1
|
Dakroub A, Dbouk A, Asfour A, Nasser SA, El-Yazbi AF, Sahebkar A, Eid AA, Iratni R, Eid AH. C-peptide in diabetes: A player in a dual hormone disorder? J Cell Physiol 2024; 239:e31212. [PMID: 38308646 DOI: 10.1002/jcp.31212] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
C-peptide, a byproduct of insulin synthesis believed to be biologically inert, is emerging as a multifunctional molecule. C-peptide serves an anti-inflammatory and anti-atherogenic role in type 1 diabetes mellitus (T1DM) and early T2DM. C-peptide protects endothelial cells by activating AMP-activated protein kinase α, thus suppressing the activity of NAD(P)H oxidase activity and reducing reactive oxygen species (ROS) generation. It also prevents apoptosis by regulating hyperglycemia-induced p53 upregulation and mitochondrial adaptor p66shc overactivation, as well as reducing caspase-3 activity and promoting expression of B-cell lymphoma-2. Additionally, C-peptide suppresses platelet-derived growth factor (PDGF)-beta receptor and p44/p42 mitogen-activated protein (MAP) kinase phosphorylation to inhibit vascular smooth muscle cells (VSMC) proliferation. It also diminishes leukocyte adhesion by virtue of its capacity to abolish nuclear factor kappa B (NF-kB) signaling, a major pro-inflammatory cascade. Consequently, it is envisaged that supplementation of C-peptide in T1DM might ameliorate or even prevent end-organ damage. In marked contrast, C-peptide increases monocyte recruitment and migration through phosphoinositide 3-kinase (PI-3 kinase)-mediated pathways, induces lipid accumulation via peroxisome proliferator-activated receptor γ upregulation, and stimulates VSMC proliferation and CD4+ lymphocyte migration through Src-kinase and PI-3K dependent pathways. Thus, it promotes atherosclerosis and microvascular damage in late T2DM. Indeed, C-peptide is now contemplated as a potential biomarker for insulin resistance in T2DM and linked to increased coronary artery disease risk. This shift in the understanding of the pathophysiology of diabetes from being a single hormone deficiency to a dual hormone disorder warrants a careful consideration of the role of C-peptide as a unique molecule with promising diagnostic, prognostic, and therapeutic applications.
Collapse
Affiliation(s)
- Ali Dakroub
- St. Francis Hospital and Heart Center, Roslyn, New York, USA
| | - Ali Dbouk
- Department of Medicine, Saint-Joseph University Medical School, Hotel-Dieu de France Hospital, Beirut, Lebanon
| | - Aref Asfour
- Leeds Teaching Hospitals NHS Trust, West Yorkshire, United Kingdom
| | | | - Ahmed F El-Yazbi
- Faculty of Pharmacy, Alamein International University (AIU), Alamein City, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Assaad A Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, UAE
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
2
|
Lockwood SY, Summers S, Eggenberger E, Spence DM. An In Vitro Diagnostic for Multiple Sclerosis Based on C-peptide Binding to Erythrocytes. EBioMedicine 2016; 11:249-252. [PMID: 27528268 PMCID: PMC5049924 DOI: 10.1016/j.ebiom.2016.07.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/24/2016] [Accepted: 07/29/2016] [Indexed: 12/04/2022] Open
Abstract
Objective To investigate the utility of a blood-based lab test as an aid in identifying patients with Multiple Sclerosis (MS). Methods Whole blood from subjects with MS, non-MS neurologic diseases, and healthy controls was centrifuged to isolate erythrocytes. Following the addition of exogenous C-peptide, the supernatant was assayed for remaining C-peptide using an enzyme linked immunosorbent assay (ELISA). Results The cohort included subjects with MS (n = 86), other non-MS neurologic diseases (OND n = 75), and healthy controls (n = 39). The average C-peptide bound to erythrocytes in MS samples (3.51 ± 0.59 pmol) was significantly higher than non-MS subjects (2.23 ± 0.51 pmol; p < 0.001) and healthy controls (1.99 ± 0.32 pmol; p < 0.001). Using a cutoff of 3.04 pmol of C-peptide uptake, the test exhibited a sensitivity of 98.3% and specificity of 89.5%. A receiver-operator characteristic (ROC) curve generated from the ratio of the sensitivity to 1-selectivity resulted in an area under the curve of 0.97. Conclusions Exogenous C-peptide binding to erythrocytes has potential value in distinguishing MS subjects from non-MS neurologic diseases and healthy controls. A blood-based diagnostic for Multiple Sclerosis is reported. Based on exogenous C-peptide binding to harvested red cells Results are independent of age, disease duration, therapies.
Biomarkers and point of care diagnostics are lacking in Multiple Sclerosis (MS), despite hallmark features often found in many diagnosed patients. Efforts to determine causes of this breakdown are ongoing by many groups. Here, we report that the addition of a molecule that is naturally occurring in most humans to a sample of blood obtained in a simple blood draw, may serve as a fast and simple auxiliary test during the diagnosing stage of the disease.
Collapse
Affiliation(s)
| | | | | | - Dana M Spence
- Department of Chemistry; Department of Cell & Molecular Biology.
| |
Collapse
|
3
|
Affiliation(s)
- Johnny Ludvigsson
- Department of Clinical and Experimental Medicine, University Hospital, Linkoping University, Linköping, Sweden
| |
Collapse
|
4
|
Arimura E, Pulong WP, Marchianti ACN, Nakakuma M, Abe M, Ushikai M, Horiuchi M. Deteriorated glucose metabolism with a high-protein, low-carbohydrate diet in db mice, an animal model of type 2 diabetes, might be caused by insufficient insulin secretion. Eur J Nutr 2015; 56:237-246. [PMID: 26497335 DOI: 10.1007/s00394-015-1075-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 10/08/2015] [Indexed: 12/18/2022]
Abstract
PURPOSE We previously showed the deleterious effects of increased dietary protein on renal manifestations and glucose metabolism in leptin receptor-deficient (db) mice. Here, we further examined its effects on glucose metabolism, including urinary C-peptide. We also orally administered mixtures corresponding to low- or high-protein diets to diabetic mice. METHODS In diet experiments, under pair-feeding (equivalent energy and fat) conditions using a metabolic cage, mice were fed diets with different protein content (L diet: 12 % protein, 71 % carbohydrate, 17 % fat; H diet: 24 % protein, 59 % carbohydrate, 17 % fat) for 15 days. In oral administration experiments, the respective mixtures (L mixture: 12 % proline, 71 % maltose or starch, 17 % linoleic acid; H mixture: 24 % proline, 59 % maltose or starch, 17 % linoleic acid) were supplied to mice. Biochemical parameters related to glucose metabolism were measured. RESULTS The db-H diet mice showed significantly higher water intake, urinary volume, and glucose levels than db-L diet mice but similar levels of excreted urinary C-peptide. In contrast, control-H diet mice showed significantly higher C-peptide excretion than control-L diet mice. Both types of mice fed H diet excreted high levels of urinary albumin. When maltose mixtures were administered, db-L mixture mice showed significantly higher blood glucose after 30 min than db-H mixture mice. However, db mice administered starch-H mixture showed significantly higher blood glucose 120-300 min post-administration than db-L mixture mice, although both groups exhibited similar insulin levels. CONCLUSIONS High-protein, low-carbohydrate diets deteriorated diabetic conditions and were associated with insufficient insulin secretion in db mice. Our findings may have implications for dietary management of diabetic symptoms in human patients.
Collapse
Affiliation(s)
- Emi Arimura
- Major in Food and Nutrition, Department of Life and Environmental Science, Kagoshima Prefectural College, 1-52-1 Shimo-Ishiki, Kagoshima, 890-0005, Japan
- Department of Hygiene and Health Promotion Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Wijang Pralampita Pulong
- Department of Hygiene and Health Promotion Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Ancah Caesarina Novi Marchianti
- Department of Hygiene and Health Promotion Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
- Medical Faculty of Jember University, Kalimantan Street 37, East Java, Indonesia
| | - Miwa Nakakuma
- Department of Hygiene and Health Promotion Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
- Takata Hospital, 5-1 Horie-cho, Kagoshima, 892-0824, Japan
| | - Masaharu Abe
- Department of Hygiene and Health Promotion Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Miharu Ushikai
- Department of Hygiene and Health Promotion Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Masahisa Horiuchi
- Department of Hygiene and Health Promotion Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
| |
Collapse
|
5
|
Nakamoto H, Nakayama K, Emoto N, Kajiya F. The Short-Term Effects of C-Peptide on the Early Diabetes-Related Ultrastructural Changes to the Podocyte Slit Diaphragm of Glomeruli in Rats. Microcirculation 2015; 22:122-32. [DOI: 10.1111/micc.12185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/17/2014] [Indexed: 12/01/2022]
Affiliation(s)
- Hiroshi Nakamoto
- Department of Medical Engineering and Systems Cardiology; Kawasaki Medical School; Kurashiki Okayama Japan
- Department of Clinical Engineering; Kawasaki University of Medical Welfare; Kurashiki, Okayama Japan
| | - Kazuhiko Nakayama
- Division of Cardiovascular Medicine; Department of Internal Medicine; Kobe University Graduate School of Medicine; Kobe, Hyogo Japan
| | - Noriaki Emoto
- Division of Cardiovascular Medicine; Department of Internal Medicine; Kobe University Graduate School of Medicine; Kobe, Hyogo Japan
- Clinical Pharmacy; Kobe Pharmaceutical University; Hyogo Japan
| | - Fumihiko Kajiya
- Department of Medical Engineering and Systems Cardiology; Kawasaki Medical School; Kurashiki Okayama Japan
| |
Collapse
|
6
|
Yosten GLC, Maric-Bilkan C, Luppi P, Wahren J. Physiological effects and therapeutic potential of proinsulin C-peptide. Am J Physiol Endocrinol Metab 2014; 307:E955-68. [PMID: 25249503 PMCID: PMC4254984 DOI: 10.1152/ajpendo.00130.2014] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Connecting Peptide, or C-peptide, is a product of the insulin prohormone, and is released with and in amounts equimolar to those of insulin. While it was once thought that C-peptide was biologically inert and had little biological significance beyond its role in the proper folding of insulin, it is now known that C-peptide binds specifically to the cell membranes of a variety of tissues and initiates specific intracellular signaling cascades that are pertussis toxin sensitive. Although it is now clear that C-peptide is a biologically active molecule, controversy still remains as to the physiological significance of the peptide. Interestingly, C-peptide appears to reverse the deleterious effects of high glucose in some tissues, including the kidney, the peripheral nerves, and the vasculature. C-peptide is thus a potential therapeutic agent for the treatment of diabetes-associated long-term complications. This review addresses the possible physiologically relevant roles of C-peptide in both normal and disease states and discusses the effects of the peptide on sensory nerve, renal, and vascular function. Furthermore, we highlight the intracellular effects of the peptide and present novel strategies for the determination of the C-peptide receptor(s). Finally, a hypothesis is offered concerning the relationship between C-peptide and the development of microvascular complications of diabetes.
Collapse
Affiliation(s)
- Gina L C Yosten
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri;
| | - Christine Maric-Bilkan
- Division of Cardiovascular Sciences, Vascular Biology and Hypertension Branch, National Heart, Lung and Blood Institute, Bethesda, Maryland; Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Patrizia Luppi
- Department of Cell Biology, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania
| | - John Wahren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; and Cebix Inc., Karolinska Institutet Science Park, Solna, Sweden
| |
Collapse
|
7
|
Flynn ER, Lee J, Hutchens ZM, Chade AR, Maric-Bilkan C. C-peptide preserves the renal microvascular architecture in the streptozotocin-induced diabetic rat. J Diabetes Complications 2013; 27:538-47. [PMID: 23994433 PMCID: PMC3818424 DOI: 10.1016/j.jdiacomp.2013.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 07/12/2013] [Accepted: 07/17/2013] [Indexed: 12/11/2022]
Abstract
AIMS C-peptide is renoprotective in type 1 diabetes, however, the mechanisms of its actions are not completely understood. We hypothesized that C-peptide attenuates diabetes-associated renal microvascular injury. METHOD After 4 or 8weeks of streptozotocin (STZ)-induced diabetes, rats received either vehicle or C-peptide in the presence of low or high doses of insulin. Urine albumin excretion (UAE) was measured prior to initiation of treatment (baseline) and 2 or 4weeks after treatment (sacrifice). Glomerular hypertrophy, glomerular filtration rate (GFR) and renal microvascular density, quantified ex vivo by 3D micro-CT reconstruction, were measured at sacrifice. RESULTS In rats receiving low doses of insulin, treatment with C-peptide reduced HbA1c levels by 24%. In these rats, the 107% increase in UAE rate from baseline to sacrifice in vehicle-treated rats was largely prevented with C-peptide. C-peptide also reduced diabetes-associated glomerular hyperfiltration by 30%, glomerular hypertrophy by 22% and increased the density of microvessels between 0 and 500μm in diameter by an average of 31% compared with vehicle-treated groups. Similar renoprotective effects of C-peptide were observed in rats treated with higher doses of daily insulin, despite no differences in HbA1c levels. CONCLUSIONS The study suggests that C-peptide is renoprotective by preserving the integrity of the renal microvasculature irrespective of glucose regulation.
Collapse
Affiliation(s)
- Elizabeth R. Flynn
- The Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
| | - Jonathan Lee
- The Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
| | - Zachary M. Hutchens
- The Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
| | - Alejandro R. Chade
- The Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
- Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson, MS
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS
| | - Christine Maric-Bilkan
- The Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
- Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson, MS
- Correspondence to: Christine Maric-Bilkan, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216-4505, Phone: 601-984-1818, Fax: 601-984-1817,
| |
Collapse
|
8
|
Nakamoto H, Kajiya F. In VivoQuantitative Visualization Analysis of the Effect of C-Peptide on Glomerular Hyperfiltration in Diabetic Rats by Using Multiphoton Microscopy. Microcirculation 2013; 20:425-33. [DOI: 10.1111/micc.12043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Hiroshi Nakamoto
- Department of Medical Engineering and Systems Cardiology; Kawasaki Medical School; Kurashiki; Okayama; Japan
| | - Fumihiko Kajiya
- Department of Medical Engineering and Systems Cardiology; Kawasaki Medical School; Kurashiki; Okayama; Japan
| |
Collapse
|
9
|
Luppi P, Kallas Å, Wahren J. Can C-peptide mediated anti-inflammatory effects retard the development of microvascular complications of type 1 diabetes? Diabetes Metab Res Rev 2013; 29:357-62. [PMID: 23463541 DOI: 10.1002/dmrr.2409] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/30/2013] [Accepted: 02/28/2013] [Indexed: 02/07/2023]
Abstract
Hyperglycemia is considered to be the major cause of microvascular complications of diabetes. Growing evidence highlights the importance of hyperglycemia-mediated inflammation in the initiation and progression of microvascular complications in type 1 diabetes. We hypothesize that lack of proinsulin C-peptide and lack of its anti-inflammatory properties contribute to the development of microvascular complications. Evidence gathered over the past 20 years shows that C-peptide is a biologically active peptide in its own right. It has been shown to reduce formation of reactive oxygen species and nuclear factor-κB activation induced by hyperglycemia, resulting in inhibition of cytokine, chemokine and cell adhesion molecule formation as well as reduced apoptotic activity. In addition, C-peptide stimulates and induces the expression of both Na⁺, K⁺-ATPase and endothelial nitric oxide synthase. Animal studies and small-scale clinical trials in type 1 diabetes patients suggest that C-peptide replacement combined with regular insulin therapy exerts beneficial effects on kidney and nerve dysfunction. Further clinical trials in patients with microvascular complications including measurements of inflammatory markers are warranted to explore the clinical significance of the aforementioned, previously unrecognized, C-peptide effects.
Collapse
Affiliation(s)
- Patrizia Luppi
- Division of Immunogenetics, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Rangos Research Center, Pittsburgh, PA 15201, USA
| | | | | |
Collapse
|
10
|
Sawyer RT, Flynn ER, Hutchens ZM, Williams JM, Garrett MR, Maric-Bilkan C. Renoprotective effects of C-peptide in the Dahl salt-sensitive rat. Am J Physiol Renal Physiol 2012; 303:F893-9. [PMID: 22811482 DOI: 10.1152/ajprenal.00068.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Previous studies have demonstrated that renoprotective effects of C-peptide in experimental models of diabetes-induced renal disease may be mediated via lowering blood glucose. The present study examined the renoprotective effects of C-peptide in a model of nondiabetic renal disease, the Dahl salt-sensitive (SS/jr) rat. SS/jr rats were placed on a 2% NaCl diet for 2 wk (HS2, resulting in mild to moderate renal injury) or 4 wk (HS4, resulting in advanced renal injury) and then received either vehicle (veh) or C-peptide (Cpep) for additional 4 wk. Urine albumin (UAE) and protein (UPE) excretion rates were measured at baseline (i.e., before initiation of veh or Cpep treatment) and 4 wk later (i.e., at the time of death). Glomerular permeability, indexes of glomerulosclerosis and tubulointerstitial fibrosis, the presence of inflammatory cells, and protein expression of transforming growth factor-β (TGF-β) and podocin were measured at the time of death. In HS2 + veh rats, UAE and UPE increased by 74 and 92%, respectively, from baseline and the time of death. While HS2 + Cpep attenuated this increase in UAE and UPE, HS4 + Cpep had no effect on these parameters. Similarly, HS2 + Cpep reduced glomerular permeability, tubulointerstitial fibrosis, renal inflammation, TGF-β, and podocin protein expression, while HS4 + Cpep had no effect. These studies indicate that C-peptide is renoprotective in nondiabetic experimental models with mild to moderate renal injury.
Collapse
Affiliation(s)
- R Taylor Sawyer
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | | | | | | | | | | |
Collapse
|
11
|
Vejandla H, Hollander JM, Kothur A, Brock RW. C-Peptide reduces mitochondrial superoxide generation by restoring complex I activity in high glucose-exposed renal microvascular endothelial cells. ISRN ENDOCRINOLOGY 2012; 2012:162802. [PMID: 22778984 PMCID: PMC3388427 DOI: 10.5402/2012/162802] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 04/10/2012] [Indexed: 12/02/2022]
Abstract
Hyperglycemia-mediated microvascular damage has been proposed to originate from excessive generation of mitochondrial superoxide in endothelial cells and is the suggested mechanism by which the pathogenesis of diabetes-induced renal damage occurs. C-peptide has been shown to ameliorate diabetes-induced renal impairment. Yet, the mechanisms underlying this protective benefit remain unclear. The objective of this study was to determine whether C-peptide affords protection to renal microvascular endothelial cell mitochondria during hyperglycemia. Conditionally immortalized murine renal microvascular endothelial cells (MECs) were exposed to low (5.5 mM) or high glucose (25 mM) media with either C-peptide (6.6 nM) or its scrambled sequence control peptide for 24 or 48 hours. Respiratory control ratio, a measure of mitochondrial electrochemical coupling, was significantly higher in high glucose renal MECs treated with C-peptide than those of high glucose alone. C-peptide also restored high glucose-induced renal MEC mitochondrial membrane potential changes back to their basal low glucose state. Moreover, C-peptide prevented the excessive mitochondrial superoxide generation and concomitant reductions in mitochondrial complex I activity which are mediated by the exposure of the renal MECs to high glucose. Together, these data demonstrate that C-peptide protects against high glucose-induced generation of mitochondrial superoxide in renal MECs via restoration of basal mitochondrial function.
Collapse
Affiliation(s)
- Himani Vejandla
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, P.O. Box 9105, Morgantown, WV 26506, USA
| | | | | | | |
Collapse
|
12
|
Affiliation(s)
- John Wahren
- Department of Molecular Medicine and Surgery, Karolinska Institutet,Stockholm, Sweden.
| | | | | |
Collapse
|
13
|
Helal I, Fick-Brosnahan GM, Reed-Gitomer B, Schrier RW. Glomerular hyperfiltration: definitions, mechanisms and clinical implications. Nat Rev Nephrol 2012; 8:293-300. [PMID: 22349487 DOI: 10.1038/nrneph.2012.19] [Citation(s) in RCA: 464] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Glomerular hyperfiltration is a phenomenon that can occur in various clinical conditions including kidney disease. No single definition of glomerular hyperfiltration has been agreed upon, and the pathophysiological mechanisms, which are likely to vary with the underlying disease, are not well explored. Glomerular hyperfiltration can be caused by afferent arteriolar vasodilation as seen in patients with diabetes or after a high-protein meal, and/or by efferent arteriolar vasoconstriction owing to activation of the renin-angiotensin-aldosterone system, thus leading to glomerular hypertension. Glomerular hypertrophy and increased glomerular pressure might be both a cause and a consequence of renal injury; understanding the renal adaptations to injury is therefore important to prevent further damage. In this Review, we discuss the current concepts of glomerular hyperfiltration and the renal hemodynamic changes associated with this condition. A physiological state of glomerular hyperfiltration occurs during pregnancy and after consumption of high-protein meals. The various diseases that have been associated with glomerular hyperfiltration, either per nephron or per total kidney, include diabetes mellitus, polycystic kidney disease, secondary focal segmental glomerulosclerosis caused by a reduction in renal mass, sickle cell anemia, high altitude renal syndrome and obesity. A better understanding of the mechanisms involved in glomerular hyperfiltration could enable the development of new strategies to prevent progression of kidney disease.
Collapse
Affiliation(s)
- Imed Helal
- Division of Renal Diseases and Hypertension, University of Colorado Denver, 12700 East 19th Avenue, Campus Box C281, Aurora, CO 80045, USA
| | | | | | | |
Collapse
|
14
|
Lindahl E, Nordquist L, Müller P, El Agha E, Friederich M, Dahlman-Wright K, Palm F, Jörnvall H. Early transcriptional regulation by C-peptide in freshly isolated rat proximal tubular cells. Diabetes Metab Res Rev 2011; 27:697-704. [PMID: 21618400 DOI: 10.1002/dmrr.1220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 03/06/2011] [Accepted: 05/17/2011] [Indexed: 12/17/2022]
Abstract
BACKGROUND Clinical studies have shown that proinsulin C-peptide exerts renoprotective effects in type 1 diabetes, although the underlying mechanisms are poorly understood. As C-peptide has been shown to induce several intracellular events and to localize to nuclei, we aimed to determine whether gene transcription is affected in proximal tubular kidney cells, and if so, whether the genes with altered transcription include those related to protective mechanisms. METHODS The effect of C-peptide incubation (2 h) on gene expression was investigated in freshly isolated proximal tubular cells from streptozotocin-diabetic Sprague-Dawley rats using global gene expression profiling and real-time quantitative polymerase chain reaction. Protein expression was assayed using western blotting. Different bioinformatic strategies were employed. RESULTS Gene transcription profiling demonstrated differential transcription of 492 genes (p < 0.01) after 2 h of C-peptide exposure, with the majority of these genes repressed (83%). Real-time quantitative polymerase chain reaction validation supported a trend of several G protein-coupled receptors being activated, and certain transcription factors being repressed. Also, C-peptide repressed the transcription of genes associated with the pathways of circulatory and inflammatory diseases. CONCLUSION This study shows that C-peptide exerts early effects on gene transcription in proximal tubular cells. The findings also bring further knowledge to the renoprotective mechanisms of C-peptide in type 1 diabetes, and support a transcriptional activity for C-peptide. It is suggested that C-peptide may play a regulatory role in the gene expression of proximal tubular cells.
Collapse
Affiliation(s)
- Emma Lindahl
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Nordquist L, Palm F, Andresen BT. Renal and vascular benefits of C-peptide: Molecular mechanisms of C-peptide action. Biologics 2011; 2:441-52. [PMID: 19707375 PMCID: PMC2721399 DOI: 10.2147/btt.s3221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
C-peptide has long been thought to be an inert byproduct of insulin production, but it has become apparent, and accepted, that C-peptide has important biological properties. C-peptide displays beneficial effects in many tissues affected by diabetic complications, such as increased peripheral blood flow and protection from renal damage. However, the mechanisms mediating these effects remain unclear. C-peptide interacts with cellular membranes at unidentified sites distinctive of the insulin family of receptors, and signals to multiple targets known to play a role in diabetes and diabetic complications, such as Na+/K+-ATPase and NOS. In general, the physiological and molecular effects of C-peptide resemble insulin, but C-peptide also possesses traits separate from those of insulin. These basic studies have been confirmed in human studies, suggesting that C-peptide may lend itself to clinical applications. However, the molecular and physiological properties of C-peptide are not completely elucidated, and large clinical studies have not begun. In order to further these goals, we critically summarize the current state of knowledge regarding C-peptide’s renal and vascular effects and the molecular signaling of C-peptide.
Collapse
Affiliation(s)
- Lina Nordquist
- Department of Medical Cell Biology, Division of Integrative Physiology, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
16
|
Affiliation(s)
- Patrizia Luppi
- Division of Immunogenetics, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Rangos Research Center, 530 45th Street, Pittsburgh, PA 15201, USA
| | | | | |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Diabetes mellitus is the primary cause of end-stage renal disease, yet the mechanisms underlying diabetic nephropathy remain ill-defined. The widely accepted opinion holds that events occurring early during the course of diabetes engender the eventual decline in renal function. This review will summarize recent advances (published January 2008 through June 2009) regarding the renal vascular and glomerular functional changes that occur during the early stage of diabetes. RECENT FINDINGS Reduced C-peptide levels and increased cyclooxygenase-2 activity both seem to promote diabetic hyperfiltration, presumably via effects on afferent arteriolar tone. In addition, exaggerated tonic influences of K+ channels on afferent arteriolar function likely act in concert with impaired Ca2+ influx responses to changes in membrane potential to promote vasodilation. Mechanisms underlying these changes remain largely speculative. Diabetes may also alter autoregulation of renal blood flow and glomerular filtration rate, as well as provoke afferent arteriolar dilation secondary to alterations in proximal tubular reabsorption; however, conflicting evidence continues to flood the literature concerning these events. SUMMARY New evidence has expanded our appreciation of the complexity of events that promote preglomerular vasodilation during the early stage of diabetes; however, it seems that the more we know, the less we understand.
Collapse
|
18
|
Abstract
Proinsulin C-peptide has been found to exert beneficial effects in many tissues affected by diabetic microvascular complications, including the kidneys. Glomerular hyperfiltration and microalbuminuria are early markers of diabetic nephropathy. C-peptide at physiological concentrations effectively reduces diabetes-induced glomerular hyperfiltration via constriction of the afferent arteriole, dilation of the efferent arteriole, and inhibition of tubular reabsorption in experimental models of type 1 diabetes. The glomerular hypertrophy and mesangial matrix expansion seen in early diabetes can be reduced or prevented by C-peptide administration, possibly via interference with TGF-beta1 and TNFalpha signaling. Several of C-peptide's reno-protective effects have been confirmed in human studies; reduced glomerular hyperfiltration and diminished urinary albumin excretion have been documented in type 1 diabetes patients receiving replacement doses of C-peptide for periods of up to 3 months. In this review, we critically summarize the current state of knowledge regarding C-peptide's renal effects, and discuss possible mechanisms of its beneficial effects in diabetic nephropathy.
Collapse
Affiliation(s)
- Lina Nordquist
- Department of Medical Cell Biology, Division of Integrative Physiology, Uppsala University, 75123 Uppsala, Sweden
| | | |
Collapse
|
19
|
Nordquist L, Brown R, Fasching A, Persson P, Palm F. Proinsulin C-peptide reduces diabetes-induced glomerular hyperfiltration via efferent arteriole dilation and inhibition of tubular sodium reabsorption. Am J Physiol Renal Physiol 2009; 297:F1265-72. [PMID: 19741019 DOI: 10.1152/ajprenal.00228.2009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
C-peptide reduces diabetes-induced glomerular hyperfiltration in diabetic patients and experimental animal models. However, the mechanisms mediating the beneficial effect of C-peptide remain unclear. We investigated whether altered renal afferent-efferent arteriole tonus or alterations in tubular Na+ transport (T(Na)) in response to C-peptide administration mediate the reduction of diabetes-induced glomerular hyperfiltration. Glomerular filtration rate, filtration fraction, total and cortical renal blood flow, total kidney O2 consumption (QO2), T(Na), fractional Na+ and Li+ excretions, and tubular free-flow and stop-flow pressures were measured in anesthetized adult male normoglycemic and streptozotocin-diabetic Sprague-Dawley rats. The specific effect of C-peptide on transport-dependent QO2 was investigated in vitro in freshly isolated proximal tubular cells. C-peptide reduced glomerular filtration rate (-24%), stop-flow pressure (-8%), and filtration fraction (-17%) exclusively in diabetic rats without altering renal blood flow. Diabetic rats had higher baseline T(Na) (+40%), which was reduced by C-peptide. Similarly, C-peptide increased fractional Na+ (+80%) and Li+ (+47%) excretions only in the diabetic rats. None of these parameters was affected by vehicle treatments in either group. Baseline QO2 was 37% higher in proximal tubular cells from diabetic rats than controls and was normalized by C-peptide. C-peptide had no effect on ouabain-pretreated diabetic cells from diabetic rats. C-peptide reduced diabetes-induced hyperfiltration via a net dilation of the efferent arteriole and inhibition of tubular Na+ reabsorption, both potent regulators of the glomerular net filtration pressure. These findings provide new mechanistic insight into the beneficial effects of C-peptide on diabetic kidney function.
Collapse
Affiliation(s)
- Lina Nordquist
- Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
20
|
Abstract
In recent years, accumulating evidence indicates a biological function for proinsulin C-peptide. These results challenge the traditional view that C-peptide is essentially inert and only useful as a surrogate marker of insulin release. Accordingly, it is now clear that C-peptide binds with high affinity to cell membranes, probably to a pertussis-toxin-sensitive G-protein-coupled receptor. Subsequently, multiple signalling pathways are potently and dose-dependently activated in multiple cell types by C-peptide with the resulting activation of gene transcription and altered cell phenotype. In diabetic animals and Type 1 diabetic patients, short-term studies indicate that C-peptide also enhances glucose disposal and metabolic control. Furthermore, results derived from animal models and clinical studies in Type 1 diabetic patients suggest a salutary effect of C-peptide in the prevention and amelioration of diabetic nephropathy and neuropathy. Therefore a picture of Type 1 diabetes as a dual-hormone-deficiency disease is developing, suggesting that the replacement of C-peptide alongside insulin should be considered in its management.
Collapse
|
21
|
Bibliography. Current world literature. Diabetes and the endocrine pancreas II. Curr Opin Endocrinol Diabetes Obes 2008; 15:383-93. [PMID: 18594281 DOI: 10.1097/med.0b013e32830c6b8e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
22
|
C-Peptide effects on renal physiology and diabetes. EXPERIMENTAL DIABETES RESEARCH 2008; 2008:281536. [PMID: 18509500 PMCID: PMC2396455 DOI: 10.1155/2008/281536] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 04/10/2008] [Indexed: 02/07/2023]
Abstract
The C-peptide of proinsulin is important for the biosynthesis of insulin and has for a long time been considered to be biologically inert. Animal studies have shown that some of the renal effects of the C-peptide may in part be explained by its ability to stimulate the Na,K-ATPase activity. Precisely, the C-peptide reduces diabetes-induced glomerular hyperfiltration both in animals and humans, therefore, resulting in regression of fibrosis. The tubular function is also concerned as diabetic animals supplemented with C-peptide exhibit better renal function resulting in reduced urinary sodium waste and protein excretion together with the reduction of the diabetes-induced glomerular hyperfiltration. The tubular effectors of C-peptide were considered to be tubule transporters, but recent studies have shown that biochemical pathways involving cellular kinases and inflammatory pathways may also be important. The matter theory concerning the C-peptide effects is a metabolic one involving the effects of the C-peptide on lipidic metabolic status.This review concentrates on the most convincing data which indicate that the C-peptide is a biologically active hormone for renal physiology.
Collapse
|