1
|
Evaluation of gut-blood barrier dysfunction in various models of trauma, hemorrhagic shock, and burn injury. J Trauma Acute Care Surg 2017; 83:944-953. [DOI: 10.1097/ta.0000000000001654] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
2
|
Neutrophil Accumulation in the Small Intestine Contributes to Local Tissue Destruction Following Combined Radiation and Burn Injury. J Burn Care Res 2016; 37:97-105. [PMID: 25501789 DOI: 10.1097/bcr.0000000000000220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The threat of nuclear disaster makes combined radiation and burn injury (CRI) a relevant topic when discussing modern trauma, as burn injuries are likely to occur with detonation of a conventional nuclear weapon. Previous studies in a murine model have shown that there is a breakdown of the gut epithelium and subsequent bacterial translocation into mesenteric lymph nodes after CRI. This study examines the early innate immune response of the small intestine after CRI. Using a previously established murine model of 5 to 5.5 Gy total body irradiation combined with 15% TBSA burn, the injury response of the small intestine was examined at 24, 48, and 72 hours by visual assessment, myeloperoxidase, and cytokine measurement. At 24 hours, intestinal damage as measured by villus blunting, crypt debris, and decreased mitosis, was apparent in all injury groups but the derangements persisted out to 72 hours only with CRI. The prolonged intestinal damage in CRI was accompanied by a 2-fold (P < .05) elevation in myeloperoxidase activity over sham animals at 48 hours and persisted as a 3-fold (P < .05) elevation at 72 hours after injury. Corresponding levels of KC were 8-fold (P < .05) higher than sham at 48 hours with persistent elevation at 72 hours. An enhanced innate immune response, partially mediated by the influx of neutrophils into the gastrointestinal tract is contributing to the hyperinflammatory state seen after CRI. Attenuation of the local gastrointestinal inflammatory response may play a major role in managing victims after nuclear disaster.
Collapse
|
3
|
Stevenson AW, Randall SM, Boyd JH, Wood FM, Fear MW, Duke JM. Burn leads to long-term elevated admissions to hospital for gastrointestinal disease in a West Australian population based study. Burns 2016; 43:665-673. [PMID: 27720266 DOI: 10.1016/j.burns.2016.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/08/2016] [Accepted: 09/11/2016] [Indexed: 11/18/2022]
Abstract
BACKGROUND While the most obvious impact of burn is on the skin, systemic responses also occur after burn, including intestinal inflammation. The objective of this study was to assess if burns are associated with increased long-term admissions for gastrointestinal diseases. METHODS A population-based longitudinal study using linked hospital morbidity and death data from Western Australia was undertaken of adults aged at least 15 years when hospitalized for a first burn (n=20,561) in 1980-2012. A frequency matched non-injury comparison cohort was randomly selected from Western Australia's birth registrations and electoral roll (n=80,960). Crude admission rates and summed days in hospital for digestive diseases were calculated. Negative binomial and Cox proportional hazards regression modeling were used to generate incidence rate ratios (IRR) and hazard ratios (HR), respectively. RESULTS After adjustment for demographic factors and pre-existing health status, the burn cohort had 1.54 times (95% confidence interval (CI): 1.47-1.62) as many admissions and almost three times the number of days in hospital with a digestive system diagnosis (IRR, 95% CI: 2.90, 2.60-3.25) than the uninjured cohort. Significantly elevated adjusted post-burn incident rates were identified, with the risk decreasing with increasing time: in the first month (HR, 95% CI: 3.02, 1.89-4.82), from one month to five years (HR, 95% CI: 1.42, 1.31-1.54), and from five to twenty years after burn (HR, 95% CI: 1.13, 1.06-1.20). CONCLUSIONS Findings of increased hospital admission rates and prolonged length of hospital stay for gastrointestinal diseases in the burn cohort provide evidence to support that burns have effects that persist long after the initial injury.
Collapse
Affiliation(s)
- Andrew W Stevenson
- Burn Injury Research Unit, School of Surgery, University of Western Australia, Perth, Western Australia, Australia.
| | - Sean M Randall
- Centre for Data Linkage, Curtin University, Perth, Western Australia, Australia.
| | - James H Boyd
- Centre for Data Linkage, Curtin University, Perth, Western Australia, Australia.
| | - Fiona M Wood
- Burn Injury Research Unit, School of Surgery, University of Western Australia, Perth, Western Australia, Australia; Burns Service of Western Australia, Fiona Stanley Hospital and Princess Margaret Hospital, Perth, Western Australia, Australia.
| | - Mark W Fear
- Burn Injury Research Unit, School of Surgery, University of Western Australia, Perth, Western Australia, Australia.
| | - Janine M Duke
- Burn Injury Research Unit, School of Surgery, University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
4
|
Teixeira MCA, Pacheco FTF, Souza JN, Silva MLS, Inês EJ, Soares NM. Strongyloides stercoralis Infection in Alcoholic Patients. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4872473. [PMID: 28105424 PMCID: PMC5220430 DOI: 10.1155/2016/4872473] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/13/2016] [Indexed: 12/28/2022]
Abstract
The course of Strongyloides stercoralis infection is usually asymptomatic with a low discharge of rhabditoid larva in feces. However, the deleterious effects of alcohol consumption seem to enhance the susceptibility to infection, as shown by a fivefold higher strongyloidiasis frequency in alcoholics than in nonalcoholics. Moreover, the association between S. stercoralis infection and alcoholism presents a risk for hyperinfection and severe strongyloidiasis. There are several possible mechanisms for the disruption of the host-parasite equilibrium in ethanol-addicted patients with chronic strongyloidiasis. One explanation is that chronic ethanol intake stimulates the hypothalamic-pituitary-adrenal (HPA) axis to produce excessive levels of endogenous cortisol, which in turn can lead to a deficiency in type 2 T helper cells (Th2) protective response, and also to mimic the parasite hormone ecdysone, which promotes the transformation of rhabditiform larvae to filariform larvae, leading to autoinfection. Therefore, when untreated, alcoholic patients are continuously infected by this autoinfection mechanism. Thus, the early diagnosis of strongyloidiasis and treatment can prevent serious forms of hyperinfection in ethanol abusers.
Collapse
Affiliation(s)
- Marcia C. A. Teixeira
- Faculdade de Farmácia, Universidade Federal da Bahia, 40170115 Salvador, BA, Brazil
- *Marcia C. A. Teixeira:
| | - Flavia T. F. Pacheco
- Faculdade de Farmácia, Universidade Federal da Bahia, 40170115 Salvador, BA, Brazil
| | - Joelma N. Souza
- Faculdade de Farmácia, Universidade Federal da Bahia, 40170115 Salvador, BA, Brazil
| | - Mônica L. S. Silva
- Faculdade de Farmácia, Universidade Federal da Bahia, 40170115 Salvador, BA, Brazil
| | - Elizabete J. Inês
- Faculdade de Farmácia, Universidade Federal da Bahia, 40170115 Salvador, BA, Brazil
| | - Neci M. Soares
- Faculdade de Farmácia, Universidade Federal da Bahia, 40170115 Salvador, BA, Brazil
| |
Collapse
|
5
|
Abstract
Intestinal inflammation has been linked with multiorgan failure in patients with burn and other traumatic injuries. We hypothesized that markers of intestinal inflammation are detectible noninvasively. Fecal samples were collected from seven severely burned patients and 15 control patients for the measurement of inflammatory cytokines using a multiplex assay kit. In addition, fecal levels of myeloperoxidase (MPO) and elastase were measured using standard procedures. Compared with a control group, levels of inflammatory cytokines were significantly increased in the burn group. Interleukin (IL)-6 increased to a mean (± SEM) of 2.16 ± 0.61 to 3.81 ± 0.49 pg/mg (P < .05), as did IL-8 (3.32 ± 0.76 to 20.51 ± 6.65 pg/mg; P < .05), IL-12 (6.23±0.98 to 8.11±0.95pg/mg; P=0.01), IL-13 (3.86 ± 0.32 to 11.83 ± 1.47 pg/mg; P < .05), monocyte chemoattractant protein-1 (2.78 ± 2.61 to 6.5 ± 3.97 pg/mg; P < .05), MPO (13.41 ± 1.40 to 24.52 ± 4.31 units/mg protein; P < .05), and elastase (2.46 ± 0.38 to 5.08 ± 0.72 pg/mL; P < .05). Our results suggest that markers of intestinal inflammation are measurable by noninvasive means and are increased after burn injury compared with controls. Of note, increased IL-8 correlated with increased MPO and elastase activity, suggesting a role for neutrophil activation in burn-mediated intestinal inflammation. Thus, these inflammatory cytokine profiles may be valuable biomarkers of intestinal inflammation after burn injury.
Collapse
|
6
|
Haick AK, Rzepka JP, Brandon E, Balemba OB, Miura TA. Neutrophils are needed for an effective immune response against pulmonary rat coronavirus infection, but also contribute to pathology. J Gen Virol 2013; 95:578-590. [PMID: 24323639 DOI: 10.1099/vir.0.061986-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Polymorphonuclear neutrophils (PMN) infiltrate the respiratory tract early after viral infection and can contribute to both host defence and pathology. Coronaviruses are important causes of respiratory tract infections, ranging from mild to severe depending on the viral strain. This study evaluated the role of PMN during a non-fatal pulmonary coronavirus infection in the natural host. Rat coronavirus (RCoV) causes respiratory disease in adult rats, characterized by an early PMN response, viral replication and inflammatory lesions in the lungs, mild weight loss and effective resolution of infection. To determine their role during RCoV infection, PMN were depleted and the effects on disease progression, viral replication, inflammatory response and lung pathology were analysed. Compared with RCoV infection in control animals, PMN-depleted rats had worsened disease with weight loss, clinical signs, mortality and prolonged pulmonary viral replication. PMN-depleted animals had fewer macrophages and lymphocytes in the respiratory tract, corresponding to lower chemokine levels. Combined with in vitro experiments showing that PMN express cytokines and chemokines in response to RCoV-infected alveolar epithelial cells, these findings support a role for PMN in eliciting an inflammatory response to RCoV infection. Despite their critical role in the protection from severe disease, the presence of PMN was correlated with haemorrhagic lesions, epithelial barrier permeability and cellular inflammation in the lungs. This study demonstrated that while PMN are required for an effective antiviral response, they also contribute to lung pathology during RCoV infection.
Collapse
Affiliation(s)
- Anoria K Haick
- Department of Biological Sciences, University of Idaho, 875 Perimeter Dr., MS 3051, Moscow, ID 83844-3051, USA
| | - Joanna P Rzepka
- Department of Biological Sciences, University of Idaho, 875 Perimeter Dr., MS 3051, Moscow, ID 83844-3051, USA
| | - Elizabeth Brandon
- Department of Biological Sciences, University of Idaho, 875 Perimeter Dr., MS 3051, Moscow, ID 83844-3051, USA
| | - Onesmo B Balemba
- Department of Biological Sciences, University of Idaho, 875 Perimeter Dr., MS 3051, Moscow, ID 83844-3051, USA
| | - Tanya A Miura
- Department of Biological Sciences, University of Idaho, 875 Perimeter Dr., MS 3051, Moscow, ID 83844-3051, USA
| |
Collapse
|
7
|
Role of non-muscle myosin light chain kinase in neutrophil-mediated intestinal barrier dysfunction during thermal injury. Shock 2013; 38:436-43. [PMID: 22814287 DOI: 10.1097/shk.0b013e318268c731] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neutrophils and non-muscle myosin light chain kinase (nmMLCK) have been implicated in intestinal microvascular leakage and mucosal hyperpermeability in inflammation and trauma. The aim of this study was to characterize the role of nmMLCK in neutrophil-dependent gut barrier dysfunction following thermal injury, a common form of trauma that typically induces inflammation in multiple organs. Histopathological examination of the small intestine in mice after a full-thickness burn revealed morphological evidence of mucosa inflammation characterized by neutrophil infiltration into the lamina propria, epithelial contraction, and narrow villi with blunt brush borders and loss of goblet cells. Compared with their wild-type counterparts, nmMLCK mice displayed diminished morphological abnormalities. Likewise, intravital microscopic studies showed significant leukocyte adhesion in intestinal microvessels after burn, a response that was blunted in the absence of nmMLCK. Functionally, thermal injury significantly increased the gut lumen-to-blood transport of fluorescein isothiocyanate-dextran (4 kd), and this hyperpermeability was attenuated by either neutrophil depletion or nmMLCK deficiency. Consistent with the in vivo observations, in vitro assays with Caco-2 epithelial cell monolayers revealed a decrease in transcellular electric resistance coupled with myosin light chain phosphorylation, actomyosin ring condensation, and claudin-1 internalization upon stimulation with fMLP (N-formyl-methionyl-leucyl-phenylalanine)-activated neutrophils. Pretreatment of the cells with the MLCK inhibitor ML-7 prevented the tight junction responses. Taken together, the results suggest that nmMLCK plays an important role in neutrophil-dependent intestinal barrier dysfunction during inflammatory injury.
Collapse
|
8
|
Fazal N, Shelip A, Siddiqui E, Ali A, Azim AC, Al-Ghoul WM. Differential effector responses by circulating/blood and tissue/peritoneal neutrophils following burn combined with Enterococcus faecalis infection. ACTA ACUST UNITED AC 2012; 64:191-204. [PMID: 22066701 DOI: 10.1111/j.1574-695x.2011.00881.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently we found that superimposition of Enterococcus faecalis infection on burn injury caused an eruption of host mortality not seen with either individual challenge. We hypothesized that the Enterococcus bacteria, and/or factors related to these organisms, aggravate burn-induced modulations in host defense by neutrophils. Our study focuses on alterations in neutrophils' oxidative, proteolytic, and adhesive functions and transendothelial migration of neutrophils in burn rats inoculated with E. faecalis. Rats were subjected to burn (30% total body surface area) and then intra-abdominally inoculated with E. faecalis (10(4)CFU kg(-1) b.w). Polymorphonuclear neutrophils (PMNs) were harvested from circulating/blood and tissue/peritoneal cavity at day-2 post injury. Extracellular release of O(-)(2) anion production was determined by luminometry, and intracellular production of reactive oxygen species was measured by digital imaging technique. Fluoroscan analysis and confocal microscopy determined intracellular elastase production. The expression of adhesion molecule CD11b/CD18 was performed by flow cytometry. Calcein AM-labeled PMNs were co-cultured with TNF-α-stimulated rat lung microvascular endothelial cells, and their ability to adhere was assessed by fluorometry and digital imaging and finally, chemotaxis was measured by neutrophil transmigration assays. The results showed differential effector responses by circulatory and/or tissue PMNs. Tissue/peritoneal PMNs produced more O(-)(2), less intracellular elastase, and increased expression of CD11b/CD18 accompanied with increased adhesivity of MIP-2-stimulated PMNs to endothelial cells as compared to circulatory/blood PMNs. This differential effect was more pronounced following burn plus E. faecalis infection, indicating that the combined injury changed neutrophil functions.
Collapse
Affiliation(s)
- Nadeem Fazal
- Department of Pharmaceutical Sciences, College of Pharmacy, Chicago State University, Chicago, IL 60628, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Inflammatory response in multiple organs in a mouse model of acute alcohol intoxication and burn injury. J Burn Care Res 2011; 32:489-97. [PMID: 21593683 DOI: 10.1097/bcr.0b013e3182223c9e] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study characterized the inflammatory response after burn injury and determined whether ethanol (EtOH) intoxication at the time of burn injury influences this response. To accomplish this, male mice were gavaged with EtOH (2.9 g/kg) 4 hours before 12 to 15% TBSA sham or burn injury. Mice were killed on day 1 after injury; blood, small intestine, lung, and liver were collected to measure interleukin (IL)-6, IL-10, IL-18, and Monocyte chemotactic protein-1 (MCP-1) levels. In addition, neutrophil infiltration, myeloperoxidase activity, and edema formation were also measured in the small intestine, lung, and liver. There was no difference in the inflammatory markers in the small intestine, lung, and liver in mice receiving either sham or burn injury alone except IL-6 that was increased in all four tissue compartments after burn injury alone. However, when compared with EtOH or burn injury alone, EtOH combined with burn injury resulted in a significant increase in cytokines, neutrophil infiltration, myeloperoxidase activity, and edema in the small intestine, liver, and lung tissue. Furthermore, a significant increase in IL-6 and MCP-1 was observed in circulation after EtOH intoxication and burn injury compared with either EtOH intoxication or burn injury alone; no other cytokines were detected in circulation. These findings suggest that acute EtOH intoxication exacerbates the inflammatory response after burn injury.
Collapse
|
10
|
Choudhry MA, Chaudry IH. Alcohol, burn injury, and the intestine. J Emerg Trauma Shock 2011; 1:81-7. [PMID: 19561986 PMCID: PMC2700607 DOI: 10.4103/0974-2700.43187] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 09/08/2008] [Indexed: 12/15/2022] Open
Abstract
A significant number of burn and other traumatic injuries are reported to occur under the influence of alcohol (EtOH) intoxication. Despite this overwhelming association between EtOH intoxication and injury, relatively little attention has been paid to determining the role of EtOH in post-injury pathogenesis. This article reviews studies which have evaluated the impact of EtOH on post-burn intestinal immunity and barrier functions. The findings from these studies suggest that while a smaller burn injury by itself may not have an adverse effect on host defense, when combined with prior EtOH intoxication it may become detrimental. Experimental data from our laboratory further supports the notion that EtOH intoxication before burn injury suppresses intestinal immune defense, impairs gut barrier functions, and increases bacterial growth. This results in increased bacterial translocation which may contribute to post injury pathogenesis. Altogether, the studies reviewed in this article suggest that EtOH intoxication at the time of injury is a risk factor, and therefore blood EtOH should be checked in burn/trauma patients at the time of hospital admission.
Collapse
Affiliation(s)
- Mashkoor A Choudhry
- Department of Surgery, Burn and Shock Trauma Institute, Loyola University Chicago Medical Center, Maywood, IL 60153, USA
| | | |
Collapse
|
11
|
Hunninghake GW, Doerschug KC, Nymon AB, Schmidt GA, Meyerholz DK, Ashare A. Insulin-like growth factor-1 levels contribute to the development of bacterial translocation in sepsis. Am J Respir Crit Care Med 2010; 182:517-25. [PMID: 20413631 PMCID: PMC2937242 DOI: 10.1164/rccm.200911-1757oc] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 04/22/2010] [Indexed: 12/13/2022] Open
Abstract
RATIONALE Many lines of evidence point toward the gastrointestinal (GI) tract in the pathophysiology of organ dysfunction in sepsis. Splanchnic hypoperfusion during sepsis leads to enterocyte apoptosis, diminished barrier function, and release of bacterial products. Sepsis lowers levels of insulin-like growth factor (IGF)-1, a known antiapoptotic factor. We recently demonstrated that treatment with IGF-1 is protective in murine sepsis. OBJECTIVES We hypothesize that decreased IGF-1 levels in sepsis contributes to the development of bacterial translocation. METHODS Sepsis was induced in C57BL/6 mice via intratracheal instillation of Pseudomonas aeruginosa. Human subjects with sepsis were enrolled if they had a documented positive blood culture with a nonenteric organism. Bacterial translocation was measured in serum by quantitative real-time polymerase chain reaction with primers specific for enteric bacteria. Serum IGF-1 was measured by ELISA. Apoptosis of the GI epithelium was assessed via immunohistochemistry. MEASUREMENTS AND MAIN RESULTS We found that mice with severe sepsis had evidence of bacterial translocation by 24 hours. Enteric bacterial load correlated inversely with levels of serum IGF-1. If we treated mice with IGF-1, bacterial translocation was significantly decreased. In addition, we found increased GI epithelial cell apoptosis after sepsis, which was significantly decreased after IGF-1 treatment. Human subjects with nonenteric sepsis developed progressive enteric bacteremia over 3 days. The degree of enteric bacteremia correlated inversely with serum IGF-1 levels. CONCLUSIONS These data support the hypothesis that sepsis-induced reductions in IGF-1 levels contribute to the development of bacterial translocation in both a murine model and human subjects.
Collapse
Affiliation(s)
- Gary W. Hunninghake
- Department of Internal Medicine, Division of Pulmonary and Critical Care and Occupational Medicine, and Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa; and Veteran's Administration Medical Center, Iowa City, Iowa
| | - Kevin C. Doerschug
- Department of Internal Medicine, Division of Pulmonary and Critical Care and Occupational Medicine, and Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa; and Veteran's Administration Medical Center, Iowa City, Iowa
| | - Amanda B. Nymon
- Department of Internal Medicine, Division of Pulmonary and Critical Care and Occupational Medicine, and Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa; and Veteran's Administration Medical Center, Iowa City, Iowa
| | - Gregory A. Schmidt
- Department of Internal Medicine, Division of Pulmonary and Critical Care and Occupational Medicine, and Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa; and Veteran's Administration Medical Center, Iowa City, Iowa
| | - David K. Meyerholz
- Department of Internal Medicine, Division of Pulmonary and Critical Care and Occupational Medicine, and Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa; and Veteran's Administration Medical Center, Iowa City, Iowa
| | - Alix Ashare
- Department of Internal Medicine, Division of Pulmonary and Critical Care and Occupational Medicine, and Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa; and Veteran's Administration Medical Center, Iowa City, Iowa
| |
Collapse
|
12
|
Akhtar S, Li X, Chaudry IH, Choudhry MA. Neutrophil chemokines and their role in IL-18-mediated increase in neutrophil O2- production and intestinal edema following alcohol intoxication and burn injury. Am J Physiol Gastrointest Liver Physiol 2009; 297:G340-7. [PMID: 19497959 PMCID: PMC2724079 DOI: 10.1152/ajpgi.00044.2009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We examined the role of interleukin (IL)-18 and cytokine-induced neutrophil chemokines (CINC)-1 and CINC-3 in the neutrophil release of superoxide anion (O2-) and elastase following alcohol/ethanol (EtOH) and burn injury. Male rats (approximately 250 g) were gavaged with EtOH to achieve a blood EtOH level of approximately 100 mg/dl before approximately 12.5% total body surface area burn or sham injury. Immediately after injury, rats were administered with anti-rat IL-18 antibody (80 microg/kg) or isotype control. After 20 min, anti-IL-18 antibody-treated rats were given either recombinant (r) rat CINC-1 or CINC-3. On day 1 after injury, the combined insult of EtOH and burn injury caused a significant increase in neutrophil elastase and O2- production as well as an increase in neutrophil accumulation, myeloperoxidase activity, and edema in the intestine. Treatment of rats with anti-IL-18 antibody normalized the above parameters. However, administration of rCINC-1 in anti-IL-18 antibody-treated rats increased the above parameters to levels similar to those observed following EtOH and burn injury. In contrast, administration of rCINC-3 did not influence the above parameters except neutrophil elastase. These findings indicate that IL-18 and CINC-1 may independently modulate neutrophil tissue-damaging actions following EtOH and burn injury. However, the finding that the treatment of rats with anti-IL-18 antibodies inhibits CINC-1 and CINC-3 supports the notion that IL-18 plays a critical role in increased neutrophil tissue-damaging action following a combined insult of EtOH intoxication and burn injury.
Collapse
Affiliation(s)
- Suhail Akhtar
- Burn and Shock Trauma Institute and Alcohol Research Program, Department of Surgery, Loyola University Medical Center, Maywood, Illinois; Center for Surgical Research and Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Xiaoling Li
- Burn and Shock Trauma Institute and Alcohol Research Program, Department of Surgery, Loyola University Medical Center, Maywood, Illinois; Center for Surgical Research and Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Irshad H. Chaudry
- Burn and Shock Trauma Institute and Alcohol Research Program, Department of Surgery, Loyola University Medical Center, Maywood, Illinois; Center for Surgical Research and Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mashkoor A. Choudhry
- Burn and Shock Trauma Institute and Alcohol Research Program, Department of Surgery, Loyola University Medical Center, Maywood, Illinois; Center for Surgical Research and Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
13
|
Steinvall I, Bak Z, Sjoberg F. Acute respiratory distress syndrome is as important as inhalation injury for the development of respiratory dysfunction in major burns. Burns 2008; 34:441-51. [DOI: 10.1016/j.burns.2007.10.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 10/26/2007] [Indexed: 01/31/2023]
|
14
|
Acute alcohol intoxication potentiates neutrophil-mediated intestinal tissue damage after burn injury. Shock 2008; 29:377-83. [PMID: 18000475 DOI: 10.1097/shk.0b013e31815abe80] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This study examined whether acute alcohol (EtOH) intoxication before burn injury potentiates postburn intestinal tissue damage and whether neutrophils have any role in the damage under those conditions. Male rats ( approximately 250 g) were gavaged with EtOH to achieve a blood EtOH level of approximately 100 mg/dL or with saline and received either approximately 12.5% or approximately 25% total body surface area (TBSA) burn or sham injury. Rats were killed at 4 or 24 h after injury, and various parameters were measured. As compared with sham animals, burn injury alone (regardless of size) resulted in a significant increase in intestinal tissue myeloperoxidase (MPO; an index of neutrophil infiltration) activity and IL-18 levels 4 h after injury. Furthermore, rats receiving 25% TBSA, but not 12.5%, burn exhibited intestine edema. The IL-18 and MPO activity were normalized at 24 h after injury in rats receiving 12.5% TBSA burn, whereas these parameters remained elevated at 24 h in rats with 25% burn. The presence of EtOH in rats at the time of burn injury exacerbated the levels of IL-18, MPO activity, and edema at 4 and 24 h after burn injury. Treatment of rats with anti-IL-18 antibodies or with antineutrophil antiserum prevented the increase in the above parameters after EtOH and burn injury, except that the depletion of neutrophils did not prevent the IL-18 increase. In summary, these findings suggest that acute EtOH intoxication exacerbates postburn intestinal tissue damage after burn injury, and that it is, in part, neutrophil mediated.
Collapse
|
15
|
A role for corticosterone in impaired intestinal immunity and barrier function in a rodent model of acute alcohol intoxication and burn injury. J Neuroimmune Pharmacol 2008; 1:428-34. [PMID: 18040815 DOI: 10.1007/s11481-006-9031-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alcohol (EtOH) intoxication and burn injury independently activate hypothalamic-pituitary-adrenal (HPA) axis, and glucocorticoids, the end product of the HPA axis, play a role in shaping the immune response under those conditions. By utilizing a rat model of acute EtOH intoxication and burn injury, studies in our laboratory have investigated the role of corticosterone (i.e., glucocorticoids in rodents) in altered intestinal immunity and barrier function following a combined insult of EtOH and burn injury. Results from these studies suggest that EtOH intoxication prior to burn injury augments corticosterone release, which in turn suppresses intestinal T cell function by inhibiting mitogen-activated protein kinase (i.e., p38 and ERK) pathway. Furthermore, we found that corticosterone does not directly alter the intestinal barrier function; rather, it up-regulates interleukin-18, which then directly or indirectly contributes to impaired intestinal barrier function. The loss of intestinal immunity/barrier function may result in increased bacterial translocation and thereby contribute to postinjury pathogenesis, leading to sepsis and organ dysfunction in burn patients as well as in patients with a history of EtOH intoxication.
Collapse
|
16
|
Li X, Kovacs EJ, Schwacha MG, Chaudry IH, Choudhry MA. Acute alcohol intoxication increases interleukin-18-mediated neutrophil infiltration and lung inflammation following burn injury in rats. Am J Physiol Lung Cell Mol Physiol 2007; 292:L1193-201. [PMID: 17220368 DOI: 10.1152/ajplung.00408.2006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In this study, we examined whether IL-18 plays a role in lung inflammation following alcohol (EtOH) and burn injury. Male rats (∼250 g) were gavaged with EtOH to achieve a blood EtOH level of ∼100 mg/dl before burn or sham injury (∼12.5% total body surface area). Immediately after injury, rats were treated with vehicle, caspase-1 inhibitor AC-YVAD-CHO to block IL-18 production or with IL-18 neutralizing anti-IL-18 antibodies. In another group, rats were treated with anti-neutrophil antiserum ∼16 h before injury to deplete neutrophils. On day 1 after injury, lung tissue IL-18, neutrophil chemokines (CINC-1/CINC-3), ICAM-1, neutrophil infiltration, MPO activity, and water content (i.e., edema) were significantly increased in rats receiving a combined insult of EtOH and burn injury compared with rats receiving either EtOH intoxication or burn injury alone. Treatment of rats with caspase-1 inhibitor prevented the increase in lung tissue IL-18, CINC-1, CINC-3, ICAM-1, MPO activity, and edema following EtOH and burn injury. The increase in lung IL-18, MPO, and edema was also prevented in rats treated with anti-IL-18 antibodies. Furthermore, administration of anti-neutrophil antiserum also attenuated the increase in lung MPO activity and edema, but did not prevent the increase in IL-18 levels following EtOH and burn injury. These findings suggest that acute EtOH intoxication before burn injury upregulates IL-18, which in turn contributes to increased neutrophil infiltration. Furthermore, the presence of neutrophils appears to be critical for IL-18-meditaed increased lung tissue edema following a combined insult of EtOH and burn injury.
Collapse
Affiliation(s)
- Xiaoling Li
- Center for Surgical Research and Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | |
Collapse
|
17
|
Smith JW, Gamelli RL, Jones SB, Shankar R. Immunologic responses to critical injury and sepsis. J Intensive Care Med 2006; 21:160-72. [PMID: 16672638 DOI: 10.1177/0885066605284330] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Almost 2 million patients are admitted to hospitals in the United States each year for treatment of traumatic injuries, and these patients are at increased risk of late infections and complications of systemic inflammation as a result of injury. Host response to injury involves a general activation of multiple systems in defending the organism from hemorrhagic or infectious death. Clinicians have the capability to support the critically injured through their traumatic insult with surgery and improved critical care, but the inflammatory response generated by such injuries creates new challenges in the management of these patients. It has long been known that local tissue injury induces systemic changes in the traumatized patient that are often maladaptive. This article reviews the effects of injury on the function of immune system cells and highlights some of the clinical sequelae of this deranged inflammatory-immune interaction.
Collapse
Affiliation(s)
- Jason W Smith
- Department of Surgery and Burn & Shock Trauma Institute, Loyola University Medical Center, Maywood, IL 60153, USA
| | | | | | | |
Collapse
|
18
|
Goto M, Samonte V, Ravindranath T, Sayeed MM, Gamelli RL. Burn Injury Exacerbates Hemodynamic and Metabolic Responses in Rats with Polymicrobial Sepsis. J Burn Care Res 2006; 27:50-9. [PMID: 16566537 DOI: 10.1097/01.bcr.0000192568.77001.b1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The most common and life-threatening complication of severe burn injury is infection, which often results in multiple organ failure (MOF). However, the mechanism of development of MOF after burn injury associated with infection is not fully understood. Our previous studies showed that when polymorphonuclear neutrophils (PMNs) are depleted, burn injury-induced increase in microvascular permeability to albumin is markedly attenuated. Thus, we hypothesized that the combination of burn injury and polymicrobial infection exacerbates PMN activation, increases intestinal microvascular permeability to albumin, and alters hemodynamics and metabolism more than burn injury or infection alone. Sprague-Dawley rats (250-275 g) were divided into four groups. In the burn group, rats were subjected to a 30% TBSA burn injury. In the cecal-ligation puncture (CLP) group, CLP was performed using a 22-gauge needle with one puncture. In burn+CLP group, rats were subjected to CLP immediately after burn procedure. In sham group, rats were subjected to sham procedures. Transient polymicrobial bacteremia and persistent polymicrobial bacteremia were induced in the CLP group and burn+CLP group, respectively. Microvascular permeability, myeloperoxidase, and PMN production of elastase and reactive oxygen species increased in the burn group and CLP group and further increased in the burn+CLP group. Hemodunamic and metabolic alterations on day 1 and 3 after injury correlated with those alterations. Although there was only a low mortality in the burn group and CLP group, there was a high mortality in burn+CLP group (79%). The mechanism of MOF that leads to high mortality in burn injury complicated by infection may involve uncontrolled microvascular damage mediated by PMN activation.
Collapse
Affiliation(s)
- Masakatsu Goto
- Department of Surgery, Burn and Shock Trauma Institute, Loyola University Medical Center, Maywood, Illinois, USA
| | | | | | | | | |
Collapse
|
19
|
Abstract
During the last 50 years, our understanding of the role of the gastrointestinal tract as a first-line defense against the development of postburn sepsis has increased dramatically. Starting with the concept of that gut-derived bacteria cause distant injury, investigators have delineated a complex series of physical changes in the barrier of the gastrointestinal tract. Along with an understanding of these physical changes has come an appreciation of the role of the immune system in modulating postburn organ failure. Importantly, recent investigations into the role of mesenteric lymph have fundamentally changed the paradigm of organ failure and have implicated the gut as a cytokine-secreting organ. This article traces the development of key concepts in the study of burn sepsis and their clinical implications.
Collapse
Affiliation(s)
- Ankush Gosain
- Burn and Shock Trauma Institute, Department of Surgery, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
| | | |
Collapse
|
20
|
Li X, Rana SN, Kovacs EJ, Gamelli RL, Chaudry IH, Choudhry MA. Corticosterone suppresses mesenteric lymph node T cells by inhibiting p38/ERK pathway and promotes bacterial translocation after alcohol and burn injury. Am J Physiol Regul Integr Comp Physiol 2005; 289:R37-44. [PMID: 15718389 DOI: 10.1152/ajpregu.00782.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Previous studies showed that alcohol (EtOH) intoxication before burn injury suppresses mesenteric lymph node (MLN) T cell functions and increases gut bacterial translocation. In this study, we examined whether corticosterone (Cort) plays any role in suppressing MLN T cell function and bacterial accumulation after EtOH intoxication and burn injury. Rats were gavaged with EtOH to achieve a blood EtOH level of approximately 100 mg/dl before receiving 25% total body surface area burn or sham injury. A group of rats was treated with the Cort synthesis inhibitor metyrapone (25 mg/kg) at the time of injury and on day 1 after injury. Two days after injury, a significant increase in blood Cort levels and suppression of MLN T cell proliferation and IL-2 production was observed in rats receiving combined insult of EtOH intoxication and burn injury compared with rats receiving EtOH intoxication or burn injury alone. There was no change in T cell apoptosis after combined insult of EtOH and burn injury. Furthermore, T cell suppression was accompanied by a significant decrease in p38 and ERK1/2 activation (phosphorylation). There was no difference in JNK activation after EtOH and burn injury. Treatment of rats with metyrapone prevented the suppression of MLN T cell proliferation, IL-2 production, and p38 and ERK1/2 phosphorylation. Restoration of T cell function in metyrapone-treated animals was also associated with the decrease in bacterial accumulation in MLN. These findings suggest that EtOH intoxication before burn injury augments Cort release, which suppresses MLN T cell function by inhibiting p38 and ERK1/2 activation and promotes bacterial accumulation in MLN after EtOH and burn injury.
Collapse
Affiliation(s)
- Xiaoling Li
- Center for Surgical Research and Department of Surgery, University of Alabama at Birmingham, VolkerHall G 094, 1670 Univ. Boulevard, Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|
21
|
Kita T, Yamaguchi H, Sato H, Kasai K, Tanaka T, Tanaka N. Role of p38 mitogen-activated protein kinase pathway on renal failure in the infant rat after burn injury. Shock 2005; 21:535-42. [PMID: 15167682 DOI: 10.1097/00024382-200406000-00007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The p38 mitogen-activated protein kinase (MAPK) pathway is a proinflammatory signal transduction pathway for the production of cytokines and cellular response to stress, such as bacterial LPS or ischemia. We examined the effects of FR167653, a specific inhibitor of p38 MAPK, to explore the relationship between intestinal barrier damage and remote renal dysfunction. Immunohistochemical data showed the accumulation of neutrophils in the intestine after burn, and a horseradish peroxidase (HRP) tracer experiment showed burn-induced intestinal barrier damage. Our quantitative bacterial culture data demonstrated that viable bacteria reached the remote organs after burn and prevented the invading viable bacteria from using FR167653. Western blotting identified increased phosphorylation of p38 MAPK in the kidney after burn, and it may also have shown the possibility that endotoxin associated with the bacterial translocation enhances the activation of the p38 MAPK pathway. We blocked the intestinal barrier damage using FR167653, which resulted in reduced neutrophils in the intestine. FR167653 also prevented the increased phosphorylation of p38 MAPK in the kidney, which resulted in reduced neutrophils in the glomerulus and the reduction of tumor necrosis factor (TNF)-alpha and interleukin (IL)-1 beta mRNA in the kidneys, and, finally, prevented burn-induced renal failure. This study provides evidence for the hypothesis that the p38 MAPK pathway controls inflammatory mediators and not only improves intestinal function but also reduces remote renal failure after burn. We identified the pathophysiologic role of the p38 MAPK pathway in the development of renal failure after burn.
Collapse
Affiliation(s)
- Toshiro Kita
- Department of Forensic Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.
| | | | | | | | | | | |
Collapse
|
22
|
Samonte VA, Goto M, Ravindranath TM, Fazal N, Holloway VM, Goyal A, Gamelli RL, Sayeed MM. Exacerbation of intestinal permeability in rats after a two-hit injury: burn and Enterococcus faecalis infection. Crit Care Med 2005; 32:2267-73. [PMID: 15640640 DOI: 10.1097/01.ccm.0000145579.66001.05] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To determine alterations in intestinal epithelial permeability to solutes in burn injured rats with and without Enterococcus faecalis infection and the role of neutrophils in the intestinal permeability changes. DESIGN Prospective sham-controlled animal study. SETTING University research laboratory. SUBJECTS Male Sprague-Dawley rats. INTERVENTIONS Rats were subjected to 30% total body surface burn (B group), E. faecalis infection (EF group) induced via intra-abdominal implantation of bacterial pellet, or combination of burn injury and E. faecalis infection (B+EF group). MEASUREMENTS AND MAIN RESULTS In vivo measurements of intestinal permeability were carried out after intraluminal injection of H lactulose and C mannitol in the ileum of sham, B, EF, and B+EF groups of rats, 1 and 2 days after injury. Lactulose permeability was increased in the injured rat groups (B, EF, B+EF) on day 1 postinjury compared with sham. The combined injury group (B+EF) had the highest level of lactulose permeability. Although a significant change in lactulose permeability from day 1 to day 2 postinjury could not be demonstrated in the B and EF groups, lactulose permeability in the B+EF group on day 2 postinjury markedly decreased from day 1 but was still significantly higher than that in the sham group. Mannitol permeability was increased in all injured rat groups on day 1 postinjury; on day 2 it remained elevated post-B, decreased post-EF, and further increased after B+EF. Ex vivo measurements of lactulose movements across intestinal epithelial monolayers (IEC-18) were carried out in the presence of blood neutrophils from sham, B, EF, or B+EF rats. We also measured ex vivo transepithelial migration of neutrophils from sham, B, EF, or B+EF rat groups. Neither the transepithelial lactulose movement in the presence of neutrophils from, nor neutrophil migration in, the B or EF rats was significantly different from sham. However, a significant increase in transepithelial lactulose movement and neutrophil migration occurred in the B+EF group. Immunoblot analyses and in situ histochemical localizations of intestinal tight junction proteins, occludin and claudin-3, showed decreases in the distribution of occludin but not claudin-3 in the B, EF, and B+EF groups. CONCLUSIONS Alterations in intestinal solute permeability and disruption of tight junction integrity after a two-hit injury with burn and E. faecalis infection, but not after individual injuries of burn or E. faecalis infection, are likely associated with heightened neutrophil flux across the intestinal epithelium.
Collapse
Affiliation(s)
- Victoria A Samonte
- Burn and Shock Trauma Institute, Loyola University, Medical Center, Maywood, IL, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Choudhry MA, Ba ZF, Rana SN, Bland KI, Chaudry IH. Alcohol ingestion before burn injury decreases splanchnic blood flow and oxygen delivery. Am J Physiol Heart Circ Physiol 2004; 288:H716-21. [PMID: 15388502 DOI: 10.1152/ajpheart.00797.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies from our laboratory have shown that alcohol and burn injury impair intestinal barrier and immune functions. Although multiple factors can contribute to impaired intestinal barrier function, such an alteration could result from a decrease in intestinal blood flow (BF) and oxygen delivery (DO2). Therefore, in this study, we tested the hypothesis that alcohol ingestion before burn injury reduces splanchnic blood flow and oxygen delivery. Rats (250 g) were gavaged with alcohol to achieve a blood ethanol level in the range of 100 mg/dl before burn or sham injury (25% total body surface area). Day 1 after injury, animals were anesthetized with methoxyflurane. Blood pressure, cardiac output (CO), +/-dP/dt, organ BF (in ml.min(-1).100 g(-1)), and DO2 (in mg.ml(-1).100 g(-1)) were determined. CO and organ BF were determined using a radioactive microsphere technique. Our results indicate that blood pressure, CO, and +dP/dt were decreased in rats receiving a combined insult of alcohol and burn injury compared with rats receiving either burn injury or alcohol alone. This is accompanied by a decrease in BF and DO2 to the liver and intestine. No significant change in BF to the coronary arteries (heart), brain, lung, skin, and muscles was observed after alcohol and burn injury. In conclusion, the results presented here suggest that alcohol ingestion before burn injury reduces splanchnic BF and DO2. Such decreases in BF and DO2 may cause hypoxic insult to the intestine and liver. Although a hypoxic insult to the liver would result in a release of proinflammatory mediators, a similar insult to the intestine will likely perturb both intestinal immune cell and barrier functions, as observed in our previous study.
Collapse
Affiliation(s)
- Mashkoor A Choudhry
- Center for Surgical Research and Department of Surgery, University of Alabama, Birmingham, Alabama 35294, USA.
| | | | | | | | | |
Collapse
|
25
|
Al-Ghoul WM, Khan M, Fazal N, Sayeed MM. Mechanisms of postburn intestinal barrier dysfunction in the rat: Roles of epithelial cell renewal, E-cadherin, and neutrophil extravasation*. Crit Care Med 2004; 32:1730-9. [PMID: 15286551 DOI: 10.1097/01.ccm.0000132896.62368.01] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Our group has previously shown that the intestinal epithelium exhibits increased postburn barrier permeability and bacterial translocation associated with deranged neutrophil activity. The purpose of this investigation is to explore possible underlying intestinal structural mechanisms, leading to those functional changes with emphasis on (1) neutrophil influx and extravasation in the intestinal lamina propria 1-3 days after burn and (2) enterocyte proliferation, migration, apoptosis, and E-cadherin junctional epithelium levels 3 days after burn. DESIGN Freshly isolated ileum specimens were quick frozen, then cut by a cryostat into 30-micron-thick sections. Sections from day 1 postburn rats were immunostained with (1) anti-granulocyte or anti-elastase antibodies to assess neutrophil influx or (2) combined anti-granulocyte and anti-von Willebrand factor double immunolabeling to compare levels of neutrophil extravasation. Sections from day 3 postburn rats were immunostained with (1) bromodeoxyuridine immunohistochemistry 1, 3, 6, or 18 hrs after bromodeoxyuridine injection to assess enterocyte proliferation and migration, (2) cytokeratin-18 M30-immunohistochemistry to compare levels of enterocyte apoptosis, and (3) E-cadherin immunohistochemistry to compare junctional E-cadherin integrity. Ileal myeloperoxidase activity and bacterial translocation of Enterococcus faecalis were assessed biochemically and by E. faecalis-specific bacterial cultures, respectively, in day 3 postburn rats. SETTING : Research laboratories in a medical center and an academic institution. SUBJECTS Male Sprague-Dawley rats given sham treatment or treatment as a burn model with full-thickness skin scald over 30% total body surface area. CONCLUSIONS We report (1) increased levels of neutrophil influx and extravasation in villi lamina propriae, including elastase-positive cells (postburn day 1), (2) heightened levels of intestinal myeloperoxidase activity (postburn day 3), (3) decreased levels of epithelial cell proliferation, migration, and E-cadherin (postburn day 3), and (4) increased enterocyte apoptosis and E. faecalis bacterial translocation (postburn day 3). Based on these structural and functional abnormalities, we propose a mechanism for burn injury-related intestinal barrier dysfunction that includes increased trans- and para-cellular leakage caused by impaired enterocyte renewal and decreased junctional E-cadherin levels subsequent to increased neutrophil influx and extravasation within the villus lamina propria microenvironment.
Collapse
Affiliation(s)
- Walid M Al-Ghoul
- Trauma/Critical Care Labs, Department of Surgery, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA.
| | | | | | | |
Collapse
|
26
|
Choudhry MA, Rana SN, Kavanaugh MJ, Kovacs EJ, Gamelli RL, Sayeed MM. Impaired intestinal immunity and barrier function: a cause for enhanced bacterial translocation in alcohol intoxication and burn injury. Alcohol 2004; 33:199-208. [PMID: 15596088 DOI: 10.1016/j.alcohol.2004.05.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 05/12/2004] [Accepted: 05/19/2004] [Indexed: 01/18/2023]
Abstract
Alcohol intoxication is being recognized increasingly as the major factor in pathogenesis after burn injury. Findings from multiple studies support the suggestion that, in comparison with burn-injured patients who sustained injury in the absence of alcohol intoxication, burn-injured patients who sustained injury under the influence of alcohol exhibit higher rates of infection and are more likely to die. Thus, infection becomes the primary cause of death in burn-injured patients. Because the intestine is considered to be a major source of bacteria, studies in experimental animals have been designed to examine whether alcohol intoxication before burn injury enhances bacterial translocation from the intestine. Results of these studies have shown a several-fold increase in bacterial translocation from the intestine in the group of animals receiving combined insult of alcohol intoxication and burn injury compared with findings for the groups receiving either insult alone. Alcohol intoxication and burn injury independent of each other have also been shown to cause an increase in bacterial translocation. The gastrointestinal tract normally maintains a physical mucosal and immunologic barrier that provides an effective defense in keeping bacteria within the intestinal lumen. However, in injury conditions these defense mechanisms are impaired. Intestinal bacteria consequently gain access to extraintestinal sites. Intestine-derived bacteria are implicated in causing systemic infection and in subsequent multiple organ dysfunction in both immunocompromised patients and patients with injury, such as burn and trauma. In this article, we discuss three potential mechanisms that are likely to contribute to the increase in bacterial translocation in alcohol intoxication and burn injury: (1) increase in bacterial growth in the intestine, (2) physical disruption of mucosal barrier of the intestine, and (3) suppression of the immune defense in the intestine.
Collapse
Affiliation(s)
- Mashkoor A Choudhry
- Center for Surgical Research, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Venkatesh B, Gough J, Ralston DR, Muller M, Pegg S. Protein losing enteropathy in critically ill adult patients with burns: a preliminary report. Intensive Care Med 2004; 30:162-6. [PMID: 14634725 DOI: 10.1007/s00134-003-2050-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2003] [Accepted: 09/29/2003] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Few data have been published regarding protein losing enteropathy in adult patients with burns. This study characterised the presence of protein-losing enteropathy in adults with burns and examined the relationship between the magnitude of burn size and the severity of protein loss. METHODS Twenty adult patients with burns (BSA 31+/-25%, range 2-80%) were studied. Fluid resuscitation was based on the Parkland's formula. Protein loss into the gastrointestinal tract was measured using faecal alpha1-antitrypsin (FA-1-AT) concentrations. Serial measurements of serum protein and albumin concentrations were performed. RESULTS Fourteen patients demonstrated elevations in FA-1-AT levels. The mean peak FA-1-AT level was 3.6+/-4.2 mg/g dry weight of stool. Two patients demonstrated elevated FA-1-AT excretion 1.5 months and 3 months after the burns. There was a good correlation between burn size and FA-1-AT excretion (R2=0.40). CONCLUSIONS Protein losing enteropathy was demonstrable in patients with major burns. The magnitude of this phenomenon appears to be proportional to the burns size.
Collapse
|
28
|
Goto M, Samonte V, Khan M, Haque F, Goyal A, Al-Ghoul W, Raziuddin S, Fazal N, Ravindranath T, Reed RL, Gamelli RL, Sayeed MM. Enterococcus faecalis exacerbates burn injury-induced host responses in rats. Shock 2002; 18:523-8. [PMID: 12462560 DOI: 10.1097/00024382-200212000-00007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pathophysiology of burn injury with complications of gram-positive infections is not well characterized. We have developed an in vivo rat model to study the effects of burn injury along with intra-abdominal inoculation of Enterococcus faecalis. We hypothesized that although burn injury or E. faecalis inoculation by itself may not induce significant pathophysiological responses, the combination of the two can lead to adverse pathophysiological consequences. Sprague-Dawley rats were divided into 4 groups: group 1(C), controls; group 2(B), burn injury on 30% total body surface area; group 3(EF), intra-abdominal implantation of bacterial pellet impregnated with E. faecalis; group 4(B+EF), burn injury plus bacterial pellet implantation. The mortality was 25% and 60% on day 1 and 2 in Group 4(B+EF), respectively; no significant mortality was observed in other groups. In group 4(B+EF), metabolic acidosis, respiratory alkalosis, and a hyperdynamic state developed on day 1, and metabolic and respiratory acidosis and a hypodynamic state on day 2. There were no significant alterations in metabolic or hemodynamic measurements in other groups. Intestinal microvascular permeability to albumin on day 1 and 2 was increased in group 4(B+EF). In group 2(B), microvascular permeability was not increased significantly. Although the permeability was increased on day 1 in group 3(EF), it declined on day 2. The metabolic and hemodynamic alterations were correlated with increased intestinal microvascular permeability to albumin. E. faecalis appeared to be involved in initiating a vicious cycle of burn injury-mediated disruption of intestinal integrity along with metabolic and hemodynamic derangements.
Collapse
Affiliation(s)
- Masakatsu Goto
- Department of Surgery and Burn, Trauma Shock Institute, Loyola University Medical Center, Maywood, Illinois 60153, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Spies M, Dasu MRK, Svrakic N, Nesic O, Barrow RE, Perez-Polo JR, Herndon DN. Gene expression analysis in burn wounds of rats. Am J Physiol Regul Integr Comp Physiol 2002; 283:R918-30. [PMID: 12228062 DOI: 10.1152/ajpregu.00170.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The events occurring early in the burn wound trigger a sequence of local and systemic responses that influence cell and tissue survival and, consequently, wound healing and recovery. Using high-density oligonucleotide arrays we identified gene expression patterns in skin samples taken from a region of injury in the burn rat model. The associated genomic events include the differential expression of genes involved in cell survival and death, cell growth regulation, cell metabolism, inflammation, and immune response. The functional gene cluster detected and their time appearance matched the time sequence known to occur in burn wound healing.
Collapse
Affiliation(s)
- Marcus Spies
- Department of Surgery, University of Texas Medical Branch and Shriners Hospitals for Children, Galveston 77550, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Choudhry MA, Fazal N, Goto M, Gamelli RL, Sayeed MM. Gut-associated lymphoid T cell suppression enhances bacterial translocation in alcohol and burn injury. Am J Physiol Gastrointest Liver Physiol 2002; 282:G937-47. [PMID: 12016118 DOI: 10.1152/ajpgi.00235.2001] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mechanism of alcohol-mediated increased infection in burn patients remains unknown. With the use of a rat model of acute alcohol and burn injury, the present study ascertained whether acute alcohol exposure before thermal injury enhances gut bacterial translocation. On day 2 postinjury, we found a severalfold increase in gut bacterial translocation in rats receiving both alcohol and burn injury compared with the animals receiving either injury alone. Whereas there were no demonstrable changes in intestinal morphology in any group of animals, a significant increase in intestinal permeability was observed in ethanol- and burn-injured rats compared with the rats receiving either injury alone. We further examined the role of intestinal immune defense by determining the gut-associated lymphoid (Peyer's patches and mesenteric lymph nodes) T cell effector responses 2 days after alcohol and burn injury. Although there was a decrease in the proliferation and interferon-gamma by gut lymphoid T cells after burn injury alone; the suppression was maximum in the group of rats receiving both alcohol and burn injuries. Furthermore, the depletion of CD3(+) cells in healthy rats resulted in bacterial accumulation in mesenteric lymph nodes; such CD3(+) cell depletion in alcohol- and burn-injured rats furthered the spread of bacteria to spleen and circulation. In conclusion, our data suggest that the increased intestinal permeability and a suppression of intestinal immune defense in rats receiving alcohol and burn injury may cause an increase in bacterial translocation and their spread to extraintestinal sites.
Collapse
Affiliation(s)
- Mashkoor A Choudhry
- Alcohol Research Program, Burn and Shock Trauma Institute, Department of Surgery, Loyola University Chicago Medical Center, Maywood, IL 60153, USA.
| | | | | | | | | |
Collapse
|
31
|
O'Brien DP, Nelson LA, Huang FS, Warner BW. Intestinal adaptation: structure, function, and regulation. Semin Pediatr Surg 2001; 10:56-64. [PMID: 11329606 DOI: 10.1053/spsu.2001.22383] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
After massive small bowel resection (SBR), the remnant intestine undergoes an adaptive process characterized by increases in wet weight, protein and DNA content, villus height and crypt depth, and absorptive surface area. These changes are the result of a proliferative stimulus that increases crypt cell mitosis and augments cellular progression along the villus axis. Functionally, there is upregulation of the Na(+)/glucose cotransporter, Na(+)/H(+) exchanger, and other enzymes involved in intestinal digestion and absorption. These physiologic events are a compensatory response to the sudden loss of digestive and absorptive capacity by the remnant intestine. A major consequence of inadequate intestinal adaptation is lifelong dependence on parenteral nutrition, which results ultimately in cholestatic liver dysfunction. Furthermore, adaptation may be associated with changes in intestinal permeability and an increased risk of bacterial translocation and sepsis. Several mediators thought to be integral to the postresection adaptive response have been proposed, including luminal nutrients, gastrointestinal secretions, and humoral factors. A thorough understanding of intestinal adaptation will be essential in the rational development of new and innovative therapies that amplify this complex but important process.
Collapse
Affiliation(s)
- D P O'Brien
- Children's Hospital Medical Center, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039, USA
| | | | | | | |
Collapse
|
32
|
Fazal N, Shamim M, Zagorski J, Choudhry MA, Ravindranath T, Sayeed MM. CINC blockade prevents neutrophil Ca(2+) signaling upregulation and gut bacterial translocation in thermal injury. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1535:50-9. [PMID: 11113631 DOI: 10.1016/s0925-4439(00)00082-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study, we have evaluated the role of cytokine-induced neutrophil chemoattractant (CINC), in the upregulation of neutrophil Ca(2+) signaling in neutrophils from thermally injured rats treated with anti-CINC antibody. Additionally, we have determined the effect of the treatment with CINC antibody on the accumulation of activated neutrophils in the intestinal wall, and the effect of such accumulation on gut bacterial translocation. Measurements of myeloperoxidase (MPO) activity and immunohistochemical localization of neutrophils determined neutrophil sequestration in the rat intestine. Agar culture analyses and a specific Escherichia coli beta-galactosidase gene polymerase chain reaction was carried out to detect gut indigenous bacterial invasion into intestinal wall and extraintestinal mesenteric lymph nodes (MLN). The results showed that pretreatment of rats with anti-CINC antibody attenuated the thermal injury-induced enhancement in [Ca(2+)](i) responses in neutrophils both in the basal and Formyl-Met-Leu-Phe stimulated conditions. Moreover, treatment with the CINC antibody decreased neutrophil infiltration into the gut and attenuated thermal injury-caused translocation of bacteria into the MLN.
Collapse
Affiliation(s)
- N Fazal
- Department of Surgery, Loyola University Chicago Medical Center, Maywood, Illinois 60153, USA
| | | | | | | | | | | |
Collapse
|