1
|
Furno Puglia V, Paquette M, Bergdahl A. Characterization of muscle oxygenation response in well-trained handcyclists. Eur J Appl Physiol 2024; 124:3241-3251. [PMID: 38856729 DOI: 10.1007/s00421-024-05524-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/29/2024] [Indexed: 06/11/2024]
Abstract
PURPOSE Peripheral responses might be important in handcycling, given the involvement of small muscles compared to other exercise modalities. Therefore, the goal of this study was to compare changes in muscle oxygen saturation (∆SmO2) and deoxyhemoglobin level (∆[HHb]) between different efforts and muscles. METHODS Handcyclists participated in a Wingate, a maximal incremental test and a 20-min time-trial (TT). Oxygen uptake (VO2) as well as ∆SmO2, ∆[HHb], deoxygenation and reoxygenation rates in the triceps brachii (TB), biceps brachii (BB), anterior deltoid (AD) and extensor carpi radialis brevis (ER) were measured. RESULTS ER ∆[HHb]max was 37% greater in the incremental test than in the Wingate (ES = 0.392, P = 0.031). TT mean power (W/kg) was associated with BB ∆SmO2min measured in the incremental test (r = -0.998 [-1.190, -0.806], P = 0.002) and in the Wingate (r = -0.994 [-1.327, -0.661], P = 0.006). MAP (W/kg) was associated with Wingate BB ∆SmO2min (r = -0.983 [-0.999, -0.839], P = 0.003), and Wingate peak (r = 0.649 [0.379, 0.895], P = 0.008) and mean power (W/kg) (r = 0.925 [0.752, 0.972], P = 0.003) was associated with right handgrip force. The strongest physiological predictor for TT performance was BB ∆SmO2min in the incremental test (P = 0.002, r2 = 0.993, SEE 0.016 W/kg), Wingate BB ∆SmO2min for MAP (P = 0.003, r2 = 0.956, SEE 0.058 W/kg) and right handgrip force for Wingate peak power (P = 0.005, r2 = 0.856, SEE 0.551 W/kg). CONCLUSION Peripheral aerobic responses (muscle oxygenation) were predictive of handcycling performance.
Collapse
Affiliation(s)
- Veronica Furno Puglia
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, QC, Canada.
- Institut National du Sport du Québec, Montreal, QC, Canada.
| | | | - Andreas Bergdahl
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
2
|
Deng S, Yin M, Chen Z, Deng J, Wang Z, Li Y, Lyu M, Zhang B, Zhu S, Hu S, Nassis GP, Li Y. SARS-CoV-2 infection decreases cardiorespiratory fitness and time-trial performance even two months after returning to regular training - Insights from a longitudinal case series of well-trained kayak athletes. J Exerc Sci Fit 2024; 22:350-358. [PMID: 39027081 PMCID: PMC11255366 DOI: 10.1016/j.jesf.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 07/20/2024] Open
Abstract
Objective The aims of this study were to examine the effect of SARS-CoV-2 infection on cardiorespiratory fitness (CRF) and time-trial performance in vaccinated well-trained young kayak athletes. Methods This is a longitudinal observational study. Sixteen (7 male, 9 female) vaccinated kayakers underwent body composition assessment, maximal graded exercise test, and 1000-m time-trial tests 21.9 ± 1.7 days before and 66.0 ± 2.2 days after the SARS-CoV-2 infection. The perception of training load was quantified with Borg's CR-10 scale before and after the infection return to sport period. Results There were significant decreases in peak oxygen uptake (-9.7 %; effect size [ES] = 1.38), peak oxygen pulse (-5.7 %; ES = 0.96), and peak heart rate (-1.9 %; ES = 0.61). Peak minute ventilation, and minute ventilation/carbon dioxide production slope were unchanged after infection compared to the pre-infection values. In the entire 1000-m, the impaired tendencies were found in completion time, mean power, and mean speed (-2.4 to 1.2 %; small ESs = -0.40 to 0.47) as well as significant changes in stroke rate and stroke length (-4.5 to 3.7 %; ESs = -0.60 to 0.73). Conclusion SARS-CoV-2 infection decreased CRF and time-trial performance even two months after return to regular training in vaccinated athletes.
Collapse
Affiliation(s)
- Shengji Deng
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Australia
| | - Mingyue Yin
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Zhili Chen
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Jianfeng Deng
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Australia
| | - Zhenyu Wang
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Yuxi Li
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Mengde Lyu
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Boyi Zhang
- Institute of Cardiology and Sports Medicine, German Sport University Cologne, Cologne, German
- Exercise and Health Technology Center, Department of Physical Education, Shanghai Jiao Tong University, Shanghai, China
| | - Shaoqiang Zhu
- Jiangxi Water Sports Administration Center, Administration of Sports of Jiangxi, Nanchang, China
| | - Shenggui Hu
- Jiangxi Water Sports Administration Center, Administration of Sports of Jiangxi, Nanchang, China
| | - George P. Nassis
- Department of Physical Education, College of Education, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
- Department of Sports Science and Clinical Biomechanics, SDU Sport and Health Sciences Cluster (SHSC), University of Southern Denmark, Odense, Denmark
| | - Yongming Li
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
- China Institute of Sport Science, Beijing, China
| |
Collapse
|
3
|
Sendra-Pérez C, Encarnacion-Martinez A, Salvador-Palmer R, Murias JM, Priego-Quesada JI. Profiles of muscle-specific oxygenation responses and thresholds during graded cycling incremental test. Eur J Appl Physiol 2024:10.1007/s00421-024-05593-1. [PMID: 39259396 DOI: 10.1007/s00421-024-05593-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024]
Abstract
Compared to the determination of exercise thresholds based on systemic changes in blood lactate concentrations or gas exchange data, the determination of breakpoints based on muscle oxygen saturation offers a valid alternative to provide specific information on muscle-derived thresholds. Our study explored the profiles and timing of the second muscle oxygenation threshold (MOT2) in different muscles. Twenty-six cyclists and triathletes (15 male: age = 23 ± 7 years, height = 178 ± 5 cm, body mass = 70.2 ± 5.3 kg; 11 female: age = 22 ± 4 years, height = 164 ± 4 cm, body mass = 58.3 ± 8.1 kg) performed a graded exercise test (GXT), on a cycle ergometer. Power output, blood lactate concentration, heart rate, rating of perceived exertion, skinfolds and muscle oxygen saturation were registered in five muscles (vastus lateralis, biceps femoris, gastrocnemius medialis, tibialis anterior and triceps brachii) and percentage at which MOT2 occurred for each muscle was determinated using the Exponential Dmax. The results of Statistical Parametric Mapping and ANOVA showed that, although muscle oxygenation displayed different profiles in each muscle during a GXT, MOT2 occurred at a similar percentage of the GXT in each muscle (77% biceps femoris, 75% tibalis anterior, 76% gastrocnemius medialis and 72% vastus lateralis) and it was similar that systemic threshold (73% of the GXT). In conclusion, this study showed different profiles of muscle oxygen saturation in different muscles, but without notable differences in the timing for MOT2 and concordance with systemic threshold. Finally, we suggest the analysis of the whole signal and not to simplify it to a breakpoint.
Collapse
Affiliation(s)
- Carlos Sendra-Pérez
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, Faculty of Physical Activity and Sport Sciences, Universitat de València, St: Gascó Oliag, 3. 46010, Valencia, Spain
| | - Alberto Encarnacion-Martinez
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, Faculty of Physical Activity and Sport Sciences, Universitat de València, St: Gascó Oliag, 3. 46010, Valencia, Spain.
- Red Española de Investigación del Rendimiento Deportivo en Ciclismo y Mujer (REDICYM), Universitat de València, Ontinyent, Spain.
| | - Rosario Salvador-Palmer
- Red Española de Investigación del Rendimiento Deportivo en Ciclismo y Mujer (REDICYM), Universitat de València, Ontinyent, Spain
- Biophysics and Medical Physics Group, Department of Physiology, Universitat de València, Valencia, Spain
| | - Juan M Murias
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Jose I Priego-Quesada
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, Faculty of Physical Activity and Sport Sciences, Universitat de València, St: Gascó Oliag, 3. 46010, Valencia, Spain
- Red Española de Investigación del Rendimiento Deportivo en Ciclismo y Mujer (REDICYM), Universitat de València, Ontinyent, Spain
- Biophysics and Medical Physics Group, Department of Physiology, Universitat de València, Valencia, Spain
| |
Collapse
|
4
|
Gifford JR, Blackmon C, Hales K, Hinkle LJ, Richards S. Overdot and overline annotation must be understood to accurately interpret V.O 2MAX physiology with the Fick formula. Front Physiol 2024; 15:1359119. [PMID: 38444762 PMCID: PMC10912163 DOI: 10.3389/fphys.2024.1359119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/26/2024] [Indexed: 03/07/2024] Open
Abstract
Few formulas have been used in exercise physiology as extensively as the Fick formula, which calculates the rate of oxygen consumption (i.e., V.O2) as the product of cardiac output (Q.) and the difference in oxygen content in arterial and mixed venous blood (Δav ¯ O2). Unfortunately, the physiology of maximum V.O2 (V.O2MAX) is often misinterpreted due to a lack of appreciation for the limitations represented by the oft-ignored superscript annotations in the Fick formula. The purpose of this perspective is to explain the meaning of the superscript annotations and highlight how such annotations influence proper interpretation of V.O2MAX physiology with the Fick formula. First, we explain the significance of the overdots above V.O2 and Q., which indicate a measure per unit of time. As we will show, the presence of an overdot above Q. and lack of one above Δav ¯ O2 denotes they are different types of ratios and should be interpreted in the context of one another-not in contrast to each other as is commonplace. Second, we discuss the significance of the overline above the "v ¯ " in Δav ¯ O2, which indicates the venous sample is an average of blood that comes from mixed sources. The mixed nature of the venous sample has major implications for interpreting the influence of oxygen diffusion and blood flow heterogeneity on V.O2MAX. Ultimately, we give recommendations and insights for using the Fick formula to calculate V.O2 and interpret V.O2MAX physiology.
Collapse
Affiliation(s)
- Jayson R. Gifford
- Department of Exercise Sciences, Brigham Young University, Provo, UT, United States
- Program of Gerontology, Brigham Young University, Provo, UT, United States
| | - Christina Blackmon
- Department of Exercise Sciences, Brigham Young University, Provo, UT, United States
| | - Katelynn Hales
- Department of Exercise Sciences, Brigham Young University, Provo, UT, United States
| | - Lee J. Hinkle
- Department of Exercise Sciences, Brigham Young University, Provo, UT, United States
| | - Shay Richards
- Department of Exercise Sciences, Brigham Young University, Provo, UT, United States
| |
Collapse
|
5
|
Lund-Hansen M, Gløersen Ø, Rud B, Losnegard T. What is the optimal classical style sub-technique during uphill roller skiing in elite male cross-country skiers? Eur J Appl Physiol 2023; 123:2833-2842. [PMID: 37395762 PMCID: PMC10638140 DOI: 10.1007/s00421-023-05261-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 06/16/2023] [Indexed: 07/04/2023]
Abstract
PURPOSE To compare performance, physiological and biomechanical responses between double poling (DP) and diagonal stride (DIA) during treadmill roller skiing in elite male cross-country skiers. METHOD Twelve skiers (VO2peak DIAup; 74.7 ± 3.7 ml kg-1 min-1) performed two DP conditions at 1° (DPflat) and 8° (DPup) incline, and one DIA condition, 8° (DIAup). Submaximal gross efficiency (GE) and maximal 3.5 min time-trial (TT) performance, including measurements of VO2peak and maximal accumulated O2-deficit (MAOD), were determined. Temporal patterns and kinematics were assessed using 2D video, while pole kinetics were obtained from pole force. RESULTS DIAup induced (mean, [95% confidence interval]) 13% [4, 22] better 3.5-min TT performance, 7%, [5, 10]) higher VO2peak and 3% points [1, 5] higher GE compared to DPup (all P < 0.05). DPup induced 120% higher MAOD compared to DPflat, while no significant differences were observed for VO2peak or GE between DPflat and DPup. There was a large correlation between performance and GE in DP and a large correlation between performance and VO2peak for DIAup (all r = 0.7-0.8, P < 0.05). No correlations were found between performance and VO2peak for any of the DP conditions, nor between performance and GE for DIAup (r = 0.0-0.2, P > 0.1). CONCLUSION At 8º uphill roller skiing, DIAup induce higher VO2peak, GE, and superior time-trial performance than DPup in elite male skiers. There was no difference between VO2peak or GE between DPflat and DPup. A large correlation was observed between DIAup performance and DIAup VO2peak, while DP performance was best correlated to submaximal GE.
Collapse
Affiliation(s)
- Magne Lund-Hansen
- Department of Physical Performance, The Norwegian School of Sport Sciences, Ullevål Stadion, Post Box 4014, 0806, Oslo, Norway
| | - Øyvind Gløersen
- Department of Physical Performance, The Norwegian School of Sport Sciences, Ullevål Stadion, Post Box 4014, 0806, Oslo, Norway
- Smart Sensors and Microsystems, SINTEF Digital, Oslo, Norway
| | - Bjarne Rud
- Department of Physical Performance, The Norwegian School of Sport Sciences, Ullevål Stadion, Post Box 4014, 0806, Oslo, Norway
| | - Thomas Losnegard
- Department of Physical Performance, The Norwegian School of Sport Sciences, Ullevål Stadion, Post Box 4014, 0806, Oslo, Norway.
| |
Collapse
|
6
|
Almeida-Neto PFD, Baxter-Jones A, de Medeiros JA, Dantas PMS, Cabral BGDAT. Are there differences in anaerobic relative muscle power between upper and lower limbs in adolescent swimmers: A blinded study. SPORTS MEDICINE AND HEALTH SCIENCE 2023; 5:290-298. [PMID: 38314042 PMCID: PMC10831378 DOI: 10.1016/j.smhs.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 02/06/2024] Open
Abstract
Success in speed swimming depends on the efficiency of the anaerobic system for the production of cellular energy, especially during muscle power production. In the adolescent athletes much is unknown with regards to the relationships between relative power of upper and lower limbs with speed swimming performance. The aim the present study was to identify differences in relative muscle power of upper and lower limbs in adolescent swimmers and relate these to speed swimming performances. Sixty adolescents, of both sexes (50% female, 50% male, 30 swimmers and 30 controls), were recruited. The relative upper limb power (ULP[W/kg]) was assessed by a medicine ball test and the relative lower limbs power (LLP[W/kg]) by a jump test on a jumping platform. Lean mass of the upper and lower limbs was assessed by dual-energy X-ray absorptiometry (DXA) (g). Sport performance was assessed during national level competition (50-m swimming time [in seconds]). Biological maturation (BM) was indexed by years from attainment of peak height velocity. ULP(W/kg) was higher than LLP(W/kg) in both groups (p < 0.05). Upper and lower limb lean mass (g) correlated significantly with ULP(W/kg) and LLP(W/kg) in both groups (p < 0.05). ULP(W/kg) and LLP(W/kg) correlated with 50-m swimming performance (s), in both sexes (p < 0.05). Advanced BM was associated with ULP(W/kg) and LLP(W/kg) in both groups (p < 0.05), and with 50-m swimming performance (s) in both sexes (p < 0.05). We concluded that ULP(W/kg) is higher than LLP (W/kg) in adolescent swimmers. Upper and lower limb lean mass and BM were both positively associated with increased ULP (W/kg) and LLP (W/kg).
Collapse
Affiliation(s)
- Paulo Francisco de Almeida-Neto
- Health Sciences Center, Federal University of Rio Grande do Norte, UFRN, Natal, RN, Brazil
- Department of Physical Education, Federal University of Rio Grande do Norte, UFRN, Natal, RN, Brazil
| | - Adam Baxter-Jones
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK, S7N 5B2, Canada
| | - Jason Azevedo de Medeiros
- Health Sciences Center, Federal University of Rio Grande do Norte, UFRN, Natal, RN, Brazil
- Department of Physical Education, Federal University of Rio Grande do Norte, UFRN, Natal, RN, Brazil
| | - Paulo Moreira Silva Dantas
- Health Sciences Center, Federal University of Rio Grande do Norte, UFRN, Natal, RN, Brazil
- Department of Physical Education, Federal University of Rio Grande do Norte, UFRN, Natal, RN, Brazil
| | - Breno Guilherme de Araújo Tinôco Cabral
- Health Sciences Center, Federal University of Rio Grande do Norte, UFRN, Natal, RN, Brazil
- Department of Physical Education, Federal University of Rio Grande do Norte, UFRN, Natal, RN, Brazil
| |
Collapse
|
7
|
Andersson EP, Lögdal N, Byrne D, Jones TW. Physiological responses and performance factors for double-poling and diagonal-stride treadmill roller-skiing time-trial exercise. Eur J Appl Physiol 2023; 123:2495-2509. [PMID: 37302104 PMCID: PMC10615977 DOI: 10.1007/s00421-023-05239-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 05/23/2023] [Indexed: 06/13/2023]
Abstract
PURPOSE To compare physiological responses between a self-paced 4-min double-poling (DP) time-trial (TTDP) versus a 4-min diagonal-stride (DS) time-trial (TTDS). The relative importance of peak oxygen uptake ([Formula: see text]O2peak), anaerobic capacity, and gross efficiency (GE) for projection of 4-min TTDP and TTDS roller-skiing performances were also examined. METHODS Sixteen highly trained male cross-country skiers performed, in each sub-technique on separate occasions, an 8 × 4-min incremental submaximal protocol, to assess individual metabolic rate (MR) versus power output (PO) relationships, followed by a 10-min passive break and then the TTDP or TTDS, with a randomized order between sub-techniques. RESULTS In comparison to TTDS, the TTDP resulted in 10 ± 7% lower total MR, 5 ± 4% lower aerobic MR, 30 ± 37% lower anaerobic MR, and 4.7 ± 1.2 percentage points lower GE, which resulted in a 32 ± 4% lower PO (all P < 0.01). The [Formula: see text]O2peak and anaerobic capacity were 4 ± 4% and 30 ± 37% lower, respectively, in DP than DS (both P < 0.01). The PO for the two time-trial (TT) performances were not significantly correlated (R2 = 0.044). Similar parabolic pacing strategies were used during both TTs. Multivariate data analysis projected TT performance using [Formula: see text]O2peak, anaerobic capacity, and GE (TTDP, R2 = 0.974; TTDS, R2 = 0.848). The variable influence on projection values for [Formula: see text]O2peak, anaerobic capacity, and GE were for TTDP, 1.12 ± 0.60, 1.01 ± 0.72, and 0.83 ± 0.38, respectively, and TTDS, 1.22 ± 0.35, 0.93 ± 0.44, and 0.75 ± 0.19, respectively. CONCLUSIONS The results show that a cross-country skier's "metabolic profile" and performance capability are highly sub-technique specific and that 4-min TT performance is differentiated by physiological factors, such as [Formula: see text]O2peak, anaerobic capacity, and GE.
Collapse
Affiliation(s)
- Erik P Andersson
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden.
- School of Sport Sciences, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway.
| | - Nestor Lögdal
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
- Centre for Musculoskeletal Research, Department of Occupational and Public Health Sciences, University of Gävle, Gävle, Sweden
| | - Darragh Byrne
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Thomas W Jones
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK
| |
Collapse
|
8
|
Deng S, Deng J, Yin M, Li Y, Chen Z, Nassis GP, Zhu S, Hu S, Zhang B, Li Y. Short-term effects of SARS-CoV-2 infection and return to sport on neuromuscular performance, body composition, and mental health - A case series of well-trained young kayakers. J Exerc Sci Fit 2023; 21:345-353. [PMID: 37701125 PMCID: PMC10494461 DOI: 10.1016/j.jesf.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/01/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
Purpose This study aimed to examine the short-term effects of SARS-CoV-2 infection and return to sport (RTS) on neuromuscular performance, body composition, and mental health in well-trained young kayakers. Methods 17 vaccinated kayakers (8 male, 9 female) underwent body composition assessment, peak power output bench press (BP), and 40-s maximum repetition BP tests 23.9 ± 1.6 days before and 22.5 ± 1.6 days after a SARS-CoV-2 infection. A linear transducer was used to examine the BP performance. The perception of training load and mental health were quantified with Borg's CR-10 scale and the Hooper questionnaire before and after infection. The difference and relationship of variables were used Wilcoxon test, Student t-test, Pearson's, and Spearman's r correlation coefficients. Results There was a significant increase in body mass, fat-free mass, and skeletal muscle mass, but no significant changes in body fat, fat mass, and all BP performance after infection (p < 0.05). There was a significant reduction in training hours per week, session rating of perceived exertion (sRPE), internal training load (sRPE-TL), fatigue, muscle soreness levels, and Hooper index, but no changes in sleep quality and stress levels after infection (p < 0.05). The training and mental health during the RTS period was significantly correlated (r = -0.85 to 0.70) with physical performance after infection. Conclusion A SARS-CoV-2 infection did not appear to impair the upper-body neuromuscular performance and mental health of vaccinated well-trained young kayakers after a short-term RTS period. These findings can assist coaches, and medical and club staff when guiding RTS strategies after other acute infections or similar restrictions.
Collapse
Affiliation(s)
- Shengji Deng
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Jianfeng Deng
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Mingyue Yin
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Yuxi Li
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Zhili Chen
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - George P. Nassis
- Department of Physical Education, College of Education, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
- Department of Sports Science and Clinical Biomechanics, SDU Sport and Health Sciences Cluster (SHSC), University of Southern Denmark, Odense, Denmark
| | - Shaoqiang Zhu
- Jiangxi Water Sports Administration Center, Administration of Sports of Jiangxi, Nanchang, China
| | - Shenggui Hu
- Jiangxi Water Sports Administration Center, Administration of Sports of Jiangxi, Nanchang, China
| | - Boyi Zhang
- Exercise and Health Technology Center, Department of Physical Education, Shanghai Jiao Tong University, Shanghai, China
| | - Yongming Li
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
- China Institute of Sport Science, Beijing, China
| |
Collapse
|
9
|
Frechette ML, Scott BR, Vallence AM, Cook SB. Acute physiological responses to steady-state arm cycling ergometry with and without blood flow restriction. Eur J Appl Physiol 2023; 123:901-909. [PMID: 36580109 DOI: 10.1007/s00421-022-05118-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/12/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE To compare heart rate (HR), oxygen consumption (VO2), blood lactate (BL), and ratings of perceived exertion (RPE) during arm cycling with and without a blood flow restriction (BFR). METHODS Twelve healthy males (age: 23.9 ± 3.75 years) completed four, randomized, 15-min arm cycling conditions: high-workload (HW: 60% maximal power output), low-workload (LW: 30% maximal power output), low-workload with BFR (LW-BFR), and BFR with no exercise (BFR-only). In the BFR conditions, cuff pressure to the proximal biceps brachii was set to 70% of occlusion pressure. HR, VO2, and RPE were recorded throughout the exercise, and BL was measured before, immediately after, and five minutes post-exercise. Within-subject repeated-measures ANOVA was used to evaluate condition-by-time interactions. RESULTS HW elicited the greatest responses in HR (91% of peak; 163.3 ± 15.8 bpm), VO2 (71% of peak; 24.0 ± 3.7 ml kg-1 min-1), BL (7.7 ± 2.5 mmol L-1), and RPE (14 ± 1.7) and was significantly different from the other conditions (p < 0.01). The LW and LW-BFR conditions did not differ from each other in HR, VO2, BL, and RPE mean of conditions: ~ 68%, 41%, 3.5 ± 1.6 mmol L-1, 10.4 ± 1.6, respectively; p > 0.05). During the BFR-only condition, HR increased from baseline by ~ 15% (on average) (p < 0.01) without any changes in VO2, BL, and RPE (p > 0.05). CONCLUSIONS HW arm cycling elicited the largest and most persistent physiological responses compared to LW arm cycling with and without a BFR. As such, practitioners who prescribe arm cycling for their clients should be advised to augment the demands of exercise via increases in exercise intensity (i.e., power output), rather than by adding BFR.
Collapse
Affiliation(s)
- Mikaela L Frechette
- Department of Kinesiology, University of New Hampshire, 124 Main Street, New Hampshire Hall, Durham, NH, 03824, USA
| | - Brendan R Scott
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Perth, Australia
- Murdoch Applied Sports Science Laboratory, Discipline of Exercise Science, Murdoch University, Perth, Australia
| | - Ann-Maree Vallence
- Discipline of Psychology, Murdoch University, Perth, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Perth, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
| | - Summer B Cook
- Department of Kinesiology, University of New Hampshire, 124 Main Street, New Hampshire Hall, Durham, NH, 03824, USA.
| |
Collapse
|
10
|
Fu JCM, Fu PK, Cheng YY. Benefits of Cycling Wheelchair Training for Elderly with Physical Disability: A Prospective Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16773. [PMID: 36554652 PMCID: PMC9779290 DOI: 10.3390/ijerph192416773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
AIM In order to investigate the effect of cycling wheelchair training as an exercise for aged 65+ disabled patients on cognitive function, quality of life, aerobic capacity and physiological parameters. METHODS Participants in nursing home performed cycling wheelchair training for 30 min a day, 5 days a week, for a total of 4 weeks. The main outcome measure was the short form 12 survey (SF-12). Other outcome measures included the Mini-Mental State Examination (MMSE), aero bike work rate test, resting blood pressure, and heart rate. RESULTS In this study, 41 volunteers were recruited and no participants dropped out of the study voluntarily during training, and no serious adverse effect was identified. Physical and mental component summary total scores of SF-12 were significantly higher after training with statistical significance (p = 0.001). 8 subscales also showed significant improvements after training (p = 0.025 ~ <0.001). Total MMSE score has no difference before and after training. Attention/calculation (p = 0.018), short term memory (p = 0.041), and aerobic capacity (p < 0.001) as measured by subscales of MMSE and aero bike test showed marked improvements, while resting systolic blood pressure (p = 0.931) and heart rate (p = 0.793) did not change. CONCLUSIONS Cycling wheelchair is practical for the disabled elderly to exercise, and a 4-week exercise program enhanced their quality of life and aerobic capacity.
Collapse
Affiliation(s)
- Jimmy Chun-Ming Fu
- Department of Physical Medicine and Rehabilitation, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Pin-Kuei Fu
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 40705, Taiwan
- College of Human Science and Social Innovation, Hungkuang University, Taichung 433304, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yuan-Yang Cheng
- Department of Physical Medicine and Rehabilitation, Taichung Veterans General Hospital, Taichung 40705, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| |
Collapse
|
11
|
Chua MT, Sim A, Burns SF. Acute and Chronic Effects of Blood Flow Restricted High-Intensity Interval Training: A Systematic Review. SPORTS MEDICINE - OPEN 2022; 8:122. [PMID: 36178530 PMCID: PMC9525532 DOI: 10.1186/s40798-022-00506-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/06/2022] [Indexed: 11/18/2022]
Abstract
Background The implementation of blood flow restriction (BFR) during exercise is becoming an increasingly useful adjunct method in both athletic and rehabilitative settings. Advantages in pairing BFR with training can be observed in two scenarios: (1) training at lower absolute intensities (e.g. walking) elicits adaptations akin to high-intensity sessions (e.g. running intervals); (2) when performing exercise at moderate to high intensities, higher physiological stimulus may be attained, leading to larger improvements in aerobic, anaerobic, and muscular parameters. The former has been well documented in recent systematic reviews, but consensus on BFR (concomitant or post-exercise) combined with high-intensity interval training (HIIT) protocols is not well established. Therefore, this systematic review evaluates the acute and chronic effects of BFR + HIIT. Methods The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used to identify relevant studies. A systematic search on 1 February 2022, was conducted on four key databases: ScienceDirect, PubMed, Scopus and SPORTDiscus. Quality of each individual study was assessed using the Physiotherapy Evidence Database (PEDro) scale. Extraction of data from included studies was conducted using an adapted version of the 'Population, Intervention, Comparison, Outcome' (PICO) framework. Results A total of 208 articles were identified, 18 of which met inclusion criteria. Of the 18 BFR + HIIT studies (244 subjects), 1 reported both acute and chronic effects, 5 examined acute responses and 12 investigated chronic effects. Acutely, BFR challenges the metabolic processes (vascular and oxygenation responses) during high-intensity repeated sprint exercise—which accelerates central and peripheral neuromuscular fatigue mechanisms resulting in performance impairments. Analysis of the literature exploring the chronic effects of BFR + HIIT suggests that BFR does provide an additive physiological training stimulus to HIIT protocols, especially for measured aerobic, muscular, and, to some extent, anaerobic parameters. Conclusion Presently, it appears that the addition of BFR into HIIT enhances physiological improvements in aerobic, muscular, and, to some extent, anaerobic performance. However due to large variability in permutations of BFR + HIIT methodologies, it is necessary for future research to explore and recommend standardised BFR guidelines for each HIIT exercise type.
Collapse
|
12
|
Matzka M, Leppich R, Sperlich B, Zinner C. Retrospective Analysis of Training Intensity Distribution Based on Race Pace Versus Physiological Benchmarks in Highly Trained Sprint Kayakers. SPORTS MEDICINE - OPEN 2022; 8:1. [PMID: 34989918 PMCID: PMC8738792 DOI: 10.1186/s40798-021-00382-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/14/2021] [Indexed: 12/03/2022]
Abstract
Background Research results on the training intensity distribution (TID) in endurance athletes are equivocal. This non-uniformity appears to be partially founded in the different quantification methods that are implemented. So far, TID research has solely focused on sports involving the lower-body muscles as prime movers (e.g. running). Sprint kayaking imposes high demands on the upper-body endurance capacity of the athlete. As there are structural and physiological differences between upper- and lower-body musculature, TID in kayaking should be different to lower-body dominant sports. Therefore, we aimed to compare the training intensity distribution during an 8-wk macrocycle in a group of highly trained sprint kayakers employing three different methods of training intensity quantification. Methods Heart rate (HR) and velocity during on-water training of nine highly trained German sprint kayakers were recorded during the final 8 weeks of a competition period leading to the national championships. The fractional analysis of TID was based on three zones (Z) derived from either HR (TIDBla-HR) or velocity (TIDBla-V) based on blood lactate (Bla) concentrations (Z1 ≤ 2.5 mmol L−1 Bla, Z2 = 2.5–4.0 mmol L−1 Bla, Z3 ≥ 4.0 mmol L−1 Bla) of an incremental test or the 1000-m race pace (TIDRace): Z1 ≤ 85% of race pace, Z2 = 86–95% and Z3 ≥ 95%. Results TIDBla-V (Z1: 68%, Z2: 14%, Z3: 18%) differed from TIDBla-HR (Z1: 91%, Z2: 6%, Z3: 3%) in each zone (all p < 0.01). TIDRace (Z1: 73%, Z2: 20%, Z3: 7%) differed to Z3 in TIDBla-V (p < 0.01) and all three TIDBla-HR zones (all p < 0.01). Individual analysis revealed ranges of Z1, Z2, Z3 fractions for TIDBla-HR of 85–98%, 2–11% and 0.1–6%. For TIDBla-V, the individual ranges were 41–82% (Z1), 6–30% (Z2) and 8–30% (Z3) and for TIDRace 64–81% (Z1), 14–29% (Z2) and 4–10% (Z3). Conclusion The results show that the method of training intensity quantification substantially affects the fraction of TID in well-trained sprint kayakers. TIDRace determination shows low interindividual variation compared to the physiologically based TIDBla-HR and TIDBla-V. Depending on the aim of the analysis TIDRace, TIDBla-HR and TIDBla-V have advantages as well as drawbacks and may be implemented in conjunction to maximize adaptation.
Collapse
|
13
|
Martín-Manjarrés S, Leal-Martín J, Granados C, Mata E, Gil-Agudo Á, Rodríguez-Gómez I, Ara I. Fat Oxidation during Exercise in People with Spinal Cord Injury, and Protocols Used: A Systematic Review. Healthcare (Basel) 2022; 10:healthcare10122402. [PMID: 36553926 PMCID: PMC9778437 DOI: 10.3390/healthcare10122402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The aim of this study was to summarize evidence on energy metabolism through peak fat oxidation (PFO) and maximum fat oxidation (Fatmax), as well as to analyze the protocols used in people with spinal cord injury (SCI) and to examine the main factors related to fat oxidation ability (i.e., age, sex, level of physical activity, and level and degree of injury). METHODS Studies to determine PFO and Fatmax using indirect calorimetry with an arm exercise protocol for SCI patients were included after a systematic search. Other endpoints included study design, sample size, control group, demographic data, level of injury, physical condition, protocol, outcomes measured, and statistical findings. RESULTS Eight studies (n = 560) were included. The mean value of VO2peak was 1.86 L∙min-1 (range 0.75-2.60 L∙min-1) (lowest value in the tetraplegic subjects). The PFO ranged between 0.06 and 0.30 g∙min-1 (lowest rates: the non-trained subjects with cervical SCI; highest: the tetraplegic subjects). Two types of exercise protocol were found: arm cycle ergometer, and wheelchair propulsion with a computerized ergometer. Five studies used an incremental protocol (2-3 min/stage, different load increments); the rest performed tests of 20 min/stage at three intensities. CONCLUSION There are few existing studies measuring fat oxidation in SCI, many of which used small and heterogeneous samples. PFO was lower in SCI subjects when compared with non-injured people performing lower-limb exercise; however, comparing upper-limb exercise, people with SCI showed higher values.
Collapse
Affiliation(s)
- Soraya Martín-Manjarrés
- Hospital Nacional de Parapléjicos, SESCAM, 45004 Toledo, Spain
- GENUD-Toledo Research Group, Universidad de Castilla-La Mancha, 45071 Toledo, Spain
| | - Javier Leal-Martín
- GENUD-Toledo Research Group, Universidad de Castilla-La Mancha, 45071 Toledo, Spain
- CIBER on Frailty and Healthy Aging, Instituto de Salud Carlos III (CIBERFES, ISCIII), 28029 Madrid, Spain
| | - Cristina Granados
- Departamento de Educación Física y Deporte, Facultad de Educación y Deporte, Universidad del País Vasco (UPV/EHU), 01007 Vitoria, Spain
| | - Esmeralda Mata
- Facultad Ciencias del Deporte, Universidad de Castilla-La Mancha, 45071 Toledo, Spain
| | - Ángel Gil-Agudo
- Departamento de Medicina Física y Rehabilitación, Hospital Nacional de Parapléjicos, SESCAM, 45004 Toledo, Spain
| | - Irene Rodríguez-Gómez
- GENUD-Toledo Research Group, Universidad de Castilla-La Mancha, 45071 Toledo, Spain
- CIBER on Frailty and Healthy Aging, Instituto de Salud Carlos III (CIBERFES, ISCIII), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-925-268-800 (ext. 96808)
| | - Ignacio Ara
- GENUD-Toledo Research Group, Universidad de Castilla-La Mancha, 45071 Toledo, Spain
- CIBER on Frailty and Healthy Aging, Instituto de Salud Carlos III (CIBERFES, ISCIII), 28029 Madrid, Spain
| |
Collapse
|
14
|
Shima D, Nishimura Y, Hashizaki T, Minoshima Y, Yoshikawa T, Umemoto Y, Kinoshita T, Kouda K, Tajima F, Kamijo YI. Surface electromyographic activity of the erector spinae and multifidus during arm- and leg-ergometer exercises in young healthy men. Front Physiol 2022; 13:974632. [PMID: 36505070 PMCID: PMC9732940 DOI: 10.3389/fphys.2022.974632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/17/2022] [Indexed: 11/26/2022] Open
Abstract
Objectives: Ergometer exercise was considered a new loading method that can be used for participants who are unable to assume the core strengthening exercise posture commonly used to strengthen the erector spinae and multifidus. This study aimed to investigate with healthy participants whether arm and leg ergometers could be used for core strengthening exercises and whether different exercise sites would affect the results. Methods: The study was conducted with 15 healthy adult male participants aged 20-35 years. The intervention consisted of arm- and leg-ergometer exercises performed by the participants. The exercise protocol consisted of three 1-min sessions (rest, 50W, and 100 W), which were measured consecutively. Surface electromyography (sEMG) was measured during the sessions. Maximal voluntary contraction (MVC) of the erector spinae and multifidus was also measured, during which sEMG was measured. The sEMG during ergometer exercise was calculated as a percentage of the MVC (calculated as % MVC). The root mean square (RMS) was recorded from the sEMG activity. Muscle activity of the erector spinae and multifidus was compared between ergometer exercises and between intensity levels. Heart rate (HR) was recorded by electrocardiogram. Results: In the arm-ergometer exercise, the % MVC values of the erector spinae were 6.3 ± 3.1, 10.9 ± 5.4, and 16.9 ± 8.3% at rest, 50 W, and 100 W conditions, respectively. The multifidus was 4.6 ± 2.9, 9.2 ± 5.6, and 12.6 ± 7.6% at rest, 50 W, and 100 W conditions, respectively. The respective % MVC values during the leg-ergometer exercise were 3.8 ± 1.7, 7.2 ± 3.8, and 10.4 ± 4.0% at rest, 50 W, and 100 W conditions, respectively. Leg-ergometer exercises were 2.6 ± 2.1, 6.9 ± 5.7, and 10.3 ± 6.8% at rest, 50 W, and 100 W conditions, respectively. The activities of the two muscles increased at comparable levels with increased workload in both types of exercises (p < 0.01, each). HR increased with the increased workload and the increase was larger during arm-than leg-ergometer exercises. Conclusion: These results demonstrate that both arm- and leg-ergometer exercises are potentially alternative methods for erector spinae and multifidus training for healthy participants. Further research is needed to target elderly.
Collapse
Affiliation(s)
- Daichi Shima
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan,Division of Rehabilitation Medicine, Wakayama Medical University Hospital, Wakayama, Japan
| | - Yukihide Nishimura
- Department of Rehabilitation Medicine, Iwate Medical University, Morioka, Japan,*Correspondence: Yukihide Nishimura,
| | - Takamasa Hashizaki
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan,Division of Rehabilitation Medicine, Wakayama Medical University Hospital, Wakayama, Japan
| | - Yuta Minoshima
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan,Division of Rehabilitation Medicine, Wakayama Medical University Hospital, Wakayama, Japan
| | - Tatsuya Yoshikawa
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yasunori Umemoto
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| | - Tokio Kinoshita
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan,Division of Rehabilitation Medicine, Wakayama Medical University Hospital, Wakayama, Japan
| | - Ken Kouda
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| | - Fumihiro Tajima
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yoshi-Ichiro Kamijo
- Department of Rehabilitation Medicine, Dokkyo Medical University Saitama Medical Center, Saitama, Japan
| |
Collapse
|
15
|
Konopka MJ, van den Bunder JCML, Rietjens G, Sperlich B, Zeegers MP. Genetics of long-distance runners and road cyclists-A systematic review with meta-analysis. Scand J Med Sci Sports 2022; 32:1414-1429. [PMID: 35839336 PMCID: PMC9544934 DOI: 10.1111/sms.14212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 01/12/2023]
Abstract
The aim of this systematic review and meta-analysis was to identify the genetic variants of (inter)national competing long-distance runners and road cyclists compared with controls. The Medline and Embase databases were searched until 15 November 2021. Eligible articles included genetic epidemiological studies published in English. A homogenous group of endurance athletes competing at (inter)national level and sedentary controls were included. Pooled odds ratios based on the genotype frequency with corresponding 95% confidence intervals (95%CI) were calculated using random effects models. Heterogeneity was addressed by Q-statistics, and I2 . Sources of heterogeneity were examined by meta-regression and risk of bias was assessed with the Clark Baudouin scale. This systematic review comprised of 43 studies including a total of 3938 athletes and 10 752 controls in the pooled analysis. Of the 42 identified genetic variants, 13 were investigated in independent studies. Significant associations were found for five polymorphisms. Pooled odds ratio [95%CI] favoring athletes compared with controls was 1.42 [1.12-1.81] for ACE II (I/D), 1.66 [1.26-2.19] for ACTN3 TT (rs1815739), 1.75 [1.34-2.29] for PPARGC1A GG (rs8192678), 2.23 [1.42-3.51] for AMPD1 CC (rs17602729), and 2.85 [1.27-6.39] for HFE GG + CG (rs1799945). Risk of bias was low in 25 (58%) and unclear in 18 (42%) articles. Heterogeneity of the results was low (0%-20%) except for HFE (71%), GNB3 (80%), and NOS3 (76%). (Inter)national competing runners and cyclists have a higher probability to carry specific genetic variants compared with controls. This study confirms that (inter)national competing endurance athletes constitute a unique genetic make-up, which likely contributes to their performance level.
Collapse
Affiliation(s)
- Magdalena Johanna Konopka
- Care and Public Health Research Institute (CAPHRI)Maastricht UniversityMaastrichtThe Netherlands,Department of EpidemiologyMaastricht University Medical CentreMaastrichtThe Netherlands
| | | | - Gerard Rietjens
- Department of Human Physiology and Sports MedicineVrije Universiteit BrusselBrusselsBelgium
| | - Billy Sperlich
- Integrative & Experimental Exercise Science & Training, Institute of Sport ScienceUniversity of WürzburgWürzburgGermany
| | - Maurice Petrus Zeegers
- Care and Public Health Research Institute (CAPHRI)Maastricht UniversityMaastrichtThe Netherlands,Department of EpidemiologyMaastricht University Medical CentreMaastrichtThe Netherlands,School of Nutrition and Translational Research in Metabolism (NUTRIM)Maastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
16
|
Nyberg M, Jones AM. Matching of O2 Utilization and O2 Delivery in Contracting Skeletal Muscle in Health, Aging, and Heart Failure. Front Physiol 2022; 13:898395. [PMID: 35774284 PMCID: PMC9237395 DOI: 10.3389/fphys.2022.898395] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle is one of the most dynamic metabolic organs as evidenced by increases in metabolic rate of >150-fold from rest to maximal contractile activity. Because of limited intracellular stores of ATP, activation of metabolic pathways is required to maintain the necessary rates of ATP re-synthesis during sustained contractions. During the very early phase, phosphocreatine hydrolysis and anaerobic glycolysis prevails but as activity extends beyond ∼1 min, oxidative phosphorylation becomes the major ATP-generating pathway. Oxidative metabolism of macronutrients is highly dependent on the cardiovascular system to deliver O2 to the contracting muscle fibres, which is ensured through a tight coupling between skeletal muscle O2 utilization and O2 delivery. However, to what extent O2 delivery is ideal in terms of enabling optimal metabolic and contractile function is context-dependent and determined by a complex interaction of several regulatory systems. The first part of the review focuses on local and systemic mechanisms involved in the regulation of O2 delivery and how integration of these influences the matching of skeletal muscle O2 demand and O2 delivery. In the second part, alterations in cardiovascular function and structure associated with aging and heart failure, and how these impact metabolic and contractile function, will be addressed. Where applicable, the potential of exercise training to offset/reverse age- and disease-related cardiovascular declines will be highlighted in the context of skeletal muscle metabolic function. The review focuses on human data but also covers animal observations.
Collapse
Affiliation(s)
- Michael Nyberg
- Vascular Biology, Global Drug Discovery, Novo Nordisk A/S, Maaloev, Denmark
- *Correspondence: Michael Nyberg,
| | - Andrew M. Jones
- Department of Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
17
|
Muscle power differences between upper and lower limbs in adolescent athletes: an approach of expert researchers. SPORT SCIENCES FOR HEALTH 2022. [DOI: 10.1007/s11332-022-00928-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Torvik PØ, Sandbakk Ø, van den Tillaar R, Talsnes RK, Danielsen J. A Comparison of Double Poling Physiology and Kinematics Between Long-Distance and All-Round Cross-Country Skiers. Front Sports Act Living 2022; 4:849731. [PMID: 35498513 PMCID: PMC9039168 DOI: 10.3389/fspor.2022.849731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose The objective of this study was to compare physiological and kinematic responses to double poling (DP) between long-distance (LDS) and all-round (ARS) cross-country skiers. Methods A number of five world-class LDS (28.8 ± 5.1 years, maximal oxygen uptake (VO2max): 70.4 ± 2.9 ml·kg−1·min−1) and seven ARS (22.3 ± 2.8 years, VO2max: 69.1 ± 4.2 ml·kg−1·min−1) athletes having similar training volumes and VO2max performed three identical tests; (1) submaximal and incremental tests to exhaustion while treadmill DP to determine gross efficiency (GE), peak oxygen uptake (DP-VO2peak), and peak speed; (2) submaximal and incremental running tests to exhaustion to determine GE, VO2max (RUN-VO2max), and peak speed; and (3) an upper-body pull-down exercise to determine one repetition maximum (1RM) and peak power. Physiological responses were determined during both DP and running, together with the assessments of kinematic responses and electromyography (EMG) of selected muscles during DP. Results Compared to ARS, LDS reached higher peak speed (22.1 ± 1.0 vs. 20.7 ± 0.9 km·h−1, p = 0.030), DP-VO2peak (68.3 ± 2.1 vs. 65.1 ± 2.7 ml·kg−1·min−1, p = 0.050), and DP-VO2peak/RUN-VO2max ratio (97 vs. 94%, p = 0.075) during incremental DP to exhaustion, as well as higher GE (17.2 vs. 15.9%, p = 0.029) during submaximal DP. There were no significant differences in cycle length or cycle rate between the groups during submaximal DP, although LDS displayed longer relative poling times (~2.4% points) at most speeds compared to ARS (p = 0.015). However, group × speed interaction effects (p < 0.05) were found for pole angle and vertical fluctuation of body center of mass, with LDS maintaining a more upright body position and more vertical pole angles at touchdown and lift-off at faster speeds. ARS displayed slightly higher normalized EMG amplitude than LDS in the muscles rectus abdominis (p = 0.074) and biceps femoris (p = 0.027). LDS performed slightly better on 1RM upper-body strength (122 vs. 114 kg, p = 0.198), with no group differences in power in the pull-down exercise. Conclusions The combination of better DP-specific aerobic energy delivery capacity, efficiency, and technical solutions seems to contribute to the superior DP performance found among specialized LDS in comparison with ARS.
Collapse
Affiliation(s)
- Per-Øyvind Torvik
- Department of Sports Science and Physical Education, Nord University, Meråker, Norway
| | - Øyvind Sandbakk
- Centre for Elite Sports Research, Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Rune Kjøsen Talsnes
- Department of Sports Science and Physical Education, Nord University, Meråker, Norway
- Meråker High School, Trøndelag County Council, Steinkjer, Norway
| | - Jørgen Danielsen
- Centre for Elite Sports Research, Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- *Correspondence: Jørgen Danielsen
| |
Collapse
|
19
|
Chiou SY, Clarke E, Lam C, Harvey T, Nightingale TE. Effects of Arm-Crank Exercise on Fitness and Health in Adults With Chronic Spinal Cord Injury: A Systematic Review. Front Physiol 2022; 13:831372. [PMID: 35392374 PMCID: PMC8982085 DOI: 10.3389/fphys.2022.831372] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
Individuals with spinal cord injury (SCI) may benefit less from exercise training due to consequences of their injury, leading to lower cardiorespiratory fitness and higher risks of developing cardiovascular diseases. Arm-crank exercise (ACE) is the most common form of volitional aerobic exercise used by people with SCI outside a hospital. However, evidence regarding the specific effects of ACE alone on fitness and health in adults with SCI is currently lacking. Hence, this review aimed to determine the effects of ACE on cardiorespiratory fitness, body composition, cardiovascular disease (CVD) risk factors, motor function, health-related quality of life (QoL), and adverse events in adults with chronic SCI. Inclusion criteria were: inactive adults (≥18 years) with chronic SCI (>12 months post injury); used ACE alone as an intervention; measured at least one of the following outcomes; cardiorespiratory fitness, body composition, cardiovascular disease risk factors, motor function, health-related QoL, and adverse events. Evidence was synthesized and appraised using GRADE. Eighteen studies with a combined total of 235 participants having an injury between C4 to L3 were included. There was a moderate certainty of the body of evidence on ACE improving cardiorespiratory fitness. Exercise prescriptions from the included studies were 30-40 min of light to vigorous-intensity exercise, 3-5 times per week for 2-16 weeks. GRADE confidence ratings were very low for ACE improving body composition, CVD risks factors, motor function, or health-related QoL. No evidence suggests ACE increases the risk of developing shoulder pain or other injuries. Overall, this review recommends adults with chronic SCI should engage in regular ACE to improve cardiorespiratory fitness. More high-quality, larger-scale studies are needed to increase the level of evidence of ACE in improving cardiorespiratory fitness and to determine the effects of ACE on other outcomes. Systematic Review Registration: [https://www.crd.york.ac.uk/prospero/display_reco rd.php?ID=CRD42021221952], identifier [CRD42021221952].
Collapse
Affiliation(s)
- Shin Yi Chiou
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, United Kingdom
| | - Emma Clarke
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Chi Lam
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Tom Harvey
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Tom E. Nightingale
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Trauma Sciences Research, University of Birmingham, Birmingham, United Kingdom
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
20
|
Fagher K, Baumgart JK, Solli GS, Holmberg HC, Lexell J, Sandbakk Ø. Preparing for snow-sport events at the Paralympic Games in Beijing in 2022: recommendations and remaining questions. BMJ Open Sport Exerc Med 2022; 8:e001294. [PMID: 35295372 PMCID: PMC8867376 DOI: 10.1136/bmjsem-2021-001294] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2022] [Indexed: 12/24/2022] Open
Abstract
During the 2022 Winter Paralympic Games in Beijing, the Para snow-sport events will be held at high altitudes and in possibly cold conditions while also requiring adjustment to several time zones. Furthermore, the ongoing COVID-19 pandemic may lead to suboptimal preparations. Another concern is the high rate of injuries that have been reported in the Para alpine and snowboard events. In addition to these challenges, Para athletes various impairments may affect both sports-specific demands and athlete health. However, the group of Para snow-sport athletes is an understudied population. Accordingly, this perspective paper summarises current knowledge to consider when preparing for the Paralympic Games in Beijing and point out important unanswered questions. We here focus specifically on how sport-specific demands and impairment-related considerations are influenced by altitude acclimatisation, cold conditions, travel fatigue and jetlag, complications due to the COVID-19 pandemic, and injury prevention and sports safety considerations. As Para athletes with spinal cord injury, limb deficiency, cerebral palsy and visual impairment account for the majority of the Para snow-sport athletes, the focus is mainly on these impairment groups. In brief, we highlight the extra caution required to ensure athlete health, performance and sports safety among Para athletes participating in the snow-sport events in the 2022 Beijing Paralympic Games. Although there is an urgent need for more high-quality research focusing on Para winter athletes, we hope these non-consensus recommendations will help prepare for the 2022 Beijing Paralympic Winter Games.
Collapse
Affiliation(s)
- K Fagher
- Department of Health Sciences, Lund University, Lund, Sweden
- The Swedish Paralympic Committee, Stockholm, Sweden
| | - J K Baumgart
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - G S Solli
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Sports Science and Physical Education, Nord University, Bodo, Norway
| | - H C Holmberg
- Department of Health Sciences, Luleå University of Technology, Luleå, Sweden
- Department of Physiology and Pharmacology, Biomedicum C5, Karolinska Institutet, Stockholm, Sweden
| | - J Lexell
- Department of Health Sciences, Lund University, Lund, Sweden
- The Medical Committee, The International Paralympic Committee, Bonn, Germany
| | - Ø Sandbakk
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
21
|
Matzka M, Leppich R, Holmberg HC, Sperlich B, Zinner C. The Relationship Between the Distribution of Training Intensity and Performance of Kayak and Canoe Sprinters: A Retrospective Observational Analysis of One Season of Competition. Front Sports Act Living 2022; 3:788108. [PMID: 35072063 PMCID: PMC8766812 DOI: 10.3389/fspor.2021.788108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: To evaluate retrospectively the training intensity distribution (TID) among highly trained canoe sprinters during a single season and to relate TID to changes in performance.Methods: The heart rates during on-water training by 11 German sprint kayakers (7 women, 4 men) and one male canoeist were monitored during preparation periods (PP) 1 and 2, as well as during the period of competition (CP) (total monitoring period: 37 weeks). The zones of training intensity (Z) were defined as Z1 [<80% of peak oxygen consumption (VO2peak)], Z2 (81–87% VO2peak) and Z3 (>87% VO2peak), as determined by 4 × 1,500-m incremental testing on-water. Prior to and after each period, the time required to complete the last 1,500-m stage (all-out) of the incremental test (1,500-m time-trial), velocities associated with 2 and 4 mmol·L−1 blood lactate (v2[BLa], v4[BLa]) and VO2peak were determined.Results: During each period, the mean TID for the entire group was pyramidal (PP1: 84/12/4%, PP2: 80/12/8% and CP: 91/5/4% for Z1, Z2, Z3) and total training time on-water increased from 5.0 ± 0.9 h (PP1) to 6.1 ± 0.9 h (PP2) and 6.5 ± 1.0 h (CP). The individual ranges for Z1, Z2 and Z3 were 61–96, 2–26 and 0–19%. During PP2 VO2peak (25.5 ± 11.4%) markedly increased compared to PP1 and CP and during PP1 v2[bla] (3.6 ± 3.4%) showed greater improvement compared to PP2, but not to CP. All variables related to performance improved as the season progressed, but no other effects were observed. With respect to time-trial performance, the time spent in Z1 (r = 0.66, p = 0.01) and total time in all three zones (r = 0.66, p = 0.01) showed positive correlations, while the time spent in Z2 (r = −0.57, p = 0.04) was negatively correlated.Conclusions: This seasonal analysis of the effects of training revealed extensive inter-individual variability. Overall, TID was pyramidal during the entire period of observation, with a tendency toward improvement in VO2peak, v2[bla], v4[bla] and time-trial performance. During PP2, when the COVID-19 lockdown was in place, the proportion of time spent in Z3 doubled, while that spent in Z1 was lowered; the total time spent training on water increased; these changes may have accentuated the improvement in performance during this period. A further increase in total on-water training time during CP was made possible by reductions in the proportions of time spent in Z2 and Z3, so that more fractions of time was spent in Z1.
Collapse
Affiliation(s)
- Manuel Matzka
- Integrative and Experimental Exercise Science and Training, University of Würzburg, Würzburg, Germany
- *Correspondence: Manuel Matzka
| | - Robert Leppich
- Software Engineering Group, Department of Computer Science, University of Würzburg, Würzburg, Germany
| | | | - Billy Sperlich
- Integrative and Experimental Exercise Science and Training, University of Würzburg, Würzburg, Germany
- Billy Sperlich
| | - Christoph Zinner
- Department of Sport, University of Applied Sciences for Police and Administration of Hesse, Wiesbaden, Germany
| |
Collapse
|
22
|
Hansen LM, Sandbakk Ø, Ettema G, Baumgart JK. Upper- vs. Lower-Body Exercise Performance in Female and Male Cross-Country Skiers. Front Sports Act Living 2021; 3:762794. [PMID: 34993468 PMCID: PMC8724206 DOI: 10.3389/fspor.2021.762794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: To investigate the interaction between exercise modality (i.e., upper- and lower-body exercise) and sex in physiological responses and power output (PO) across the entire intensity spectrum (i.e., from low to maximal intensity).Methods: Ten male and 10 female cross-country (XC) skiers performed a stepwise incremental test to exhaustion consisting of 5 min stages with increasing workload employing upper-body poling (UP) and running (RUN) on two separate days. Mixed measures ANOVA were performed to investigate the interactions between exercise modalities (i.e., UP and RUN) and sex in physiological responses and PO across the entire exercise intensity spectrum.Results: The difference between UP and RUN (ΔUP−RUN), was not different in the female compared with the male XC skiers for peak oxygen uptake (18 ± 6 vs. 18 ± 6 mL·kg−1·min−1, p = 0.843) and peak PO (84 ± 18 vs. 91 ± 22 W, p = 0.207). At most given blood lactate and rating of perceived exertion values, ΔUP−RUN was larger in the male compared with the female skiers for oxygen uptake and PO, but these differences disappeared when the responses were expressed as % of the modality-specific peak.Conclusion: Modality-differences (i.e., ΔUP−RUN) in peak physiological responses and PO did not differ between the female and male XC skiers. This indicates that increased focus on upper-body strength and endurance training in female skiers in recent years may have closed the gap between upper- and lower-body endurance capacity compared with male XC skiers. In addition, no sex-related considerations need to be made when using relative physiological responses for intensity regulation within a specific exercise modality.
Collapse
|
23
|
Gee CM, Lacroix MA, Stellingwerff T, Gavel EH, Logan-Sprenger HM, West CR. Physiological Considerations to Support Podium Performance in Para-Athletes. FRONTIERS IN REHABILITATION SCIENCES 2021; 2:732342. [PMID: 36188768 PMCID: PMC9397986 DOI: 10.3389/fresc.2021.732342] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022]
Abstract
The twenty-first century has seen an increase in para-sport participation and the number of research publications on para-sport and the para-athlete. Unfortunately, the majority of publications are case reports/case series or study single impairment types in isolation. Indeed, an overview of how each International Paralympic Committee classifiable impairment type impact athlete physiology, health, and performance has not been forthcoming in the literature. This can make it challenging for practitioners to appropriately support para-athletes and implement evidence-based research in their daily practice. Moreover, the lack of a cohesive publication that reviews all classifiable impairment types through a physiological lens can make it challenging for researchers new to the field to gain an understanding of unique physiological challenges facing para-athletes and to appreciate the nuances of how various impairment types differentially impact para-athlete physiology. As such, the purpose of this review is to (1) summarize how International Paralympic Committee classifiable impairments alter the normal physiological responses to exercise; (2) provide an overview of "quick win" physiological interventions targeted toward specific para-athlete populations; (3) discuss unique practical considerations for the para-sport practitioner; (4) discuss research gaps and highlight areas for future research and innovation, and (5) provide suggestions for knowledge translation and knowledge sharing strategies to advance the field of para-sport research and its application by para-sport practitioners.
Collapse
Affiliation(s)
| | | | - Trent Stellingwerff
- Athletics Canada, Ottawa, ON, Canada
- Canadian Sport Institute-Pacific, Victoria, BC, Canada
| | - Erica H. Gavel
- Canadian Sport Institute-Ontario, Toronto, ON, Canada
- Faculty of Health Science, Ontario Tech University, Oshawa, ON, Canada
| | - Heather M. Logan-Sprenger
- Canadian Sport Institute-Ontario, Toronto, ON, Canada
- Faculty of Health Science, Ontario Tech University, Oshawa, ON, Canada
| | - Christopher R. West
- Canadian Sport Institute-Pacific, Victoria, BC, Canada
- Faculty of Medicine, International Collaboration on Repair Discoveries, Vancouver, BC, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Kelowna, BC, Canada
- Centre for Chronic Disease Prevention and Management, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
24
|
Nyberg M, Christensen PM, Blackwell JR, Hostrup M, Jones AM, Bangsbo J. Nitrate-rich beetroot juice ingestion reduces skeletal muscle O 2 uptake and blood flow during exercise in sedentary men. J Physiol 2021; 599:5203-5214. [PMID: 34587650 DOI: 10.1113/jp281995] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/22/2021] [Indexed: 12/21/2022] Open
Abstract
Dietary nitrate supplementation has been shown to reduce pulmonary O2 uptake during submaximal exercise and enhance exercise performance. However, the effects of nitrate supplementation on local metabolic and haemodynamic regulation in contracting human skeletal muscle remain unclear. To address this, eight healthy young male sedentary subjects were assigned in a randomized, double-blind, crossover design to receive nitrate-rich beetroot juice (NO3, 9 mmol) and placebo (PLA) 2.5 h prior to the completion of a double-step knee-extensor exercise protocol that included a transition from unloaded to moderate-intensity exercise (MOD) followed immediately by a transition to intense exercise (HIGH). Compared with PLA, NO3 increased plasma levels of nitrate and nitrite. During MOD, leg V ̇ O 2 and leg blood flow (LBF) were reduced to a similar extent (∼9%-15%) in NO3. During HIGH, leg V ̇ O 2 was reduced by ∼6%-10% and LBF by ∼5%-9% (did not reach significance) in NO3. Leg V ̇ O 2 kinetics was markedly faster in the transition from passive to MOD compared with the transition from MOD to HIGH both in NO3 and PLA with no difference between PLA and NO3. In NO3, a reduction in nitrate and nitrite concentration was detected between arterial and venous samples. No difference in the time to exhaustion was observed between conditions. In conclusion, elevation of plasma nitrate and nitrate reduces leg skeletal muscle V ̇ O 2 and blood flow during exercise. However, nitrate supplementation does not enhance muscle V ̇ O 2 kinetics during exercise, nor does it improve time to exhaustion when exercising with a small muscle mass. KEY POINTS: Dietary nitrate supplementation has been shown to reduce systemic O2 uptake during exercise and improve exercise performance. The effects of nitrate supplementation on local metabolism and blood flow regulation in contracting human skeletal muscle remain unclear. By using leg exercise engaging a small muscle mass, we show that O2 uptake and blood flow are similarly reduced in contracting skeletal muscle of humans during exercise. Despite slower V ̇ O 2 kinetics in the transition from moderate to intense exercise, no effects of nitrate supplementation were observed for V ̇ O 2 kinetics and time to exhaustion. Nitrate and nitrite concentrations are reduced across the exercising leg, suggesting that these ions are extracted from the arterial blood by contracting skeletal muscle.
Collapse
Affiliation(s)
- Michael Nyberg
- Department of Nutrition, Exercise and Sports, Integrative Physiology Section, Cardiovascular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Peter M Christensen
- Department of Nutrition, Exercise and Sports, Integrative Physiology Section, Cardiovascular Physiology, University of Copenhagen, Copenhagen, Denmark.,Team Danmark (Danish Elite Sports Organization), Copenhagen, Denmark
| | - Jamie R Blackwell
- Department of Sport and Health Sciences, University of Exeter St Luke's Campus, Exeter, UK
| | - Morten Hostrup
- Department of Nutrition, Exercise and Sports, Integrative Physiology Section, Cardiovascular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Andrew M Jones
- Department of Sport and Health Sciences, University of Exeter St Luke's Campus, Exeter, UK
| | - Jens Bangsbo
- Department of Nutrition, Exercise and Sports, Integrative Physiology Section, Cardiovascular Physiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Carlsson T, Wedholm L, Fjordell W, Swarén M, Carlsson M. Effect of sub-technique transitions on energy expenditure and physiological load in the classical-style technique among elite male cross-country skiers. Eur J Appl Physiol 2021; 121:3201-3209. [PMID: 34402986 PMCID: PMC8505378 DOI: 10.1007/s00421-021-04783-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/07/2021] [Indexed: 12/03/2022]
Abstract
Purpose To investigate whether sub-technique transitions in the classical-style technique are associated with increased energy expenditure and/or metabolic stress among elite male cross-country skiers. Methods Fifteen elite male skiers completed three 10-min treadmill roller-skiing tests, each of which consisted of 5 min using the diagonal-stride technique (DS) and 5 min using the double-poling technique (DP), combined in three various modes all ensuring comparable mechanical workload, at an inclination of 2.5° and a speed of 13 km/h. In the first and third tests, the participants used 5 min continuous DS followed by 5 min continuous DP, or vice versa (no transition (NT) test), whereas in the second test, they made transitions between DS and DP every 6 s (repeated transition (RT) test). The last 3 min of each 5-min stage was used to calculate the mean values of oxygen uptake (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\dot{\text{V}}\text{O}}_{{2}}$$\end{document}V˙O2), respiratory exchange ratio (RER), metabolic rate (MR), mechanical work rate (MWR), and gross efficiency (GE). In addition, the pre–post-difference in blood lactate concentration (Ladiff) was determined for each test. Paired-samples t tests were used to investigate differences between tests. Results There were no significant differences between NT and RT tests regarding V̇O2, MR, MWR, or GE. Conversely, significant differences were found in RER and Ladiff, where the NT test was associated with higher RER and Ladiff values. Conclusions Roller skiing with repeated sub-technique transitions is not associated with an additional aerobic energy contribution; instead, the anaerobic energy contribution was lower compared to that under continuous use of DS and DP.
Collapse
Affiliation(s)
- Tomas Carlsson
- School of Education, Health and Social Studies, Dalarna University, Högskolegatan 2, 791 88, Falun, Sweden. .,Swedish Unit for Metrology in Sports, Dalarna University, Högskolegatan 2, 791 88, Falun, Sweden.
| | - Lars Wedholm
- School of Education, Health and Social Studies, Dalarna University, Högskolegatan 2, 791 88, Falun, Sweden
| | - Wilma Fjordell
- School of Education, Health and Social Studies, Dalarna University, Högskolegatan 2, 791 88, Falun, Sweden
| | - Mikael Swarén
- School of Education, Health and Social Studies, Dalarna University, Högskolegatan 2, 791 88, Falun, Sweden.,Swedish Unit for Metrology in Sports, Dalarna University, Högskolegatan 2, 791 88, Falun, Sweden
| | - Magnus Carlsson
- School of Education, Health and Social Studies, Dalarna University, Högskolegatan 2, 791 88, Falun, Sweden.,Swedish Unit for Metrology in Sports, Dalarna University, Högskolegatan 2, 791 88, Falun, Sweden
| |
Collapse
|
26
|
Øvretveit K, Laginestra FG. Mechanisms and Trainability of Peripheral Fatigue in Grappling. Strength Cond J 2021. [DOI: 10.1519/ssc.0000000000000594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Jacobs KA, McMillan DW, Maher JL, Bilzon JLJ, Nash MS. Neither Postabsorptive Resting Nor Postprandial Fat Oxidation Are Related to Peak Fat Oxidation in Men With Chronic Paraplegia. Front Nutr 2021; 8:703652. [PMID: 34381805 PMCID: PMC8349992 DOI: 10.3389/fnut.2021.703652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022] Open
Abstract
The peak rate of fat oxidation (PFO) achieved during a graded exercise test is an important indicator of metabolic health. In healthy individuals, there is a significant positive association between PFO and total daily fat oxidation (FO). However, conditions resulting in metabolic dysfunction may cause a disconnect between PFO and non-exercise FO. Ten adult men with chronic thoracic spinal cord injury (SCI) completed a graded arm exercise test. On a separate day following an overnight fast (≥ 10 h), they rested for 60 min before ingesting a liquid mixed meal (600 kcal; 35% fat, 50% carbohydrate, 15% protein). Expired gases were collected and indirect calorimetry data used to determine FO at rest, before and after feeding, and during the graded exercise test. Participants had “good” cardiorespiratory fitness (VO2peak: 19.2 ± 5.2 ml/kg/min) based on normative reference values for SCI. There was a strong positive correlation between PFO (0.30 ± 0.08 g/min) and VO2peak (r = 0.86, p = 0.002). Additionally, postabsorptive FO at rest was significantly and positively correlated with postprandial peak FO (r = 0.77, p = 0.01). However, PFO was not significantly associated with postabsorptive FO at rest (0.08 ± 0.02 g/min; p = 0.97), postprandial peak FO (0.10 ± 0.03 g/min; p = 0.43), or incremental area under the curve postprandial FO (p = 0.22). It may be advantageous to assess both postabsorptive FO at rest and PFO in those with SCI to gain a more complete picture of their metabolic flexibility and long-term metabolic health.
Collapse
Affiliation(s)
- Kevin A Jacobs
- Department of Kinesiology and Sport Sciences, University of Miami, Coral Gables, FL, United States
| | - David W McMillan
- Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis, UHealth/Jackson Memorial, Miami, FL, United States.,Department of Physical Medicine and Rehabilitation, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | | | | | - Mark S Nash
- Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis, UHealth/Jackson Memorial, Miami, FL, United States.,Department of Physical Medicine and Rehabilitation, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States.,Departments of Neurological Surgery and Physical Therapy, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
28
|
Gee CM, Eves ND, Sheel AW, West CR. How does cervical spinal cord injury impact the cardiopulmonary response to exercise? Respir Physiol Neurobiol 2021; 293:103714. [PMID: 34118435 DOI: 10.1016/j.resp.2021.103714] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 05/26/2021] [Accepted: 06/07/2021] [Indexed: 11/26/2022]
Abstract
We compared cardiopulmonary responses to arm-ergometry in individuals with cervical spinal cord injury (C-SCI) and able-bodied controls. We hypothesized that individuals with C-SCI would have higher respiratory frequency (fb) but lower tidal volume (VT) at a given work rate and dynamically hyperinflate during exercise, whereas able-bodied individuals would not. Participants completed pulmonary function testing, an arm-ergometry test to exhaustion, and a sub-maximal exercise test consisting of four-minute stages at 20, 40, 60, and 80% peak work rate. Able-bodied individuals completed a further sub-maximal test with absolute work rate matched to C-SCI. During work rate matched sub-maximal exercise, C-SCI had smaller VT (main effect p < 0.001) compensated by an increased fb (main effect p = 0.009). C-SCI had increased end-expiratory lung volume at 80% peak work rate vs. rest (p < 0.003), whereas able-bodied did not. In conclusion, during arm-ergometry, individuals with C-SCI exhibit altered ventilatory patterns characterized by reduced VT, higher fb, and dynamic hyperinflation that may contribute to the observed reduced aerobic exercise capacity.
Collapse
Affiliation(s)
- C M Gee
- International Collaboration on Repair Discoveries, Vancouver, BC, V5Z 1M9, Canada; School of Kinesiology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada; Canadian Sport Institute - Pacific, Victoria, BC, V9E 2C5, Canada
| | - N D Eves
- Centre for Heart Lung & Vascular Health, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - A W Sheel
- International Collaboration on Repair Discoveries, Vancouver, BC, V5Z 1M9, Canada; School of Kinesiology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - C R West
- International Collaboration on Repair Discoveries, Vancouver, BC, V5Z 1M9, Canada; Canadian Sport Institute - Pacific, Victoria, BC, V9E 2C5, Canada; Faculty of Medicine, University of British Columbia, Kelowna, BC, V1Y 1T3, Canada.
| |
Collapse
|
29
|
Physiological responses and cycle characteristics during double-poling versus diagonal-stride roller-skiing in junior cross-country skiers. Eur J Appl Physiol 2021; 121:2229-2241. [PMID: 33893836 PMCID: PMC8260529 DOI: 10.1007/s00421-021-04689-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/12/2021] [Indexed: 12/25/2022]
Abstract
Purpose This study aimed to compare physiological factors and cycle characteristics during cross-country (XC) roller-skiing at matched inclines and speeds using the double-poling (DP) and diagonal-stride (DS) sub-techniques in junior female and male XC skiers. Methods Twenty-three well-trained junior XC skiers (11 women, 12 men; age 18.2 ± 1.2 yr.) completed two treadmill roller-skiing tests in a randomized order using either DP or DS. The exercise protocols were identical and included a 5 min warm-up, 4 × 5 min submaximal stages, and an incremental test to exhaustion, all performed at a 5° incline. Results No significant three-way interactions were observed between sex, submaximal exercise intensity, and sub-technique. For the pooled sample, higher values were observed for DP versus DS during submaximal exercise for the mean oxygen uptake kinetics response time (33%), energy cost (18%), heart rate (HR) (9%), blood lactate concentration (5.1 versus 2.1 mmol·L−1), rating of perceived exertion (12%), and cycle rate (25%), while cycle length was lower (19%) (all P < 0.001). During the time-to-exhaustion (TTE) test, peak oxygen uptake (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{V}$$\end{document}V˙O2peak), peak HR, and peak oxygen pulse were 8%, 2%, and 6% lower, respectively, for DP than DS, with a 29% shorter TTE during DP (pooled data, all P < 0.001). Conclusion In well-trained junior XC skiers, DP was found to exert a greater physiological load than DS during uphill XC roller-skiing at submaximal intensities. During the TTE test, both female and male athletes were able to ski for longer and reached markedly higher \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{V}$$\end{document}V˙O2peak values when using DS compared to DP.
Collapse
|
30
|
Haraldsson BT, Andersen CH, Erhardsen KT, Zebis MK, Micheletti JK, Pastre CM, Andersen LL. Submaximal Elastic Resistance Band Tests to Estimate Upper and Lower Extremity Maximal Muscle Strength. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18052749. [PMID: 33803096 PMCID: PMC7967475 DOI: 10.3390/ijerph18052749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022]
Abstract
Muscle strength assessment is fundamental to track the progress of performance and prescribe correct exercise intensity. In field settings, simple tests are preferred. This study develops equations to estimate maximal muscle strength in upper- and lower-extremity muscles based on submaximal elastic resistance tests. Healthy adults (n = 26) performed a maximal test (1 RM) to validate the ability of the subsequent submaximal tests to determine maximal muscle strength, with elastic bands. Using a within-group repeated measures design, three submaximal tests of 40%, 60%, and 80% during (1) shoulder abduction, (2) shoulder external rotation, (3) hip adduction, and (4) prone knee flexion were performed. The association between number of repetitions and relative intensity was modeled with both 1st and 2nd order polynomials to determine the best predictive validity. For both upper-extremity tests, a strong linear association between repetitions and relative intensity was found (R2 = 0.97–1.00). By contrast, for the lower-extremity tests, the associations were fitted better with a 2nd order polynomial (R2 = 1.00). The results from the present study provide formulas for predicting maximal muscles strength based on submaximal resistance in four different muscles groups and show a muscle-group-specific association between repetitions and intensity.
Collapse
Affiliation(s)
- Bjarki T. Haraldsson
- Department of Physiotherapy, University College Copenhagen, DK-2200 Copenhagen, Denmark; (C.H.A.); (K.T.E.); (M.K.Z.)
- Correspondence:
| | - Christoffer H. Andersen
- Department of Physiotherapy, University College Copenhagen, DK-2200 Copenhagen, Denmark; (C.H.A.); (K.T.E.); (M.K.Z.)
| | - Katrine T. Erhardsen
- Department of Physiotherapy, University College Copenhagen, DK-2200 Copenhagen, Denmark; (C.H.A.); (K.T.E.); (M.K.Z.)
| | - Mette K. Zebis
- Department of Physiotherapy, University College Copenhagen, DK-2200 Copenhagen, Denmark; (C.H.A.); (K.T.E.); (M.K.Z.)
| | - Jéssica K. Micheletti
- Department of Physiotherapy, São Paulo State University (UNESP), 305 Roberto Simonsen, Presidente Prudente, São Paulo 19060-900, Brazil; (J.K.M.); (C.M.P.)
| | - Carlos M. Pastre
- Department of Physiotherapy, São Paulo State University (UNESP), 305 Roberto Simonsen, Presidente Prudente, São Paulo 19060-900, Brazil; (J.K.M.); (C.M.P.)
| | - Lars L. Andersen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark;
| |
Collapse
|
31
|
Torvik PØ, Solli GS, Sandbakk Ø. The Training Characteristics of World-Class Male Long-Distance Cross-Country Skiers. Front Sports Act Living 2021; 3:641389. [PMID: 33718870 PMCID: PMC7947281 DOI: 10.3389/fspor.2021.641389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/21/2021] [Indexed: 11/21/2022] Open
Abstract
Purpose: To investigate the training characteristics of world-class long-distance cross-country skiers. Methods: Twelve world-class male long-distance cross-country skiing specialists reported training from their best season, through a questionnaire and follow-up interviews. Training data were systemized by training form (endurance, strength, and speed), intensity [low- (LIT), moderate- (MIT), and high-intensity training (HIT)], and exercise mode, followed by a division into different periodization phases. Specific sessions utilized in the various periodization phases were also analyzed. Results: The annual training volume was 861 ± 90 h, consisting of 795 ± 88 h (92%) of endurance training, 53 ± 17 h (6%) of strength training, and 13 ± 14 h (2%) of speed training. A pyramidal (asymptotic) endurance training distribution was employed (i.e., 88.7% LIT, 6.4% MIT, and 4.8% HIT). Out of this, 50–60% of the endurance training was performed with double poling (DP), typically in the form of a daily 3- to 5-h session. A relatively evenly distributed week-to-week periodization of training load was commonly used in the general preparation period, whereas skiers varied between high-load training weeks and competition weeks, with half the training volume and a reduced amount of DP during the competition period. Conclusions: To match the specific demands of long-distance cross-country skiing, specialized long-distance skiers perform relatively long but few training sessions and use a pyramidal intensity distribution pattern and a large amount of training spent using the DP technique.
Collapse
Affiliation(s)
- Per-Øyvind Torvik
- Department of Sports Sciences and Physical Education, Nord University, Levanger, Norway
| | - Guro Strøm Solli
- Department of Sports Sciences and Physical Education, Nord University, Levanger, Norway.,Department of Neuromedicine and Movement Science, Centre for Elite Sports Research, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Øyvind Sandbakk
- Department of Neuromedicine and Movement Science, Centre for Elite Sports Research, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
32
|
Cardiorespiratory, Metabolic and Perceived Responses to Electrical Stimulation of Upper-Body Muscles While Performing Arm Cycling. J Hum Kinet 2021; 77:117-123. [PMID: 34168697 PMCID: PMC8008305 DOI: 10.2478/hukin-2021-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study was designed to assess systemic cardio-respiratory, metabolic and perceived responses to incremental arm cycling with concurrent electrical myostimulation (EMS). Eleven participants (24 ± 3 yrs; 182 ± 10 cm; 86 ± 16.8 kg) performed two incremental tests involving arm cycling until volitional exhaustion was reached with and without EMS of upper-body muscles. The peak power output was 10.1% lower during arm cycling with (128 ± 30 W) than without EMS (141 ± 25 W, p = 0.01; d = 0.47). In addition, the heart rate (2-9%), oxygen uptake (7-15%), blood lactate concentration (8-46%) and ratings of perceived exertion (4-14%) while performing submaximal arm cycling with EMS were all higher with than without EMS (all p < 0.05). Upon exhaustion, the heart rate, oxygen uptake, lactate concentration, and ratings of perceived exertion did not differ between the two conditions (all p > 0.05). In conclusion, arm cycling with EMS induced more pronounced cardio-respiratory, metabolic and perceived responses, especially during submaximal arm cycling. This form of exercise with stimulation might be beneficial for a variety of athletes competing in sports involving considerable generation of work by the upper body (e.g., kayaking, cross-country skiing, swimming, rowing and various parasports).
Collapse
|
33
|
McMillan DW, Maher JL, Jacobs KA, Nash MS, Gater DR. Exercise Interventions Targeting Obesity in Persons With Spinal Cord Injury. Top Spinal Cord Inj Rehabil 2021; 27:109-120. [PMID: 33814889 PMCID: PMC7983638 DOI: 10.46292/sci20-00058] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Spinal cord injury (SCI) results in an array of cardiometabolic complications, with obesity being the most common component risk of cardiometabolic disease (CMD) in this population. Recent Consortium for Spinal Cord Medicine Clinical Practice Guidelines for CMD in SCI recommend physical exercise as a primary treatment strategy for the management of CMD in SCI. However, the high prevalence of obesity in SCI and the pleiotropic nature of this body habitus warrant strategies for tailoring exercise to specifically target obesity. In general, exercise for obesity management should aim primarily to induce a negative energy balance and secondarily to increase the use of fat as a fuel source. In persons with SCI, reductions in the muscle mass that can be recruited during activity limit the capacity for exercise to induce a calorie deficit. Furthermore, the available musculature exhibits a decreased oxidative capacity, limiting the utilization of fat during exercise. These constraints must be considered when designing exercise interventions for obesity management in SCI. Certain forms of exercise have a greater therapeutic potential in this population partly due to impacts on metabolism during recovery from exercise and at rest. In this article, we propose that exercise for obesity in SCI should target large muscle groups and aim to induce hypertrophy to increase total energy expenditure response to training. Furthermore, although carbohydrate reliance will be high during activity, certain forms of exercise might induce meaningful postexercise shifts in the use of fat as a fuel. General activity in this population is important for many components of health, but low energy cost of daily activities and limitations in upper body volitional exercise mean that exercise interventions targeting utilization and hypertrophy of large muscle groups will likely be required for obesity management.
Collapse
Affiliation(s)
- David W. McMillan
- Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis, UHealth/Jackson Memorial, Miami, Florida
- Department of Physical Medicine & Rehabilitation, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Jennifer L. Maher
- Department of Health, University of Bath, Claverton Down, Bath, United Kingdom
| | - Kevin A. Jacobs
- Department of Kinesiology and Sport Sciences, University of Miami, Coral Gables, Florida
| | - Mark S. Nash
- Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis, UHealth/Jackson Memorial, Miami, Florida
| | - David R. Gater
- Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis, UHealth/Jackson Memorial, Miami, Florida
| |
Collapse
|
34
|
Skattebo Ø, Calbet JAL, Rud B, Capelli C, Hallén J. Contribution of oxygen extraction fraction to maximal oxygen uptake in healthy young men. Acta Physiol (Oxf) 2020; 230:e13486. [PMID: 32365270 PMCID: PMC7540168 DOI: 10.1111/apha.13486] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/16/2022]
Abstract
We analysed the importance of systemic and peripheral arteriovenous O2 difference (
a-v¯O2 difference and a‐vfO2 difference, respectively) and O2 extraction fraction for maximal oxygen uptake (
V˙O2max). Fick law of diffusion and the Piiper and Scheid model were applied to investigate whether diffusion versus perfusion limitations vary with
V˙O2max. Articles (n = 17) publishing individual data (n = 154) on
V˙O2max, maximal cardiac output (
Q˙max; indicator‐dilution or the Fick method),
a-v¯O2 difference (catheters or the Fick equation) and systemic O2 extraction fraction were identified. For the peripheral responses, group‐mean data (articles: n = 27; subjects: n = 234) on leg blood flow (LBF; thermodilution), a‐vfO2 difference and O2 extraction fraction (arterial and femoral venous catheters) were obtained.
Q˙max and two‐LBF increased linearly by 4.9‐6.0 L · min–1 per 1 L · min–1 increase in
V˙O2max (R2 = .73 and R2 = .67, respectively; both P < .001). The
a-v¯O2 difference increased from 118‐168 mL · L–1 from a
V˙O2max of 2‐4.5 L · min–1 followed by a reduction (second‐order polynomial: R2 = .27). After accounting for a hypoxemia‐induced decrease in arterial O2 content with increasing
V˙O2max (R2 = .17; P < .001), systemic O2 extraction fraction increased up to ~90% (
V˙O2max: 4.5 L · min–1) with no further change (exponential decay model: R2 = .42). Likewise, leg O2 extraction fraction increased with
V˙O2max to approach a maximal value of ~90‐95% (R2 = .83). Muscle O2 diffusing capacity and the equilibration index Y increased linearly with
V˙O2max (R2 = .77 and R2 = .31, respectively; both P < .01), reflecting decreasing O2 diffusional limitations and accentuating O2 delivery limitations. In conclusion, although O2 delivery is the main limiting factor to
V˙O2max, enhanced O2 extraction fraction (≥90%) contributes to the remarkably high
V˙O2max in endurance‐trained individuals.
Collapse
Affiliation(s)
- Øyvind Skattebo
- Department of Physical Performance Norwegian School of Sport Sciences Oslo Norway
| | - Jose A. L. Calbet
- Department of Physical Performance Norwegian School of Sport Sciences Oslo Norway
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS) University of Las Palmas de Gran Canaria Gran Canaria Spain
| | - Bjarne Rud
- Department of Physical Performance Norwegian School of Sport Sciences Oslo Norway
| | - Carlo Capelli
- Department of Physical Performance Norwegian School of Sport Sciences Oslo Norway
- Department of Neurosciences, Biomedicine and Movement Sciences University of Verona Verona Italy
| | - Jostein Hallén
- Department of Physical Performance Norwegian School of Sport Sciences Oslo Norway
| |
Collapse
|
35
|
Rømer T, Thunestvedt Hansen M, Frandsen J, Larsen S, Dela F, Wulff Helge J. The relationship between peak fat oxidation and prolonged double-poling endurance exercise performance. Scand J Med Sci Sports 2020; 30:2044-2056. [PMID: 32654310 DOI: 10.1111/sms.13769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/22/2020] [Accepted: 07/03/2020] [Indexed: 12/28/2022]
Abstract
The peak fat oxidation rate (PFO) and the exercise intensity that elicits PFO (Fatmax ) are associated with endurance performance during exercise primarily involving lower body musculature, but it remains elusive whether these associations are present during predominant upper body exercise. The aim was to investigate the relationship between PFO and Fatmax determined during a graded exercise test on a ski-ergometer using double-poling (GET-DP) and performance in the long-distance cross-country skiing race, Vasaloppet. Forty-three healthy men completed GET-DP and Vasaloppet and were divided into two subgroups: recreational (RS, n = 35) and elite (ES, n = 8) skiers. Additionally, RS completed a cycle-ergometer GET (GET-Cycling) to elucidate whether the potential relationships were specific to exercise modality. PFO (r2 = .10, P = .044) and Fatmax (r2 = .26, P < .001) were correlated with performance; however, V ˙ O 2 peak was the only independent predictor of performance (adj. R2 = .36) across all participants. In ES, Fatmax was the only variable associated with performance (r2 = .54, P = .038). Within RS, DP V ˙ O 2 peak (r2 = .11, P = .047) and ski-specific training background (r2 = .30, P = .001) were associated with performance. Between the two GETs, Fatmax (r2 = .20, P = .006) but not PFO (r2 = .07, P = .135) was correlated. Independent of exercise mode, neither PFO nor Fatmax were associated with performance in RS (P > .05). These findings suggest that prolonged endurance performance is related to PFO and Fatmax but foremost to V ˙ O 2 peak during predominant upper body exercise. Interestingly, Fatmax may be an important determinant of performance among ES. Among RS, DP V ˙ O 2 peak , and skiing experience appeared as performance predictors. Additionally, whole-body fat oxidation seemed specifically coupled to exercise modality.
Collapse
Affiliation(s)
- Tue Rømer
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Thunestvedt Hansen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Frandsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Flemming Dela
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Geriatrics, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Jørn Wulff Helge
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
36
|
Larsen FJ, Schiffer TA, Zinner C, Willis SJ, Morales‐Alamo D, Calbet JA, Boushel R, Holmberg H. Mitochondrial oxygen affinity increases after sprint interval training and is related to the improvement in peak oxygen uptake. Acta Physiol (Oxf) 2020; 229:e13463. [PMID: 32144872 DOI: 10.1111/apha.13463] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 01/16/2023]
Abstract
AIMS The body responds to exercise training by profound adaptations throughout the cardiorespiratory and muscular systems, which may result in improvements in maximal oxygen consumption (VO2 peak) and mitochondrial capacity. By convenience, mitochondrial respiration is often measured at supra-physiological oxygen levels, an approach that ignores any potential regulatory role of mitochondrial affinity for oxygen (p50mito ) at physiological oxygen levels. METHODS In this study, we examined the p50mito of mitochondria isolated from the Vastus lateralis and Triceps brachii in 12 healthy volunteers before and after a training intervention with seven sessions of sprint interval training using both leg cycling and arm cranking. The changes in p50mito were compared to changes in whole-body VO2 peak. RESULTS We here show that p50mito is similar in isolated mitochondria from the Vastus (40 ± 3.8 Pa) compared to Triceps (39 ± 3.3) but decreases (mitochondrial oxygen affinity increases) after seven sessions of sprint interval training (to 26 ± 2.2 Pa in Vastus and 22 ± 2.7 Pa in Triceps, both P < .01). The change in VO2 peak modelled from changes in p50mito was correlated to actual measured changes in VO2 peak (R2 = .41, P = .002). CONCLUSION Together with mitochondrial respiratory capacity, p50mito is a critical factor when measuring mitochondrial function, it can decrease with sprint interval training and should be considered in the integrative analysis of the oxygen cascade from lung to mitochondria.
Collapse
Affiliation(s)
- Filip J. Larsen
- Åstrand Laboratory The Swedish School of Sport and Health Sciences Stockholm Sweden
| | - Tomas A. Schiffer
- Department of Physiology and Pharmacology Karolinska Institutet Stockholm Sweden
| | - Christoph Zinner
- Department of Sport University of Applied Sciences for Police and Administration of Hesse Wiesbaden Germany
| | - Sarah J. Willis
- Institute of Sport Sciences University of Lausanne Lausanne Switzerland
| | - David Morales‐Alamo
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS) University of Las Palmas de Gran Canaria Gran Canaria Spain
| | - Jose A.L. Calbet
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS) University of Las Palmas de Gran Canaria Gran Canaria Spain
- School of Kinesiology Faculty of Education The University of British Columbia Vancouver BC Canada
- Department of Physical Performance The Norwegian School of Sport Sciences Oslo Norway
| | - Robert Boushel
- School of Kinesiology Faculty of Education The University of British Columbia Vancouver BC Canada
| | - Hans‐Christer Holmberg
- Swedish Winter Sports Research Centre Department of Health SciencesMid Sweden University Östersund Sweden
| |
Collapse
|
37
|
Skattebo Ø, Capelli C, Rud B, Auensen M, Calbet JAL, Hallén J. Increased oxygen extraction and mitochondrial protein expression after small muscle mass endurance training. Scand J Med Sci Sports 2020; 30:1615-1631. [PMID: 32403173 DOI: 10.1111/sms.13707] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/06/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022]
Abstract
When exercising with a small muscle mass, the mass-specific O2 delivery exceeds the muscle oxidative capacity resulting in a lower O2 extraction compared with whole-body exercise. We elevated the muscle oxidative capacity and tested its impact on O2 extraction during small muscle mass exercise. Nine individuals conducted six weeks of one-legged knee extension (1L-KE) endurance training. After training, the trained leg (TL) displayed 45% higher citrate synthase and COX-IV protein content in vastus lateralis and 15%-22% higher pulmonary oxygen uptake ( V ˙ O 2 peak ) and peak power output ( W ˙ peak ) during 1L-KE than the control leg (CON; all P < .05). Leg O2 extraction (catheters) and blood flow (ultrasound Doppler) were measured while both legs exercised simultaneously during 2L-KE at the same submaximal power outputs (real-time feedback-controlled). TL displayed higher O2 extraction than CON (main effect: 1.7 ± 1.6% points; P = .010; 40%-83% of W ˙ peak ) with the largest between-leg difference at 83% of W ˙ peak (O2 extraction: 3.2 ± 2.2% points; arteriovenous O2 difference: 7.1 ± 4.8 mL· L-1 ; P < .001). At 83% of W ˙ peak , muscle O2 conductance (DM O2 ; Fick law of diffusion) and the equilibration index Y were higher in TL (P < .01), indicating reduced diffusion limitations. The between-leg difference in O2 extraction correlated with the between-leg ratio of citrate synthase and COX-IV (r = .72-.73; P = .03), but not with the difference in the capillary-to-fiber ratio (P = .965). In conclusion, endurance training improves O2 extraction during small muscle mass exercise by elevating the muscle oxidative capacity and the recruitment of DM O2, especially evident during high-intensity exercise exploiting a larger fraction of the muscle oxidative capacity.
Collapse
Affiliation(s)
- Øyvind Skattebo
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Carlo Capelli
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Bjarne Rud
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Marius Auensen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Jose A L Calbet
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway.,Department of Physical Education, University of Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), Las Palmas de Gran Canaria, Spain
| | - Jostein Hallén
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
38
|
Insights for Blood Flow Restriction and Hypoxia in Leg Versus Arm Submaximal Exercise. Int J Sports Physiol Perform 2020; 15:714-719. [PMID: 32023543 DOI: 10.1123/ijspp.2019-0168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/08/2019] [Accepted: 08/27/2019] [Indexed: 11/18/2022]
Abstract
PURPOSE To assess tissue oxygenation, along with metabolic and physiological responses during blood flow restriction (BFR, bilateral vascular occlusion) and systemic hypoxia conditions during submaximal leg- versus arm-cycling exercise. METHODS In both legs and arms, 4 randomized sessions were performed (normoxia 400 m, fraction of inspired oxygen [FIO2] 20.9% and normobaric hypoxia 3800 m, FIO2 13.1% [0.1%]; combined with BFR at 0% and 45% of resting pulse elimination pressure). During each session, a single 6-minute steady-state submaximal exercise was performed to measure physiological changes and oxygenation (near-infrared spectroscopy) of the muscle tissue in both the vastus lateralis (legs) and biceps brachii (arms). RESULTS Total hemoglobin concentration ([tHb]) was 65% higher (P < .001) in arms versus legs, suggesting that arms had a greater blood perfusion capacity than legs. Furthermore, there were greater changes in tissue blood volume [tHb] during BFR compared with control conditions (P = .017, F = 5.45). The arms elicited 7% lower tissue saturation (P < .001) and were thus more sensitive to the hypoxia-induced reduction in oxygen supply than legs, no matter the condition. This indicates that legs and arms may elicit different regulatory hemodynamic mechanisms (ie, greater blood flow in arms) for limiting the decreased oxygen delivery during exercise with altered arterial oxygen content. CONCLUSIONS The combination of BFR and/or hypoxia led to increased [tHb] in both limbs likely due to greater vascular resistance; further, arms were more responsive than legs. This possibly influences the maintenance of oxygen delivery and enhances perfusion pressure, suggesting greater vascular reactivity in arms than in legs.
Collapse
|
39
|
Blood volume expansion does not explain the increase in peak oxygen uptake induced by 10 weeks of endurance training. Eur J Appl Physiol 2020; 120:985-999. [PMID: 32172291 PMCID: PMC7181565 DOI: 10.1007/s00421-020-04336-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/25/2020] [Indexed: 12/20/2022]
Abstract
Purpose The endurance training (ET)-induced increases in peak oxygen uptake (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{V}$$\end{document}V˙O2peak) and cardiac output (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{Q}$$\end{document}Q˙peak) during upright cycling are reversed to pre-ET levels after removing the training-induced increase in blood volume (BV). We hypothesised that ET-induced improvements in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{V}$$\end{document}V˙O2peak and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{Q}$$\end{document}Q˙peak are preserved following phlebotomy of the BV gained with ET during supine but not during upright cycling. Arteriovenous O2 difference (a-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\bar{\text{v}}$$\end{document}v¯O2diff; \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{V}$$\end{document}V˙O2/\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{Q}$$\end{document}Q˙), cardiac dimensions and muscle morphology were studied to assess their role for the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{V}$$\end{document}V˙O2peak improvement. Methods Twelve untrained subjects (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{V}$$\end{document}V˙O2peak: 44 ± 6 ml kg−1 min−1) completed 10 weeks of supervised ET (3 sessions/week). Echocardiography, muscle biopsies, haemoglobin mass (Hbmass) and BV were assessed pre- and post-ET. \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{V}$$\end{document}V˙O2peak and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{Q}$$\end{document}Q˙peak during upright and supine cycling were measured pre-ET, post-ET and immediately after Hbmass was reversed to the individual pre-ET level by phlebotomy. Results ET increased the Hbmass (3.3 ± 2.9%; P = 0.005), BV (3.7 ± 5.6%; P = 0.044) and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{V}$$\end{document}V˙O2peak during upright and supine cycling (11 ± 6% and 10 ± 8%, respectively; P ≤ 0.003). After phlebotomy, improvements in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{V}$$\end{document}V˙O2peak compared with pre-ET were preserved in both postures (11 ± 4% and 11 ± 9%; P ≤ 0.005), as was \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{Q}$$\end{document}Q˙peak (9 ± 14% and 9 ± 10%; P ≤ 0.081). The increased \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{Q}$$\end{document}Q˙peak and a-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\bar{\text{v}}$$\end{document}v¯O2diff accounted for 70% and 30% of the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{V}$$\end{document}V˙O2peak improvements, respectively. Markers of mitochondrial density (CS and COX-IV; P ≤ 0.007) and left ventricular mass (P = 0.027) increased. Conclusion The ET-induced increase in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{V}$$\end{document}V˙O2peak was preserved despite removing the increases in Hbmass and BV by phlebotomy, independent of posture. \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{V}$$\end{document}V˙O2peak increased primarily through elevated \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{Q}$$\end{document}Q˙peak but also through a widened a-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\bar{\text{v}}$$\end{document}v¯O2diff, potentially mediated by cardiac remodelling and mitochondrial biogenesis.
Collapse
|
40
|
Angleys H, Østergaard L. Krogh’s capillary recruitment hypothesis, 100 years on: Is the opening of previously closed capillaries necessary to ensure muscle oxygenation during exercise? Am J Physiol Heart Circ Physiol 2020; 318:H425-H447. [DOI: 10.1152/ajpheart.00384.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In 1919, August Krogh published his seminal work on skeletal muscle oxygenation. Krogh’s observations indicated that muscle capillary diameter is actively regulated, rather than a passive result of arterial blood flow regulation. Indeed, combining a mathematical model with the number of ink-filled capillaries he observed in muscle cross sections taken at different workloads, Krogh was able to account for muscle tissue’s remarkably efficient oxygen extraction during exercise in terms of passive diffusion from nearby capillaries. Krogh was awarded the 1920 Nobel Prize for his account of muscle oxygenation. Today, his observations are engrained in the notion of capillary recruitment: the opening of previously closed capillaries. While the binary distinction between “closed” and “open” was key to Krogh’s model argument, he did in fact report a continuum of capillary diameters, degrees of erythrocyte deformation, and perfusion states. Indeed, modern observations question the presence of closed muscle capillaries. We therefore examined whether changes in capillary flow patterns and hematocrit among open capillaries can account for oxygen extraction in muscle across orders-of-magnitude changes in blood flow. Our four-compartment model of oxygen extraction in muscle confirms this notion and provides a framework for quantifying the impact of changes in microvascular function on muscle oxygenation in health and disease. Our results underscore the importance of capillary function for oxygen extraction in muscle tissue as first proposed by Krogh. While Krogh’s model calculations still hold, our model predictions support that capillary recruitment can be viewed in the context of continuous, rather than binary, erythrocyte distributions among capillaries. NEW & NOTEWORTHY Oxygen extraction in working muscle is extremely efficient in view of single capillaries properties. The underlying mechanisms have been widely debated. Here, we develop a four-compartment model to quantify the influence of each of the hypothesized mechanisms on muscle oxygenation. Our results show that changes in capillary flow pattern and hematocrit can account for the high oxygen extraction observed in working muscle, while capillary recruitment is not required to account for these extraction properties.
Collapse
Affiliation(s)
- Hugo Angleys
- Center of Functionally Integrative Neuroscience and MindLab, Aarhus University, Aarhus, Denmark
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience and MindLab, Aarhus University, Aarhus, Denmark
- Department of Neuroradiology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
41
|
Gmada N, Al-Hadabi B, Haj Sassi R, Abdel Samia B, Bouhlel E. Relationship between oxygen pulse and arteriovenous oxygen difference in healthy subjects: Effect of exercise intensity. Sci Sports 2019. [DOI: 10.1016/j.scispo.2019.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Helgerud J, Øiestad BE, Wang E, Hoff J. Prediction of upper extremity peak oxygen consumption from heart rate during submaximal arm cycling in young and middle-aged adults. Eur J Appl Physiol 2019; 119:2589-2598. [PMID: 31586223 DOI: 10.1007/s00421-019-04225-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 09/04/2019] [Indexed: 12/27/2022]
Abstract
Based on the strong linear relationship between heart rate (HR) and oxygen consumption, the Åstrand-Ryhming cycle ergometer test (Astrand and Ryhming in J Appl Physiol 7:218-221, 1954) is a widely used submaximal test to predict whole body maximal oxygen consumption ([Formula: see text]). However, a similar test predicting peak oxygen consumption ([Formula: see text]) in the upper extremities is not established, and may be very useful for individuals unable to use their lower extremities or/and if separation of upper extremity aerobic capacity is sought after. Thus, the aim of the current study was to develop a submaximal test predicting [Formula: see text] in arm-cycling. Forty-nine healthy volunteers (25 women: 38 ± 13 years; 24 men: 39 ± 12 years) tested arm-cycle [Formula: see text] on a protocol with 4-min, 21-W increments to exhaustion. The data were contrasted to treadmill [Formula: see text] values. Arm-cycle [Formula: see text] was 66 ± 8% of [Formula: see text] (r = 0.92, p < 0.001; women: 1.9 ± 0.4 L min-1; men: 3.0 ± 0.7 L min-1). Arm-cycle HR and [Formula: see text] exhibited correlations of r = 0.79 and r = 0.78 for women and men, respectively, while corresponding correlations between work rate and [Formula: see text] were r = 0.95 (women) and r = 0.89 (men) (all p < 0.001). Arm-cycle [Formula: see text] prediction revealed a standard error of estimate (SEE) of 11.2% (women) and 10.2% (men), and was primarily due to individual arm-cycle maximal HR (women: 173 ± 13 beats min-1; men: 174 ± 10 beats min-1; correction factor: 5-7%). In conclusion, from a single 4-min stage of submaximal arm cycling, [Formula: see text] can be predicted with a SEE of 10-11%. The arm-cycle test may have important value for individuals who rely on arms in sports and occupations, and for patients with lower extremity disabilities.
Collapse
Affiliation(s)
- Jan Helgerud
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Prinsesse Kristinas gt. 3, 7006, Trondheim, Norway.,Myworkout, Medical Rehabilitation Clinic, Trondheim, Norway
| | - Britt Elin Øiestad
- Department of Physiotherapy, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, Oslo, Norway
| | - Eivind Wang
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Prinsesse Kristinas gt. 3, 7006, Trondheim, Norway. .,Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA. .,Faculty of Health Sciences and Social Care, Molde University College, Molde, Norway.
| | - Jan Hoff
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Prinsesse Kristinas gt. 3, 7006, Trondheim, Norway.,Myworkout, Medical Rehabilitation Clinic, Trondheim, Norway.,Department of Physical Medicine and Rehabilitation, St. Olavs University Hospital, Trondheim, Norway
| |
Collapse
|
43
|
Skattebo Ø, Losnegard T, Stadheim HK. Double-Poling Physiology and Kinematics of Elite Cross-Country Skiers: Specialized Long-Distance Versus All-Round Skiers. Int J Sports Physiol Perform 2019; 14:1190-1199. [PMID: 30840518 DOI: 10.1123/ijspp.2018-0471] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 01/16/2019] [Accepted: 01/25/2019] [Indexed: 11/18/2022]
Abstract
PURPOSE Long-distance cross-country skiers specialize to compete in races >50 km predominantly using double poling (DP). This emphasizes the need for highly developed upper-body endurance capacities and an efficient DP technique. The aim of this study was to investigate potential effects of specialization by comparing physiological capacities and kinematics in DP between long-distance skiers and skiers competing using both techniques (skating/classic) in several competition formats ("all-round skiers"). METHODS Seven male long-distance (32 [6] y, 183 [6] cm, 76 [5] kg) and 6 all-round (25 [3] y, 181 [5] cm, 75 [6] kg) skiers at high international levels conducted submaximal workloads and an incremental test to exhaustion for determination of peak oxygen uptake (VO2peak) and time to exhaustion (TTE) in DP and running. RESULTS In DP and running maximal tests, TTE showed no difference between groups. However, long-distance skiers had 5-6% lower VO2peak in running (81 [5] vs 85 [3] mL·kg-1·min-1; P = .07) and DP (73 [3] vs 78 [3] mL·kg-1·min-1; P < .01) than all-round skiers. In DP, long-distance skiers displayed lower submaximal O2 cost than all-round skiers (3.8 ± 3.6%; P < .05) without any major differences in cycle times or cyclic patterns of joint angles and center of mass. Lactate concentration over a wide range of speeds (45-85% of VO2peak) did not differ between groups, even though each workload corresponded to a slightly higher percentage of VO2peak for long-distance skiers (effect size: 0.30-0.68). CONCLUSIONS The long-distance skiers displayed lower VO2peak but compensated with lower O2 cost to perform equally with the all-round skiers on a short TTE test in DP. Furthermore, similar submaximal lactate concentration and reduced O2 cost could be beneficial in sustaining high skiing speeds in long-duration competitions.
Collapse
|
44
|
Shepherd JRA, Dominelli PB, Roy TK, Secomb TW, Hoyer JD, Oliveira JL, Joyner MJ. Modelling the relationships between haemoglobin oxygen affinity and the oxygen cascade in humans. J Physiol 2019; 597:4193-4202. [PMID: 31290158 DOI: 10.1113/jp277591] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 07/08/2019] [Indexed: 12/30/2022] Open
Abstract
KEY POINTS Haemoglobin affinity is an integral concept in exercise physiology that impacts oxygen uptake, delivery and consumption. How chronic alterations in haemoglobin affinity impact physiology is unknown. Using human haemoglobin variants, we demonstrate that the affinity of haemoglobin for oxygen is highly correlated with haemoglobin concentration. Using the Fick equation, we model how altered haemoglobin affinity and the associated haemoglobin concentration influences oxygen consumption at rest and during exercise via alterations in cardiac output and mixed-venous P O 2 . The combination of low oxygen affinity haemoglobin and reduced haemoglobin concentration seen in vivo may be unable to support oxygen uptake during moderate or heavy exercise. ABSTRACT The physiological implications, with regard to exercise, of altered haemoglobin affinity for oxygen are not fully understood. Data from the Mayo Clinic Laboratories database of rare human haemoglobin variants reveal a strong inverse correlation (r = -0.82) between blood haemoglobin concentration and P50 , an index of oxygen affinity [Hb = -0.3135(P50 ) + 23.636]. In the present study, observed P50 values for high, normal and low oxygen-affinity haemoglobin variants (13, 26 and 39 mmHg) and corresponding haemoglobin concentrations (19.5, 15.5 and 11.4 g dL-1 respectively) are used to model oxygen consumption as a fraction of delivery at rest ( V ̇ O 2 = 0.25 L min-1 , cardiac output = 5.70 L min-1 ) and during exercise ( V ̇ O 2 = 2.75 L min-1 , cardiac output = 18.9 l min-1 ). With high-affinity haemoglobin, the model shows that normal levels of oxygen consumption can be achieved at rest and during exercise at the assumed cardiac output levels, with reduced oxygen extraction both at rest (16.8% high affinity vs. 21.7% normal) and during exercise (55.8% high affinity vs. 72.2% normal). With low-affinity haemoglobin, which predicts low haemoglobin concentration, oxygen consumption at rest can be sustained with the assumed cardiac output, with increased oxygen extraction (31.1% low affinity vs. 21.7% normal). However, exercise at 2.75 l min-1 cannot be achieved with the assumed cardiac output, even with 100% oxygen extraction. In conclusion, the model indicates chronic alterations in P50 associate directly with Hb concentration, highlighting that human Hb variants can serve as 'experiments of nature' to address fundamental hypotheses on oxygen transport and exercise.
Collapse
Affiliation(s)
- John R A Shepherd
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Paolo B Dominelli
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Kinesiology, University of Waterloo, Waterloo, ON, USA
| | - Tuhin K Roy
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Timothy W Secomb
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - James D Hoyer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Jennifer L Oliveira
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Michael J Joyner
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
45
|
Influence of Equimolar Doses of Beetroot Juice and Sodium Nitrate on Time Trial Performance in Handcycling. Nutrients 2019; 11:nu11071642. [PMID: 31323779 PMCID: PMC6683039 DOI: 10.3390/nu11071642] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 12/17/2022] Open
Abstract
This study aimed to investigate the influence of a single dose of either beetroot juice (BR) or sodium nitrate (NIT) on performance in a 10 km handcycling time trial (TT) in able-bodied individuals and paracyclists. In total, 14 able-bodied individuals [mean ± SD; age: 28 ± 7 years, height: 183 ± 5 cm, body mass (BM): 82 ± 9 kg, peak oxygen consumption (VO2peak): 33.9 ± 4.2 mL/min/kg] and eight paracyclists (age: 40 ± 11 years, height: 176 ± 9cm, BM: 65 ± 9 kg, VO2peak: 38.6 ± 10.5 mL/min/kg) participated in the study. All participants had to perform three TT on different days, receiving either 6 mmol nitrate as BR or NIT or water as a placebo. Time-to-complete the TT, power output (PO), as well as oxygen uptake (VO2) were measured. No significant differences in time-to-complete the TT were found between the three interventions in able-bodied individuals (p = 0.80) or in paracyclists (p = 0.61). Furthermore, VO2 was not significantly changed after the ingestion of BR or NIT in either group (p < 0.05). The PO to VO2 ratio was significantly higher in some kilometers of the TT in able-bodied individuals (p < 0.05). The ingestion of BR or NIT did not increase handcycling performance in able-bodied individuals or in paracyclists.
Collapse
|
46
|
Hansson B, Olsen LA, Nicoll JX, von Walden F, Melin M, Strömberg A, Rullman E, Gustafsson T, Fry AC, Fernandez-Gonzalo R, Lundberg TR. Skeletal muscle signaling responses to resistance exercise of the elbow extensors are not compromised by a preceding bout of aerobic exercise. Am J Physiol Regul Integr Comp Physiol 2019; 317:R83-R92. [DOI: 10.1152/ajpregu.00022.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The current study examined the effects of a preceding bout of aerobic exercise (AE) on subsequent molecular signaling to resistance exercise (RE) of the elbow extensors. Eleven men performed unilateral elbow-extensor AE (~45 min at 70% peak workload) followed by unilateral RE (4 × 7 maximal repetitions) for both arms. Thus, one arm performed AE+RE interspersed with 15 min recovery, whereas the other arm conducted RE alone. Muscle biopsies were taken from the triceps brachii of each arm immediately before (PRE) and 15 min (POST1) and 3 h (POST2) after RE. Molecular markers involved in translation initiation, protein breakdown, mechanosignaling, and ribosome biogenesis were analyzed. Peak power during RE was reduced by 24% (±19%) when preceded by AE ( P < 0.05). Increases in PGC1a and MuRF1 expression were greater from PRE to POST2 in AE+RE compared with RE (18- vs. 3.5- and 4- vs. 2-fold, respectively, interaction, P < 0.05). Myostatin mRNA decreased in both arms ( P < 0.05). Phosphorylation of AMPK (Thr172) increased (2.5-fold), and 4E-BP1 (Thr37/46) decreased (2.0-fold), after AE (interactions, P < 0.05). p70 S6K, yes-associated protein, and c-Jun NH2-terminal kinase phosphorylation were unaltered, whereas focal adhesion kinase decreased ~1.5-fold, and β1-integrin increased ~1.3- to 1.5-fold, (time effect, P < 0.05). Abundance of 45S pre-ribosomal (r)RNA (internally transcribed spacer, ITS) decreased (~30%) after AE (interaction, P < 0.05), whereas CMYC mRNA was greater in AE+RE compared with RE (12-fold, P < 0.05). POLR1B abundance increased after both AE+RE and RE. All together, our results suggest that a single bout of AE leads to an immediate decrease in signaling for translation initiation and ribosome biogenesis. Yet, this did not translate into altered RE-induced signaling during the 3-h postexercise recovery period.
Collapse
Affiliation(s)
- Björn Hansson
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Luke A. Olsen
- Department of Biomedical Sciences, University of Kansas Medical Center, Kansas City, Kansas
| | - Justin X. Nicoll
- Department of Kinesiology, California State University, Northridge, California
| | - Ferdinand von Walden
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Michael Melin
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
- Heart and Vascular Theme, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Strömberg
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Eric Rullman
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
- Heart and Vascular Theme, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Thomas Gustafsson
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Andrew C. Fry
- Osness Human Performance Laboratories, University of Kansas, Lawrence, Kansas
| | - Rodrigo Fernandez-Gonzalo
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Tommy R. Lundberg
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
47
|
Willis SJ, Borrani F, Millet GP. Leg- vs arm-cycling repeated sprints with blood flow restriction and systemic hypoxia. Eur J Appl Physiol 2019; 119:1819-1828. [PMID: 31187281 DOI: 10.1007/s00421-019-04171-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/03/2019] [Indexed: 02/04/2023]
Abstract
PURPOSE The aim was to compare changes in peripheral and cerebral oxygenation, as well as metabolic and performance responses during conditions of blood flow restriction (BFR, bilateral vascular occlusion at 0% vs. 45% of resting pulse elimination pressure) and systemic hypoxia (~ 400 m, FIO2 20.9% vs. ~ 3800 m normobaric hypoxia, FIO2 13.1 ± 0.1%) during repeated sprint tests to exhaustion (RST) between leg- and arm-cycling exercises. METHODS Seven participants (26.6 ± 2.9 years old; 74.0 ± 13.1 kg; 1.76 ± 0.09 m) performed four sessions of RST (10-s maximal sprints with 20-s recovery until exhaustion) during both leg and arm cycling to measure power output and metabolic equivalents as well as oxygenation (near-infrared spectroscopy) of the muscle tissue and prefrontal cortex. RESULTS Mean power output was lower in arms than legs (316 ± 118 vs. 543 ± 127 W; p < 0.001) and there were no differences between conditions for a given limb. Arms demonstrated greater changes in concentration of deoxyhemoglobin (∆[HHb], - 9.1 ± 6.1 vs. - 6.5 ± 5.6 μm) and total hemoglobin concentration (∆[tHb], 15.0 ± 10.8 vs. 11.9 ± 7.9 μm), as well as the absolute maximum tissue saturation index (TSI, 62.0 ± 8.3 vs. 59.3 ± 8.1%) than legs, respectively (p < 0.001), demonstrating a greater capacity for oxygen extraction. Further, there were greater changes in tissue blood volume [tHb] during BFR only compared to all other conditions (p < 0.01 for all). CONCLUSIONS The combination of BFR and/or hypoxia led to increased changes in [HHb] and [tHb] likely due to greater vascular resistance, to which arms were more responsive than legs.
Collapse
Affiliation(s)
- Sarah J Willis
- Institute of Sport Sciences, Building Synathlon, Quarter UNIL-Centre, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland.
| | - Fabio Borrani
- Institute of Sport Sciences, Building Synathlon, Quarter UNIL-Centre, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
| | - Grégoire P Millet
- Institute of Sport Sciences, Building Synathlon, Quarter UNIL-Centre, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
48
|
Dominelli PB, Sheel AW. Exercise-induced arterial hypoxemia; some answers, more questions. Appl Physiol Nutr Metab 2019; 44:571-579. [DOI: 10.1139/apnm-2018-0468] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Exercise-induced arterial hypoxemia (EIAH) is characterized by the decrease in arterial oxygen tension and oxyhemoglobin saturation during dynamic aerobic exercise. Since the time of the initial observations, our knowledge and understanding of EIAH has grown, but many unknowns remain. The purpose of this review is to provide an update on recent findings, highlight areas of disagreement, and identify where information is lacking. Specifically, this review will place emphasis on (i) the occurrence of EIAH during submaximal exercise, (ii) whether there are sex differences in the development and severity of EIAH, and (iii) unresolved questions and future directions.
Collapse
Affiliation(s)
- Paolo B. Dominelli
- Department of Anesthesiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - A. William Sheel
- School of Kinesiology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
49
|
Julio UF, Panissa VLG, Cury RL, Agostinho MF, Esteves JVDC, Franchini E. Energy System Contributions in Upper and Lower Body Wingate Tests in Highly Trained Athletes. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2019; 90:244-250. [PMID: 30908121 DOI: 10.1080/02701367.2019.1576839] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
PURPOSE This study compared the energy system contributions and relationship between mechanical and energy system variables in upper and lower body Wingate tests (WAnT) in judo athletes. METHOD Eleven male judo athletes (18 ± 1 years, 174.3 ± 5.3 cm, 72.6 ± 9.9 kg, 11.8 ± 1.7% body fat) attended two laboratory sessions to perform two WAnT (upper and lower body) and two incremental tests (upper and lower body). The energy contributions of the oxidative, glycolytic, and phosphagen (ATP-PCr) systems were estimated based on oxygen consumption ( V˙O2 ) during WAnT, delta of lactate, and the fast phase of excess V˙O2 , respectively. RESULTS The upper and lower body presented similar results of oxidative (21 ± 4% vs 23 ± 3%) and ATP-PCr system contributions (29 ± 6% vs 32 ± 5%). The glycolytic system contribution (50 ± 5% vs 45 ± 4%) was higher in the upper body. The variance of mechanical variables in upper body was explained by glycolytic (R2 = 0.49-0.62) and oxidative systems (R2 = 0.44-0.49), whereas the variance of mechanical variables in lower body was explained by ATP-PCr (R2 = 0.41-0.55) and glycolytic systems (R2 = 0.62-0.94). CONCLUSIONS During WAnT, the glycolytic system presented the major energy contribution, being higher in the upper body. Moreover, mechanical and energy system variables presented a distinct relationship when comparing upper and lower body WAnT.
Collapse
|
50
|
Willis SJ, Peyrard A, Rupp T, Borrani F, Millet GP. Vascular and oxygenation responses of local ischemia and systemic hypoxia during arm cycling repeated sprints. J Sci Med Sport 2019; 22:1151-1156. [PMID: 31104973 DOI: 10.1016/j.jsams.2019.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/26/2019] [Accepted: 05/07/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVES The purpose of this study was to investigate the acute vascular and oxygenation responses to repeated sprint exercise during arm cycling with either blood flow restriction (BFR) or systemic hypoxia alone or in combination. DESIGN The study design was a single-blinded repeated-measures assessment of four conditions with two levels of normobaric hypoxia (400 m and 3800 m) and two levels of BFR (0% and 45% of total occlusion). METHODS Sixteen active participants (eleven men and five women; mean ± SD; 26.4 ± 4.0 years old; 73.8 ± 9.8 kg; 1.79 ± 0.07 m) completed 5 sessions (1 familiarization, 4 conditions). During each test visit, participants performed a repeated sprint arm cycling test to exhaustion (10 s maximal sprints with 20 s recovery until exhaustion) to measure power output, metabolic equivalents, blood flow, as well as oxygenation (near-infrared spectroscopy) of the biceps brachii muscle tissue. RESULTS Repeated sprint performance was decreased with both BFR and systemic hypoxia conditions. Greater changes between minimum-maximum of sprints in total hemoglobin concentration (Δ[tHb]) were demonstrated with BFR (400 m, 45% and 3800 m, 45%) than without (400 m, 0% and 3800 m, 0%) (p < 0.001 for both). Additionally, delta tissue saturation index (ΔTSI) decreased more with both BFR conditions than without (p < 0.001 for both). The absolute maximum TSI was progressively reduced with both BFR and systemic hypoxia (p < 0.001). CONCLUSIONS By combining high-intensity, repeated sprint exercise with BFR and/or systemic hypoxia, there is a robust stimulus detected by increased changes in blood perfusion placed on specific vascular mechanisms, which were more prominent in BFR conditions.
Collapse
Affiliation(s)
- Sarah J Willis
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Switzerland.
| | - Arthur Peyrard
- Laboratoire Interuniversitaire de Biologie de la Motricité (EA 7424 LIBM Chambéry), Université Savoie Mont Blanc, Campus Scientifique Technolac, France
| | - Thomas Rupp
- Laboratoire Interuniversitaire de Biologie de la Motricité (EA 7424 LIBM Chambéry), Université Savoie Mont Blanc, Campus Scientifique Technolac, France
| | - Fabio Borrani
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Grégoire P Millet
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| |
Collapse
|