1
|
Collister JP, Fritcher N, Nahey D. Role of the median preoptic nucleus in the development of chronic deoxycorticosterone acetate (DOCA)-salt hypertension. Physiol Rep 2024; 12:e16046. [PMID: 38749925 PMCID: PMC11096131 DOI: 10.14814/phy2.16046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024] Open
Abstract
We have previously reported that the subfornical organ (SFO) does not contribute to the chronic hypertensive response to DOCA-salt in rats, and yet the organum vasculosum of the lamina terminalis (OVLT) plays a significant role in the development of deoxycorticosterone acetate (DOCA)-salt hypertension. Since efferent fibers of the OVLT project to and through the median preoptic nucleus (MnPO), the present study was designed to test the hypothesis that the MnPO is necessary for DOCA-salt hypertension in the rat. Male Sprague-Dawley rats underwent SHAM (MnPOsham; n = 5) or electrolytic lesion of the MnPO (MnPOx; n = 7) followed by subsequent unilateral nephrectomy and telemetry instrumentation. After recovery and during the experimental protocol, rats consumed a 0.1% NaCl diet and 0.9% NaCl drinking solution. Mean arterial pressure (MAP) was recorded telemetrically 5 days before and 21 days after DOCA implantation (100 mg/rat; SQ). The chronic pressor response to DOCA was attenuated in MnPOx rats by Day 11 of treatment and continued such that MAP increased 25 ± 3 mmHg in MnPOsham rats by Day 21 of DOCA compared to 14 ± 3 mmHg in MnPOx rats. These results support the hypothesis that the MnPO is an important brain site of action and necessary for the full development of DOCA-salt hypertension in the rat.
Collapse
Affiliation(s)
- John P. Collister
- Department of Veterinary and Biomedical Sciences, College of Veterinary MedicineUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Nora Fritcher
- Department of Veterinary and Biomedical Sciences, College of Veterinary MedicineUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - David Nahey
- Department of Veterinary and Biomedical Sciences, College of Veterinary MedicineUniversity of MinnesotaSt. PaulMinnesotaUSA
| |
Collapse
|
2
|
Stocker SD, Kinsman BJ, Farquhar WB, Gyarmati G, Peti-Peterdi J, Sved AF. Physiological Mechanisms of Dietary Salt Sensing in the Brain, Kidney, and Gastrointestinal Tract. Hypertension 2024; 81:447-455. [PMID: 37671571 PMCID: PMC10915107 DOI: 10.1161/hypertensionaha.123.19488] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Excess dietary salt (NaCl) intake is strongly correlated with cardiovascular disease and is a major contributing factor to the pathogenesis of hypertension. NaCl-sensitive hypertension is a multisystem disorder that involves renal dysfunction, vascular abnormalities, and neurogenically-mediated increases in peripheral resistance. Despite a major research focus on organ systems and these effector mechanisms causing NaCl-induced increases in arterial blood pressure, relatively less research has been directed at elucidating how NaCl is sensed by various tissues to elicit these downstream effects. The purpose of this review is to discuss how the brain, kidney, and gastrointestinal tract sense NaCl including key cell types, the role of NaCl versus osmolality, and the underlying molecular and electrochemical mechanisms.
Collapse
Affiliation(s)
- Sean D. Stocker
- Department of Neurobiology, University of Pittsburgh School of Medicine
| | - Brian J Kinsman
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital
| | | | - Georgina Gyarmati
- Department of Physiology and Neuroscience and Medicine, Zilkha Neurogenetic Institute, University of Southern California
| | - Janos Peti-Peterdi
- Department of Physiology and Neuroscience and Medicine, Zilkha Neurogenetic Institute, University of Southern California
| | - Alan F. Sved
- Department of Neuroscience, University of Pittsburgh
| |
Collapse
|
3
|
Stocker SD. Altered Neuronal Discharge in the Organum Vasculosum of the Lamina Terminalis Contributes to Dahl Salt-Sensitive Hypertension. Hypertension 2023; 80:872-881. [PMID: 36752103 PMCID: PMC10023399 DOI: 10.1161/hypertensionaha.122.20798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023]
Abstract
BACKGROUND Salt-sensitive hypertension in humans and experimental models is associated with higher plasma and cerebrospinal fluid sodium chloride (NaCl) concentrations. Changes in extracellular NaCl concentrations are sensed by specialized neurons in the organum vasculosum of the lamina terminalis (OVLT). Stimulation of OVLT neurons increases sympathetic nerve activity (SNA) and arterial blood pressure (ABP), whereas chronic activation produces hypertension. Therefore, the present study tested whether OVLT neuronal activity was elevated and contributed to SNA and ABP in salt-sensitive hypertension. METHODS Male Dahl salt-sensitive (Dahl S) and Dahl salt-resistant (Dahl R) rats were fed 0.1% or 4.0% NaCl diets for 3 to 4 weeks and used for single-unit recordings of OVLT neurons or simultaneous recording of multiple sympathetic nerves during pharmacological inhibition of the OVLT. RESULTS Plasma and cerebrospinal fluid Na+ and Cl- concentrations were higher in Dahl S rats fed 4% versus 0.1% or Dahl R rats fed either diet. In vivo single-unit recordings revealed a significantly higher discharge of NaCl-responsive OVLT neurons in Dahl S rats fed 4% versus 0.1% or Dahl R rats. Interestingly, intracarotid infusion of hypertonic NaCl evoked greater increases in OVLT neuronal discharge of Dahl S versus Dahl R rats regardless of NaCl diet. The activity of non-NaCl-responsive OVLT neurons was not different across strain or diets. Finally, inhibition of OVLT neurons by local injection of the gamma-aminobutyric acid agonist muscimol produced a greater decrease in renal SNA, splanchnic SNA, and ABP of Dahl S rats fed 4% versus 0.1% or Dahl R rats. CONCLUSIONS A high salt diet activates NaCl-responsive OVLT neurons to increase SNA and ABP in salt-sensitive hypertension.
Collapse
Affiliation(s)
- Sean D Stocker
- Department of Neurobiology, University of Pittsburgh School of Medicine, PA
| |
Collapse
|
4
|
Stock JM, Chelimsky G, Edwards DG, Farquhar WB. Dietary sodium and health: How much is too much for those with orthostatic disorders? Auton Neurosci 2022; 238:102947. [PMID: 35131651 PMCID: PMC9296699 DOI: 10.1016/j.autneu.2022.102947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 11/09/2021] [Accepted: 01/16/2022] [Indexed: 10/19/2022]
Abstract
High dietary salt (NaCl) increases blood pressure (BP) and can adversely impact multiple target organs including the vasculature, heart, kidneys, brain, autonomic nervous system, skin, eyes, and bone. However, patients with orthostatic disorders are told to increase their NaCl intake to help alleviate symptoms. While there is evidence to support the short-term benefits of increasing NaCl intake in these patients, there are few studies assessing the benefits and side effects of long-term high dietary NaCl. The evidence reviewed suggests that high NaCl can adversely impact multiple target organs, often independent of BP. However, few of these studies have been performed in patients with orthostatic disorders. We conclude that the recommendation to increase dietary NaCl in patients with orthostatic disorders should be done with care, keeping in mind the adverse impact on dietary NaCl in people without orthostatic disorders. Modest, rather than robust, increases in NaCl intake may be sufficient to alleviate symptoms but also minimize any long-term negative effects.
Collapse
Affiliation(s)
- Joseph M Stock
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States of America
| | - Gisela Chelimsky
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - David G Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States of America
| | - William B Farquhar
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States of America.
| |
Collapse
|
5
|
Su Q, Yu XJ, Wang XM, Li HB, Li Y, Bai J, Qi J, Zhang N, Liu KL, Zhang Y, Zhu GQ, Kang YM. Bilateral Paraventricular Nucleus Upregulation of Extracellular Superoxide Dismutase Decreases Blood Pressure by Regulation of the NLRP3 and Neurotransmitters in Salt-Induced Hypertensive Rats. Front Pharmacol 2021; 12:756671. [PMID: 34899311 PMCID: PMC8656229 DOI: 10.3389/fphar.2021.756671] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/26/2021] [Indexed: 12/19/2022] Open
Abstract
Aims: Long-term salt diet induces the oxidative stress in the paraventricular nucleus (PVN) and increases the blood pressure. Extracellular superoxide dismutase (Ec-SOD) is a unique antioxidant enzyme that exists in extracellular space and plays an essential role in scavenging excessive reactive oxygen species (ROS). However, the underlying mechanism of Ec-SOD in the PVN remains unclear. Methods: Sprague-Dawley rats (150-200 g) were fed either a high salt diet (8% NaCl, HS) or normal salt diet (0.9% NaCl, NS) for 6 weeks. Each group of rats was administered with bilateral PVN microinjection of AAV-Ec-SOD (Ec-SOD overexpression) or AAV-Ctrl for the next 6 weeks. Results: High salt intake not only increased mean arterial blood pressure (MAP) and the plasma noradrenaline (NE) but also elevated the NAD(P)H oxidase activity, the NAD(P)H oxidase components (NOX2 and NOX4) expression, and ROS production in the PVN. Meanwhile, the NOD-like receptor protein 3 (NLRP3)-dependent inflammatory proteins (ASC, pro-cas-1, IL-β, CXCR, CCL2) expression and the tyrosine hydroxylase (TH) expression in the PVN with high salt diet were higher, but the GSH level, Ec-SOD activity, GAD67 expression, and GABA level were lower than the NS group. Bilateral PVN microinjection of AAV-Ec-SOD decreased MAP and the plasma NE, reduced NAD(P)H oxidase activity, the NOX2 and NOX4 expression, and ROS production, attenuated NLRP3-dependent inflammatory expression and TH, but increased GSH level, Ec-SOD activity, GAD67 expression, and GABA level in the PVN compared with the high salt group. Conclusion: Excessive salt intake not only activates oxidative stress but also induces the NLRP3-depensent inflammation and breaks the balance between inhibitory and excitability neurotransmitters in the PVN. Ec-SOD, as an essential anti-oxidative enzyme, eliminates the ROS in the PVN and decreases the blood pressure, probably through inhibiting the NLRP3-dependent inflammation and improving the excitatory neurotransmitter release in the PVN in the salt-induced hypertension.
Collapse
Affiliation(s)
- Qing Su
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| | - Xiao-Min Wang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| | - Hong-Bao Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| | - Ying Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| | - Juan Bai
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jie Qi
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| | - Nianping Zhang
- Department of Clinical Medicine, Medical School of Shanxi Datong University, Datong, China
| | - Kai-Li Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| | - Yan Zhang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| |
Collapse
|
6
|
Kawarazaki W, Fujita T. Role of Rho in Salt-Sensitive Hypertension. Int J Mol Sci 2021; 22:ijms22062958. [PMID: 33803946 PMCID: PMC8001214 DOI: 10.3390/ijms22062958] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/21/2022] Open
Abstract
A high amount of salt in the diet increases blood pressure (BP) and leads to salt-sensitive hypertension in individuals with impaired renal sodium excretion. Small guanosine triphosphatase (GTP)ase Rho and Rac, activated by salt intake, play important roles in the pathogenesis of salt-sensitive hypertension as key switches of intracellular signaling. Focusing on Rho, high salt intake in the central nervous system increases sodium concentrations of cerebrospinal fluid in salt-sensitive subjects via Rho/Rho kinase and renin-angiotensin system activation and causes increased brain salt sensitivity and sympathetic nerve outflow in BP control centers. In vascular smooth muscle cells, Rho-guanine nucleotide exchange factors and Rho determine sensitivity to vasoconstrictors such as angiotensin II (Ang II), and facilitate vasoconstriction via G-protein and Wnt pathways, leading to increased vascular resistance, including in the renal arteries, in salt-sensitive subjects with high salt intake. In the vascular endothelium, Rho/Rho kinase inhibits nitric oxide (NO) production and function, and high salt amounts further augment Rho activity via asymmetric dimethylarginine, an endogenous inhibitor of NO synthetase, causing aberrant relaxation and increased vascular tone. Rho-associated mechanisms are deeply involved in the development of salt-sensitive hypertension, and their further elucidation can help in developing effective protection and new therapies.
Collapse
|
7
|
DeLalio LJ, Sved AF, Stocker SD. Sympathetic Nervous System Contributions to Hypertension: Updates and Therapeutic Relevance. Can J Cardiol 2020; 36:712-720. [PMID: 32389344 DOI: 10.1016/j.cjca.2020.03.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022] Open
Abstract
The sympathetic nervous system plays a pivotal role in the long-term regulation of arterial blood pressure through the ability of the central nervous system to integrate neurohumoral signals and differentially regulate sympathetic neural input to specific end organs. Part 1 of this review will discuss neural mechanisms of salt-sensitive hypertension, obesity-induced hypertension, and the ability of prior experiences to sensitize autonomic networks. Part 2 of this review focuses on new therapeutic advances to treat resistant hypertension including renal denervation and carotid baroactivation. Both advances lower arterial blood pressure by reducing sympathetic outflow. We discuss potential mechanisms and areas of future investigation to target the sympathetic nervous system.
Collapse
Affiliation(s)
- Leon J DeLalio
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alan F Sved
- Department of Neuroscience, University of Pittsburgh, Pennsylvania, USA
| | - Sean D Stocker
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
8
|
Mills NJ, Sharma K, Haque M, Moore M, Teruyama R. Aldosterone Mediated Regulation of Epithelial Sodium Channel (ENaC) Subunits in the Rat Hypothalamus. Neuroscience 2018; 390:278-292. [PMID: 30195057 DOI: 10.1016/j.neuroscience.2018.08.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 08/10/2018] [Accepted: 08/28/2018] [Indexed: 01/23/2023]
Abstract
Current evidence suggests that the epithelial Na+ channel (ENaC) in the brain plays a significant role in the development of hypertension. ENaC is present in vasopressin (VP) neurons in the hypothalamus, suggesting that ENaC in VP neurons is involved in the regulation of blood pressure. Our recent study demonstrated that high dietary salt intake caused an increase in the expression and activity of ENaC that were responsible for the more depolarized basal membrane potential in VP neurons. A known regulator of ENaC expression, the mineralocorticoid receptor (MR), is present in VP neurons, suggesting that ENaC expression in VP neurons is regulated by aldosterone. In this study, the effects of aldosterone and corticosterone on ENaC were examined in acute hypothalamic slices. Real-time PCR and Western blot analysis showed that aldosterone and corticosterone treatment resulted in a significant increase in the expression of γENaC, but not α- or βENaC, and that this expression was attenuated by MR and glucocorticoid receptor (GR) antagonists. Moreover, chromatin immunoprecipitation demonstrated that the aldosterone-MR complex directly interacts with the promoter region of the γENaC gene. However, the treatment with aldosterone did not cause subcellular translocation of ENaC toward the plasma membrane nor an increase in ENaC Na+-leak current. These results indicate that expression of γENaC in VP neurons is induced by aldosterone and corticosterone through their MR and GR, respectively; however, aldosterone or corticosterone alone is not sufficient enough to increase ENaC current when they are applied to hypothalamic slices in vitro.
Collapse
Affiliation(s)
- Natalie J Mills
- Department of Biological Sciences, Louisiana State University, LA 70803, USA
| | - Kaustubh Sharma
- Department of Biological Sciences, Louisiana State University, LA 70803, USA
| | - Masudul Haque
- Department of Biological Sciences, Louisiana State University, LA 70803, USA
| | - Meagan Moore
- Department of Biological Sciences, Louisiana State University, LA 70803, USA
| | - Ryoichi Teruyama
- Department of Biological Sciences, Louisiana State University, LA 70803, USA.
| |
Collapse
|
9
|
Collister JP, Nahey DB, Hartson R, Wiedmeyer CE, Banek CT, Osborn JW. Lesion of the OVLT markedly attenuates chronic DOCA-salt hypertension in rats. Am J Physiol Regul Integr Comp Physiol 2018; 315:R568-R575. [PMID: 29897819 PMCID: PMC6172631 DOI: 10.1152/ajpregu.00433.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 11/22/2022]
Abstract
Lesions of the anteroventral third ventricle (AV3V region) are known to prevent many forms of experimental hypertension, including mineralocorticoid [deoxycorticosterone acetate (DOCA)-salt] hypertension in the rat. However, AV3V lesions include the organum vasculosum of the lamina terminalis (OVLT), portions of the median preoptic nucleus, and efferent fibers from the subfornical organ (SFO), thereby limiting the ability to define the individual contribution of these structures to the prevention of experimental hypertension. Having previously reported that the SFO does not play a significant role in the development of DOCA-salt hypertension, the present study was designed to test the hypothesis that the OVLT is necessary for DOCA-salt hypertension in the rat. In uninephrectomized OVLT-lesioned (OVLTx; n = 6) and sham-operated ( n = 4) Sprague-Dawley rats consuming a 0.1% NaCl diet and 0.9% NaCl drinking solution, 24-h mean arterial pressure (MAP) was recorded telemetrically 5 days before and 21 days after DOCA implantation (100 mg sc per rat). No differences in control MAP were observed between groups. The chronic pressor response to DOCA was attenuated in OVLTx rats such that MAP increased to 133 ± 3 mmHg in sham-operated rats by day 21 of DOCA compared with 120 ± 4 mmHg (means ± SE) in OVLTx rats. These results support the hypothesis that the OVLT is an important brain site of action for the pathogenesis of DOCA-salt hypertension in the rat.
Collapse
Affiliation(s)
- John P Collister
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota , St. Paul, Minnesota
| | - David B Nahey
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota , St. Paul, Minnesota
| | - Rochelle Hartson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota , St. Paul, Minnesota
| | - Charles E Wiedmeyer
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri , Columbia, Missouri
| | - Christopher T Banek
- Department of Integrative Biology and Physiology, University of Minnesota Medical School , Minneapolis, Minnesota
| | - John W Osborn
- Department of Integrative Biology and Physiology, University of Minnesota Medical School , Minneapolis, Minnesota
| |
Collapse
|
10
|
Mills NJ, Sharma K, Huang K, Teruyama R. Effect of dietary salt intake on epithelial Na + channels (ENaCs) in the hypothalamus of Dahl salt-sensitive rats. Physiol Rep 2018; 6:e13838. [PMID: 30156045 PMCID: PMC6113134 DOI: 10.14814/phy2.13838] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 07/22/2018] [Indexed: 01/02/2023] Open
Abstract
All three epithelial Na+ channel (ENaC) subunits (α, β, and γ) and the mineralocorticoid receptor (MR), a known regulator of ENaC, are located in vasopressin (VP) synthesizing magnocellular neurons in the hypothalamic supraoptic (SON) and paraventricular (PVN) nuclei. Our previous study showed that ENaC mediates a Na+ leak current that affects the steady-state membrane potential of VP neurons. This study was conducted in Dahl salt-sensitive (Dahl-SS) rats to determine if any abnormal responses in the expression of ENaC subunits and MR occur in the hypothalamus and kidney in response to a high dietary salt intake. After 21 days of high salt consumption, Dahl-SS rat resulted in a significant increase in γENaC expression and exhibited proteolytic cleavage of this subunit compared to Sprague-Dawley (SD) rats. Additionally, Dahl-SS rats had dense somato-dendritic γENaC immunoreactivity in VP neurons, which was absent in SD rats. In contrast, SD rats fed a high salt diet had significantly decreased αENaC subunit expression in the kidney and MR expression in the hypothalamus. Plasma osmolality measured daily for 22 days demonstrated that Dahl-SS rats fed a high salt diet had a steady increase in plasma osmolality, whereas SD rats had an initial increase that decreased to baseline levels. Findings from this study demonstrate that Dahl-SS rats lack a compensatory mechanism to down regulate ENaC during high dietary salt consumption, which may contribute to the development of hypertension.
Collapse
Affiliation(s)
- Natalie J. Mills
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisiana
| | - Kaustubh Sharma
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisiana
| | - Katie Huang
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisiana
| | - Ryoichi Teruyama
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisiana
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW The central nervous system plays a pivotal role in the regulation of extracellular fluid volume and consequently arterial blood pressure. Key hypothalamic regions sense and integrate neurohumoral signals to subsequently alter intake (thirst and salt appetite) and output (renal excretion via neuroendocrine and autonomic function). Here, we review recent findings that provide new insight into such mechanisms that may represent new therapeutic targets. RECENT FINDINGS Implementation of cutting edge neuroscience approaches such as opto- and chemogenetics highlight pivotal roles of circumventricular organs to impact body fluid homeostasis. Key signaling mechanisms within these areas include the N-terminal variant of transient receptor potential vannilloid type-1, NaX, epithelial sodium channel, brain electroneutral transporters, and non-classical actions of vasopressin. Despite the identification of several new mechanisms, future studies need to better define the neurochemical phenotype and molecular profiles of neurons within circumventricular organs for future therapeutic potential.
Collapse
|
12
|
Kinsman BJ, Browning KN, Stocker SD. NaCl and osmolarity produce different responses in organum vasculosum of the lamina terminalis neurons, sympathetic nerve activity and blood pressure. J Physiol 2017; 595:6187-6201. [PMID: 28678348 DOI: 10.1113/jp274537] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 06/21/2017] [Indexed: 01/12/2023] Open
Abstract
KEY POINTS Changes in extracellular osmolarity stimulate thirst and vasopressin secretion through a central osmoreceptor; however, central infusion of hypertonic NaCl produces a greater sympathoexcitatory and pressor response than infusion of hypertonic mannitol/sorbitol. Neurons in the organum vasculosum of the lamina terminalis (OVLT) sense changes in extracellular osmolarity and NaCl. In this study, we discovered that intracerebroventricular infusion or local OVLT injection of hypertonic NaCl increases lumbar sympathetic nerve activity, adrenal sympathetic nerve activity and arterial blood pressure whereas equi-osmotic mannitol/sorbitol did not alter any variable. In vitro whole-cell recordings demonstrate the majority of OVLT neurons are responsive to hypertonic NaCl or mannitol. However, hypertonic NaCl stimulates a greater increase in discharge frequency than equi-osmotic mannitol. Intracarotid or intracerebroventricular infusion of hypertonic NaCl evokes a greater increase in OVLT neuronal discharge frequency than equi-osmotic sorbitol. Collectively, these novel data suggest that subsets of OVLT neurons respond differently to hypertonic NaCl versus osmolarity and subsequently regulate body fluid homeostasis. These responses probably reflect distinct cellular mechanisms underlying NaCl- versus osmo-sensing. ABSTRACT Systemic or central infusion of hypertonic NaCl and other osmolytes readily stimulate thirst and vasopressin secretion. In contrast, central infusion of hypertonic NaCl produces a greater increase in arterial blood pressure (ABP) than equi-osmotic mannitol/sorbitol. Although these responses depend on neurons in the organum vasculosum of the lamina terminalis (OVLT), these observations suggest OVLT neurons may sense or respond differently to hypertonic NaCl versus osmolarity. The purpose of this study was to test this hypothesis in Sprague-Dawley rats. First, intracerebroventricular (icv) infusion (5 μl/10 min) of 1.0 m NaCl produced a significantly greater increase in lumbar sympathetic nerve activity (SNA), adrenal SNA and ABP than equi-osmotic sorbitol (2.0 osmol l-1 ). Second, OVLT microinjection (20 nl) of 1.0 m NaCl significantly raised lumbar SNA, adrenal SNA and ABP. Equi-osmotic sorbitol did not alter any variable. Third, in vitro whole-cell recordings demonstrate that 50% (18/36) of OVLT neurons display an increased discharge to both hypertonic NaCl (+7.5 mm) and mannitol (+15 mm). Of these neurons, 56% (10/18) displayed a greater discharge response to hypertonic NaCl vs mannitol. Fourth, in vivo single-unit recordings revealed that intracarotid injection of hypertonic NaCl produced a concentration-dependent increase in OVLT cell discharge, lumbar SNA and ABP. The responses to equi-osmotic infusions of hypertonic sorbitol were significantly smaller. Lastly, icv infusion of 0.5 m NaCl produced significantly greater increases in OVLT discharge and ABP than icv infusion of equi-osmotic sorbitol. Collectively, these findings indicate NaCl and osmotic stimuli produce different responses across OVLT neurons and may represent distinct cellular processes to regulate thirst, vasopressin secretion and autonomic function.
Collapse
Affiliation(s)
- Brian J Kinsman
- Department of Medicine, Division of Renal-Electrolyte, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA.,Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Kirsteen N Browning
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Sean D Stocker
- Department of Medicine, Division of Renal-Electrolyte, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| |
Collapse
|
13
|
Sharma K, Haque M, Guidry R, Ueta Y, Teruyama R. Effect of dietary salt intake on epithelial Na + channels (ENaC) in vasopressin magnocellular neurosecretory neurons in the rat supraoptic nucleus. J Physiol 2017; 595:5857-5874. [PMID: 28714095 PMCID: PMC5577521 DOI: 10.1113/jp274856] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/11/2017] [Indexed: 01/18/2023] Open
Abstract
KEY POINTS A growing body of evidence suggests that epithelial Na+ channels (ENaCs) in the brain play a significant role in the regulation of blood pressure; however, the brain structures that mediate the effect are not well understood. Because vasopressin (VP) neurons play a pivotal role in coordinating neuroendocrine and autonomic responses to maintain cardiovascular homeostasis, a basic understanding of the regulation and activity of ENaC in VP neurons is of great interest. We show that high dietary salt intake caused an increase in the expression and activity of ENaC which resulted in the steady state depolarization of VP neurons. The results help us understand one of the mechanisms underlying how dietary salt intake affects the activity of VP neurons via ENaC activity. ABSTRACT All three epithelial Na+ channel (ENaC) subunits (α, β and γ) are located in vasopressin (VP) magnocellular neurons in the hypothalamic supraoptic (SON) and paraventricular nuclei. Our previous study demonstrated that ENaC mediates a Na+ leak current that affects the steady state membrane potential in VP neurons. In the present study, we evaluated the effect of dietary salt intake on ENaC regulation and activity in VP neurons. High dietary salt intake for 7 days caused an increase in expression of β- and γENaC subunits in the SON and the translocation of αENaC immunoreactivity towards the plasma membrane. Patch clamp experiments on hypothalamic slices showed that the mean amplitude of the putative ENaC currents was significantly greater in VP neurons from animals that were fed a high salt diet compared with controls. The enhanced ENaC current contributed to the more depolarized basal membrane potential observed in VP neurons in the high salt diet group. These findings indicate that high dietary NaCl intake enhances the expression and activity of ENaCs, which augments synaptic drive by depolarizing the basal membrane potential close to the action potential threshold during hormonal demand. However, ENaCs appear to have only a minor role in the regulation of the firing activity of VP neurons in the absence of synaptic inputs as neither the mean intraburst frequency, burst duration, nor interspike interval variability of phasic bursting activity was affected. Moreover, ENaC activity did not affect the initiation, sustention, or termination of the phasic bursting generated in an intrinsic manner without synaptic inputs.
Collapse
Affiliation(s)
- Kaustubh Sharma
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Masudul Haque
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Richard Guidry
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Yoichi Ueta
- Department of Physiology, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Ryoichi Teruyama
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| |
Collapse
|
14
|
Stocker SD, Kinsman BJ, Sved AF. Recent Advances in Neurogenic Hypertension: Dietary Salt, Obesity, and Inflammation. Hypertension 2017; 70:HYPERTENSIONAHA.117.08936. [PMID: 28739972 PMCID: PMC5783795 DOI: 10.1161/hypertensionaha.117.08936] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neurally-mediated hypertension results from a dysregulation of sympathetic and/or neuroendocrine mechanisms to increase ABP. Multiple factors may exert multiple central effects to alter neural circuits and produce unique sympathetic signatures and elevate ABP. In this brief review, we have discussed novel observations regarding three contributing factors: dietary salt intake, obesity, and inflammation. However, the interaction among these and other factors is likely much more complex; recent studies suggest a prior exposure to one stimulus may sensitize the response to a subsequent hypertensive stimulus. Insight into the central mechanisms by which these factors selectively alter SNA or cooperatively interact to impact hypertension may represent a platform for novel therapeutic treatment strategies.
Collapse
Affiliation(s)
- Sean D Stocker
- From the Department of Medicine, Renal-Electrolyte Division (S.D.S., B.J.K.), Department of Neuroscience (A.F.S.), and University of Pittsburgh Hypertension Center (S.D.S.), University of Pittsburgh, PA.
| | - Brian J Kinsman
- From the Department of Medicine, Renal-Electrolyte Division (S.D.S., B.J.K.), Department of Neuroscience (A.F.S.), and University of Pittsburgh Hypertension Center (S.D.S.), University of Pittsburgh, PA
| | - Alan F Sved
- From the Department of Medicine, Renal-Electrolyte Division (S.D.S., B.J.K.), Department of Neuroscience (A.F.S.), and University of Pittsburgh Hypertension Center (S.D.S.), University of Pittsburgh, PA
| |
Collapse
|
15
|
Hypothalamic and inflammatory basis of hypertension. Clin Sci (Lond) 2017; 131:211-223. [PMID: 28057892 DOI: 10.1042/cs20160001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 11/07/2016] [Accepted: 11/21/2016] [Indexed: 02/07/2023]
Abstract
Hypertension is a major health problem with great consequences for public health. Despite its role as the primary cause of significant morbidity and mortality associated with cardiovascular disease, the pathogenesis of essential hypertension remains largely unknown. The central nervous system (CNS) in general, and the hypothalamus in particular, are intricately involved in the development and maintenance of hypertension. Over the last several decades, the understanding of the brain's role in the development of hypertension has dramatically increased. This brief review is to summarize the neural mechanisms of hypertension with a focus on neuroendocrine and neurotransmitter involvement, highlighting recent findings that suggest that hypothalamic inflammation disrupts key signalling pathways to affect the central control of blood pressure, and therefore suggesting future development of interventional strategies that exploit recent findings pertaining to the hypothalamic control of blood pressure as well as the inflammatory-sympathetic mechanisms involved in hypertension.
Collapse
|
16
|
Kinsman BJ, Simmonds SS, Browning KN, Stocker SD. Organum Vasculosum of the Lamina Terminalis Detects NaCl to Elevate Sympathetic Nerve Activity and Blood Pressure. Hypertension 2016; 69:163-170. [PMID: 27895193 DOI: 10.1161/hypertensionaha.116.08372] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/07/2016] [Accepted: 10/31/2016] [Indexed: 02/05/2023]
Abstract
High-salt diet elevates NaCl concentrations in the cerebrospinal fluid to increase sympathetic nerve activity (SNA) in salt-sensitive hypertension. The organum vasculosum of the lamina terminalis (OVLT) resides along the rostral wall of the third ventricle, lacks a complete blood-brain barrier, and plays a pivotal role in body fluid homeostasis. Therefore, the present study used a multifaceted approach to examine whether OVLT neurons of Sprague-Dawley rats are intrinsically sensitive to changes in extracellular NaCl concentrations and mediate the sympathoexcitatory responses to central NaCl loading. Using in vitro whole-cell recordings, step-wise increases in extracellular NaCl concentrations (2.5-10 mmol/L) produced concentration-dependent excitation of OVLT neurons. Additionally, these excitatory responses were intrinsic to OVLT neurons because hypertonic NaCl evoked inward currents, despite pharmacological synaptic blockade. In vivo single-unit recordings demonstrate that the majority of OVLT neurons (72%, 13/19) display concentration-dependent increases in neuronal discharge to intracarotid (50 μL/15 s) or intracerebroventricular infusion (5 μL/10 minutes) of hypertonic NaCl. Microinjection of hypertonic NaCl (30 nL/60 s) into the OVLT, but not adjacent areas, increased lumbar SNA, adrenal SNA, and arterial blood pressure in a concentration-dependent manner. Renal SNA decreased and splanchnic SNA remained unaffected. Finally, local inhibition of OVLT neurons with the GABAA receptor agonist muscimol (24 nL/10 s) significantly attenuated the sympathoexcitatory and pressor responses to intracerebroventricular infusion of 0.5 mol/L or 1.0 mol/L NaCl. Collectively, these findings indicate that OVLT neurons detect changes in extracellular NaCl concentrations to selectively alter SNA and raise arterial blood pressure.
Collapse
Affiliation(s)
- Brian J Kinsman
- From the Department of Medicine, Division of Renal-Electrolyte, University of Pittsburgh School of Medicine, PA (B.J.K., S.D.S.); and Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA (B.J.K., S.S.S., K.N.B.)
| | - Sarah S Simmonds
- From the Department of Medicine, Division of Renal-Electrolyte, University of Pittsburgh School of Medicine, PA (B.J.K., S.D.S.); and Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA (B.J.K., S.S.S., K.N.B.)
| | - Kirsteen N Browning
- From the Department of Medicine, Division of Renal-Electrolyte, University of Pittsburgh School of Medicine, PA (B.J.K., S.D.S.); and Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA (B.J.K., S.S.S., K.N.B.)
| | - Sean D Stocker
- From the Department of Medicine, Division of Renal-Electrolyte, University of Pittsburgh School of Medicine, PA (B.J.K., S.D.S.); and Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA (B.J.K., S.S.S., K.N.B.).
| |
Collapse
|
17
|
Stocker SD, Lang SM, Simmonds SS, Wenner MM, Farquhar WB. Cerebrospinal Fluid Hypernatremia Elevates Sympathetic Nerve Activity and Blood Pressure via the Rostral Ventrolateral Medulla. Hypertension 2015; 66:1184-90. [PMID: 26416846 DOI: 10.1161/hypertensionaha.115.05936] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 09/04/2015] [Indexed: 02/07/2023]
Abstract
Elevated NaCl concentrations of the cerebrospinal fluid increase sympathetic nerve activity (SNA) in salt-sensitive hypertension. Neurons of the rostral ventrolateral medulla (RVLM) play a pivotal role in the regulation of SNA and receive mono- or polysynaptic inputs from several hypothalamic structures responsive to hypernatremia. Therefore, the present study investigated the contribution of RVLM neurons to the SNA and pressor response to cerebrospinal fluid hypernatremia. Lateral ventricle infusion of 0.15 mol/L, 0.6 mol/L, and 1.0 mol/L NaCl (5 µL/10 minutes) produced concentration-dependent increases in lumbar SNA, adrenal SNA, and arterial blood pressure, despite no change in splanchnic SNA and a decrease in renal SNA. Ganglionic blockade with chlorisondamine or acute lesion of the lamina terminalis blocked or significantly attenuated these responses, respectively. RVLM microinjection of the gamma-aminobutyric acid (GABAA) agonist muscimol abolished the sympathoexcitatory response to intracerebroventricular infusion of 1 mol/L NaCl. Furthermore, blockade of ionotropic glutamate, but not angiotensin II type 1, receptors significantly attenuated the increase in lumbar SNA, adrenal SNA, and arterial blood pressure. Finally, single-unit recordings of spinally projecting RVLM neurons revealed 3 distinct populations based on discharge responses to intracerebroventricular infusion of 1 mol/L NaCl: type I excited (46%; 11/24), type II inhibited (37%; 9/24), and type III no change (17%; 4/24). All neurons with slow conduction velocities were type I cells. Collectively, these findings suggest that acute increases in cerebrospinal fluid NaCl concentrations selectively activate a discrete population of RVLM neurons through glutamate receptor activation to increase SNA and arterial blood pressure.
Collapse
Affiliation(s)
- Sean D Stocker
- From the Departments of Cellular and Molecular Physiology (S.D.S., S.M.L., S.S.S.) and Neural and Behavioral Sciences (S.D.S.), Pennsylvania State University College of Medicine, Hershey; and Department of Kinesiology and Applied Physiology (M.M.W., W.B.F.), University of Delaware, Newark.
| | - Susan M Lang
- From the Departments of Cellular and Molecular Physiology (S.D.S., S.M.L., S.S.S.) and Neural and Behavioral Sciences (S.D.S.), Pennsylvania State University College of Medicine, Hershey; and Department of Kinesiology and Applied Physiology (M.M.W., W.B.F.), University of Delaware, Newark
| | - Sarah S Simmonds
- From the Departments of Cellular and Molecular Physiology (S.D.S., S.M.L., S.S.S.) and Neural and Behavioral Sciences (S.D.S.), Pennsylvania State University College of Medicine, Hershey; and Department of Kinesiology and Applied Physiology (M.M.W., W.B.F.), University of Delaware, Newark
| | - Megan M Wenner
- From the Departments of Cellular and Molecular Physiology (S.D.S., S.M.L., S.S.S.) and Neural and Behavioral Sciences (S.D.S.), Pennsylvania State University College of Medicine, Hershey; and Department of Kinesiology and Applied Physiology (M.M.W., W.B.F.), University of Delaware, Newark
| | - William B Farquhar
- From the Departments of Cellular and Molecular Physiology (S.D.S., S.M.L., S.S.S.) and Neural and Behavioral Sciences (S.D.S.), Pennsylvania State University College of Medicine, Hershey; and Department of Kinesiology and Applied Physiology (M.M.W., W.B.F.), University of Delaware, Newark
| |
Collapse
|
18
|
Stocker SD, Monahan KD, Browning KN. Neurogenic and sympathoexcitatory actions of NaCl in hypertension. Curr Hypertens Rep 2014; 15:538-46. [PMID: 24052211 DOI: 10.1007/s11906-013-0385-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Excess dietary salt intake is a major contributing factor to the pathogenesis of salt-sensitive hypertension. Strong evidence suggests that salt-sensitive hypertension is attributed to renal dysfunction, vascular abnormalities, and activation of the sympathetic nervous system. Indeed, sympathetic nerve transections or interruption of neurotransmission in various brain centers lowers arterial blood pressure (ABP) in many salt-sensitive models. The purpose of this article is to discuss recent evidence that supports a role of plasma or cerebrospinal fluid hypernatremia as a key mediator of sympathoexcitation and elevated ABP. Both experimental and clinical studies using time-controlled sampling have documented that a diet high in salt increases plasma and cerebrospinal fluid sodium concentration. To the extent it has been tested, acute and chronic elevations in sodium concentration activates the sympathetic nervous system in animals and humans. A further understanding of how the central nervous system detects changes in plasma or cerebrospinal fluid sodium concentration may lead to new therapeutic treatment strategies in salt-sensitive hypertension.
Collapse
Affiliation(s)
- Sean D Stocker
- Department of Cellular & Molecular Physiology, Pennsylvania State University College of Medicine, 500 University Drive H166, Hershey, PA, 17033, USA,
| | | | | |
Collapse
|
19
|
Osborn JW, Olson DM, Guzman P, Toney GM, Fink GD. The neurogenic phase of angiotensin II-salt hypertension is prevented by chronic intracerebroventricular administration of benzamil. Physiol Rep 2014; 2:e00245. [PMID: 24744909 PMCID: PMC3966233 DOI: 10.1002/phy2.245] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/15/2014] [Accepted: 01/17/2014] [Indexed: 11/07/2022] Open
Abstract
Hypertension induced by chronic administration of angiotensin II (AngII) is exacerbated by high‐salt intake. Previous studies have demonstrated that this salt‐sensitive component is due to increased activity of the sympathetic nervous system, suggesting an interaction of plasma AngII with sodium‐sensitive regions of the brain. This study tested the hypothesis that the salt‐sensitive component of AngII‐induced hypertension would be prevented by intracerebroventricular (ICV) administration of the sodium channel/transporter blocker benzamil. Male Sprague Dawley rats were instrumented to measure mean arterial pressure (MAP) by radio telemetry and for ICV administration of benzamil or vehicle and placed in metabolic cages for measurement of sodium and water intake and excretion. In rats consuming a high‐salt diet (2.0% NaCl) and treated with ICV vehicle, administration of AngII (150 ng/kg/min, sc) for 13 days increased MAP by ~30 mmHg. ICV administration of benzamil (16 nmol/day) had no effect during the first 5 days of AngII, but returned MAP to control levels by Day 13. There were minimal or no differences between ICV vehicle or benzamil groups in regards to sodium and water balance. A lower dose of ICV benzamil administered ICV at 8 nmol/day had no effect on the MAP response to AngII in rats on a high‐salt diet. Finally, in contrast to rats on a high‐salt diet, AngII had negligible effects on MAP in rats consuming a low‐salt diet (0.1% NaCl) and there were no differences in any variable between ICV benzamil (16 nmol/day) and ICV vehicle‐treated groups. We conclude that the salt‐sensitive component of AngII‐induced hypertension is dependent on benzamil blockable sodium channels or transporters in the brain. Chronic intracerebroventricular infusion of benzamil at 16 nmol/day attenuates AngII–salt hypertension. This effect is not observed at a dose of 8 nmol/day.
Collapse
Affiliation(s)
- John W Osborn
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota
| | - Dalay M Olson
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota
| | - Pilar Guzman
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota
| | - Glenn M Toney
- Department of Physiology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Gregory D Fink
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
20
|
Miller RL, Wang MH, Gray PA, Salkoff LB, Loewy AD. ENaC-expressing neurons in the sensory circumventricular organs become c-Fos activated following systemic sodium changes. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1141-52. [PMID: 24049115 DOI: 10.1152/ajpregu.00242.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The sensory circumventricular organs (CVOs) are specialized collections of neurons and glia that lie in the midline of the third and fourth ventricles of the brain, lack a blood-brain barrier, and function as chemosensors, sampling both the cerebrospinal fluid and plasma. These structures, which include the organum vasculosum of the lamina terminalis (OVLT), subfornical organ (SFO), and area postrema (AP), are sensitive to changes in sodium concentration but the cellular mechanisms involved remain unknown. Epithelial sodium channel (ENaC)-expressing neurons of the CVOs may be involved in this process. Here we demonstrate with immunohistochemical and in situ hybridization methods that ENaC-expressing neurons are densely concentrated in the sensory CVOs. These neurons become c-Fos activated, a marker for neuronal activity, after various manipulations of peripheral levels of sodium including systemic injections with hypertonic saline, dietary sodium deprivation, and sodium repletion after prolonged sodium deprivation. The increases seen c-Fos activity in the CVOs were correlated with parallel increases in plasma sodium levels. Since ENaCs play a central role in sodium reabsorption in kidney and other epithelia, we present a hypothesis here suggesting that these channels may also serve a related function in the CVOs. ENaCs could be a significant factor in modulating CVO neuronal activity by controlling the magnitude of sodium permeability in neurons. Hence, some of the same circulating hormones controlling ENaC expression in kidney, such as angiotensin II and atrial natriuretic peptide, may coordinate ENaC expression in sensory CVO neurons and could potentially orchestrate sodium appetite, osmoregulation, and vasomotor sympathetic drive.
Collapse
Affiliation(s)
- Rebecca L Miller
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri
| | | | | | | | | |
Collapse
|
21
|
Upregulation of the Renin-Angiotensin-aldosterone-ouabain system in the brain is the core mechanism in the genesis of all types of hypertension. Int J Hypertens 2012; 2012:242786. [PMID: 23316343 PMCID: PMC3534212 DOI: 10.1155/2012/242786] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 11/23/2012] [Indexed: 01/19/2023] Open
Abstract
Basic research using animal models points to a causal role of the central nervous system in essential hypertension; however, since clinical research is technically difficult to perform, this connection has not been confirmed in humans. Recently, renal nerve ablation in humans proved to continuously decrease blood pressure in resistant hypertension. Furthermore, when electrical stimulation was continuously applied to the carotid baroreceptor nerve of human adults, their blood pressure lowered. These findings promoted the concept that the central nervous system may actually be involved in the pathogenesis of essential hypertension, which is closely associated with excess sodium intake. We have demonstrated that endogenous digitalis plays a key role in hypertension associated with excess sodium intake via sympathetic activation in rats. Increased sodium concentration inside the brain activates epithelial sodium channels and the renin-angiotensin-aldosterone system in the brain. Aldosterone releases ouabain from neurons in the paraventricular nucleus in the hypothalamus. Angiotensin II and aldosterone of peripheral origin reach the brain to augment sympathetic outflow. Collectively essential hypertension associated with excess sodium intake and obesity, renovascular hypertension, and primary aldosteronism and pseudoaldosteronism all seem to have a common cause originating from the central nervous system.
Collapse
|
22
|
Gabor A, Leenen FHH. Central neuromodulatory pathways regulating sympathetic activity in hypertension. J Appl Physiol (1985) 2012; 113:1294-303. [PMID: 22773773 DOI: 10.1152/japplphysiol.00553.2012] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The classical neurotransmitters, glutamate and GABA, mediate fast (milliseconds) synaptic transmission and modulate its effectiveness through slow (seconds to minutes) signaling processes. Angiotensinergic pathways, from the lamina terminalis to the paraventricular nucleus (PVN)/supraoptic nucleus and rostral ventrolateral medulla (RVLM), are activated by stimuli such as circulating angiotensin type II (Ang II), cerebrospinal fluid (CSF) sodium ion concentration ([Na(+)]), and possibly plasma aldosterone, leading to sympathoexcitation, largely by decreasing GABA and increasing glutamate release. The aldosterone-endogenous ouabain (EO) pathway is a much slower neuromodulatory pathway. Aldosterone enhances EO release, and the latter increases chronic activity in angiotensinergic pathways by, e.g., increasing expression for Ang I receptor (AT(1)R) and NADPH oxidase subunits in the PVN. Blockade of this pathway does not affect the initial sympathoexcitatory and pressor responses but to a large extent, prevents chronic responses to CSF [Na(+)] or Ang II. Recruitment of these two neuromodulatory pathways allows the central nervous system (CNS) to shift gears to rapidly cause and sustain sympathetic hyperactivity in an efficient manner. Decreased GABA release, increased glutamate release, and enhanced AT(1)R activation in, e.g., the PVN and RVLM contribute to the elevated blood pressure in a number of hypertension models. In Dahl S rats and spontaneous hypertensive rats, high salt activates the CNS aldosterone-EO pathway, and the salt-induced hypertension can be prevented/reversed by specific CNS blockade of any of the steps in the cascade from aldosterone synthase to AT(1)R. Further studies are needed to advance our understanding of how and where in the brain these rapid, slow, and very slow CNS pathways are activated and interact in models of hypertension and other disease states associated with chronic sympathetic hyperactivity.
Collapse
Affiliation(s)
- Alexander Gabor
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | | |
Collapse
|
23
|
Teruyama R, Sakuraba M, Wilson LL, Wandrey NEJ, Armstrong WE. Epithelial Na⁺ sodium channels in magnocellular cells of the rat supraoptic and paraventricular nuclei. Am J Physiol Endocrinol Metab 2012; 302:E273-85. [PMID: 22045317 PMCID: PMC3287361 DOI: 10.1152/ajpendo.00407.2011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The epithelial Na⁺ channels (ENaCs) are present in kidney and contribute to Na⁺ and water homeostasis. All three ENaC subunits (α, β, and γ) were demonstrated in the cardiovascular regulatory centers of the rat brain, including the magnocellular neurons (MNCs) in the supraoptic nucleus (SON) and the paraventricular nucleus (PVN). However, the functional significance of ENaCs in vasopressin (VP) and oxytocin (OT) synthesizing MNCs is completely unknown. In this study, we show with immunocytochemical double-labeling that the α-ENaC is colocalized with either VP or OT in MNCs in the SON and PVN. In addition, parvocellular neurons in the dorsal, ventrolateral, and posterior subregions of the PVN (not immunoreactive to VP or OT) are also immunoreactive for α-ENaC. In contrast, immunoreactivity to β- and γ-ENaC is colocalized with VP alone within the MNCs. Furthermore, immunoreactivity for a known target for ENaC expression, the mineralcorticoid receptor (MR), is colocalized with both VP and OT in MNCs. Using single-cell RT-PCR, we detected mRNA for all three ENaC subunits and MR in cDNA libraries derived from single MNCs. In whole cell voltage clamp recordings, application of the ENaC blocker benzamil reversibly reduced a steady-state inward current and decreased cell membrane conductance approximately twofold. Finally, benzamil caused membrane hyperpolarization in a majority of VP and about one-half of OT neurons in both spontaneously firing and quiet cells. These results strongly suggest the presence of functional ENaCs that may affect the firing patterns of MNCs, which ultimately control the secretion of VP and OT.
Collapse
Affiliation(s)
- Ryoichi Teruyama
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | | | | | | |
Collapse
|
24
|
Blaustein MP, Leenen FHH, Chen L, Golovina VA, Hamlyn JM, Pallone TL, Van Huysse JW, Zhang J, Wier WG. How NaCl raises blood pressure: a new paradigm for the pathogenesis of salt-dependent hypertension. Am J Physiol Heart Circ Physiol 2011; 302:H1031-49. [PMID: 22058154 DOI: 10.1152/ajpheart.00899.2011] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Excess dietary salt is a major cause of hypertension. Nevertheless, the specific mechanisms by which salt increases arterial constriction and peripheral vascular resistance, and thereby raises blood pressure (BP), are poorly understood. Here we summarize recent evidence that defines specific molecular links between Na(+) and the elevated vascular resistance that directly produces high BP. In this new paradigm, high dietary salt raises cerebrospinal fluid [Na(+)]. This leads, via the Na(+)-sensing circumventricular organs of the brain, to increased sympathetic nerve activity (SNA), a major trigger of vasoconstriction. Plasma levels of endogenous ouabain (EO), the Na(+) pump ligand, also become elevated. Remarkably, high cerebrospinal fluid [Na(+)]-evoked, locally secreted (hypothalamic) EO participates in a pathway that mediates the sustained increase in SNA. This hypothalamic signaling chain includes aldosterone, epithelial Na(+) channels, EO, ouabain-sensitive α(2) Na(+) pumps, and angiotensin II (ANG II). The EO increases (e.g.) hypothalamic ANG-II type-1 receptor and NADPH oxidase and decreases neuronal nitric oxide synthase protein expression. The aldosterone-epithelial Na(+) channel-EO-α(2) Na(+) pump-ANG-II pathway modulates the activity of brain cardiovascular control centers that regulate the BP set point and induce sustained changes in SNA. In the periphery, the EO secreted by the adrenal cortex directly enhances vasoconstriction via an EO-α(2) Na(+) pump-Na(+)/Ca(2+) exchanger-Ca(2+) signaling pathway. Circulating EO also activates an EO-α(2) Na(+) pump-Src kinase signaling cascade. This increases the expression of the Na(+)/Ca(2+) exchanger-transient receptor potential cation channel Ca(2+) signaling pathway in arterial smooth muscle but decreases the expression of endothelial vasodilator mechanisms. Additionally, EO is a growth factor and may directly participate in the arterial structural remodeling and lumen narrowing that is frequently observed in established hypertension. These several central and peripheral mechanisms are coordinated, in part by EO, to effect and maintain the salt-induced elevation of BP.
Collapse
Affiliation(s)
- Mordecai P Blaustein
- Dept. of Physiology, Univ. of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD, 21201, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Takahashi H, Yoshika M, Komiyama Y, Nishimura M. The central mechanism underlying hypertension: a review of the roles of sodium ions, epithelial sodium channels, the renin-angiotensin-aldosterone system, oxidative stress and endogenous digitalis in the brain. Hypertens Res 2011; 34:1147-60. [PMID: 21814209 PMCID: PMC3324327 DOI: 10.1038/hr.2011.105] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 05/08/2011] [Accepted: 05/15/2011] [Indexed: 02/07/2023]
Abstract
The central nervous system has a key role in regulating the circulatory system by modulating the sympathetic and parasympathetic nervous systems, pituitary hormone release, and the baroreceptor reflex. Digoxin- and ouabain-like immunoreactive materials were found >20 years ago in the hypothalamic nuclei. These factors appeared to localize to the paraventricular and supraoptic nuclei and the nerve fibers at the circumventricular organs and supposed to affect electrolyte balance and blood pressure. The turnover rate of these materials increases with increasing sodium intake. As intracerebroventricular injection of ouabain increases blood pressure via sympathetic activation, an endogenous digitalis-like factor (EDLF) was thought to regulate cardiovascular system-related functions in the brain, particularly after sodium loading. Experiments conducted mainly in rats revealed that the mechanism of action of ouabain in the brain involves sodium ions, epithelial sodium channels (ENaCs) and the renin-angiotensin-aldosterone system (RAAS), all of which are affected by sodium loading. Rats fed a high-sodium diet develop elevated sodium levels in their cerebrospinal fluid, which activates ENaCs. Activated ENaCs and/or increased intracellular sodium in neurons activate the RAAS; this releases EDLF in the brain, activating the sympathetic nervous system. The RAAS promotes oxidative stress in the brain, further activating the RAAS and augmenting sympathetic outflow. Angiotensin II and aldosterone of peripheral origin act in the brain to activate this cascade, increasing sympathetic outflow and leading to hypertension. Thus, the brain Na(+)-ENaC-RAAS-EDLF axis activates sympathetic outflow and has a crucial role in essential and secondary hypertension. This report provides an overview of the central mechanism underlying hypertension and discusses the use of antihypertensive agents.
Collapse
Affiliation(s)
- Hakuo Takahashi
- Department of Clinical Sciences and Laboratory Medicine, Kansai Medical University, Hirakata City, Osaka, Japan.
| | | | | | | |
Collapse
|
26
|
Abrams JM, Engeland WC, Osborn JW. Effect of intracerebroventricular benzamil on cardiovascular and central autonomic responses to DOCA-salt treatment. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1500-10. [PMID: 20926762 DOI: 10.1152/ajpregu.00431.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
DOCA-salt treatment increases mean arterial pressure (MAP), while central infusion of benzamil attenuates this effect. The present study used c-Fos immunoreactivity to assess the role of benzamil-sensitive proteins in the brain on neural activity following chronic DOCA-salt treatment. Uninephrectomized rats were instrumented with telemetry transmitters for measurement of MAP and with an intracerebroventricular (ICV) cannula for benzamil administration. Groups included rats receiving DOCA-salt treatment alone, rats receiving DOCA-salt treatment with ICV benzamil, and appropriate controls. At study completion, MAP in vehicle-treated DOCA-salt rats reached 142 ± 4 mmHg. In contrast DOCA-salt rats receiving ICV benzamil had lower MAP (124 ± 3 mmHg). MAP in normotensive controls was 102 ± 3 mmHg. c-Fos immunoreactivity was quantified in the supraoptic nucleus (SON) and across subnuclei of the hypothalamic paraventricular nucleus (PVN), as well as other cardiovascular regulatory sites. Compared with vehicle-treated normotensive controls, c-Fos expression was increased in the SON and all subnuclei of the PVN, but not in other key autonomic nuclei, such as the rostroventrolateral medulla. Moreover, benzamil treatment decreased c-Fos immunoreactivity in the SON and in medial parvocellular and posterior magnocellular neurons of the PVN in DOCA-salt rats but not areas associated with regulation of sympathetic activity. Our results do not support the hypothesis that DOCA-salt increases neuronal activity (as indicated by c-Fos immunoreactivity) of other key regions that regulate sympathetic activity. These results suggest that ICV benzamil attenuates DOCA-salt hypertension by modulation of neuroendocrine-related PVN nuclei rather than inhibition of PVN sympathetic premotor neurons in the PVN and rostroventrolateral medulla.
Collapse
Affiliation(s)
- Joanna M Abrams
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | |
Collapse
|
27
|
Toney GM, Stocker SD. Hyperosmotic activation of CNS sympathetic drive: implications for cardiovascular disease. J Physiol 2010; 588:3375-84. [PMID: 20603334 DOI: 10.1113/jphysiol.2010.191940] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Evidence now indicates that exaggerated sympathetic nerve activity (SNA) significantly contributes to salt-sensitive cardiovascular diseases. Although CNS mechanisms that support the elevation of SNA in various cardiovascular disease models have been intensively studied, many mechanistic details remain unknown. In recent years, studies have shown that SNA can rise as a result of both acute and chronic increases of body fluid osmolality. These findings have raised the possibility that salt-sensitive cardiovascular diseases could result, at least in part, from direct osmosensory activation of CNS sympathetic drive. In this brief review we emphasize recent findings from several laboratories, including our own, which demonstrate that neurons of the forebrain organum vasculosum laminae terminalis (OVLT) play a pivotal role in triggering hyperosmotic activation of SNA by recruiting neurons in specific regions of the hypothalamus, brainstem and spinal cord. Although OVLT neurons are intrinsically osmosensitive and shrink when exposed to extracellular hypertonicity, it is not yet clear if these processes are functionally linked. Whereas acute hypertonic activation of OVLT neurons critically depends on TRPV1 channels, studies in TRPV1(-/-) mice suggest that acute and long-term osmoregulatory responses remain largely intact. Therefore, acute and chronic osmosensory transduction by OVLT neurons may be mediated by distinct mechanisms. We speculate that organic osmolytes such as taurine and possibly novel processes such as extracellular acidification could contribute to long-term osmosensory transduction by OVLT neurons and might therefore participate in the elevation of SNA in salt-sensitive cardiovascular diseases.
Collapse
Affiliation(s)
- Glenn M Toney
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA.
| | | |
Collapse
|
28
|
Sulyok E, Pál J, Vajda Z, Steier R, Dóczi T. Benzamil prevents brain water accumulation in hyponatraemic rats. Acta Neurochir (Wien) 2009; 151:1121-5. [PMID: 19415169 DOI: 10.1007/s00701-009-0354-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2008] [Accepted: 01/19/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND It has been recently shown that A6 cells exposed to hyponatraemic stress respond with increased sodium uptake via activation of benzamil-sensitive sodium channels. This study was performed, therefore, to explore the possible involvement of benzamil-sensitive sodium channels and cellular sodium influx in brain oedema formation in hyponatraemic rats. METHODS Four groups of male Wistar rats were studied (n = 13 in each group). Animals in group I with normonatraemia received intracerebroventricular (icv) 0.9% NaCl; animals in group II-IV were made hyponatraemic by intraperitoneal administration of isotonic glucose solution in a dose of 20% per body weight. Rats were pretreated with icv 0.9% NaCl (group II), 120 microg arginine vasopressin (AVP) (group III) or 4 microg benzamil-hydrochloride (group IV). Plasma sodium (ion-selective electrode) plasma osmolality (vapour pressure osmometer) and brain sodium and potassium content (flame photometer) as well as brain water content (desiccation method) were measured after a 2-h hydration period. RESULTS Plasma sodium, osmolality and tissue sodium and potassium contents were markedly depressed in hyponatraemic rats (group II-IV, p < 0.0005 for each group) irrespective of drug pretreatment. Brain water content, however, responded to hyponatraemia with an increase from 77.55 +/- 1.00% to 78.45 +/- 0.94% (p < 0.01), and it was further augmented to 79.35 +/- 0.80% (p < 0.0005) by icv AVP pretreatment. By contrast, benzamil administration prevented the rise of brain water caused by hyponatraemia (77.61 +/- 1.04%). CONCLUSION Early in the course of hyponatraemia, brain sodium channels may be activated, and the subsequent cellular sodium uptake may generate osmotic gradient to allow passive water flow into the cells. The simultaneous reduction of osmotic water conductivity of brain-specific aquaporin-4 by hyponatraemia, however, may limit water accumulation.
Collapse
|
29
|
Abrams JM, Osborn JW. A role for benzamil-sensitive proteins of the central nervous system in the pathogenesis of salt-dependent hypertension. Clin Exp Pharmacol Physiol 2008; 35:687-94. [PMID: 18387084 DOI: 10.1111/j.1440-1681.2008.04929.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
1. Although increasing evidence suggests that salt-sensitive hypertension is a disorder of the central nervous system (CNS), little is known about the critical proteins (e.g. ion channels or exchangers) that play a role in the pathogenesis of the disease. 2. Central pathways involved in the regulation of arterial pressure have been investigated. In addition, systems such as the renin-angiotensin-aldosterone axis, initially characterized in the periphery, are present in the CNS and seem to play a role in the regulation of arterial pressure. 3. Central administration of amiloride, or its analogue benzamil hydrochloride, has been shown to attenuate several forms of salt-sensitive hypertension. In addition, intracerebroventricular (i.c.v.) benzamil effectively blocks pressor responses to acute osmotic stimuli, such as i.c.v. hypertonic saline. Amiloride or its analogues have been shown to interact with the brain renin-angiotensin-aldosterone system (RAAS) and to effect the expression of endogenous ouabain-like compounds. Alterations of brain RAAS function and/or endobain expression could play a role in the interaction between amiloride compounds and arterial pressure. Peripheral treatments with benzamil, even at higher doses than those given centrally, have little or no effect on arterial pressure. These data provide strong evidence that benzamil-sensitive proteins (BSPs) of the CNS play a role in cardiovascular responsiveness to sodium. 4. Mineralocorticoids have been linked to human hypertension; many patients with essential hypertension respond well to pharmacological agents antagonizing the mineralocorticoid receptor and certain genetic forms of hypertension are caused by chronically elevated levels of aldosterone. The deoxycorticosterone acetate (DOCA)-salt model of hypertension is a benzamil-sensitive model that incorporates several factors implicated in the aetiology of human disease, including mineralocorticoid action and increased dietary sodium. The DOCA-salt model is ideal for investigating the role of BSPs in the pathogenesis of hypertension, because mineralocorticoid action has been shown to modulate the activity of at least one benzamil-sensitive protein, namely the epithelial sodium channel. 5. Characterizing the BSPs involved in the pathogenesis of hypertension may provide a novel clinical target. Further studies are necessary to determine which BSPs are involved and where, in the nervous system, they are located.
Collapse
Affiliation(s)
- Joanna M Abrams
- Graduate Program in Neuroscience, Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
30
|
Wang H, Huang BS, Leenen FHH. Brain sodium channels and ouabainlike compounds mediate central aldosterone-induced hypertension. Am J Physiol Heart Circ Physiol 2003; 285:H2516-23. [PMID: 12933342 DOI: 10.1152/ajpheart.00299.2003] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Central nervous system (CNS) effects of mineralocorticoids participate in the development of salt-sensitive hypertension. In the brain, mineralocorticoids activate amiloride-sensitive sodium channels, and we hypothesized that this would lead to increased release of ouabainlike compounds (OLC) and thereby sympathetic hyperactivity and hypertension. In conscious Wistar rats, intracerebroventricular infusion of aldosterone at 300 or 900 ng/h in artificial cerebrospinal fluid (aCSF) with 0.145 M Na+ for 2 h did not change baseline mean arterial pressure (MAP), renal sympathetic nerve activity (RSNA), or heart rate (HR). Intracerebroventricular infusion of aCSF containing 0.16 M Na+ (versus 0.145 M Na+ in regular aCSF) did not change MAP or RSNA, but significant increases in MAP, RSNA, and HR were observed after intracerebroventricular infusion of aldosterone at 300 ng/h for 2 h. Intracerebroventricular infusion of aCSF containing 0.3 M Na+ increased MAP, RSNA, and HR significantly more after intracerebroventricular infusion of aldosterone versus vehicle. After intracerebroventricular infusion of aldosterone, the MAP, RSNA, and HR responses to intracerebroventricular infusion of aCSF containing 0.16 M Na+ were blocked by blockade of brain OLC with intracerebroventricular infusion of Fab fragments or of brain sodium channels with intracerebroventricular benzamil. Chronic intracerebroventricular infusion of aldosterone at 25 ng/h in aCSF with 0.15 M Na+ for 2 wk increased MAP by 15-20 mmHg and increased hypothalamic OLC by 30% and pituitary OLC by 60%. Benzamil blocked all these responses to aldosterone. These findings indicate that in the brain, mineralocorticoids activate brain sodium channels, with small increases in CSF Na+ leading to increases in brain OLC, sympathetic outflow, and blood pressure.
Collapse
Affiliation(s)
- Hao Wang
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada K1Y 4W7
| | | | | |
Collapse
|
31
|
Chen QH, Toney GM. AT(1)-receptor blockade in the hypothalamic PVN reduces central hyperosmolality-induced renal sympathoexcitation. Am J Physiol Regul Integr Comp Physiol 2001; 281:R1844-53. [PMID: 11705769 DOI: 10.1152/ajpregu.2001.281.6.r1844] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Autonomic neurons in the hypothalamic paraventricular nucleus (PVN) are innervated by osmotic-sensitive regions of the lamina terminalis, receive input from ANG II-containing cells, and express AT(1) ANG II receptors. Therefore, we hypothesized that ANG II actions within the PVN could underlie hyperosmolality-induced increases in renal sympathetic nerve activity (RSNA). In anesthetized baroreceptor-denervated rats, graded concentrations of NaCl (0.30, 0.9, 1.5, and 2.1 osmol/l) were injected (300 microl) centrally via the internal carotid artery (ICA) and produced corresponding increases in mean arterial pressure (MAP) and RSNA. In addition, equivalent hyperosmotic loads (1.5 osmol/l) of NaCl, glucose, and mannitol each significantly (P < 0.05) increased MAP and RSNA. The same stimuli had no effect when administered intravenously. Bilateral PVN microinjections (100 nl) of the AT(1)-receptor antagonist losartan (80 nmol) before osmotic challenge had no effect on resting RSNA but significantly (P < 0.05) reduced RSNA responses to hyperosmotic NaCl (n = 7), glucose (n = 6), and mannitol (n = 6). Increases in RSNA evoked by hyperosmotic NaCl were significantly (P < 0.05) attenuated approximately 20 min after losartan injection and recovered within 60-120 min. In contrast, losartan outside the PVN as well as vehicle (saline) within the PVN failed to alter RSNA responses to ICA hyperosmotic NaCl. Results suggest that elevated RSNA after central sodium/osmotic activation is mediated, at least in part, by a synaptic mechanism involving AT(1)-receptor activation within the PVN.
Collapse
Affiliation(s)
- Q H Chen
- Department of Physiology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | |
Collapse
|
32
|
Huang BS, Wang H, Leenen FH. Enhanced sympathoexcitatory and pressor responses to central Na+ in Dahl salt-sensitive vs. -resistant rats. Am J Physiol Heart Circ Physiol 2001; 281:H1881-9. [PMID: 11668047 DOI: 10.1152/ajpheart.2001.281.5.h1881] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An enhanced responsiveness to increases in cerebrospinal fluid (CSF) Na+ by high salt intake may contribute to salt-sensitive hypertension in Dahl salt-sensitive (S) rats. To test this hypothesis, sympathetic and pressor responses to acute and chronic increases in CSF Na+ were evaluated. In conscious young (5-6 wk old) and adult (10-11 wk old) Dahl S and salt-resistant (R) rats as well as weight-matched Wistar rats, hemodynamic [blood pressure (BP) and heart rate (HR)] and sympathetic [renal sympathetic nerve activity (RSNA)] responses to 10-min intracerebroventricular infusions of artificial CSF (aCSF) and Na+-rich aCSF (containing 0.2-0.45 M Na+) were evaluated. Intracerebroventricular Na+-rich aCSF increased BP, RSNA, and HR in a dose-related manner. The extent of these increases was significantly larger in Dahl S versus Dahl R or Wistar rats and young versus adult Dahl S rats. In a second set of experiments, young Dahl S and R rats received a chronic intracerebroventricular infusion of aCSF or Na+-rich (0.8 M) aCSF (5 microl/h) for 14 days, with the use of osmotic minipumps. On day 14 in conscious rats, CSF was sampled and BP, HR, and RSNA were recorded at rest and in response to air stress, intracerebroventricular alpha2-adrenoceptor agonist guanabenz, intracerebroventricular ouabain, and intravenous phenylephrine and nitroprusside to estimate baroreflex function. The infusion of Na+-rich aCSF versus aCSF increased CSF Na+ concentration to the same extent but caused severe versus mild hypertension in Dahl S and Dahl R rats, respectively. After central Na+ loading, hypothalamus "ouabain" significantly increased in Dahl S and only tended to increase in Dahl R rats. Moreover, sympathoexcitatory and pressor responses to intracerebroventricular exogenous ouabain were attenuated by Na+-rich aCSF to a greater extent in Dahl S versus Dahl R rats. Responses to air-jet stress or intracerebroventricular guanabenz were enhanced by Na+-rich aCSF in both strains, but the extent of enhancement was significantly larger in Dahl S versus Dahl R. Na+-rich aCSF impaired arterial baroreflex control of RSNA more markedly in Dahl S versus R rats. These findings indicate that genetic control of mechanisms linking CSF Na+ with brain "ouabain" is altered in Dahl S rats toward sympathetic hyperactivity and hypertension.
Collapse
Affiliation(s)
- B S Huang
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | | | | |
Collapse
|