1
|
Fujishiro K, Miyanishi H. Visual Perception of Density and Density-Dependent Growth in Medaka ( Oryzias latipes): A Suitable Model for Studying Density Effects in Fish. Zoolog Sci 2023; 40:404-413. [PMID: 37818889 DOI: 10.2108/zs230018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/13/2023] [Indexed: 10/13/2023]
Abstract
High stocking densities have negative effects on fish. However, the mechanism mediating density perception and growth inhibition is still unknown. This study was conducted to confirm the occurrence of growth inhibition and evaluate changes in growth-related factors in fish reared under high-stocking-density conditions and to determine the role of vision in density perception of medaka. In the graduated-stocking experiment, growth inhibition was clearly observed in fish reared at higher densities, although environmental factors, such as water quality, dissolved oxygen, and feeding conditions, were the same in each experimental group. Differences in growth were observed between the 6-fish and 8-fish groups, indicating that medaka have a superior sense that allows them to accurately perceive the number of individuals in their surroundings. In the pseudo-high stocking experiment, the inner 2-L tank in both groups contained six fish; however, the outer 3-L tank in the pseudo group contained several fish, while that of the control group contained only water. Growth inhibition was observed among the fish in the inner tank of the pseudo group despite having similar spatial density with the control group. These findings suggest that vision is important for density perception. The gene expression of growth-related and metabolic-regulatory hormones decreased in the high-density group. Furthermore, neuropeptide Y expression increased, while pro-opiomelanocortin expression decreased in the high-density group. This study is the first to report that fish can visually perceive density and the resulting growth inhibition, and concluded that medaka is a suitable model for studying density effects and perception in fish.
Collapse
Affiliation(s)
- Kouyou Fujishiro
- Course of Marine Biology and Environmental Sciences, Graduate School of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Hiroshi Miyanishi
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan,
| |
Collapse
|
2
|
Clavenzani P, Lattanzio G, Bonaldo A, Parma L, Busti S, Oterhals Å, Romarheim OH, Aspevik T, Gatta PP, Mazzoni M. Effects of Bioactive Peptides from Atlantic Salmon Processing By-Products on Oxyntopeptic and Enteroendocrine Cells of the Gastric Mucosa of European Seabass and Gilthead Seabream. Animals (Basel) 2023; 13:3020. [PMID: 37835626 PMCID: PMC10571541 DOI: 10.3390/ani13193020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The present study was designed to evaluate the effects of dietary levels of bioactive peptides (BPs) derived from salmon processing by-products on the presence and distribution of peptic cells (oxyntopeptic cells, OPs) and enteric endocrine cells (EECs) that contain GHR, NPY and SOM in the gastric mucosa of European seabass and gilthead seabream. In this study, 27 seabass and 27 seabreams were divided into three experimental groups: a control group (CTR) fed a control diet and two groups fed different levels of BP to replace fishmeal: 5% BP (BP5%) and 10% BP (BP10%). The stomach of each fish was sampled and processed for immunohistochemistry. Some SOM, NPY and GHR-IR cells exhibited alternating "open type" and "closed type" EECs morphologies. The BP10% group (16.8 ± 7.5) showed an increase in the number of NPY-IR cells compared to CTR (CTR 8.5 ± 4.8) and BP5% (BP10% vs. CTR p ≤ 0.01; BP10% vs. BP5% p ≤ 0.05) in the seabream gastric mucosa. In addition, in seabream gastric tissue, SOM-IR cells in the BP 10% diet (16.8 ± 3.5) were different from those in CTR (12.5 ± 5) (CTR vs. BP 10% p ≤ 0.05) and BP 5% (12.9 ± 2.5) (BP 5% vs. BP 10% p ≤ 0.01). EEC SOM-IR cells increased at 10% BP (5.3 ± 0.7) compared to 5% BP (4.4 ± 0.8) (5% BP vs. 10% BP p ≤ 0.05) in seabass. The results obtained may provide a good basis for a better understanding of the potential of salmon BPs as feed ingredients for seabass and seabream.
Collapse
Affiliation(s)
- Paolo Clavenzani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (P.C.); (G.L.); (A.B.); (L.P.); (S.B.); (P.P.G.)
| | - Giulia Lattanzio
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (P.C.); (G.L.); (A.B.); (L.P.); (S.B.); (P.P.G.)
| | - Alessio Bonaldo
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (P.C.); (G.L.); (A.B.); (L.P.); (S.B.); (P.P.G.)
| | - Luca Parma
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (P.C.); (G.L.); (A.B.); (L.P.); (S.B.); (P.P.G.)
| | - Serena Busti
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (P.C.); (G.L.); (A.B.); (L.P.); (S.B.); (P.P.G.)
| | - Åge Oterhals
- Nofima, the Norwegian Institute of Food Fisheries and Aquaculture Research, 5141 Fyllingsdalen, Norway; (Å.O.); (O.H.R.); (T.A.)
| | - Odd Helge Romarheim
- Nofima, the Norwegian Institute of Food Fisheries and Aquaculture Research, 5141 Fyllingsdalen, Norway; (Å.O.); (O.H.R.); (T.A.)
| | - Tone Aspevik
- Nofima, the Norwegian Institute of Food Fisheries and Aquaculture Research, 5141 Fyllingsdalen, Norway; (Å.O.); (O.H.R.); (T.A.)
| | - Pier Paolo Gatta
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (P.C.); (G.L.); (A.B.); (L.P.); (S.B.); (P.P.G.)
| | - Maurizio Mazzoni
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (P.C.); (G.L.); (A.B.); (L.P.); (S.B.); (P.P.G.)
| |
Collapse
|
3
|
Zhu Y, Negishi R, Fukunaga K, Udagawa S, Shimabukuro A, Takemura A. Activation of the growth-IGF-1 axis, but not appetite, is related to high growth performance in juveniles of the Malabar grouper, Epinephelus malabaricus, under isosmotic condition. Comp Biochem Physiol A Mol Integr Physiol 2023; 283:111456. [PMID: 37269939 DOI: 10.1016/j.cbpa.2023.111456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/05/2023]
Abstract
Salinity, a determining factor in aquatic environments, influences fish growth. Here, we evaluated the effect of salinity on osmoregulation and growth performance in juveniles of the Malabar grouper, Epinephelus malabaricus, a species of high commercial value in Asian markets; we also identified the salinity that maximized this species' growth rate. Fish were reared at 26 °C and under a 14:10 h photoperiod with a salinity of 5 psu, 11 psu, 22 psu, or 34 psu for 8 weeks. Change in salinity had minimal impact on the plasma Na+ and glucose concentrations, although the Na+/K+-ATPase (nkaα and nkaβ) transcript levels in the gills were significantly lower among fish reared at 11 psu salinity. Concomitantly, oxygen consumption was low in fish reared at 11 psu salinity. The feed conversion ratio (FCR) was lower in fish reared at 5 psu and 11 psu salinities than at 22 psu and 34 psu salinities. However, the specific growth rate (SGR) was higher in fish reared at 11 psu salinity. These results suggest that rearing fish at 11 psu salinity would decrease energy consumption for respiration and improve food-conversion efficiency. Among fish reared at 11 psu salinity, the transcript levels of growth hormone (gh) in the pituitary, as well as its receptor (ghr) and insulin-like growth factor I (igf-1) in the liver, were upregulated; these findings suggested stimulation of the growth axis at low salinity. In contrast, there were minimal differences in the transcript levels of neuropeptide Y (npy) and pro-opiomelanocortin (pomc) in the brains of fish reared at any salinity, suggesting that salinity does not affect appetite. Therefore, growth performance is higher in fish reared at 11 psu salinity because of activation of the GH-IGF system, but not appetite, in Malabar grouper juveniles.
Collapse
Affiliation(s)
- Yafan Zhu
- Graduate School of Engineering and Science, University of the Ryukyus, Japan
| | - Ryugo Negishi
- Graduate School of Engineering and Science, University of the Ryukyus, Japan
| | - Kodai Fukunaga
- Organization for Research Promotion, University of the Ryukyus, Japan
| | - Shingo Udagawa
- Organization for Research Promotion, University of the Ryukyus, Japan
| | | | - Akihiro Takemura
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Japan.
| |
Collapse
|
4
|
Martins N, Castro C, Oliva-Teles A, Peres H. The Interplay between Central and Peripheral Systems in Feed Intake Regulation in European Seabass ( Dicentrarchus labrax) Juveniles. Animals (Basel) 2022; 12:ani12233287. [PMID: 36496811 PMCID: PMC9739057 DOI: 10.3390/ani12233287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
The present study aimed to evaluate the effects of feeding or feed deprivation on the orexigenic and anorexigenic responses at the central (whole brain) and peripheral (anterior and posterior intestine, stomach, and liver) system levels in European seabass. For this purpose, a group of fish (208 g) was fed a single meal daily for 8 days (fed group) and another group was feed-deprived for 8 days (unfed group). Compared to the fed group, in the whole brain, feed deprivation did not induce changes in npy, agrp1, and cart2 expression, but increased agrp2 and pomc1 expression. In the anterior intestine, feed deprivation increased cck expression, while in the posterior intestine, the npy expression increased and pyyb decreased. In the stomach, the ghr expression decreased regardless of the feeding status. The hepatic lep expression increased in the unfed fish. The present results suggest a feed intake regulation mechanism in European seabass similar to that observed in other teleosts.
Collapse
Affiliation(s)
- Nicole Martins
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, Edifício FC4, 4169-007 Porto, Portugal
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n 289, 4450-208 Matosinhos, Portugal
- Correspondence:
| | - Carolina Castro
- FLATLANTIC—Atividades Piscícolas, S.A., Rua do Aceiros s/n, 3070-732 Praia de Mira, Portugal
| | - Aires Oliva-Teles
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, Edifício FC4, 4169-007 Porto, Portugal
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n 289, 4450-208 Matosinhos, Portugal
| | - Helena Peres
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, Edifício FC4, 4169-007 Porto, Portugal
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n 289, 4450-208 Matosinhos, Portugal
| |
Collapse
|
5
|
Zou JM, Zhu QS, Liang H, Lu HL, Liang XF, He S. Lysine Deprivation Regulates Npy Expression via GCN2 Signaling Pathway in Mandarin Fish ( Siniperca chuatsi). Int J Mol Sci 2022; 23:ijms23126727. [PMID: 35743178 PMCID: PMC9223478 DOI: 10.3390/ijms23126727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
Regulation of food intake is associated with nutrient-sensing systems and the expression of appetite neuropeptides. Nutrient-sensing systems generate the capacity to sense nutrient availability to maintain energy and metabolism homeostasis. Appetite neuropeptides are prominent factors that are essential for regulating the appetite to adapt energy status. However, the link between the expression of appetite neuropeptides and nutrient-sensing systems remains debatable in carnivorous fish. Here, with intracerebroventricular (ICV) administration of six essential amino acids (lysine, methionine, tryptophan, arginine, phenylalanine, or threonine) performed in mandarin fish (Siniperca chuatsi), we found that lysine and methionine are the feeding-stimulating amino acids other than the reported valine, and found a key appetite neuropeptide, neuropeptide Y (NPY), mainly contributes to the regulatory role of the essential amino acids on food intake. With the brain cells of mandarin fish cultured in essential amino acid deleted medium (lysine, methionine, histidine, valine, or leucine), we showed that only lysine deprivation activated the general control nonderepressible 2 (GCN2) signaling pathway, elevated α subunit of eukaryotic translation initiation factor 2 (eIF2α) phosphorylation, increased activating transcription factor 4 (ATF4) protein expression, and finally induced transcription of npy. Furthermore, pharmacological inhibition of GCN2 and eIF2α phosphorylation signaling by GCN2iB or ISRIB, effectively blocked the transcriptional induction of npy in lysine deprivation. Overall, these findings could provide a better understanding of the GCN2 signaling pathway involved in food intake control by amino acids.
Collapse
Affiliation(s)
- Jia-Ming Zou
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (J.-M.Z.); (Q.-S.Z.); (H.L.); (H.-L.L.)
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang-Sheng Zhu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (J.-M.Z.); (Q.-S.Z.); (H.L.); (H.-L.L.)
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (J.-M.Z.); (Q.-S.Z.); (H.L.); (H.-L.L.)
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Hai-Lin Lu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (J.-M.Z.); (Q.-S.Z.); (H.L.); (H.-L.L.)
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (J.-M.Z.); (Q.-S.Z.); (H.L.); (H.-L.L.)
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (X.-F.L.); (S.H.); Tel.: +86-15007113487 (X.-F.L.); +86-18672986332 (S.H.); Fax: +86-027-8728-2114 (X.-F.L.); +86-027-8728-2113 (S.H.)
| | - Shan He
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (J.-M.Z.); (Q.-S.Z.); (H.L.); (H.-L.L.)
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (X.-F.L.); (S.H.); Tel.: +86-15007113487 (X.-F.L.); +86-18672986332 (S.H.); Fax: +86-027-8728-2114 (X.-F.L.); +86-027-8728-2113 (S.H.)
| |
Collapse
|
6
|
Neuropeptide Y in Spotted Scat (Scatophagus Argus), Characterization and Functional Analysis towards Feed Intake Regulation. FISHES 2022. [DOI: 10.3390/fishes7030111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Neuropeptide Y (Npy) is an intricate neuropeptide regulating numerous physiological processes. It is a highly conserved peptide known to improve feed intake in many vertebrates, including fishes. To enlighten the mechanism of Npy in spotted scat feed intake control, we cloned and identified the Npy cDNA sequence. We further examined its expression in some tissues and explored its expression effects at different time frames (hours and days). Here, we discovered that spotted scat Npy comprised a 300 bp open reading frame (ORF) and a 99 amino acid sequence. Npy was identified to be expressed in all tissues examined. Using in situ hybridization examination, we proved that npy has a wide expression in the brain of the spotted scat. Furthermore, the expression of npy in the hypothalamus significantly increased one hour after feeding (p < 0.05). Further, it was revealed that npy expression significantly increased in fish that were fasted for up to 5 days and significantly increased after refeeding from the 8th to the 10th day. This suggests that Npy is an orexigenic peptide, and hence, it increases food intake and growth in the spotted scat. Additionally, results from in vitro and in vivo experiments revealed that Npy locally interacts with other appetite-regulating peptides in the spotted scat hypothalamus. This research aimed to set a fundamental study in developing the feed intake regulation, improving growth and reproduction, which is significant to the aquaculture industry of the spotted scat.
Collapse
|
7
|
Farzin M, Hassanpour S, Zendehdel M, Vazir B, Asghari A. Effects of Intracerebroventricular Injection of Spexin and its Interaction with NPY, GalR 2 and GalR 3 Receptors on the Central Food Intake Regulation and Nutritional Behavior in Broiler Chickens. Neurosci Lett 2022; 777:136589. [PMID: 35346778 DOI: 10.1016/j.neulet.2022.136589] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 01/31/2023]
Abstract
Food intake and appetite in birds can be adjusted by the complex homeostatic control mechanisms. There seem to be many similarities between mammalian and avian species in terms of the regulatory feeding systems. Therefore, the aim of this study was to investigate the effects of ICV injection of spexin and its interaction with GalR and NPY receptors on central food intake regulation and nutritional behavior in broiler chickens. In experiment 1, chicken received ICV injection of saline, spexin (2.5nmol), spexin (5nmol) and spexin (10nmol). In experiment 2, birds received ICV injection of saline, B5063 (NPY1 receptor antagonist 1.25µg), spexin (10nmol) and B5063+spexin. In experiments 3-6, SF22 (NPY2 receptor antagonist ,1.25µg), ML0891 (NPY5 receptor antagonist ,1.25µg), M871 (GalR2 receptor antagonist ,10nmol) and SNAP37889 (GalR3 receptor antagonist,10nmol) were injected in chickens instead of B5063. Then food intake was measured until 120 minutes after the injection and nutritional behavior was monitored at 30 minutes after the injection. Based on the data, a dose-dependent hypophagia was observed by the injection of spexin (P<0.05). Concomitant injection of B5063+spexin enhanced spexin-induced hypophagia (P<0.05). Co-injection of SNAP37889+spexin (10nmol) attenuated -induced hypophagia (P<0.05). Spexin (5 and 10 nmol) decreased number of steps, jumps, the exploratory food and pecks at 15 minutes after the injection (P<0.05). Spexin (5 and 10nmol) decreased standing time while siting time and rest time increased at 10 minutes after injection (P<0.05). Based on observations, spexin-induced hypophagia could be mediated by NPY1 and GalR3 receptors in neonatal broiler chickens.
Collapse
Affiliation(s)
- Mohaya Farzin
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shahin Hassanpour
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Morteza Zendehdel
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453 Tehran, Iran
| | - Bita Vazir
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ahmad Asghari
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
8
|
Sexual plasticity in bony fishes: Analyzing morphological to molecular changes of sex reversal. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
9
|
Hou ZS, Wen HS. Neuropeptide Y and melanocortin receptors in fish: regulators of energy homeostasis. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:42-51. [PMID: 37073356 PMCID: PMC10077275 DOI: 10.1007/s42995-021-00106-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 04/19/2021] [Indexed: 05/03/2023]
Abstract
Energy homeostasis, which refers to the physiological processes that the energy intake is exquisitely coordinated with energy expenditure, is critical for survival. Therefore, multiple and complex mechanisms have been involved in the regulation of energy homeostasis. The central melanocortin system plays an important role in modulating energy homeostasis. This system includes the orexigenic neurons, expressing neuropeptide Y/Agouti-related protein (NPY/AgRP), and the anorexigenic neurons expressing proopiomelanocortin (POMC). The downstream receptors of NPY, AgRP and post-translational products of POMC are G protein-coupled receptors (GPCRs). This review summarizes the compelling evidence demonstrating that NPY and melanocortin receptors are involved in energy homeostasis. Subsequently, the comparative studies on physiology and pharmacology of NPY and melanocortin receptors in humans, rodents and teleosts are summarized. Also, we provide a strategy demonstrating the potential application of the new ligands and/or specific variants of melanocortin system in aquaculture.
Collapse
Affiliation(s)
- Zhi-Shuai Hou
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao, 266003 China
| | - Hai-Shen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao, 266003 China
| |
Collapse
|
10
|
Yu X, Yan H, Li W. Recent advances in neuropeptide-related omics and gene editing: Spotlight on NPY and somatostatin and their roles in growth and food intake of fish. Front Endocrinol (Lausanne) 2022; 13:1023842. [PMID: 36267563 PMCID: PMC9576932 DOI: 10.3389/fendo.2022.1023842] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Feeding and growth are two closely related and important physiological processes in living organisms. Studies in mammals have provided us with a series of characterizations of neuropeptides and their receptors as well as their roles in appetite control and growth. The central nervous system, especially the hypothalamus, plays an important role in the regulation of appetite. Based on their role in the regulation of feeding, neuropeptides can be classified as orexigenic peptide and anorexigenic peptide. To date, the regulation mechanism of neuropeptide on feeding and growth has been explored mainly from mammalian models, however, as a lower and diverse vertebrate, little is known in fish regarding the knowledge of regulatory roles of neuropeptides and their receptors. In recent years, the development of omics and gene editing technology has accelerated the speed and depth of research on neuropeptides and their receptors. These powerful techniques and tools allow a more precise and comprehensive perspective to explore the functional mechanisms of neuropeptides. This paper reviews the recent advance of omics and gene editing technologies in neuropeptides and receptors and their progresses in the regulation of feeding and growth of fish. The purpose of this review is to contribute to a comparative understanding of the functional mechanisms of neuropeptides in non-mammalians, especially fish.
Collapse
|
11
|
Tolås I, Kalananthan T, Gomes AS, Lai F, Norland S, Murashita K, Rønnestad I. Regional Expression of npy mRNA Paralogs in the Brain of Atlantic Salmon ( Salmo salar, L.) and Response to Fasting. Front Physiol 2021; 12:720639. [PMID: 34512390 PMCID: PMC8427667 DOI: 10.3389/fphys.2021.720639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/28/2021] [Indexed: 12/18/2022] Open
Abstract
Neuropeptide Y (NPY) is known as a potent orexigenic signal in vertebrates, but its role in Atlantic salmon has not yet been fully established. In this study, we identified three npy paralogs, named npya1, npya2, and npyb, in the Atlantic salmon genome. In silico analysis revealed that these genes are well conserved across the vertebrate’s lineage and the mature peptide sequences shared at least 77% of identity with the human homolog. We analyzed mRNA expression of npy paralogs in eight brain regions of Atlantic salmon post-smolt, and the effect of 4 days of fasting on the npy expression level. Results show that npya1 was the most abundant paralog, and was predominantly expressed in the telencephalon, followed by the midbrain and olfactory bulb. npya2 mRNA was highly abundant in hypothalamus and midbrain, while npyb was found to be highest expressed in the telencephalon, with low mRNA expression levels detected in all the other brain regions. 4 days of fasting resulted in a significant (p < 0.05) decrease of npya1 mRNA expression in the olfactory bulb, increased npya2 mRNA expression in the midbrain and decreased npyb mRNA expression in the pituitary. In the hypothalamus, the vertebrate appetite center, expression of the npy paralogs was not significantly affected by feeding status. However, we observed a trend of increased npya2 mRNA expression (p = 0.099) following 4 days of fasting. Altogether, our findings provide a solid basis for further research on appetite and energy metabolism in Atlantic salmon.
Collapse
Affiliation(s)
- Ingvill Tolås
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | - Ana S Gomes
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Floriana Lai
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Sissel Norland
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Koji Murashita
- Physiological Function Division, Aquaculture Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Tamaki, Japan
| | - Ivar Rønnestad
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
12
|
The Roles of Neuropeptide Y ( Npy) and Peptide YY ( Pyy) in Teleost Food Intake: A Mini Review. Life (Basel) 2021; 11:life11060547. [PMID: 34200824 PMCID: PMC8230510 DOI: 10.3390/life11060547] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Neuropeptide Y family (NPY) is a potent orexigenic peptide and pancreatic polypeptide family comprising neuropeptide Y (Npy), peptide YYa (Pyya), and peptide YYb (Pyyb), which was previously known as peptide Y (PY), and tetrapod pancreatic polypeptide (PP), but has not been exhaustively documented in fish. Nonetheless, Npy and Pyy to date have been the key focus of countless research studies categorizing their copious characteristics in the body, which, among other things, include the mechanism of feeding behavior, cortical neural activity, heart activity, and the regulation of emotions in teleost. In this review, we focused on the role of neuropeptide Y gene (Npy) and peptide YY gene (Pyy) in teleost food intake. Feeding is essential in fish to ensure growth and perpetuation, being indispensable in the aquaculture settings where growth is prioritized. Therefore, a better understanding of the roles of these genes in food intake in teleost could help determine their feeding regime, regulation, growth, and development, which will possibly be fundamental in fish culture.
Collapse
|
13
|
Yu X, Xin Y, Cui L, Jia J, Yuan X, Fu S, Zhang J, Sun C, Miao X, Li W. Effects of neuropeptide Y as a feed additive on stimulating the growth of tilapia (Oreochromis niloticus) fed low fish meal diets. Peptides 2021; 138:170505. [PMID: 33539872 DOI: 10.1016/j.peptides.2021.170505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/04/2021] [Accepted: 01/09/2021] [Indexed: 10/22/2022]
Abstract
Neuropeptide Y is known to stimulate food intake in fish. In this study, we investigated tilapia NPY (tNPY) both for its effects on the growth of tilapia (Oreochromis niloticus, GIFT) in low fish meal and for its thermal stability. Three diets were formulated containing 0, 3 and 10 % fish meal (NF, LF and HF). From these diets, six experimental diets were prepared by spraying either tNPY solution (0.3 μg/g feed) or distilled water (DW) onto the surface of formulated feeds (NF + DW, NF + tNPY, LF + DW, LF + tNPY, HF + DW and HF + tNPY). Tilapia were fed the six experimental diets for 8 weeks. Fish in the NF + tNPY, LF + tNPY and HF + tNPY groups showed increasing trends in the weight gain rate and specific growth rate compared to its corresponding control group. The feed coefficient of group HF + tNPY was significantly lower than that of the control group. The growth performance of the LF + tNPY approached that of the HF + DW group. The mRNA levels of npy in NF + tNPY were significantly higher than those in NF + DW. A field experiment in which tNPY was sprayed in feeds by the vacuum spray method with doses of 0, 0.2 and 0.4 μg/g feed was performed for three months, and the FBW of tilapia receiving tNPY at 0.2 and 0.4 μg/g feed was higher than that of the control group although not significantly. The bioactivity of tNPY was confirmed by its ability to reduce cAMP levels and activate the ERK1/2 pathway. These results demonstrated that tNPY could promote tilapia growth with oral administration low fish meal diets.
Collapse
Affiliation(s)
- Xiaozheng Yu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Lab Oratory for Aquatic Economic Animals, Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Ying Xin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Lab Oratory for Aquatic Economic Animals, Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Lili Cui
- Yunnan Academy of Fishery Sciences, Yunnan Agricultural University, Kunming, China; College of Animal, Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jirong Jia
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Lab Oratory for Aquatic Economic Animals, Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xi Yuan
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Lab Oratory for Aquatic Economic Animals, Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Shiwei Fu
- Yunnan Academy of Fishery Sciences, Yunnan Agricultural University, Kunming, China
| | - Jiahui Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Lab Oratory for Aquatic Economic Animals, Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Caiyun Sun
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Lab Oratory for Aquatic Economic Animals, Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xiangjun Miao
- Yunnan Academy of Fishery Sciences, Yunnan Agricultural University, Kunming, China
| | - Wensheng Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Lab Oratory for Aquatic Economic Animals, Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
14
|
Mylroie JE, Wilbanks MS, Kimble AN, To KT, Cox CS, McLeod SJ, Gust KA, Moore DW, Perkins EJ, Garcia‐Reyero N. Perfluorooctanesulfonic Acid-Induced Toxicity on Zebrafish Embryos in the Presence or Absence of the Chorion. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:780-791. [PMID: 33044770 PMCID: PMC7984204 DOI: 10.1002/etc.4899] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/06/2020] [Accepted: 10/07/2020] [Indexed: 05/07/2023]
Abstract
Perfluorooctanesulfonic acid (PFOS) is a perfluorinated compound used in many industrial and consumer products. It has been linked to a broad range of adverse effects in several species, including zebrafish (Danio rerio). The zebrafish embryo is a widely used vertebrate model to elucidate potential adverse effects of chemicals because it is amenable to medium and high throughput. However, there is limited research on the full extent of the impact the chorion has on those effects. Results from the present study indicate that the presence of the chorion affected the timing and incidence of mortality as well as morphometric endpoints such as spinal curvature and swim bladder inflation in zebrafish embryos exposed to PFOS. Furthermore, removal of the chorion prior to exposure resulted in a lower threshold of sensitivity to PFOS for effects on transcriptional expression within the peroxisome proliferator-activated receptor (PPAR) nuclear signaling pathway. Perturbation of PPAR pathway gene expression can result in disruption of metabolic signaling and regulation, which can adversely affect development, energy availability, and survival. It can be concluded that removal of the chorion has significant effects on the timing and incidence of impacts associated with PFOS exposure, and more research is warranted to fully elucidate the protective role of the chorion and the critical timing of these events. Environ Toxicol Chem 2021;40:780-791. Published 2020. This article is a US Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | - Mitchell S. Wilbanks
- Environmental Laboratory, US Army Engineer Research & Development CenterVicksburgMississippi
| | - Ashley N. Kimble
- Environmental Laboratory, US Army Engineer Research & Development CenterVicksburgMississippi
| | - Kimberly T. To
- Oak Ridge Institute for Science and Education, Environmental Laboratory, US Army Engineer Research & Development CenterVicksburgMississippi
| | - Catherine S. Cox
- Oak Ridge Institute for Science and Education, Environmental Laboratory, US Army Engineer Research & Development CenterVicksburgMississippi
| | - Sheila J. McLeod
- Oak Ridge Institute for Science and Education, Environmental Laboratory, US Army Engineer Research & Development CenterVicksburgMississippi
| | - Kurt A. Gust
- Environmental Laboratory, US Army Engineer Research & Development CenterVicksburgMississippi
| | - David W. Moore
- Environmental Laboratory, US Army Engineer Research & Development CenterVicksburgMississippi
| | - Edward J. Perkins
- Environmental Laboratory, US Army Engineer Research & Development CenterVicksburgMississippi
| | - Natàlia Garcia‐Reyero
- Environmental Laboratory, US Army Engineer Research & Development CenterVicksburgMississippi
| |
Collapse
|
15
|
Smirnova A, Mentor A, Ranefall P, Bornehag CG, Brunström B, Mattsson A, Jönsson M. Increased apoptosis, reduced Wnt/β-catenin signaling, and altered tail development in zebrafish embryos exposed to a human-relevant chemical mixture. CHEMOSPHERE 2021; 238:124584. [PMID: 33032226 DOI: 10.1016/j.chemosphere.2019.124584] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 05/22/2023]
Abstract
A wide variety of anthropogenic chemicals is detected in humans and wildlife and the health effects of various chemical exposures are not well understood. Early life stages are generally the most susceptible to chemical disruption and developmental exposure can cause disease in adulthood, but the mechanistic understanding of such effects is poor. Within the EU project EDC-MixRisk, a chemical mixture (Mixture G) was identified in the Swedish pregnancy cohort SELMA by the inverse association between levels in women at around gestational week ten with birth weight of their children. This mixture was composed of mono-ethyl phthalate, mono-butyl phthalate, mono-benzyl phthalate, mono-ethylhexyl phthalate, mono-isononyl phthalate, triclosan, perfluorohexane sulfonate, perfluorooctanoic acid, and perfluorooctane sulfonate. In a series of experimental studies, we characterized effects of Mixture G on early development in zebrafish models. Here, we studied apoptosis and Wnt/β-catenin signaling which are two evolutionarily conserved signaling pathways of crucial importance during development. We determined effects on apoptosis by measuring TUNEL staining, caspase-3 activity, and acridine orange staining in wildtype zebrafish embryos, while Wnt/β-catenin signaling was assayed using a transgenic line expressing an EGFP reporter at β-catenin-regulated promoters. We found that Mixture G increased apoptosis, suppressed Wnt/β-catenin signaling in the caudal fin, and altered the shape of the caudal fin at water concentrations only 20-100 times higher than the geometric mean serum concentration in the human cohort. These findings call for awareness that pollutant mixtures like mixture G may interfere with a variety of developmental processes, possibly resulting in adverse health effects.
Collapse
Affiliation(s)
- Anna Smirnova
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden; The Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| | - Anna Mentor
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden; The Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| | - Petter Ranefall
- SciLifeLab BioImage Informatics Facility, and Dept of Information Technology, Uppsala University, Uppsala, Sweden
| | - Carl-Gustaf Bornehag
- Public Health Sciences, Karlstad University, Karlstad, Sweden; Icahn School of Medicine at Mount Sinai, New York, USA
| | - Björn Brunström
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden; The Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| | - Anna Mattsson
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden; The Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| | - Maria Jönsson
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden; The Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden.
| |
Collapse
|
16
|
Huang W, Yao C, Liu Y, Xu N, Yin Z, Xu W, Miao Y, Mai K, Ai Q. Dietary Allicin Improved the Survival and Growth of Large Yellow Croaker ( Larimichthys crocea) Larvae via Promoting Intestinal Development, Alleviating Inflammation and Enhancing Appetite. Front Physiol 2020; 11:587674. [PMID: 33162901 PMCID: PMC7583326 DOI: 10.3389/fphys.2020.587674] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
A 30-day feeding experiment was conducted to investigate effects of dietary allicin on survival, growth, antioxidant capacity, innate immunity and expression of inflammatory and appetite related genes in large yellow croaker larvae. Four iso-nitrogenous (53% crude protein) and iso-lipidic (19% crude lipid) diets were formulated via supplementing graded levels of allicin (0.0 (the control), 0.005, 0.01, and 0.02% dry diet, respectively). Results showed that, among dietary treatments, larvae fed the diet with 0.005% allicin had the highest survival rate (SR) (P < 0.05), while larvae fed the diet with 0.01% allicin had the highest specific growth rate (SGR) (P < 0.05). Activities of α-amylase in both pancreatic (PS) and intestine segments (IS) of larvae fed the diet with 0.01% allicin were significantly lower than that in the control (P < 0.05). On the other hand, the supplementation of 0.01% allicin in diets significantly increased activities of alkaline phosphatase (AKP) and leucine aminopeptidase (LAP) in the intestinal brush border membrane (BBM) of larvae than the control (P < 0.05), indicating the promoting roles of allicin on fish larval intestinal development. Moreover, compared to the control, both the nitric oxide (NO) content and the activity of nitric oxide synthase (NOS) were significantly up-regulated in larvae fed the diet with 0.005% allicin, and catalase (CAT) were significantly upregulated in larvae fed the diet with 0.02% allicin (P < 0.05). Transcriptional levels of pro-inflammatory genes including cyclooxygenase-2 (cox-2), interleukin-1β (il-1β) and interleukin-6 (il-6) significantly decreased with increasing allicin, compared to the control. The expression of appetite genes including npy, ghrelin and leptin significantly increased with the prolonged fasting period, and dietary allicin supplementation significantly increased the transcriptional level of neuropeptide Y (npy) at 0.01%, while increased the transcriptional level of leptin in larvae at 0.02% dosages (P < 0.05). These results showed that the supplementation of 0.005% – 0.01% allicin in diets could improve the survival and growth of large yellow croaker larvae probably by promoting intestinal development, alleviating inflammation and enhancing appetite.
Collapse
Affiliation(s)
- Wenxing Huang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Chuanwei Yao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Yongtao Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Ning Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Zhaoyang Yin
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Wenxuan Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Youqing Miao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
17
|
Kwasek K, Wojno M, Iannini F, McCracken VJ, Molinari GS, Terova G. Nutritional programming improves dietary plant protein utilization in zebrafish Danio rerio. PLoS One 2020; 15:e0225917. [PMID: 32142555 PMCID: PMC7059923 DOI: 10.1371/journal.pone.0225917] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/20/2020] [Indexed: 12/19/2022] Open
Abstract
Nutritional Programming (NP) has been shown to counteract the negative effects of dietary plant protein (PP) by introducing PP at an early age towards enhancement of PP utilization during later life stages. This study explored the effect of NP and its induction time on growth, expression of appetite-stimulating hormones, and any morphological changes in the gut possibly responsible for improved dietary PP utilization. At 3 days post-hatch (dph) zebrafish were distributed into 12 (3 L) tanks, 100 larvae per tank. This study included four groups: 1) The control (NP-FM) group received fishmeal (FM)-based diet from 13–36 dph and was challenged with PP-based diet during 36–66 dph; 2) The NP-PP group received NP with dietary PP in larval stage via live food enrichment during 3–13 dph followed by FM diet during 13–36 dph and PP diet during 36–66 dph; 3) The T-NP group received NP between 13–23 dph through PP diet followed by FM diet during 23–36 dph and PP diet during 36–66 dph; and 4) The PP group received PP diet from 13–66 dph. During the PP challenge the T-NP group achieved the highest weight gain compared to control and PP. Ghrelin expression in the brain was higher in T-NP compared to NP-FM and NP-PP, while in the gut it was reduced in both NP-PP and T-NP groups. Cholecystokinin expression showed an opposite trend to ghrelin. The brain neuropeptide Y expression was lower in NP-PP compared to PP but not different with NP-FM and T-NP groups. The highest villus length to width ratio in the middle intestine was found in T-NP compared to all other groups. The study suggests that NP induced during juvenile stages improves zebrafish growth and affects digestive hormone regulation and morphology of the intestinal lining–possible mechanisms behind the improved PP utilization in pre-adult zebrafish stages.
Collapse
Affiliation(s)
- Karolina Kwasek
- Center for Fisheries, Aquaculture, and Aquatic Sciences, School of Biological Sciences, Southern Illinois University-Carbondale, Carbondale, Illinois, United States of America
- * E-mail:
| | - Michal Wojno
- Center for Fisheries, Aquaculture, and Aquatic Sciences, School of Biological Sciences, Southern Illinois University-Carbondale, Carbondale, Illinois, United States of America
| | - Federica Iannini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Vance J. McCracken
- Department of Biological Sciences, Southern Illinois University-Edwardsville, Edwardsville, Illinois, United States of America
| | - Giovanni S. Molinari
- Center for Fisheries, Aquaculture, and Aquatic Sciences, School of Biological Sciences, Southern Illinois University-Carbondale, Carbondale, Illinois, United States of America
| | - Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
18
|
Lv L, Liang XF, Huang K, He S. Effect of agmatine on food intake in mandarin fish (Siniperca chuatsi). FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1709-1716. [PMID: 31140073 DOI: 10.1007/s10695-019-00659-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
Agmatine, an endogenous biogenic amine, is considered to be a central neurotransmitter. And it plays an important role in mammal feeding behavior. However, there were few studies on the effect of agmatine on feeding behavior in fishes. Here, we investigated the impact of intracerebroventricular (ICV) injections of agmatine (1.25-20 nmol/fish) on food intake in mandarin fish (Siniperca chuatsi). At 1-h post-injection, food intake showed a significant decrease in agmatine-treated fishes compared with the saline treated. Furthermore, the food intake in agmatine treatment mostly did not differ from that in saline treatment at 4--24-h post-injection as well as the results of genes expression of neuropeptide Y (NPY), agouti-regulated peptide (AgRP), and anorexigenic melanocortin 4 receptor (MC4R). In accordance with the insulin level increasing in liver, the gene expression of insulin receptor substrate (IRS2) was significantly higher in agmatine treatment compared to saline treatment at 1-h post-injection. Thus, the anorexigenic effect of agmatine is likely to decrease NPY and AgRP expression levels and increase MC4R and IRS2 levels which was coupled with stimulation of insulin secretion. Although these initial findings are limited in dose, the data firstly provides evidence for the anorectic effects of agmatine in fish.
Collapse
Affiliation(s)
- Liyuan Lv
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China.
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China.
| | - Kang Huang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Shan He
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| |
Collapse
|
19
|
Zhao Y, Wu XY, Xu SX, Xie JY, Xiang KW, Feng L, Liu Y, Jiang WD, Wu P, Zhao J, Zhou XQ, Jiang J. Dietary tryptophan affects growth performance, digestive and absorptive enzyme activities, intestinal antioxidant capacity, and appetite and GH-IGF axis-related gene expression of hybrid catfish (Pelteobagrus vachelli♀ × Leiocassis longirostris♂). FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1627-1647. [PMID: 31161532 DOI: 10.1007/s10695-019-00651-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
The 56-day feeding trial was carried out to investigate the effects of dietary tryptophan (Trp) on growth performance, digestive and absorptive enzyme activities, intestinal antioxidant capacity, and appetite and GH-IGF axis-related genes expression of hybrid catfish (Pelteobagrus vachelli♀ × Leiocassis longirostris♂). A total of 864 hybrid catfish (21.82 ± 0.14 g) were fed six different experimental diets containing graded levels of Trp at 2.6, 3.1, 3.7, 4.2, 4.7, and 5.6 g kg-1 diet. The results indicated that dietary Trp increased (P < 0.05) (1) final body weight, percent weight gain, specific growth rate, feed intake, feed efficiency, and protein efficiency ratio; (2) fish body protein, lipid and ash contents, protein, and ash production values; (3) stomach weight, stomach somatic index, liver weight, intestinal weight, length and somatic index, and relative gut length; and (4) activities of pepsin in the stomach; trypsin, chymotrypsin, lipase, and amylase in the pancreas and intestine; and γ-glutamyl transpeptidase, Na+, K+-ATPase, and alkaline phosphatase in the intestine. Dietary Trp decreased malondialdehyde content, increased antioxidant enzyme activities and glutathione content, but downregulated Keap1 mRNA expression, and upregulated the expression of NPY, ghrelin, GH, GHR, IGF1, IGF2, IGF1R, PIK3Ca, AKT1, TOR, 4EBP1, and S6K1 genes. These results indicated that Trp improved hybrid catfish growth performance, digestive and absorptive ability, antioxidant status, and appetite and GH-IGF axis-related gene expression. Based on the quadratic regression analysis of PWG, SGR, and FI, the dietary Trp requirement of hybrid catfish (21.82-39.64 g) was recommended between 3.96 and 4.08 g kg-1 diet (9.4-9.7 g kg-1 of dietary protein).
Collapse
Affiliation(s)
- Ye Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Yun Wu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Shang-Xiao Xu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Jia-Yuan Xie
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kai-Wen Xiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Juan Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China.
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China.
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China.
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China.
| |
Collapse
|
20
|
Singh P, Lal B. Photo-thermal regulation of neuropeptide Y (NPY) expression in ovarian follicles and ovarian activity of the catfish, Clarias batrachus. Gen Comp Endocrinol 2019; 279:114-119. [PMID: 30763566 DOI: 10.1016/j.ygcen.2019.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 02/10/2019] [Accepted: 02/10/2019] [Indexed: 12/01/2022]
Abstract
Authors have recently reported a gradual increase in neuropeptide Y expression in the ovarian follicles of Clarias batrachus with the progression of oogenesis, coinciding with increasing photoperiod and temperature. This indicates the involvement of photoperiod and temperature in controlling NPY expression. Therefore, a study was designed to investigate the role of photoperiod and temperature in regulation of NPY expression in ovarian follicles. The catfish were exposed to different photo-thermal regimes during the late-quiescence and late-recrudescence phases for one month, and the expression of NPY was analyzed along with other ovarian activities. Though the exposure of catfish to long photoperiod induced a marginal increase (1.5 fold) in NPY expression in follicular cells, the high temperature stimulated its expression more effectively (6-10 fold), irrespective of photoperiodic exposures. Exposure to long photoperiod and high temperature together induced NPY expression maximally in granulosa and thecal cells of fully grown oocytes, but exposure to low temperature decreased its expression significantly. The oogenic and steroidogenic activities were also promoted simultaneously after the exposure to high temperature and long photoperiod alone or in combination. However, the low temperature exposure suppressed the ovarian activities leading to atresia of advanced follicles. Thus it is suggested that photoperiod and temperature both affect NPY expression and ovarian recrudescence in fish but the influences of temperature seem to be more prominent.
Collapse
Affiliation(s)
- Priyadarshini Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Bechan Lal
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
21
|
Striberny A, Jørgensen EH, Klopp C, Magnanou E. Arctic charr brain transcriptome strongly affected by summer seasonal growth but only subtly by feed deprivation. BMC Genomics 2019; 20:529. [PMID: 31248377 PMCID: PMC6598377 DOI: 10.1186/s12864-019-5874-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 05/31/2019] [Indexed: 12/30/2022] Open
Abstract
Background The Arctic charr (Salvelinus alpinus) has a highly seasonal feeding cycle that comprises long periods of voluntary fasting and a short but intense feeding period during summer. Therefore, the charr represents an interesting species for studying appetite-regulating mechanisms in fish. Results In this study, we compared the brain transcriptomes of fed and feed deprived charr over a 4 weeks trial during their summer feeding season. Despite prominent differences in body condition between fed and feed deprived charr at the end of the trial, feed deprivation affected the brain transcriptome only slightly. In contrast, the transcriptome differed markedly over time in both fed and feed deprived charr, indicating strong shifts in basic cell metabolic processes possibly due to season, growth, temperature, or combinations thereof. The GO enrichment analysis revealed that many biological processes appeared to change in the same direction in both fed and feed deprived fish. In the feed deprived charr processes linked to oxygen transport and apoptosis were down- and up-regulated, respectively. Known genes encoding for appetite regulators did not respond to feed deprivation. Gene expression of Deiodinase 2 (DIO2), an enzyme implicated in the regulation of seasonal processes in mammals, was lower in response to season and feed deprivation. We further found a higher expression of VGF (non-acronymic) in the feed deprived than in the fed fish. This gene encodes for a neuropeptide associated with the control of energy metabolism in mammals, and has not been studied in relation to regulation of appetite and energy homeostasis in fish. Conclusions In the Arctic charr, external and endogenous seasonal factors for example the increase in temperature and their circannual growth cycle, respectively, evoke much stronger responses in the brain than 4 weeks feed deprivation. The absence of a central hunger response in feed deprived charr give support for a strong resilience to the lack of food in this high Arctic species. DIO2 and VGF may play a role in the regulation of energy homeostasis and need to be further studied in seasonal fish. Electronic supplementary material The online version of this article (10.1186/s12864-019-5874-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anja Striberny
- Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø, Norway.
| | - Even H Jørgensen
- Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Christophe Klopp
- Plateforme Bioinformatique Toulouse, Midi-Pyrénées UBIA, INRA, Auzeville Castanet-Tolosan, France
| | - Elodie Magnanou
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France
| |
Collapse
|
22
|
Deng X, Lei L, Yuan D, Zheng Z, Zhu C, Luo H, Ye H, Li D, Wang J, Li B, Lv G, Zhou C. Cloning, expression profiling, and effects of fasting status on neuropeptide Y in Schizothorax davidi. J Food Biochem 2019; 43:e12892. [PMID: 31353745 DOI: 10.1111/jfbc.12892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/25/2019] [Accepted: 04/23/2019] [Indexed: 11/28/2022]
Abstract
To better comprehend the mechanism that neuropeptide Y (npy) regulates feeding in Schizothorax davidi, we cloned and identified the full-length cDNA sequence of the npy gene in this species using RACE technology. Subsequently, we explored the npy mRNA distribution in 18 tissues and investigated the expression of npy mRNA at postprandial and fasting stages. We found that the npy full-length cDNA sequence is 803 bp. Moreover, npy mRNAs extensively expressed in all detected tissues, with the highest expression in hypothalamus. In postprandial study, the expression of npy mRNA in the hypothalamus was significantly decreased after eating (p < 0.01). In addition, the expression of the npy gene was significantly increased on the fifth day after fasting (p < 0.05). However, after refeeding, the expression of the npy gene was decreased significantly on days 9, 11, and 14 (p < 0.01). Our research suggest that npy may have an orexigenic role in S. davidi. PRACTICAL APPLICATIONS: S. davidi, a coldwater fish native to China, has high economic value, and it has gained great popularity. To date, there is still no large-scale breeding of S. davidi in China. How to strengthen the production performance of S. davidi is a hot research area. Neuropeptide Y (NPY), a 36-amino-acid single-chain polypeptide, is one of the main appetite regulation factors. However, to date, no studies have reported on the biological function of npy in the feeding of S. davidi. In our study, we revealed that the trend of hypothalamic npy expression during the postprandial and fasting stages. The results suggested that npy might be an appetite-promoting factor in this species. Overall, we provide the theoretical basis for how to strengthen the production performance of S. davidi through appetite regulation.
Collapse
Affiliation(s)
- Xingxing Deng
- College of Animal Sciences, Southwest University, Chongqing, People's Republic of China
| | - Luo Lei
- College of Animal Sciences, Southwest University, Chongqing, People's Republic of China
| | - Dengyue Yuan
- Department of Aquaculture, College of Life Sciences, Neijiang Normal University, Neijiang, People's Republic of China
| | - Zonglin Zheng
- College of Animal Sciences, Southwest University, Chongqing, People's Republic of China
| | - Chengke Zhu
- College of Animal Sciences, Southwest University, Chongqing, People's Republic of China
| | - Hui Luo
- College of Animal Sciences, Southwest University, Chongqing, People's Republic of China
| | - Hua Ye
- College of Animal Sciences, Southwest University, Chongqing, People's Republic of China
| | - Dongmei Li
- College of Animal Sciences, Southwest University, Chongqing, People's Republic of China
| | - Jian Wang
- College of Animal Sciences, Southwest University, Chongqing, People's Republic of China
| | - Baohai Li
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, People's Republic of China
| | - Guangjun Lv
- College of Animal Sciences, Southwest University, Chongqing, People's Republic of China
| | - Chaowei Zhou
- College of Animal Sciences, Southwest University, Chongqing, People's Republic of China.,Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, People's Republic of China
| |
Collapse
|
23
|
Das K, Ogawa S, Kitahashi T, Parhar IS. Expression of neuropeptide Y and gonadotropin-releasing hormone gene types in the brain of female Nile tilapia (Oreochromis niloticus) during mouthbrooding and food restriction. Peptides 2019; 112:67-77. [PMID: 30389346 DOI: 10.1016/j.peptides.2018.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/28/2018] [Accepted: 10/29/2018] [Indexed: 12/14/2022]
Abstract
A cichlid fish, the Nile tilapia (Oreochromis niloticus), is a maternal mouthbrooder, which exhibits minimum energy expenditure and slower ovarian cycles during mouthbrooding. The objective of this study was to observe changes in the gene expression of key neuropeptides involved in the control of appetite and reproduction, including neuropeptide Y a (NPYa), reproductive neuropeptides: gonadotropin-releasing hormone (GnRH1, GnRH2 and GnRH3) and kisspeptin (Kiss2) during mouthbrooding (4- and 12-days), 12-days of food restriction and 12-days of food restriction followed by refeeding. The food restriction regime showed a significant increase in npya mRNA levels in the telencephalon. However, there were no significant alterations in npya mRNA levels during mouthbrooding. gnrh1 mRNA levels were significantly lower in mouthbrooding female as compared with females with food restriction. gnrh3 mRNA levels were also significantly lower in female with 12-days of mouthbrooding, 12-days of food restriction followed by 12-days of refeeding when compared with controls. There were no significant differences in gnrh2 and kiss2 mRNA levels between groups under different feeding regimes. No significant changes were observed in mRNA levels of receptors for peripheral metabolic signaling molecules: ghrelin (GHS-R1a and GHS-R1b) and leptin (Lep-R). These results suggested that unaffected npya mRNA levels in the telencephalon might contribute to suppression of appetite in mouthbrooding female tilapia. Furthermore, lower gnrh1 and gnrh3 mRNA levels may influence the suppression of reproductive functions such as progression of ovarian cycle and reproductive behaviours, while GnRH2 and Kiss2 may not play a significant roles in reproduction under food restriction condition.
Collapse
Affiliation(s)
- Kalpana Das
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia.
| | - Takashi Kitahashi
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| |
Collapse
|
24
|
Opazo R, Plaza-Parrochia F, Cardoso dos Santos GR, Carneiro GRA, Sardela VF, Romero J, Valladares L. Fasting Upregulates npy, agrp, and ghsr Without Increasing Ghrelin Levels in Zebrafish ( Danio rerio) Larvae. Front Physiol 2019; 9:1901. [PMID: 30733682 PMCID: PMC6353792 DOI: 10.3389/fphys.2018.01901] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/18/2018] [Indexed: 11/24/2022] Open
Abstract
Food intake in fish and mammals is orchestrated by hypothalamic crosstalk between orexigenic (food intake stimulation) and anorexigenic (food intake inhibition) signals. Some of these signals are released by peripheral tissues that are associated with energy homeostasis or nutrient availability. During the fish larva stage, orexigenic stimulation plays a critical role in individual viability. The goal of this study was to assess the mRNA levels of the main neuropeptides involved in food intake regulation (npy, agrp, carppt, and pomc), in concert with the mRNA levels and peptide levels of ghrelin, under a fasting intervention at the larval stage in zebrafish (Danio rerio). Prior to the fasting intervention, the zebrafish larva cohort was reared for 20 days post fertilization (dpf) and then randomly divided into two groups of 20 individuals. One group was subjected to a fasting intervention for 5 days (fasted group), and the other group was fed normally (fed group); this experimental protocol was performed twice independently. At the end of the fasting period, individuals from each experimental group were divided into different analysis groups, for evaluations such as relative gene expression, immunohistochemistry, and liquid chromatography coupled to nano high-resolution mass spectrometry (nLC-HRMS) analyses. The relative expression levels of the following genes were assessed: neuropeptide Y (npy), agouti-related peptide (agrp), proopiomelanocortin (pomc), cocaine and amphetamine-regulated transcript (cartpt), ghrelin (ghrl), ghrelin O-acyltransferase (mboat4), growth hormone secretagogue receptor (ghsr), and glucokinase (gck). In the fasted group, significant upregulation of orexigenic peptides (npy - agrp) and ghsr was observed, which was associated with significant downregulation of gck. The anorexigenic peptides (pomc and cartpt) did not show any significant modulation between the groups, similar to mboat4. Contrary to what was expected, the relative mRNA upregulation of the orexigenic peptides observed in the fasted experimental group could not be associated with significant ghrelin modulation as assessed by three different approaches: qPCR (relative gene expression of ghrelin), nLC-HRMS (des-acyl-ghrelin levels), and immunohistochemistry (integrated optical density of prepropeptides in intestinal and hepatopancreas tissues). Our results demonstrate that zebrafish larvae at 25 dpf exhibit suitable modulation of the relative mRNA levels of orexigenic peptides (npy and agrp) in response to fasting intervention; nevertheless, ghrelin was not coregulated by fasting. Therefore, it can be suggested that ghrelin is not an essential peptide for an increase in appetite in the zebrafish larva stage. These results give rise to new questions about food intake regulation factors in the early stages of fish.
Collapse
Affiliation(s)
- Rafael Opazo
- Laboratorio de Biotecnología INTA, Universidad de Chile, Santiago, Chile
| | - Francisca Plaza-Parrochia
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico, Universidad de Chile, Santiago, Chile
| | - Gustavo R. Cardoso dos Santos
- Laboratorio de Pesquisa, Desenvolvimento e Inovação (LPDI-LADETEC), Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriel R. A. Carneiro
- Laboratorio de Pesquisa, Desenvolvimento e Inovação (LPDI-LADETEC), Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinicius F. Sardela
- Laboratorio de Pesquisa, Desenvolvimento e Inovação (LPDI-LADETEC), Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jaime Romero
- Laboratorio de Biotecnología INTA, Universidad de Chile, Santiago, Chile
| | - Luis Valladares
- Laboratorio de Hormonas y Receptores INTA, Universidad de Chile, Santiago, Chile
| |
Collapse
|
25
|
Chen T, Wong MKH, Chan BCB, Wong AOL. Mechanisms for Temperature Modulation of Feeding in Goldfish and Implications on Seasonal Changes in Feeding Behavior and Food Intake. Front Endocrinol (Lausanne) 2019; 10:133. [PMID: 30899246 PMCID: PMC6416165 DOI: 10.3389/fendo.2019.00133] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/12/2019] [Indexed: 11/22/2022] Open
Abstract
In fish models, seasonal change in feeding is under the influence of water temperature. However, the effects of temperature on appetite control can vary among fish species and the mechanisms involved have not been fully characterized. Using goldfish (Carassius auratus) as a model, seasonal changes in feeding behavior and food intake were examined in cyprinid species. In our study, foraging activity and food consumption in goldfish were found to be reduced with positive correlation to the gradual drop in water temperature occurring during the transition from summer (28.4 ± 2.2°C) to winter (15.1 ± 2.6°C). In goldfish with a 4-week acclimation at 28°C, their foraging activity and food consumption were notably higher than their counterparts with similar acclimation at 15°C. When compared to the group at 28°C during summer, the attenuation in feeding responses at 15°C during the winter also occurred with parallel rises of leptin I and II mRNA levels in the liver. Meanwhile, a drop in orexin mRNA along with concurrent elevations of CCK, MCH, POMC, CART, and leptin receptor (LepR) transcript expression could be noted in brain areas involved in feeding control. In short-term study, goldfish acclimated at 28°C were exposed to 15°C for 24 h and the treatment was effective in reducing foraging activity and food intake. The opposite was true in reciprocal experiment with a rise in water temperature to 28°C for goldfish acclimated at 15°C. In parallel time-course study with lowering of water temperature from 28 to 15°C, short-term exposure (6-12 h) of goldfish to 15°C could also increase leptin I and II mRNA levels in the liver. Similar to our seasonality study, transcript level of orexin was reduced along with up-regulation of CCK, MCH, POMC, CART, and LepR gene expression in different brain areas. Our results, as a whole, suggest that temperature-driven regulation of leptin output from the liver in conjunction with parallel modulations of orexigenic/anorexigenic signals and leptin responsiveness in the brain may contribute to the seasonal changes of feeding behavior and food intake observed in goldfish.
Collapse
|
26
|
Cortés R, Teles M, Oliveira M, Fierro-Castro C, Tort L, Cerdá-Reverter JM. Effects of acute handling stress on short-term central expression of orexigenic/anorexigenic genes in zebrafish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:257-272. [PMID: 29071448 DOI: 10.1007/s10695-017-0431-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
Physiological mechanisms driving stress response in vertebrates are evolutionarily conserved. These mechanisms involve the activation of both the hypothalamic-sympathetic-chromaffin cell (HSC) and the hypothalamic-pituitary-adrenal (HPA) axes. In fish, the reduction of food intake levels is a common feature of the behavioral response to stress but the central mechanisms coordinating the energetic response are not well understood yet. In this work, we explore the effects of acute stress on key central systems regulating food intake in fish as well as on total body cortisol and glucose levels. We show that acute stress induced a rapid increase in total body cortisol with no changes in body glucose, at the same time promoting a prompt central response by activating neuronal pathways. All three orexigenic peptides examined, i.e., neuropeptide y (npy), agouti-related protein (agrp), and ghrelin, increased their central expression level suggesting that these neuronal systems are not involved in the short-term feeding inhibitory effects of acute stress. By contrast, the anorexigenic precursors tested, i.e., cart peptides and pomc, exhibited increased expression after acute stress, suggesting their involvement in the anorexigenic effects.
Collapse
Affiliation(s)
- Raul Cortés
- Deparment of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Torre la Sal s/n 12595, Ribera de Cabanes, Castellón, Spain
- Universidad Bernardo O'Higgins, Centro de Investigación en Recursos Naturales y Sustentabilidad, Fábrica1990, Santiago, Chile
| | - Mariana Teles
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Miguel Oliveira
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Camino Fierro-Castro
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - José Miguel Cerdá-Reverter
- Deparment of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Torre la Sal s/n 12595, Ribera de Cabanes, Castellón, Spain.
| |
Collapse
|
27
|
Blanco AM, Sundarrajan L, Bertucci JI, Unniappan S. Why goldfish? Merits and challenges in employing goldfish as a model organism in comparative endocrinology research. Gen Comp Endocrinol 2018; 257:13-28. [PMID: 28185936 DOI: 10.1016/j.ygcen.2017.02.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 01/31/2017] [Accepted: 02/04/2017] [Indexed: 02/07/2023]
Abstract
Goldfish has been used as an unconventional model organism to study a number of biological processes. For example, goldfish is a well-characterized and widely used model in comparative endocrinology, especially in neuroendocrinology. Several decades of research has established and validated an array of tools to study hormones in goldfish. The detailed brain atlas of goldfish, together with the stereotaxic apparatus, are invaluable tools for the neuroanatomic localization and central administration of endocrine factors. In vitro techniques, such as organ and primary cell cultures, have been developed using goldfish. In vivo approaches using goldfish were used to measure endogenous hormonal milieu, feeding, behaviour and stress. While there are many benefits in using goldfish as a model organism in research, there are also challenges associated with it. One example is its tetraploid genome that results in the existence of multiple isoforms of endocrine factors. The presence of extra endogenous forms of peptides and its receptors adds further complexity to the already redundant multifactorial endocrine milieu. This review will attempt to discuss the importance of goldfish as a model organism in comparative endocrinology. It will highlight some of the merits and challenges in employing goldfish as an animal model for hormone research in the post-genomic era.
Collapse
Affiliation(s)
- Ayelén Melisa Blanco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, S7N 5B4 Saskatoon, Saskatchewan, Canada; Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, José Antonio Nováis 12, 28040 Madrid, Spain.
| | - Lakshminarasimhan Sundarrajan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, S7N 5B4 Saskatoon, Saskatchewan, Canada.
| | - Juan Ignacio Bertucci
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, S7N 5B4 Saskatoon, Saskatchewan, Canada; Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Avenida Intendente Marinos Km. 8,2, 7130 Chascomús, Buenos Aires, Argentina.
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, S7N 5B4 Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
28
|
González-Stegmaier R, Villarroel-Espíndola F, Manríquez R, López M, Monrás M, Figueroa J, Enríquez R, Romero A. New immunomodulatory role of neuropeptide Y (NPY) in Salmo salar leucocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:303-309. [PMID: 28676307 DOI: 10.1016/j.dci.2017.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/30/2017] [Accepted: 06/30/2017] [Indexed: 06/07/2023]
Abstract
Neuropeptide Y (NPY) plays different roles in mammals such as: regulate food intake, memory retention, cardiovascular functions, and anxiety. It has also been shown in the modulation of chemotaxis, T lymphocyte differentiation, and leukocyte migration. In fish, NPY expression and functions have been studied but its immunomodulatory role remains undescribed. This study confirmed the expression and synthesis of NPY in S. salar under inflammation, and validated a commercial antibody for NPY detection in teleost. Additionally, immunomodulatory effects of NPY were assayed in vitro and in vivo. Phagocytosis and superoxide anion production in leukocytes and SHK cells were induced under stimulation with a synthetic peptide. IL-8 mRNA was selectively and strongly induced in the spleen, head kidney, and isolated cells, after in vivo challenge with NPY. All together suggest that NPY is expressed in immune tissues and modulates the immune response in teleost fish.
Collapse
Affiliation(s)
- Roxana González-Stegmaier
- Instituto de Patología Animal, Universidad Austral de Chile, Valdivia, Chile; Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP: Interdisciplinary Center for Aquaculture Research (INCAR), Chile.
| | | | - René Manríquez
- Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile
| | - Mauricio López
- Instituto de Patología Animal, Universidad Austral de Chile, Valdivia, Chile
| | - Mónica Monrás
- Instituto de Patología Animal, Universidad Austral de Chile, Valdivia, Chile
| | - Jaime Figueroa
- Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP: Interdisciplinary Center for Aquaculture Research (INCAR), Chile
| | - Ricardo Enríquez
- Instituto de Patología Animal, Universidad Austral de Chile, Valdivia, Chile
| | - Alex Romero
- Instituto de Patología Animal, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP: Interdisciplinary Center for Aquaculture Research (INCAR), Chile.
| |
Collapse
|
29
|
Sudhakumari CC, Anitha A, Murugananthkumar R, Tiwari DK, Bhasker D, Senthilkumaran B, Dutta-Gupta A. Cloning, localization and differential expression of Neuropeptide-Y during early brain development and gonadal recrudescence in the catfish, Clarias gariepinus. Gen Comp Endocrinol 2017; 251:54-65. [PMID: 28322767 DOI: 10.1016/j.ygcen.2017.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 11/22/2022]
Abstract
Neuropeptide-Y (NPY) has diverse physiological functions which are extensively studied in vertebrates. However, regulatory role of NPY in relation to brain ontogeny and recrudescence with reference to reproduction is less understood in fish. Present report for the first time evaluated the significance of NPY by transient esiRNA silencing and also analyzed its expression during brain development and gonadal recrudescence in the catfish, Clarias gariepinus. As a first step, full-length cDNA of NPY was cloned from adult catfish brain, which shared high homology with its counterparts from other teleosts upon phylogenetic analysis. Tissue distribution revealed dominant expression of NPY in brain and testis. NPY expression increased during brain development wherein the levels were higher in 100 and 150days post hatch females than the respective age-matched males. Seasonal cycle analysis showed high expression of NPY in brain during pre-spawning phase in comparison with other reproductive phases. Localization studies exhibited the presence of NPY, abundantly, in the regions of preoptic area, hypothalamus and pituitary. Transient silencing of NPY-esiRNA directly into the brain significantly decreased NPY expression in both the male and female brain of catfish which further resulted in significant decrease of transcripts of tryptophan hydroxylase 2, catfish gonadotropin-releasing hormone (cfGnRH), tyrosine hydroxylase and 3β-hydroxysteroid dehydrogenase in brain and luteinizing hormone-β/gonadotropin-II (lh-β/GTH-II) in pituitary exhibiting its influence on gonadal axis. In addition, significant decrease of several ovary-related transcripts was observed in NPY-esiRNA silenced female catfish, indicating the plausible role of NPY in ovary through cfGnRH-GTH axis.
Collapse
Affiliation(s)
- Cheni-Chery Sudhakumari
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India.
| | - Arumugam Anitha
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - Raju Murugananthkumar
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - Dinesh Kumar Tiwari
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - Dharavath Bhasker
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - Balasubramanian Senthilkumaran
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India.
| | - Aparna Dutta-Gupta
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| |
Collapse
|
30
|
Wu C, Chen L, Lu Z, Gao J, Chu Y, Li L, Wang M, Zhang G, Zhang M, Ye J. The effects of dietary leucine on the growth performances, body composition, metabolic abilities and innate immune responses in black carp Mylopharyngodon piceus. FISH & SHELLFISH IMMUNOLOGY 2017. [PMID: 28627405 DOI: 10.1016/j.fsi.2017.06.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The present study was focused on the growth, body composition, metabolic abilities and innate immune responses in juvenile black carp Mylopharyngodon piceus fed with six levels of dietary leucine (7.3, 12.4, 16.2, 21.9, 28.3 and 34.5 g kg-1) for 9 weeks. Results showed that the highest weight gain (WG) and the lowest feed conversion ratio (FCR) was obtained at 23.5 and 23.9 g kg-1 dietary leucine using second-order polynomial model, respectively. Adequate dietary leucine content (21.9 and 28.3 g kg-1) could significantly up-regulate the expression levels of neuropeptide Y (NPY) and ghrelin (GRL) in the brain of black carp juveniles. The protein efficiency ratio (PER), feed efficiency ratio (FER) and protein deposition ratio (PDR) were also significantly increased by adequate dietary leucine content (21.9 and 28.3 g kg-1) (p < 0.05). Adequate dietary leucine content (21.9 and 28.3 g kg-1) could significantly up-regulate the activities of metabolic enzymes, such as α amylase, trypsin, chymotrypsin and elastase in the liver of Black carp (p < 0.05). However, the activities of alanine transaminase (ALT), aspartate aminotransferase (AST) and leucine aminopeptidase (LAP) were significantly reduced in the fish serum by adequate dietary leucine content (21.9 and 28.3 g kg-1) compared with leucine-deficient diet (7.3 and 12.4 g kg-1). In addition, 21.9 and 28.3 g kg-1 dietary leucine could significantly increase complement component 3 (C3) and C4 contents, lysozyme (LYZ) activities in the serum compared with the leucine-deficient diet (7.3 and 12.4 g kg-1) (p < 0.05). Furthermore, optimal dietary leucine could also significantly up-regulate the mRNA expression levels of LYZ, interferon α (IFN-α), hepcidin (HEPC), natural resistance-associated macrophage protein (NRAMP), C3 and C9 in the blood of juvenile black carp compared with the leucine-deficient diets (7.3 and 12.4 g kg-1) (p < 0.05). In conclusion, these results suggest that adequate dietary leucine (21.9 and 28.3 g kg-1) could increase growth performances, improve metabolic abilities and then enhance non-specific immunities in black carp juveniles.
Collapse
Affiliation(s)
- Chenglong Wu
- College of Life Science, Huzhou University, 759 East 2nd Road, Huzhou 313000, PR China
| | - Lian Chen
- College of Life Science, Huzhou University, 759 East 2nd Road, Huzhou 313000, PR China
| | - Zhibin Lu
- College of Life Science, Huzhou University, 759 East 2nd Road, Huzhou 313000, PR China
| | - Jun'e Gao
- College of Life Science, Huzhou University, 759 East 2nd Road, Huzhou 313000, PR China
| | - Yudan Chu
- College of Life Science, Huzhou University, 759 East 2nd Road, Huzhou 313000, PR China
| | - Liang Li
- College of Life Science, Huzhou University, 759 East 2nd Road, Huzhou 313000, PR China
| | - Ming Wang
- College of Life Science, Huzhou University, 759 East 2nd Road, Huzhou 313000, PR China
| | - Geying Zhang
- College of Life Science, Huzhou University, 759 East 2nd Road, Huzhou 313000, PR China
| | - Miaotong Zhang
- College of Life Science, Huzhou University, 759 East 2nd Road, Huzhou 313000, PR China
| | - Jinyun Ye
- College of Life Science, Huzhou University, 759 East 2nd Road, Huzhou 313000, PR China.
| |
Collapse
|
31
|
Striberny A, Jørgensen EH. Feedback from Arctic charr: Feed flavour stimulation and re-feeding after feed deprivation stimulate genes encoding both orexigenic and anorexigenic neuropeptides. Gen Comp Endocrinol 2017; 246:71-80. [PMID: 28327432 DOI: 10.1016/j.ygcen.2017.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/18/2017] [Accepted: 03/17/2017] [Indexed: 01/01/2023]
Abstract
Despite vast research attention, the knowledge about central mechanisms of appetite regulation in teleost remains inconclusive. A common strategy in studies on appetite regulating mechanisms is to measure the response to feed restriction or - deprivation, but responses vary between fish species and between experiments, and are also likely dependent on the degree of energy perturbation. The anadromous Arctic charr is an interesting model for studying appetite regulation as its feeding cycle comprises months of winter anorexia, and hyperphagia during summer. Here we studied how the gene expression of putative hypothalamic appetite regulators were affected by two days, one week and one month feed deprivation during summer, and subsequent re-feeding and exposure to feed flavour. Short-term feed deprivation caused only a minor reduction in condition factor and had no effect on hypothalamic gene expression. Long-term feed-deprivation caused a marked reduction in weight and condition factor which contrasted the increase in weight and condition factor seen in ad libitum fed controls. A marked energy perturbation by feed deprivation was also indicated by a lower hypothalamic expression of the genes encoding insulin-like growth factor 1 (IGF1) and IGF1 binding protein 5 in the feed deprived charr compared to fed controls. Surprisingly, long-term feed deprivation and energy perturbation did not induce changes in hypothalamic appetite regulators. Unexpectedly, re-feeding and exposure to feed flavour caused an increase in the expression of the genes encoding the orexigenic agouti-related peptide and the anorexigenic melanocortin receptor 4 and cocaine- and amphetamine-regulated transcript. Our study gives strong evidence for a role of these in appetite regulation in Arctic charr, but their mechanisms of action remain unknown. We suggest that changes in gene expression are more likely to be registered during transition phases, e.g. from fasting to feeding and upon stimulatory inputs such as feed flavour.
Collapse
Affiliation(s)
- Anja Striberny
- Faculty of Biosciences, Fisheries and Economics, Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Even H Jørgensen
- Faculty of Biosciences, Fisheries and Economics, Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, N-9037 Tromsø, Norway.
| |
Collapse
|
32
|
Matsuda K, Matsumura K, Shimizu SS, Nakamachi T, Konno N. Neuropeptide Y-Induced Orexigenic Action Is Attenuated by the Orexin Receptor Antagonist in Bullfrog Larvae. Front Neurosci 2017; 11:176. [PMID: 28420957 PMCID: PMC5378779 DOI: 10.3389/fnins.2017.00176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 03/16/2017] [Indexed: 11/13/2022] Open
Abstract
In bullfrog larvae at the pre- and pro-metamorphic stages, feeding behavior is regulated by appetite factors such as orexigenic peptides. In fact, food intake is enhanced by intracerebroventricular (ICV) administration of neuropeptide Y (NPY) and orexin A. Using goldfish, our previous study indicated that the orexigenic action of NPY is mediated by orexin A, suggesting the functional interaction between the two. However, there is little information about whether the action of orexin A mediates the orexigenic action of NPY in bullfrog larvae. Therefore, we examined the effect of the orexin receptor antagonist, SB334867 on the orexigenic action of NPY in larvae. The stimulatory effect of ICV injection of NPY at 10 pmol/g body weight (BW) on food intake was abolished by treatment with SB334867 at 60 pmol/g BW. These results suggest that, in bullfrog larvae, there is a neuronal relationship between the NPY and orexin systems, and that the orexigenic action of NPY is mediated by the orexin A-induced orexigenic action.
Collapse
Affiliation(s)
- Kouhei Matsuda
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of ToyamaToyama, Japan.,Laboratory of Regulatory Biology, Graduate School of Innovative Life Sciences, University of ToyamaToyama, Japan
| | - Kairi Matsumura
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of ToyamaToyama, Japan
| | - Syun-Suke Shimizu
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of ToyamaToyama, Japan
| | - Tomoya Nakamachi
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of ToyamaToyama, Japan
| | - Norifumi Konno
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of ToyamaToyama, Japan
| |
Collapse
|
33
|
Rønnestad I, Gomes AS, Murashita K, Angotzi R, Jönsson E, Volkoff H. Appetite-Controlling Endocrine Systems in Teleosts. Front Endocrinol (Lausanne) 2017; 8:73. [PMID: 28458653 PMCID: PMC5394176 DOI: 10.3389/fendo.2017.00073] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/27/2017] [Indexed: 12/15/2022] Open
Abstract
Mammalian studies have shaped our understanding of the endocrine control of appetite and body weight in vertebrates and provided the basic vertebrate model that involves central (brain) and peripheral signaling pathways as well as environmental cues. The hypothalamus has a crucial function in the control of food intake, but other parts of the brain are also involved. The description of a range of key neuropeptides and hormones as well as more details of their specific roles in appetite control continues to be in progress. Endocrine signals are based on hormones that can be divided into two groups: those that induce (orexigenic), and those that inhibit (anorexigenic) appetite and food consumption. Peripheral signals originate in the gastrointestinal tract, liver, adipose tissue, and other tissues and reach the hypothalamus through both endocrine and neuroendocrine actions. While many mammalian-like endocrine appetite-controlling networks and mechanisms have been described for some key model teleosts, mainly zebrafish and goldfish, very little knowledge exists on these systems in fishes as a group. Fishes represent over 30,000 species, and there is a large variability in their ecological niches and habitats as well as life history adaptations, transitions between life stages and feeding behaviors. In the context of food intake and appetite control, common adaptations to extended periods of starvation or periods of abundant food availability are of particular interest. This review summarizes the recent findings on endocrine appetite-controlling systems in fish, highlights their impact on growth and survival, and discusses the perspectives in this research field to shed light on the intriguing adaptations that exist in fish and their underlying mechanisms.
Collapse
Affiliation(s)
- Ivar Rønnestad
- Department of Biology, University of Bergen, Bergen, Norway
| | - Ana S. Gomes
- Department of Biology, University of Bergen, Bergen, Norway
| | - Koji Murashita
- Department of Biology, University of Bergen, Bergen, Norway
- Research Center for Aquaculture Systems, National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Tamaki, Mie, Japan
| | - Rita Angotzi
- Department of Biology, University of Bergen, Bergen, Norway
| | - Elisabeth Jönsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Hélène Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St John’s, NL, Canada
| |
Collapse
|
34
|
Li M, Tan X, Sui Y, Jiao S, Wu Z, Wang L, You F. The stimulatory effect of neuropeptide Y on growth hormone expression, food intake, and growth in olive flounder (Paralichthys olivaceus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:11-18. [PMID: 27406384 DOI: 10.1007/s10695-016-0263-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
Neuropeptide Y (NPY) is a 36-amino acid peptide known to be a strong orexigenic (appetite-stimulating) factor in many species. In this study, we investigated the effect of NPY on food intake and growth in the olive flounder (Paralichthys olivaceus). Recombinant full-length NPY was injected intraperitoneally into olive flounder at the dose of 1 μg/g body weight; phosphate buffered saline was used as the negative control. In a long-term experiment, NPY and control groups were injected every fifth day over a period of 30 days. In a short-term experiment, NPY and control groups were given intraperitoneal injections and maintained for 24 h. Food intake and growth rates were significantly higher in fish injected with recombinant NPY than in the control fish (P < 0.05). Higher growth hormone (GH) and NPY mRNA transcript levels were observed in both experiments, indicating a stimulatory effect of NPY on GH release. These findings demonstrate that NPY is an effective appetite-stimulating factor in olive flounder with the potential to improve the growth of domestic fish species and enhance efficiency in aquaculture.
Collapse
Affiliation(s)
- Meijie Li
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China
| | - Xungang Tan
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, People's Republic of China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Yulei Sui
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Shuang Jiao
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhihao Wu
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lijuan Wang
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Feng You
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
35
|
Yan P, Jia J, Yang G, Wang D, Sun C, Li W. Duplication of neuropeptide Y and peptide YY in Nile tilapia Oreochromis niloticus and their roles in food intake regulation. Peptides 2017; 88:97-105. [PMID: 27988351 DOI: 10.1016/j.peptides.2016.12.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 12/12/2022]
Abstract
In vertebrates, the neuropeptide Y (NPY) family peptides have been recognized as key players in food intake regulation. NPY centrally promotes feeding, while peptide YY (PYY) and pancreatic polypeptide (PP) mediate satiety. The teleost tetraploidization is well-known to generate duplicates of both NPY and PYY; however, the functional diversification between the duplicate genes, especially in the regulation of food intake, remains unknown. In this study, we identified the two duplicates of NPY and PYY in Nile tilapia (Oreochromis niloticus). Both NPYa and NPYb were primarily expressed in the central nervous system (CNS), but the mRNA levels of NPYb were markedly lower than those of NPYa. Hypothalamic mRNA expression of NPYa, but not NPYb, decreased after feeding and increased after 7-days of fasting. However, both NPYa and NPYb caused a significant increase in food intake after an intracranial injection of 50ng/g body weight dose. PYYb, one of the duplicates of PYY, had an extremely high expression in the foregut and midgut, whereas another form of duplicate PYYa showed only moderate expression in the CNS. Both hypothalamic PYYa and foregut PYYb mRNA expression increased after feeding and decreased after 7-days of fasting. Furthermore, the intracranial injection of PYYb decreased food intake, but PYYa had no significant effect. Our results suggested that although the mature peptides of NPYa and NPYb can both stimulate food intake, NPYa is the main endogenous functional NPY for feeding regulation. A functional division has been identified in the duplicates of PYY, which deems PYYb as a gut-derived anorexigenic peptide and PYYa as a CNS-specific PYY in Nile tilapia.
Collapse
Affiliation(s)
- Peipei Yan
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, South China Sea Bio-Resource Exploitation and Collaborative Innovation Center, Research Institute of Sun Yat-Sen University in Shen Zhen, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Jirong Jia
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, South China Sea Bio-Resource Exploitation and Collaborative Innovation Center, Research Institute of Sun Yat-Sen University in Shen Zhen, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Guokun Yang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, South China Sea Bio-Resource Exploitation and Collaborative Innovation Center, Research Institute of Sun Yat-Sen University in Shen Zhen, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Dongfang Wang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, South China Sea Bio-Resource Exploitation and Collaborative Innovation Center, Research Institute of Sun Yat-Sen University in Shen Zhen, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Caiyun Sun
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, South China Sea Bio-Resource Exploitation and Collaborative Innovation Center, Research Institute of Sun Yat-Sen University in Shen Zhen, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Wensheng Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, South China Sea Bio-Resource Exploitation and Collaborative Innovation Center, Research Institute of Sun Yat-Sen University in Shen Zhen, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China.
| |
Collapse
|
36
|
Babaei S, Sáez A, Caballero-Solares A, Fernández F, Baanante IV, Metón I. Effect of dietary macronutrients on the expression of cholecystokinin, leptin, ghrelin and neuropeptide Y in gilthead sea bream (Sparus aurata). Gen Comp Endocrinol 2017; 240:121-128. [PMID: 27725144 DOI: 10.1016/j.ygcen.2016.10.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/27/2016] [Accepted: 10/06/2016] [Indexed: 02/06/2023]
Abstract
Endocrine factors released from the central nervous system, gastrointestinal tract, adipose tissue and other peripheral organs mediate the regulation of food intake. Although many studies have evaluated the effect of fed-to-starved transition on the expression of appetite-related genes, little is known about how the expression of appetite-regulating peptides is regulated by the macronutrient composition of the diet. The aim of the present study was to examine the effect of diet composition and nutritional status on the expression of four peptides involved in food intake control in gilthead sea bream (Sparus aurata): neuropeptide Y (NPY), ghrelin, cholecystokinin (CCK) and leptin. Quantitative real-time RT-PCR showed that high protein/low carbohydrate diets stimulated the expression of CCK and ghrelin in the intestine and leptin in the adipose tissue, while downregulation of ghrelin and NPY mRNA levels was observed in the brain. Opposite effects were found for the expression of the four genes in fish fed low protein/high carbohydrate diets or after long-term starvation. Our findings indicate that the expression pattern of appetite-regulating peptides, particularly CCK and ghrelin, is modulated by the nutritional status and diet composition in S. aurata.
Collapse
Affiliation(s)
- Sedigheh Babaei
- Fisheries Departament, Faculty of Marine Sciences, Tarbiat Modares University (TMU), Noor 46417-76488, Iran
| | - Alberto Sáez
- Departament de Bioquímica i Fisiologia, Secció de Bioquímica i Biologia Molecular, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Albert Caballero-Solares
- Departament d'Ecologia, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Felipe Fernández
- Departament d'Ecologia, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Isabel V Baanante
- Departament de Bioquímica i Fisiologia, Secció de Bioquímica i Biologia Molecular, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Isidoro Metón
- Departament de Bioquímica i Fisiologia, Secció de Bioquímica i Biologia Molecular, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028 Barcelona, Spain.
| |
Collapse
|
37
|
Volkoff H. The Neuroendocrine Regulation of Food Intake in Fish: A Review of Current Knowledge. Front Neurosci 2016; 10:540. [PMID: 27965528 PMCID: PMC5126056 DOI: 10.3389/fnins.2016.00540] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/07/2016] [Indexed: 12/14/2022] Open
Abstract
Fish are the most diversified group of vertebrates and, although progress has been made in the past years, only relatively few fish species have been examined to date, with regards to the endocrine regulation of feeding in fish. In fish, as in mammals, feeding behavior is ultimately regulated by central effectors within feeding centers of the brain, which receive and process information from endocrine signals from both brain and peripheral tissues. Although basic endocrine mechanisms regulating feeding appear to be conserved among vertebrates, major physiological differences between fish and mammals and the diversity of fish, in particular in regard to feeding habits, digestive tract anatomy and physiology, suggest the existence of fish- and species-specific regulating mechanisms. This review provides an overview of hormones known to regulate food intake in fish, emphasizing on major hormones and the main fish groups studied to date.
Collapse
Affiliation(s)
- Helene Volkoff
- Departments of Biology and Biochemistry, Memorial University of NewfoundlandSt. John's, NL, Canada
| |
Collapse
|
38
|
The Stimulatory Effect of Cerebral Intraventricular Injection of cNPY on Precocial Feeding Behavior in Neonatal Chicks (Gallus domesticus). PLoS One 2016; 11:e0153342. [PMID: 27055273 PMCID: PMC4824459 DOI: 10.1371/journal.pone.0153342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 03/28/2016] [Indexed: 11/19/2022] Open
Abstract
Neuropeptide Y (NPY) is one of the most potent stimulants of food intake in many animals. Most of the supporting evidence for the effects of NPY has been gathered in mammalian species using porcine NPY. To investigate the effects of NPY on precocial feeding initiation in chicks, we firstly used chicken NPY (cNPY) to study its role in food intake and spontaneous activities in 3-day-old male chicks. Food intake was monitored at different times after intracerebroventricular (ICV) injection of cNPY (2.5, 5.0 or 10.0 μg/10 μL) and anti-cNPY antibody (anti-cNPY) (1:9000, 1:3000 or 1:1000 in dilution). cNPY given at different doses significantly increased food intake at 30 min, 60 min, 90 min and 120 min after injection. Chicks treated with 5.0 μg/10 μL of cNPY showed a maximal 4.48 fold increase in food intake comparing to the control at 30 min. There is still more than 2 fold increase in food intake at 120 min after injection of cNPY. Food intake was significantly inhibited by a single ICV injection of anti-cNPY diluted to 1:9000 (60% inhibition), 1:3000 (92% inhibition), and 1:1000 (95% inhibition) at 30 min with 1:1000 being the maximally effective concentration. The inhibitory effects of anti-cNPY (diluted to1:9000, 1:3000, 1:1000) at 120 min post ICV injection were 22%, 42% and 46%, respectively. But ICV of anti-cNPY (1:3000 in dilution) did not block the orexigenic effect of 2.5 μg/10 μL of cNPY. ICV injection of different concentrations of cNPY increases locomotor activity in a dose-dependent manner while ICV anti-cNPY greatly decreased the distance moved by each chick compared to control groups. Taken together, our results demonstrated that cNPY has a promoting effect on chick food intake and locomotor activity, and that endogenous cNPY might play a positive role in regulating precocial feeding behavior in newly hatched chicks.
Collapse
|
39
|
Striberny A, Ravuri CS, Jobling M, Jørgensen EH. Seasonal Differences in Relative Gene Expression of Putative Central Appetite Regulators in Arctic Charr (Salvelinus alpinus) Do Not Reflect Its Annual Feeding Cycle. PLoS One 2015; 10:e0138857. [PMID: 26421838 PMCID: PMC4589418 DOI: 10.1371/journal.pone.0138857] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/04/2015] [Indexed: 11/22/2022] Open
Abstract
The highly seasonal anadromous Arctic charr (Salvelinus alpinus) was used to investigate the possible involvement of altered gene expression of brain neuropeptides in seasonal appetite regulation. Pro-opiomelanocortin (POMCA1, POMCA2), Cocaine and amphetamine regulated transcript (CART), Agouti related Peptide (AgRP), Neuropeptide Y (NPY) and Melanocortin Receptor 4 (MC4-R) genes were examined. The function of centrally expressed Leptin (Lep) in fish remains unclear, so Lep (LepA1, LepA2) and Leptin Receptor (LepR) genes were included in the investigation. In a ten months study gene expression was analysed in hypothalamus, mesencephalon and telencephalon of immature charr held under natural photoperiod (69°38’N) and ambient temperature and given excess feed. From April to the beginning of June the charr did not feed and lost weight, during July and August they were feeding and had a marked increase in weight and condition factor, and from November until the end of the study the charr lost appetite and decreased in weight and condition factor. Brain compartments were sampled from non-feeding charr (May), feeding charr (July), and non-feeding charr (January). Reverse transcription real-time quantitative PCR revealed temporal patterns of gene expression that differed across brain compartments. The non-feeding charr (May, January) had a lower expression of the anorexigenic LepA1, MC4-R and LepR in hypothalamus and a higher expression of the orexigenic NPY and AgRP in mesencephalon, than the feeding charr (July). In the telencephalon, LepR was more highly expressed in January and May than in July. These results do not indicate that changes in central gene expression of the neuropeptides investigated here directly induce seasonal changes in feeding in Arctic charr.
Collapse
Affiliation(s)
- Anja Striberny
- Department of Arctic and Marine Biology, UiT—The Arctic University of Norway, Tromsø, Norway
| | - Chandra Sekhar Ravuri
- Department of Arctic and Marine Biology, UiT—The Arctic University of Norway, Tromsø, Norway
| | - Malcolm Jobling
- Department of Arctic and Marine Biology, UiT—The Arctic University of Norway, Tromsø, Norway
| | - Even Hjalmar Jørgensen
- Department of Arctic and Marine Biology, UiT—The Arctic University of Norway, Tromsø, Norway
- * E-mail:
| |
Collapse
|
40
|
Kim JH, Leggatt RA, Chan M, Volkoff H, Devlin RH. Effects of chronic growth hormone overexpression on appetite-regulating brain gene expression in coho salmon. Mol Cell Endocrinol 2015; 413:178-88. [PMID: 26123591 DOI: 10.1016/j.mce.2015.06.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/22/2015] [Indexed: 10/23/2022]
Abstract
Organisms must carefully regulate energy intake and expenditure to balance growth and trade-offs with other physiological processes. This regulation is influenced by key pathways controlling appetite, feeding behaviour and energy homeostasis. Growth hormone (GH) transgenesis provides a model where food intake can be elevated, and is associated with dramatic modifications of growth, metabolism, and feeding behaviour, particularly in fish. RNA-Seq and qPCR analyses were used to compare the expression of multiple genes important in appetite regulation within brain regions and the pituitary gland (PIT) of GH transgenic (fed fully to satiation or restricted to a wild-type ration throughout their lifetime) and wild-type coho salmon (Oncorhynchus kisutch). RNA-Seq results showed that differences in both genotype and ration levels resulted in differentially expressed genes associated with appetite regulation in transgenic fish, including elevated Agrp1 in hypothalamus (HYP) and reduced Mch in PIT. Altered mRNA levels for Agrp1, Npy, Gh, Ghr, Igf1, Mch and Pomc were also assessed using qPCR analysis. Levels of mRNA for Agrp1, Gh, and Ghr were higher in transgenic than wild-type fish in HYP and in the preoptic area (POA), with Agrp1 more than 7-fold higher in POA and 12-fold higher in HYP of transgenic salmon compared to wild-type fish. These data are consistent with the known roles of orexigenic factors on foraging behaviour acting via GH and through MC4R receptor-mediated signalling. Igf1 mRNA was elevated in fully-fed transgenic fish in HYP and POA, but not in ration-restricted fish, yet both of these types of transgenic animals have very pronounced feeding behaviour relative to wild-type fish, suggesting IGF1 is not playing a direct role in appetite stimulation acting via paracrine or autocrine mechanisms. The present findings provide new insights on mechanisms ruling altered appetite regulation in response to chronically elevated GH, and on potential pathways by which elevated feeding response is controlled, independently of food availability and growth.
Collapse
Affiliation(s)
- Jin-Hyoung Kim
- Fisheries and Oceans Canada, Centre for Aquaculture and Environmental Research, 4160 Marine Drive, West Vancouver, BC V7V 1N6 Canada
| | - Rosalind A Leggatt
- Fisheries and Oceans Canada, Centre for Aquaculture and Environmental Research, 4160 Marine Drive, West Vancouver, BC V7V 1N6 Canada
| | - Michelle Chan
- Fisheries and Oceans Canada, Centre for Aquaculture and Environmental Research, 4160 Marine Drive, West Vancouver, BC V7V 1N6 Canada
| | - Hélène Volkoff
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9 Canada; Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9 Canada
| | - Robert H Devlin
- Fisheries and Oceans Canada, Centre for Aquaculture and Environmental Research, 4160 Marine Drive, West Vancouver, BC V7V 1N6 Canada.
| |
Collapse
|
41
|
Neuroendocrine control of appetite in Atlantic halibut (Hippoglossus hippoglossus): Changes during metamorphosis and effects of feeding. Comp Biochem Physiol A Mol Integr Physiol 2015; 183:116-25. [DOI: 10.1016/j.cbpa.2015.01.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/18/2014] [Accepted: 01/15/2015] [Indexed: 12/14/2022]
|
42
|
Tang Y, Li H, Li J, Yu F, Yu J. Characterization and expression analysis of two distinct neuropeptide Ya paralogues in Jian carp (Cyprinus carpio var. Jian). FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1709-1719. [PMID: 25015546 DOI: 10.1007/s10695-014-9961-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/29/2014] [Indexed: 06/03/2023]
Abstract
Two distinct neuropeptide Ya paralogues (jlNPYa1 and jlNPYa2) were cloned and characterized in Jian carp (Cyprinus carpio var. Jian), with a highly conserved organization encoded by four exons and three introns. The cDNAs for jlNPYa1 and jlNPYa2 were 693 and 730 bp in size, respectively. jlNPYa1 and jlNPYa2 both encoded a 96-amino acid protein, which shared 97.9 % identity. Phylogenetic tree showed that it has two NPYa genes, called jlNPYa1 and jlNPYa2, that presumably resulted from the tetraploidization event in the carp lineage. Analysis of expression profiles of jlNPYa1 and jlNPYa2 showed that the two NPY genes had a broad tissue distribution but expressed primarily in the forebrain, hypothalamus, testis and liver. The expression pattern was different in juvenile and adult (female and male) Jian carp. In juvenile, the highest expression level of jlNPYa1 and jlNPYa2 was detected in the testis. In adult, it was detected in the forebrain. In female hypothalamus, the expression level of jlNPYa1 was significantly higher than that of jlNPYa2. However, the opposite was true in male hypothalamus. The differing distribution patterns of the two NPY genes suggested that jlNPYa1 and jlNPYa2 might play different roles in Jian carp.
Collapse
|
43
|
Gong N, Björnsson BT. Leptin signaling in the rainbow trout central nervous system is modulated by a truncated leptin receptor isoform. Endocrinology 2014; 155:2445-55. [PMID: 24797628 DOI: 10.1210/en.2013-2131] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Central leptin (Lep) signaling is important in control of appetite and energy balance in mammals, but information on Lep signaling and physiological roles in early vertebrates is still lacking. To elucidate fish Lep signaling activation and modulation, a long-form Lep receptor (LepRL) and a truncated LepR (LepRT) are functionally characterized from rainbow trout. The receptors generated in alternatively splicing events have identical extracellular and transmembrane domains but differ in the intracellular sequence, both in length and identity. Gene transfection experiments show that LepRL is expressed as a 125-kDa protein in rainbow trout hepatoma cell line RTH-149, whereas LepRT is 100 kDa; both receptors specifically bind Lep. Homogenous Lep induces tyrosine phosphorylation of Janus kinase 2 and signal transducer and activation of transcription 3 in LepRL-expressing RTH-149 cells. This response is diminished in cells coexpressing LepRL and LepRT, suggesting that the LepRT which lacks these kinase-associated motifs competes with the LepRL for Lep availability, thus attenuating the Lep signal. Both receptor genes are highly expressed in the central nervous system. The mRNA levels of LepRT in hypothalamus, but not LepRL, change postprandially, with decreased transcription at 2 hours postfeeding and then elevated at 8 hours, concomitant with changes in proopiomelanocortin-A1 transcription. However, both receptors have no change in mRNA levels during 3 weeks of fasting. These data indicate that LepRT transcription is more likely a mechanism for modulating Lep effects on short-term feed intake than in regulating energy balance in the long term. In vitro and physiological characterization of LepR isoforms indicates divergent Lep signaling modulation patterns among vertebrates with different life histories and metabolic profiles.
Collapse
Affiliation(s)
- Ningping Gong
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, S-40590 Gothenburg, Sweden
| | | |
Collapse
|
44
|
Pérez-Fernández J, Megías M, Pombal MA. Cloning, phylogeny, and regional expression of a Y5 receptor mRNA in the brain of the sea lamprey (Petromyzon marinus). J Comp Neurol 2014; 522:1132-54. [PMID: 24127055 DOI: 10.1002/cne.23481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 09/27/2013] [Accepted: 09/27/2013] [Indexed: 12/12/2022]
Abstract
The NPY receptors known as Y receptors are classified into three subfamilies, Y1, Y2, and Y5, and are involved in different physiological functions. The Y5 receptor is the only member of the Y5 subfamily, and it is present in all vertebrate groups, except for teleosts. Both molecular and pharmacological studies show that Y5 receptor is highly conserved during vertebrate evolution. Furthermore, this receptor is widely expressed in the mammalian brain, including the hypothalamus, where it is thought to take part in feeding and homeostasis regulation. Lampreys belong to the agnathan lineage, and they are thought to have branched out between the two whole-genome duplications that occurred in vertebrates. Therefore, they are in a key position for studies on the evolution of gene families in vertebrates. Here we report the cloning, phylogeny, and brain expression pattern of the sea lamprey Y5 receptor. In phylogenetic studies, the lamprey Y5 receptor clusters in a basal position, together with Y5 receptors of other vertebrates. The mRNA of this receptor is broadly expressed in the lamprey brain, being especially abundant in hypothalamic areas. Its expression pattern is roughly similar to that reported for other vertebrates and parallels the expression pattern of the Y1 receptor subtype previously described by our group, as it occurs in mammals. Altogether, these results confirm that a Y5 receptor is present in lampreys, thus being highly conserved during the evolution of vertebrates, and suggest that it is involved in many brain functions, the only known exception being teleosts.
Collapse
Affiliation(s)
- Juan Pérez-Fernández
- Neurolam Group, Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, 36310-Vigo, Spain
| | | | | |
Collapse
|
45
|
Shahjahan M, Kitahashi T, Parhar IS. Central pathways integrating metabolism and reproduction in teleosts. Front Endocrinol (Lausanne) 2014; 5:36. [PMID: 24723910 PMCID: PMC3971181 DOI: 10.3389/fendo.2014.00036] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/11/2014] [Indexed: 01/08/2023] Open
Abstract
Energy balance plays an important role in the control of reproduction. However, the cellular and molecular mechanisms connecting the two systems are not well understood especially in teleosts. The hypothalamus plays a crucial role in the regulation of both energy balance and reproduction, and contains a number of neuropeptides, including gonadotropin-releasing hormone (GnRH), orexin, neuropeptide-Y, ghrelin, pituitary adenylate cyclase-activating polypeptide, α-melanocyte stimulating hormone, melanin-concentrating hormone, cholecystokinin, 26RFamide, nesfatin, kisspeptin, and gonadotropin-inhibitory hormone. These neuropeptides are involved in the control of energy balance and reproduction either directly or indirectly. On the other hand, synthesis and release of these hypothalamic neuropeptides are regulated by metabolic signals from the gut and the adipose tissue. Furthermore, neurons producing these neuropeptides interact with each other, providing neuronal basis of the link between energy balance and reproduction. This review summarizes the advances made in our understanding of the physiological roles of the hypothalamic neuropeptides in energy balance and reproduction in teleosts, and discusses how they interact with GnRH, kisspeptin, and pituitary gonadotropins to control reproduction in teleosts.
Collapse
Affiliation(s)
- Md. Shahjahan
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya, Malaysia
| | - Takashi Kitahashi
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya, Malaysia
| | - Ishwar S. Parhar
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya, Malaysia
- *Correspondence: Ishwar S. Parhar, Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya 46150, Malaysia e-mail:
| |
Collapse
|
46
|
Pérez Sirkin DI, Suzuki H, Cánepa MM, Vissio PG. Orexin and neuropeptide Y: tissue specific expression and immunoreactivity in the hypothalamus and preoptic area of the cichlid fish Cichlasoma dimerus. Tissue Cell 2013; 45:452-9. [PMID: 24138942 DOI: 10.1016/j.tice.2013.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 09/09/2013] [Accepted: 09/10/2013] [Indexed: 01/28/2023]
Abstract
Neuropeptide Y (NPY) and orexin are neuropeptides involved in the regulation of feeding in vertebrates. In this study we determined the NPY and orexin mRNA tissue expression and their immunoreactivity distribution in both preoptic area and hypothalamus, regions involved in the regulation of feeding behavior. Both peptides presented a wide expression in all tissues examined. The NPY-immunoreactive (ir) cells were localized in the ventral nucleus posterioris periventricularis (NPPv) and numerous ir-NPY fibers were found in the nucleus lateralis tuberis (NLT), the nucleus recess lateralis (NRL) and the neurohypophysis. Ir-orexin cells were observed in the NPPv, dorsal NLT, ventral NLT, lateral NLT (NLTl) and the lateral NRL. Ir-orexin fibers were widespread distributed along all the hypothalamus, especially in the NLTl. Additionally, we observed the presence of ir-orexin immunostaining in adenohypophyseal cells, especially in somatotroph cells and the presence of a few ir-orexin-A fibers in the neurohypophysis. In conclusion, both peptides have an ubiquitous mRNA tissue expression and are similarly distributed in the hypothalamus and preoptic area of Cichlasoma dimerus. The presence of ir-orexin in adenohypohyseal cells and the presence of ir-orexin and NPY fibers in the neurohypophysis suggest that both peptides may play an important neuroendocrine role in anterior pituitary.
Collapse
Affiliation(s)
- D I Pérez Sirkin
- Laboratorio de Neuroendocrinología del Crecimiento y la Reproducción, Dpto. de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina; IBBEA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | | | | | | |
Collapse
|
47
|
Tang Z, Sun C, Yan A, Wu S, Qin C, Zhang Y, Li W. Genes involved in fatty acid metabolism: molecular characterization and hypothalamic mRNA response to energy status and neuropeptide Y treatment in the orange-spotted grouper Epinephelus coioides. Mol Cell Endocrinol 2013; 376:114-24. [PMID: 23806557 DOI: 10.1016/j.mce.2013.06.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 06/12/2013] [Accepted: 06/15/2013] [Indexed: 12/19/2022]
Abstract
As in mammals, fatty acid (FA) metabolism plays diverse and vital roles in regulating food intake in fish. Multiple lines of evidence suggest that the effect of FA metabolism on food intake is linked to changes in the level of neuropeptide Y (NPY) in the hypothalamus of the rainbow trout. In mammals, the evidence suggests that FA metabolism regulates feeding via hypothalamic NPY. NPY is therefore considered an important factor that mediates the modulation of food intake by FA metabolism in vertebrates. The stimulatory effect of NPY on food intake is well known. However, to the best of our knowledge, the effect of NPY on FA metabolism in the hypothalamus has not been examined. In this study, we cloned the cDNA of four key enzymes involved in FA metabolism and assessed the effect of energy status and NPY on their mRNA expression in the hypothalamus of grouper. The full-length cDNAs of UCP2 and CPT1a and the partial coding sequence (CDS) of ACC1 and FAS were isolated from the grouper hypothalamus. These genes are expressed in the hypothalamus and during the organogenetic stage of embryogenesis. A feeding rhythm study showed that the hypothalamic expression level of NPY and CPT1a was highly correlated with feeding rhythm. Long-term fasting was found to significantly induce the hypothalamic mRNA expression of NPY, CPT1a and UCP2. An in vitro study demonstrated that NPY strongly stimulated CPT1a and UCP2 mRNA expression in a time- and dose-dependent manner. Collectively, these results suggest that these four genes related to FA metabolism may play a role in regulating food intake in grouper and, that NPY modulates FA metabolism in the grouper hypothalamus. This study showed, for the first time in vertebrates, the effect of NPY on the gene expression of FA metabolism-related enzymes.
Collapse
Affiliation(s)
- Zhiguo Tang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | | | | | | | | | | | | |
Collapse
|
48
|
Wong MKH, Sze KH, Chen T, Cho CK, Law HCH, Chu IK, Wong AOL. Goldfish spexin: solution structure and novel function as a satiety factor in feeding control. Am J Physiol Endocrinol Metab 2013; 305:E348-66. [PMID: 23715729 DOI: 10.1152/ajpendo.00141.2013] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Spexin (SPX) is a neuropeptide identified recently by bioinformatic approach. At present not much is known about its biological actions, and comparative studies of SPX in nonmammalian species are still lacking. To examine the structure and function of SPX in fish model, SPX was cloned in goldfish and found to be highly comparable with its mammalian counterparts. As revealed by NMR spectroscopies, goldfish SPX is composed of an α-helix from Gln(5) to Gln(14) with a flexible NH2 terminus from Asn(1) to Pro(4), and its molecular surface is largely hydrophobic except for Lys(11) as the only charged residue in the helical region. In goldfish, SPX transcripts were found to be widely expressed in various tissues, and protein expression of SPX was also detected in the brain. In vivo feeding studies revealed that SPX mRNA levels in the telencephalon, optic tectum, and hypothalamus of goldfish brain could be elevated by food intake. However, brain injection of goldfish SPX inhibited both basal and NPY- or orexin-induced feeding behavior and food consumption. Similar treatment also reduced transcript expression of NPY, AgRP, and apelin, with concurrent rises in CCK, CART, POMC, MCH, and CRH mRNA levels in different brain areas examined. The differential effects of SPX treatment on NPY, CCK, and MCH transcript expression could also be noted in vitro in goldfish brain cell culture. Our studies for the first time unveil the solution structure of SPX and its novel function as a satiety factor through differential modulation of central orexigenic and anorexigenic signals.
Collapse
Affiliation(s)
- Matthew K H Wong
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
49
|
Won ET, Borski RJ. Endocrine regulation of compensatory growth in fish. Front Endocrinol (Lausanne) 2013; 4:74. [PMID: 23847591 PMCID: PMC3696842 DOI: 10.3389/fendo.2013.00074] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 06/06/2013] [Indexed: 01/06/2023] Open
Abstract
Compensatory growth (CG) is a period of accelerated growth that occurs following the alleviation of growth-stunting conditions during which an organism can make up for lost growth opportunity and potentially catch up in size with non-stunted cohorts. Fish show a particularly robust capacity for the response and have been the focus of numerous studies that demonstrate their ability to compensate for periods of fasting once food is made available again. CG is characterized by an elevated growth rate resulting from enhanced feed intake, mitogen production, and feed conversion efficiency. Because little is known about the underlying mechanisms that drive the response, this review describes the sequential endocrine adaptations that lead to CG; namely during the precedent catabolic phase (fasting) that taps endogenous energy reserves, and the following hyperanabolic phase (refeeding) when accelerated growth occurs. In order to elicit a CG response, endogenous energy reserves must first be moderately depleted, which alters endocrine profiles that enhance appetite and growth potential. During this catabolic phase, elevated ghrelin and growth hormone (GH) production increase appetite and protein-sparing lipolysis, while insulin-like growth factors (IGFs) are suppressed, primarily due to hepatic GH resistance. During refeeding, temporal hyperphagia provides an influx of energy and metabolic substrates that are then allocated to somatic growth by resumed IGF signaling. Under the right conditions, refeeding results in hyperanabolism and a steepened growth trajectory relative to constantly fed controls. The response wanes as energy reserves are re-accumulated and homeostasis is restored. We ascribe possible roles for select appetite and growth-regulatory hormones in the context of the prerequisite of these catabolic and hyperanabolic phases of the CG response in teleosts, with emphasis on GH, IGFs, cortisol, somatostatin, neuropeptide Y, ghrelin, and leptin.
Collapse
Affiliation(s)
- Eugene T. Won
- Department of Biology, North Carolina State University, Raleigh, NC, USA
| | - Russell J. Borski
- Department of Biology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
50
|
Renquist BJ, Zhang C, Williams SY, Cone RD. Development of an assay for high-throughput energy expenditure monitoring in the zebrafish. Zebrafish 2013; 10:343-52. [PMID: 23705823 DOI: 10.1089/zeb.2012.0841] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Energy homeostasis is maintained by balancing energy intake and expenditure. Many signals regulating energy intake are conserved between the human and teleost. However, before this work, there was no sensitive high-throughput system to monitor energy expenditure in the teleost. We exploit the nonfluorescent and fluorescent properties of resazurin and its reduced form resorufin (alamarBlue(®)) to monitor energy expenditure responses to drug application and genetic manipulation. We show that leptin, insulin, and alpha-melanocyte-stimulating hormone (α-MSH) increase energy expenditure dose dependently in the larval zebrafish. As previously established in the mouse, etomoxir, a carnitine palmitoyl transferase I inhibitor, blocks leptin-induced energy expenditure in the zebrafish. Metformin, the most commonly prescribed insulin sensitizer, increases the insulin-induced metabolic rate. Using genetic knockdown, we observed that α-MSH treatment increases the metabolic rate, as does knockdown of the melanocortin antagonist, agouti-related protein. The agouti-related protein and multiple melanocortin receptors are shown to be involved in these effects. These studies confirm that aspects of hormonal regulation of energy expenditure are conserved in the teleost, and suggest that this assay may provide a unique tool to perform in vivo screens for drugs or genes that affect the metabolic rate, including insulin or leptin sensitizers.
Collapse
|