on human disease. Physiol Genomics 2015; 47:525-37. [PMID: 26286457 DOI: 10.1152/physiolgenomics.00074.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Chromosome Y (chrY) variation has been associated with many complex diseases ranging from cancer to cardiovascular disorders. Functional roles of chrY genes outside of testes are suggested by the fact that they are broadly expressed in many other tissues and correspond to regulators of basic cellular functions (such as transcription, translation, and protein stability). However, the unique genetic properties of chrY (including the lack of meiotic crossover and the presence of numerous highly repetitive sequences) have made the identification of causal variants very difficult. Despite the prior lack of reliable sequences and/or data on genetic polymorphisms, earlier studies with animal chrY consomic strains have made it possible to narrow down the phenotypic contributions of chrY. Some of the evidence so far indicates that chrY gene variants associate with regulatory changes in the expression of other autosomal genes, in part via epigenetic effects. In humans, a limited number of studies have shown associations between chrY haplotypes and disease traits. However, recent sequencing efforts have made it possible to greatly increase the identification of genetic variants on chrY, which promises that future association of chrY with disease traits will be further refined. Continuing studies (both in humans and in animal models) will be critical to help explain the many sex-biased disease states in human that are contributed to not only by the classical sex steroid hormones, but also by chrY genetics.
Collapse
Affiliation(s)
- J W Prokop
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama; and
| | - C F Deschepper
- Institut de recherches cliniques de Montréal (IRCM) and Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
30
|
IUGR prevents IGF-1 upregulation in juvenile male mice by perturbing postnatal IGF-1 chromatin remodeling. Pediatr Res 2015; 78:14-23. [PMID: 25826117 DOI: 10.1038/pr.2015.70] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/09/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Intrauterine growth restriction (IUGR) offspring with rapid catch-up growth are at increased risk for early obesity especially in males. Persistent insulin-like growth factor-1 (IGF-1) reduction is an important risk factor. Using a mouse model of maternal hypertension-induced IUGR, we examined IGF-1 levels, promoter DNA methylation, and histone H3 covalent modifications at birth (D1). We additionally investigated whether prenatal perturbations could reset at preadolescence (D21). METHODS IUGR was induced via maternal thromboxane A2-analog infusion in mice. RESULTS IUGR uniformly decreased D1 IGF-1 mRNA and protein levels with reduced promoter 1 (P1) transcription and increased P1 DNA methylation. IUGR males also had increased H3K4ac at exon 5 and 3' distal UTR. At D21, IUGR males continued to have decreased IGF-1 levels, originating from both P1 and P2 with reduced 1A variant. IUGR males also had decreased activation mark of H3K4me3 at P1 compared with sham males. In contrast, D21 IUGR females normalized their IGF-1 levels, in association with an increased activation mark of H3K4me3 at P1 compared with sham females. CONCLUSION IUGR uniformly affected D1 hepatic IGF-1 epigenetic modifications in both sexes. However, at preadolescence, IUGR males are unable to correct for the prenatal reduction possibly due to a more perturbed IGF-1 chromatin structure.
Collapse
|
31
|
Zhang XF, Lv Y. Does the Sex-Determining Region on the Y Chromosome (SRY) Correlate with Gender Disparity in Liver Disease? Dig Dis Sci 2015; 60:1111-2. [PMID: 25875750 DOI: 10.1007/s10620-015-3539-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/12/2015] [Indexed: 12/09/2022]
Affiliation(s)
- Xu-Feng Zhang
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, the 1st Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China,
| | | |
Collapse
|
32
|
Araujo FC, Milsted A, Watanabe IKM, Del Puerto HL, Santos RAS, Lazar J, Reis FM, Prokop JW. Similarities and differences of X and Y chromosome homologous genes, SRY and SOX3, in regulating the renin-angiotensin system promoters. Physiol Genomics 2015; 47:177-86. [PMID: 25759379 DOI: 10.1152/physiolgenomics.00138.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/09/2015] [Indexed: 12/17/2022] Open
Abstract
The renin-angiotensin system (RAS) is subject to sex-specific modulation by hormones and gene products. However, sex differences in the balance between the vasoconstrictor/proliferative ACE/ANG II/AT1 axis, and the vasodilator/antiproliferative ACE2/ANG-(1-7)/MAS axis are poorly known. Data in the rat have suggested the male-specific Y-chromosome gene Sry to contribute to balance between these two axes, but why the testis-determining gene has these functions remains unknown. A combination of in silico genetic/protein comparisons, functional luciferase assays for promoters of the human RAS, and RNA-Seq profiling in rat were used to address if regulation of Sry on the RAS is conserved in the homologous X-chromosome gene, Sox3. Both SRY and SOX3 upregulated the promoter of Angiotensinogen (AGT) and downregulated the promoters of ACE2, AT2, and MAS, likely through overlapping mechanisms. The regulation by both SRY and SOX3 on the MAS promoter indicates a cis regulation through multiple SOX binding sites. The Renin (REN) promoter is upregulated by SRY and downregulated by SOX3, likely through trans and cis mechanisms, respectively. Sry transcripts are found in all analyzed male rat tissues including the kidney, while Sox3 transcripts are found only in the brain and testis, suggesting that the primary tissue for renin production (kidney) can only be regulated by SRY and not SOX3. These results suggest that SRY regulation of the RAS is partially shared with its X-chromosome homolog SOX3, but SRY gained a sex-specific control in the kidney for the rate-limiting step of the RAS, potentially resulting in male-specific blood pressure regulation.
Collapse
Affiliation(s)
- Fabiano C Araujo
- National Institute of Science and Technology in Molecular Medicine and Department of Obstetrics and Gynecology, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Amy Milsted
- Department of Biology, The University of Akron, Akron, Ohio
| | - Ingrid K M Watanabe
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Helen L Del Puerto
- National Institute of Science and Technology in Molecular Medicine and Department of Obstetrics and Gynecology, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Robson A S Santos
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Jozef Lazar
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin; and Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Fernando M Reis
- National Institute of Science and Technology in Molecular Medicine and Department of Obstetrics and Gynecology, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Jeremy W Prokop
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin; and Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
33
|
Arnold AP. Conceptual frameworks and mouse models for studying sex differences in physiology and disease: why compensation changes the game. Exp Neurol 2014; 259:2-9. [PMID: 24509348 PMCID: PMC4125548 DOI: 10.1016/j.expneurol.2014.01.021] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 01/20/2014] [Accepted: 01/28/2014] [Indexed: 01/01/2023]
Abstract
A sophisticated mechanistic understanding of physiology and disease requires knowledge of how sex-biasing factors cause sex differences in phenotype. In therian mammals, all sex differences are downstream of the unequal effects of XX vs. XY sex chromosomes. Three major categories of sex-biasing factors are activational and organizational effects of gonadal hormones, and sex chromosome effects operating outside of the gonads. These three types of effects can be discriminated from each other with established experimental designs and animal models. Two important mouse models, which allow conclusions regarding the sex-biasing effects of sex chromosome complement, interacting with gonadal hormone effects, are the Four Core Genotypes model and the XY* model. Chromosome Y consomic strains give information about the role of the Y chromosome. An important recent change in sexual differentiation theory is the increasing realization that sex-biasing factors can counteract the effects of each other, reducing rather than producing sex differences in phenotype. This change in viewpoint rationalizes a change in experimental strategies for dissecting sex chromosome effects. The overall goal is to understand the sexome, defined as the sum of effects of sex-biasing factors on gene systems and networks.
Collapse
Affiliation(s)
- Arthur P Arnold
- Department of Integrative Biology & Physiology, Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, USA.
| |
Collapse
|
34
|
Suto JI, Satou K. Effect of the Y chromosome on plasma high-density lipoprotein-cholesterol levels in Y-chromosome-consomic mouse strains. BMC Res Notes 2014; 7:393. [PMID: 24962540 PMCID: PMC4080985 DOI: 10.1186/1756-0500-7-393] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 06/20/2014] [Indexed: 01/01/2023] Open
Abstract
Background Plasma high-density lipoprotein (HDL)-cholesterol level is a clinically important quantitative phenotype that widely varies among inbred mouse strains. Several genes or loci associated with plasma HDL-cholesterol levels have been identified on autosomes and the X chromosome. In contrast, genes or loci on the Y chromosome have not attracted significant attention hitherto. Therefore, we investigated the effects of the Y chromosome on plasma HDL-cholesterol levels in Y- chromosome-consomic (Y-consomic) mouse strains. Findings Plasma HDL-cholesterol level data from 16 Y-consomic strains demonstrated that the Y chromosome substitutions significantly altered plasma HDL-cholesterol levels, i.e., variations in the plasma HDL-cholesterol level could be partially explained by Y chromosome genes. We obtained the following results from the genotype data on 30 single nucleotide polymorphisms (SNPs), including nonsynonymous and synonymous SNPs and 9 polymorphisms in Sry: (1) Variation in rs46947134 of Uty was significantly associated with plasma HDL-cholesterol levels. (2) A CAG repeat number polymorphism in Sry was significantly associated with plasma HDL-cholesterol levels. (3) Strains with a certain haplotype of the Mus musculus domesticus-type Y chromosome had significantly lower plasma HDL-cholesterol levels than strains with a certain haplotype of the M. m. musculus-type Y chromosome. Conclusions The effect of the Y chromosome on plasma HDL-cholesterol levels was confirmed in the Y-consomic strains. We identified several variants associated with plasma HDL-cholesterol levels. Because the physiological significance of various Y-linked genes remains unclear, the results of this study will provide further insights into the functions of Y-linked genes in lipid metabolism.
Collapse
Affiliation(s)
- Jun-ichi Suto
- Agrogenomics Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan.
| | | |
Collapse
|
35
|
MAS promoter regulation: a role for Sry and tyrosine nitration of the KRAB domain of ZNF274 as a feedback mechanism. Clin Sci (Lond) 2014; 126:727-38. [PMID: 24128372 DOI: 10.1042/cs20130385] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The ACE2 (angiotensin-converting enzyme 2)/Ang-(1-7) [angiotensin-(1-7)]/MAS axis of the RAS (renin-angiotensin system) has emerged as a pathway of interest in treating both cardiovascular disorders and cancer. The MAS protein is known to bind to and be activated by Ang-(1-7); however, the mechanisms of this activation are just starting to be understood. Although there are strong biochemical data regarding the regulation and activation of the AT1R (angiotensin II type 1 receptor) and the AT2R (angiotensin II type 2 receptor), with models of how AngII (angiotensin II) binds each receptor, fewer studies have characterized MAS. In the present study, we characterize the MAS promoter and provide a potential feedback mechanism that could compensate for MAS degradation following activation by Ang-(1-7). Analysis of ENCODE data for the MAS promoter revealed potential epigenetic control by KRAB (Krüppel-associated box)/KAP-1 (KRAB-associated protein-1). A proximal promoter construct for the MAS gene was repressed by the SOX [SRY (sex-determining region on the Y chromosome) box] proteins SRY, SOX2, SOX3 and SOX14, of which SRY is known to interact with the KRAB domain. The KRAB-KAP-1 complex can be tyrosine-nitrated, causing the dissociation of the KAP-1 protein and thus a potential loss of epigenetic control. Activation of MAS can lead to an increase in nitric oxide, suggesting a feedback mechanism for MAS on its own promoter. The results of the present study provide a more complete view of MAS regulation and, for the first time, suggest biochemical outcomes for nitration of the KRAB domain.
Collapse
|
36
|
Prokop JW, Underwood AC, Turner ME, Miller N, Pietrzak D, Scott S, Smith C, Milsted A. Analysis of Sry duplications on the Rattus norvegicus Y-chromosome. BMC Genomics 2013; 14:792. [PMID: 24228692 PMCID: PMC3840628 DOI: 10.1186/1471-2164-14-792] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 11/12/2013] [Indexed: 11/28/2022] Open
Abstract
Background Gene copy number variation plays a large role in the evolution of genomes. In Rattus norvegicus and other rodent species, the Y-chromosome has accumulated multiple copies of Sry loci. These copy number variations have been previously linked with changes in phenotype of animal models such as the spontaneously hypertensive rat (SHR). This study characterizes the Y-chromosome in the Sry region of Rattus norvegicus, while addressing functional variations seen in the Sry protein products. Results Eleven Sry loci have been identified in the SHR with one (nonHMG Sry) containing a frame shift mutation. The nonHMGSry is found and conserved in the related WKY and SD rat strains. Three new, previously unidentified, Sry loci were identified in this study (Sry3BII, Sry4 and Sry4A) in both SHR and WKY. Repetitive element analysis revealed numerous LINE-L1 elements at regions where conservation is lost among the Sry copies. In addition we have identified a retrotransposed copy of Med14 originating from spliced mRNA, two autosomal genes (Ccdc110 and HMGB1) and a normal mammalian Y-chromosome gene (Zfy) in the Sry region of the rat Y-chromosome. Translation of the sequences of each Sry gene reveals eight proteins with amino acid differences leading to changes in nuclear localization and promoter activation of a Sry-responsive gene. Sry-β (coded by the Sry2 locus) has an increased cytoplasmic fraction due to alterations at amino acid 21. Sry-γ has altered gene regulation of the Sry1 promoter due to changes at amino acid 76. Conclusions The duplication of Sry on the Rattus norvegicus Y-chromosome has led to proteins with altered functional ability that may have been selected for functions in addition to testis determination. Additionally, several other genes not normally found on the Y-chromosome have duplicated new copies into the region around the Sry genes. These suggest a role of active transposable elements in the evolution of the mammalian Y-chromosome in species such as Rattus norvegicus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Amy Milsted
- Department of Biology, The University of Akron, 302 Buchtel Commons, 44325-3908 Akron, OH, USA.
| |
Collapse
|
37
|
Chen X, Williams-Burris SM, McClusky R, Ngun TC, Ghahramani N, Barseghyan H, Reue K, Vilain E, Arnold AP. The Sex Chromosome Trisomy mouse model of XXY and XYY: metabolism and motor performance. Biol Sex Differ 2013; 4:15. [PMID: 23926958 PMCID: PMC3751353 DOI: 10.1186/2042-6410-4-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/27/2013] [Indexed: 11/29/2022] Open
Abstract
Background Klinefelter syndrome (KS), caused by XXY karyotype, is characterized by low testosterone, infertility, cognitive deficits, and increased prevalence of health problems including obesity and diabetes. It has been difficult to separate direct genetic effects from hormonal effects in human studies or in mouse models of KS because low testosterone levels are confounded with sex chromosome complement. Methods In this study, we present the Sex Chromosome Trisomy (SCT) mouse model that produces XXY, XYY, XY, and XX mice in the same litters, each genotype with either testes or ovaries. The independence of sex chromosome complement and gonadal type allows for improved recognition of sex chromosome effects that are not dependent on levels of gonadal hormones. All mice were gonadectomized and treated with testosterone for 3 weeks. Body weight, body composition, and motor function were measured. Results Before hormonal manipulation, XXY mice of both sexes had significantly greater body weight and relative fat mass compared to XY mice. After gonadectomy and testosterone replacement, XXY mice (both sexes) still had significantly greater body weight and relative fat mass, but less relative lean mass compared to XY mice. Liver, gonadal fat pad, and inguinal fat pad weights were also higher in XXY mice, independent of gonadal sex. In several of these measures, XX mice also differed from XY mice, and gonadal males and females differed significantly on almost every metabolic measure. The sex chromosome effects (except for testis size) were also seen in gonadally female mice before and after ovariectomy and testosterone treatment, indicating that they do not reflect group differences in levels of testicular secretions. XYY mice were similar to XY mice on body weight and metabolic variables but performed worse on motor tasks compared to other groups. Conclusions We find that the new SCT mouse model for XXY and XYY recapitulates features found in humans with these aneuploidies. We illustrate that this model has significant promise for unveiling the role of genetic effects compared to hormonal effects in these syndromes, because many phenotypes are different in XXY vs. XY gonadal female mice which have never been exposed to testicular secretions.
Collapse
Affiliation(s)
- Xuqi Chen
- Department of Integrative Biology & Physiology, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA.,Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Shayna M Williams-Burris
- Department of Integrative Biology & Physiology, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA.,Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Rebecca McClusky
- Department of Integrative Biology & Physiology, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA.,Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Tuck C Ngun
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA.,Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Negar Ghahramani
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA.,Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Hayk Barseghyan
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA.,Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA.,Department of Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Eric Vilain
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA.,Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA.,Departments of Pediatrics and Urology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Arthur P Arnold
- Department of Integrative Biology & Physiology, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA.,Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| |
Collapse
|
38
|
Li MJ, Liu M, Liu D, Lan XY, Lei CZ, Yang DY, Chen H. Polymorphisms in the Promoter Region of the Chinese Bovine PPARGC1A Gene. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2013; 26:483-7. [PMID: 25049813 PMCID: PMC4093395 DOI: 10.5713/ajas.2012.12554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 01/08/2013] [Accepted: 11/19/2012] [Indexed: 11/27/2022]
Abstract
The peroxisome proliferator-activated receptor gamma coactivator-1 alpha protein, encoded by the PPARGC1A gene, plays an important role in energy homeostasis. The genetic variations within the PPARGC1A gene promoter region were scanned in 808 Chinese native bovines belonging to three cattle breeds and yaks. A total of 6 SNPs and one 4 bp insertion variation in the promoter region of the bovine PPARGC1A gene were identified: SNP -259 T>A, -301_-298insCTTT, -915 A>G, -1175 T>G, -1590 C>T, -1665 C>T and -1690 G>A, which are in the binding sites of some important transcription factors: sex-determining region Y (SRY), myeloid-specific zinc finger-1 (MZF-1) and octamer factor 1(Oct-1). It is expected that these polymorphisms may regulate PPARGC1A gene transcription and might have consequences at a regulatory level.
Collapse
Affiliation(s)
- M. J. Li
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100,
China
| | - M. Liu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100,
China
| | - D. Liu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100,
China
| | - X. Y. Lan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100,
China
| | - C. Z. Lei
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100,
China
| | | | - H. Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100,
China
| |
Collapse
|
39
|
Arnold AP. The end of gonad-centric sex determination in mammals. Trends Genet 2012; 28:55-61. [PMID: 22078126 PMCID: PMC3268825 DOI: 10.1016/j.tig.2011.10.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/16/2011] [Accepted: 10/17/2011] [Indexed: 01/18/2023]
Abstract
The 20th-century theory of mammalian sex determination states that the embryo is sexually indifferent until the differentiation of gonads, after which sex differences in phenotype are caused by the differential effects of gonadal hormones. However, this theory is inadequate because some sex differences precede differentiation of the gonads and/or are determined by non-gonadal effects of the sexual inequality in the number and type of sex chromosomes. In this article, I propose a general theory of sex determination, which recognizes multiple parallel primary sex-determining pathways initiated by genes or factors encoded by the sex chromosomes. The separate sex-specific pathways interact to synergize with or antagonize each other, enhancing or reducing sex differences in phenotype.
Collapse
Affiliation(s)
- Arthur P Arnold
- Department of Integrative Biology & Physiology, Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA 90095-7239, USA.
| |
Collapse
|
40
|
From rat to human: regulation of Renin-Angiotensin system genes by sry. Int J Hypertens 2012; 2012:724240. [PMID: 22315667 PMCID: PMC3270428 DOI: 10.1155/2012/724240] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/27/2011] [Accepted: 09/28/2011] [Indexed: 11/17/2022] Open
Abstract
The testis determining protein, Sry, has functions outside of testis determination. Multiple Sry loci are found on the Y-chromosome. Proteins from these loci have differential activity on promoters of renin-angiotensin system genes, possibly contributing to elevation of blood pressure. Variation at amino acid 76 accounts for the majority of differential effects by rat proteins Sry1 and Sry3. Human SRY regulated rat promoters in the same manner as rat Sry, elevating Agt, Ren, and Ace promoter activity while downregulating Ace 2. Human SRY significantly regulated human promoters of AGT, REN, ACE2, AT2, and MAS compared to control levels, elevating AGT and REN promoter activity while decreasing ACE2, AT2, and MAS. While the effect of human SRY on individual genes is often modest, we show that many different genes participating in the renin-angiotensin system can be affected by SRY, apparently in coordinated fashion, to produce more Ang II and less Ang-(1-7).
Collapse
|
41
|
Dickey C, Toot J, Terwilliger M, Payne R, Turner M, Ely D. The SHR Y chromosome increases cardiovascular, endocrine, and behavioral responses to stress compared to the WKY Y chromosome. Physiol Behav 2012; 106:101-8. [PMID: 22285213 DOI: 10.1016/j.physbeh.2012.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 01/10/2012] [Accepted: 01/16/2012] [Indexed: 10/14/2022]
Abstract
The SHR Y chromosome has loci which are involved with behavioral, endocrine and brain phenotypes and respond to acute stress to a different degree than that of the WKY Y chromosome. The objectives were to determine if WKY males with an SHR Y chromosome (SHR/y) when compared to males with a WKY Y chromosome would have: 1. a greater increase in systolic and diastolic blood pressures (BP), heart rate (HR), and locomotor activity when placed in an open field environment and during an acute stress procedure; 2. enhanced stress hormone responses; 3. greater voluntary running; and 4. increased brain Sry expression. The SHR/y strain showed a significant rise in BP (32%) and HR (10%) during the open field test and exhibited higher BP (46% change) during air jet stress. SHR/y had higher locomotor activity and less immobility and had increased stress induced plasma norepinephrine and adrenocorticotrophic hormone and 3-4× more voluntary running compared to WKY. Differential Sry expression between WKY and SHR/y in amygdala and hippocampus was altered at rest and during acute stress more than that of WKY. Evidence suggests that this animal model allows novel functions of Y chromosome loci to be revealed. In conclusion, a transcription factor on the SHR Y chromosome, Sry, may be responsible for the cardiovascular, endocrine and behavioral phenotype differences between SHR/y and WKY males.
Collapse
Affiliation(s)
- Cherec Dickey
- Department of Biology, The University of Akron, Akron, OH 44325-3908, United States
| | | | | | | | | | | |
Collapse
|
42
|
Arnold AP, Chen X, Itoh Y. What a difference an X or Y makes: sex chromosomes, gene dose, and epigenetics in sexual differentiation. Handb Exp Pharmacol 2012:67-88. [PMID: 23027446 PMCID: PMC4150872 DOI: 10.1007/978-3-642-30726-3_4] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A modern general theory of sex determination and sexual differentiation identifies the factors that cause sexual bias in gene networks, leading to sex differences in physiology and disease. The primary sex-biasing factors are those encoded on the sex chromosomes that are inherently different in the male and female zygotes. These factors, and downstream factors such as gonadal hormones, act directly on tissues to produce sex differences and antagonize each other to reduce sex differences. Recent studies of mouse models such as the four core genotypes have begun to distinguish between the direct effects of sex chromosome complement (XX vs. XY) and hormonal effects. Several lines of evidence implicate epigenetic processes in the control of sex differences, although a great deal of information is needed about sex differences in the epigenome.
Collapse
Affiliation(s)
- Arthur P Arnold
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|