1
|
Cai L, Wang B. Regulation of colon injury and improvement of exercise performance in exhausted running mice by Lactobacillus pentosus CQZC02. Front Physiol 2024; 15:1475413. [PMID: 39371599 PMCID: PMC11450257 DOI: 10.3389/fphys.2024.1475413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024] Open
Abstract
In this study, strenuous forced exercise caused intestinal damage and reduced the exercise capacity of mice. However, the antioxidant and anti-inflammatory properties of Lactobacillus pentosus CQZC02 (LPCQZC02) were found to improve both the intestinal barrier and exercise function in mice. The effectiveness of LPCQZC02 was confirmed through various methods, including kit detection, pathological observation, quantitative reverse transcription polymerase chain reaction (qRT-PCR), and intestinal flora analysis. The findings demonstrated that LPCQZC02 could control colonic index, lessen colonic enlargement caused by intense exercise, and extend the running duration of mice. Serum levels of total superoxide dismutase (T-SOD), glutathione (GSH), and interleukin-10 (IL-10) were elevated, whereas those of malondialdehyde (MDA), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) were reduced. The findings of the mRNA expression analysis revealed that in the colons of mice who remarkably exercised, LPCQZC02 could increase the expression levels of zonula occludens-1 (ZO-1), occludin-1, and claudin-1 genes. Additionally, in skeletal muscle tissue, it could downregulate TNF-α expression level and upregulate copper/zinc superoxide dismutase (Cu/Zn-SOD) and manganese superoxide dismutase (Mn-SOD) expression levels. Furthermore, LPCQZC02 could both reduce and promote beneficial bacteria in the intestines of mice undergoing intense exercise. In conclusion, LPCQZC02 emerged as a functional probiotic and demonstrated a notable advantage over sulfasalazine, a medication for intestinal conditions, in mitigating oxidative inflammation, repairing intestinal barrier damage, and enhancing motor function in mice subjected to strenuous exercise.
Collapse
Affiliation(s)
- Limin Cai
- Department of Physical Education, North China Electric Power University, Beijing, China
| | - Beibei Wang
- Department of Physical Education, University of International Business and Economics, Beijing, China
| |
Collapse
|
2
|
Roxburgh BH, Cotter JD, Campbell HA, Reymann U, Wilson LC, Gwynne-Jones D, van Rij AM, Thomas KN. Physiological relationship between cardiorespiratory fitness and fitness for surgery: a narrative review. Br J Anaesth 2023; 130:122-132. [PMID: 36529576 DOI: 10.1016/j.bja.2022.10.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/11/2022] [Accepted: 10/24/2022] [Indexed: 12/23/2022] Open
Abstract
Epidemiological evidence has highlighted a strong relationship between cardiorespiratory fitness and surgical outcomes; specifically, fitter patients possess heightened resilience to withstand the surgical stress response. This narrative review draws on exercise and surgical physiology research to discuss and hypothesise the potential mechanisms by which higher fitness affords perioperative benefit. A higher fitness, as indicated by higher peak rate of oxygen consumption and ability to sustain metabolic homeostasis (i.e. higher anaerobic threshold) is beneficial postoperatively when metabolic demands are increased. However, the associated adaptations with higher fitness, and the related participation in regular exercise or physical activity, might also underpin the observed perioperative benefit through a process of hormesis, a protective adaptive response to the moderate and intermittent stress of exercise. Potential mediators discussed include greater antioxidant capacity, metabolic flexibility, glycaemic control, lean body mass, and improved mood.
Collapse
Affiliation(s)
- Brendon H Roxburgh
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; School of Physical Education, Sport and Exercise Sciences, Dunedin, University of Otago, New Zealand.
| | - James D Cotter
- School of Physical Education, Sport and Exercise Sciences, Dunedin, University of Otago, New Zealand
| | - Holly A Campbell
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Ulla Reymann
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Luke C Wilson
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - David Gwynne-Jones
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Department of Orthopaedic Surgery, Southern District Health Board, Dunedin, New Zealand
| | - Andre M van Rij
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Kate N Thomas
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
3
|
Heat Shock Proteins in Oxidative Stress and Ischemia/Reperfusion Injury and Benefits from Physical Exercises: A Review to the Current Knowledge. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6678457. [PMID: 33603951 PMCID: PMC7868165 DOI: 10.1155/2021/6678457] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
Heat shock proteins (HSPs) are molecular chaperones produced in response to oxidative stress (OS). These proteins are involved in the folding of newly synthesized proteins and refolding of damaged or misfolded proteins. Recent studies have been focused on the regulatory role of HSPs in OS and ischemia/reperfusion injury (I/R) where reactive oxygen species (ROS) play a major role. ROS perform many functions, including cell signaling. Unfortunately, they are also the cause of pathological processes leading to various diseases. Biological pathways such as p38 MAPK, HSP70 and Akt/GSK-3β/eNOS, HSP70, JAK2/STAT3 or PI3K/Akt/HSP70, and HSF1/Nrf2-Keap1 are considered in the relationship between HSP and OS. New pathophysiological mechanisms involving ROS are being discovered and described the protein network of HSP interactions. Understanding of the mechanisms involved, e.g., in I/R, is important to the development of treatment methods. HSPs are multifunctional proteins because they closely interact with the antioxidant and the nitric oxide generation systems, such as HSP70/HSP90/NOS. A deficiency or excess of antioxidants modulates the activation of HSF and subsequent HSP biosynthesis. It is well known that HSPs are involved in the regulation of several redox processes and play an important role in protein-protein interactions. The latest research focuses on determining the role of HSPs in OS, their antioxidant activity, and the possibility of using HSPs in the treatment of I/R consequences. Physical exercises are important in patients with cardiovascular diseases, as they affect the expression of HSPs and the development of OS.
Collapse
|
4
|
Minuzzi LG, da Conceição LR, Muñoz VR, Vieira RFL, Gaspar RC, da Silva ASR, Cintra DE, Pereira de Moura L, Ropelle ER, Teixeira AM, Pauli JR. Effects of short-term physical training on the interleukin-15 signalling pathway and glucose tolerance in aged rats. Cytokine 2021; 137:155306. [PMID: 33010727 DOI: 10.1016/j.cyto.2020.155306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/10/2020] [Accepted: 09/18/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Interleukin-15 (IL-15) is a myokine that has been proposed to modulate skeletal muscle and adipose tissue mass, as well as insulin sensitivity. However, the evidence suggesting a role for IL-15 in improving whole-body insulin sensitivity and decreasing adiposity comes mainly from studies using supraphysiological levels of this cytokine. This study examined the effect of a short-term exercise training protocol on the protein content of IL-15, it's signaling pathway, and glucose tolerance in aged rats. METHODS Fourteen Wistar rats were divided into Young Sedentary (Young, n = 4); Old Sedentary (Old, n = 5); Old Exercise (Old.Exe, n = 5) groups. The animals from the exercised group were submitted to a short-term physical exercise protocol for five days. At the end of physical training and after 16 h of the last exercise session, the animals were euthanized, and tissue collection was done. RESULTS Physical exercise decreased epididymal and mesenteric fat mass and promoted positive effects on glucose tolerance and insulin sensitivity. Muscle IL-15 protein levels were not changed following the short-term physical exercise training with no alterations in the post-exercise IL-15-JAK/STAT signaling pathway. We found a tendency to increased HIF1α and a significant increase in its regulator, PHD2, in the skeletal muscle after exercise. CONCLUSION The elderly rats submitted to short-term aerobic physical training did not present skeletal muscle alteration in the protein content of the IL-15 and IL-15-JAK/STAT signaling pathway. However, short-term aerobic physical training was able to modulate the expression of HIF1α and its regulator PHD2, suggesting an essential role of these proteins in improving post-exercise glucose tolerance and insulin sensitivity in elderly rats.
Collapse
Affiliation(s)
- Luciele Guerra Minuzzi
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil; University of Coimbra Research, Center for Sport and Physical Activity, Faculty of Sport Sciences and Physical Education, Coimbra, Portugal; Exercise and Immunometabolism Research Group, Post-Graduation Program in Movement Sciences, Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil.
| | - Luciana Renata da Conceição
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Vitor Rosetto Muñoz
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Renan Fudoli Lins Vieira
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Rafael Calais Gaspar
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Adelino S R da Silva
- Post-graduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, USP, Ribeirão Preto, São Paulo, Brazil
| | - Dennys Esper Cintra
- Laboratory of Nutritional Genomics (LabGeN), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil; Laboratory of Cell Signalling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil
| | - Leandro Pereira de Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil; Laboratory of Cell Signalling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil; CEPECE - Center of Research in Sport Sciences. School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Eduardo Rochete Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil; Laboratory of Cell Signalling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil; CEPECE - Center of Research in Sport Sciences. School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Ana Maria Teixeira
- University of Coimbra Research, Center for Sport and Physical Activity, Faculty of Sport Sciences and Physical Education, Coimbra, Portugal
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil; Laboratory of Cell Signalling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil; CEPECE - Center of Research in Sport Sciences. School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.
| |
Collapse
|
5
|
Boengler K, Schlüter KD, Schermuly RT, Schulz R. Cardioprotection in right heart failure. Br J Pharmacol 2020; 177:5413-5431. [PMID: 31995639 PMCID: PMC7680005 DOI: 10.1111/bph.14992] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/04/2019] [Accepted: 01/06/2020] [Indexed: 02/06/2023] Open
Abstract
Ischaemic and pharmacological conditioning of the left ventricle is mediated by the activation of signalling cascades, which finally converge at the mitochondria and reduce ischaemia/reperfusion (I/R) injury. Whereas the molecular mechanisms of conditioning in the left ventricle are well characterized, cardioprotection of the right ventricle is principally feasible but less established. Similar to what is known for the left ventricle, a dysregulation in signalling pathways seems to play a role in I/R injury of the healthy and failing right ventricle and in the ability/inability of the right ventricle to respond to a conditioning stimulus. The maintenance of mitochondrial function seems to be crucial in both ventricles to reduce I/R injury. As far as currently known, similar molecular mechanisms mediate ischaemic and pharmacological preconditioning in the left and right ventricles. However, the two ventricles seem to respond differently towards exercise‐induced preconditioning. LINKED ARTICLES This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.23/issuetoc
Collapse
Affiliation(s)
- Kerstin Boengler
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| | | | | | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| |
Collapse
|
6
|
Muñoz VR, Gaspar RC, Minuzzi LG, dos Santos Canciglieri R, da Silva ASR, de Moura LP, Cintra DE, Ropelle ER, Pauli JR. Rho-kinase activity is upregulated in the skeletal muscle of aged exercised rats. Exp Gerontol 2019; 128:110746. [DOI: 10.1016/j.exger.2019.110746] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 01/30/2023]
|
7
|
Wafi AM, Yu L, Gao L, Zucker IH. Exercise training upregulates Nrf2 protein in the rostral ventrolateral medulla of mice with heart failure. J Appl Physiol (1985) 2019; 127:1349-1359. [PMID: 31556830 DOI: 10.1152/japplphysiol.00469.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic heart failure (CHF) is associated with global oxidative stress, which contributes to sympathoexcitation. Increased reactive oxygen species in the brain accumulate within neurons and lead to enhanced neuronal excitability. Exercise training (ExT) is associated with a reduction of oxidative stress by upregulation of antioxidant enzymes. The link between ExT and antioxidant enzyme expression in the brain of animals with CHF is not clear. We hypothesized that ExT enhances transcription and translation of the nuclear factor erythroid 2-related factor 2 (Nrf2) gene, a master transcription factor that modulates antioxidant enzyme gene expression, in the rostral ventrolateral medulla (RVLM) of mice with CHF. Mice were divided into the following groups: Sham sedentary (Sham-Sed), Sham-ExT, CHF-Sed, and CHF-ExT. After 8 wk of ExT, we measured Nrf2 and NAD(P)H dehydrogenase [quinone] 1 (NQO-1) message and protein expression along with maximal exercise tolerance and urinary norepinephrine (NE) excretion. We found that Nrf2 and NQO-1 mRNA and protein expression in the RVLM were lower in CHF-Sed mice compared with Sham-Sed. ExT attenuated the CHF-induced reduction of Nrf2 and NQO-1 mRNA and protein expression in the RVLM. NE excretion was higher in CHF-Sed mice compared with Sham-Sed (666.8 ± 79.3 ng/24 h, n = 6 vs. 397.8 ± 43.7 ng/24 h, P = 0.04). CHF-ExT mice exhibited reduced urinary NE excretion compared with CHF-Sed (360.7 ± 41.7 ng, n = 4 vs. 666.8 ± 79.3 ng, n = 6; P = 0.03). We conclude that ExT-induced upregulation of Nrf2 in the RVLM contributes to the beneficial effects of ExT on sympathetic function in the heart failure state.NEW & NOTEWORTHY This study provide evidence for an important role for exercise training in the modulation of antioxidant enzyme production in the rostral ventrolateral medulla (RVLM) in the heart failure state. We show here a correlation between exercise training and the expression of the antioxidant transcription factor Nrf2 in the RVLM. Exercise training reduced sympathetic function (norepinephrine excretion) and upregulated both Nrf2 and the antioxidant enzyme NQO-1. We conclude that Nrf2 in the RVLM may be an important target for controlling sympathetic outflow in heart failure.
Collapse
Affiliation(s)
- Ahmed M Wafi
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Li Yu
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Lie Gao
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
8
|
TaheriChadorneshin H, Rostamkhani F, Shirvani H. Long-term effects of sprint interval training on expression of cardiac genes involved in energy efficiency. SPORT SCIENCES FOR HEALTH 2019. [DOI: 10.1007/s11332-018-0480-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Fang G, Hong L, Liu C, Yang Q, Zhang Q, Li Y, Li B, Wu D, Wu W, Shi H. Oxidative status of cardinal ligament in pelvic organ prolapse. Exp Ther Med 2018; 16:3293-3302. [PMID: 30250520 PMCID: PMC6143997 DOI: 10.3892/etm.2018.6633] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 09/22/2017] [Indexed: 12/15/2022] Open
Abstract
Pelvic organ prolapse (POP) is a common and distressing health problem in adult women, but the pathophysiological mechanism is yet to be fully elucidated. Previous studies have indicated that oxidative stress may be associated with POP. Thus, the aim of the present study was to investigate the oxidative status of pelvic supportive tissue in POP and further demonstrate that oxidative stress is associated with the pathogenesis of POP. A total of 60 samples were collected from females undergoing hysterectomy for POP or cervical intraepithelial neoplasia (CIN). This included 16 females with POP II, 24 females with POP III–IV (according to the POP-Q system) and 20 females with CIN II–III as the control group. Immunohistochemistry was utilized to measure the expression of oxidative biomarkers, 8-hydroxydeoxyguanosine (8-OHdG) and 4-hydroxynonenal (4-HNE). Major antioxidative enzymes, mitochondrial superoxide dismutase (MnSOD) and glutathione peroxidase 1 (GPx1) were measured through reverse transcription-quantitative polymerase chain reaction, western blotting and enzyme activity assays. The results demonstrated that in the cardinal ligament, the expression of 8-OHdG and 4-HNE was higher in the POP III–IV group compared with the POP II group and control group. The MnSOD and GPx1 protein level and enzyme activity were lower in the POP III–IV group compared with the POP II or the control group, while the mRNA expression level of MnSOD and GPx1 was increased. In conclusion, oxidative damage is increased in the pelvic supportive ligament of female patients with POP and the antioxidative defense capacity is decreased. These results support previous findings that oxidative stress is involved in the pathogenesis of POP.
Collapse
Affiliation(s)
- Gui Fang
- Department of Obstetrics and Gynecology Ultrasound, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Cheng Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qifan Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yang Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Bingshu Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Debin Wu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wenying Wu
- Department of Obstetrics and Gynecology Ultrasound, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hua Shi
- Department of Obstetrics and Gynecology Ultrasound, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
10
|
Guers JJ, Zhang J, Campbell SC, Oydanich M, Vatner DE, Vatner SF. Disruption of adenylyl cyclase type 5 mimics exercise training. Basic Res Cardiol 2017; 112:59. [PMID: 28887652 DOI: 10.1007/s00395-017-0648-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 08/30/2017] [Indexed: 02/07/2023]
Abstract
Exercise training is key to healthful longevity. Since exercise training compliance is difficult, it would be useful to have a therapeutic substitute that mimicked exercise training. We compared the effects of exercise training in wild-type (WT) littermates with adenylyl cyclase type 5 knock out (AC5 KO) mice, a model of enhanced exercise performance. Exercise performance, measured by maximal distance and work to exhaustion, was increased in exercise-trained WT to levels already attained in untrained AC5 KO. Exercise training in AC5 KO further enhanced their exercise performance. The key difference in untrained AC5 KO and exercise-trained WT was the β-adrenergic receptor signaling, which was decreased in untrained AC5 KO compared to untrained WT but was increased in WT with exercise training. Despite this key difference, untrained AC5 KO and exercise-trained WT mice shared similar gene expression, determined by deep sequencing, in their gastrocnemius muscle with 183 genes commonly up or down-regulated, mainly involving muscle contraction, metabolism and mitochondrial function. The SIRT1/PGC-1α pathway partially mediated the enhanced exercise in both AC5 KO and exercise-trained WT mice, as reflected in the reduced exercise responses after administering a SIRT1 inhibitor, but did not abolish the enhanced exercise performance in the AC5 KO compared to untrained WT. Increasing oxidative stress with paraquat attenuated exercise performance more in untrained WT than untrained AC5 KO, reflecting the augmented oxidative stress protection in AC5 KO. Blocking nitric oxide actually reduced the enhanced exercise performance in untrained AC5 KO and trained WT to levels below untrained WT, demonstrating the importance of this mechanism. These results suggest that AC5 KO mice, without exercise training, share similar mechanisms responsible for enhanced exercise capacity with chronic exercise training, most importantly increased nitric oxide, and demonstrate more reserve with the addition of exercise training. A novel feature of the enhanced exercise performance in untrained AC5 KO mice is their decreased sympathetic tone, which is also beneficial to patients with cardiovascular disease.
Collapse
Affiliation(s)
- John J Guers
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, Rutgers University, 185 South Orange Avenue, MSB G609, Newark, NJ, 07103, USA
| | - Jie Zhang
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, Rutgers University, 185 South Orange Avenue, MSB G609, Newark, NJ, 07103, USA
| | - Sara C Campbell
- Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ, USA
| | - Marko Oydanich
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, Rutgers University, 185 South Orange Avenue, MSB G609, Newark, NJ, 07103, USA
| | - Dorothy E Vatner
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, Rutgers University, 185 South Orange Avenue, MSB G609, Newark, NJ, 07103, USA.
- Department of Medicine, New Jersey Medical School, Rutgers University, 185 South Orange Avenue, MSB G659, Newark, NJ, 07103, USA.
| | - Stephen F Vatner
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, Rutgers University, 185 South Orange Avenue, MSB G609, Newark, NJ, 07103, USA.
| |
Collapse
|
11
|
Ichige MHA, Pereira MG, Brum PC, Michelini LC. Experimental Evidences Supporting the Benefits of Exercise Training in Heart Failure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 999:181-206. [PMID: 29022264 DOI: 10.1007/978-981-10-4307-9_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Heart Failure (HF), a common end point for many cardiovascular diseases, is a syndrome with a very poor prognosis. Although clinical trials in HF have achieved important outcomes in reducing mortality, little is known about functional mechanisms conditioning health improvement in HF patients. In parallel with clinical studies, basic science has been providing important discoveries to understand the mechanisms underlying the pathophysiology of HF, as well as to identify potential targets for the treatment of this syndrome. In spite of being the end-point of cardiovascular derangements caused by different etiologies, autonomic dysfunction, sympathetic hyperactivity, oxidative stress, inflammation and hormonal activation are common factors involved in the progression of this syndrome. Together these causal factors create a closed link between three important organs: brain, heart and the skeletal muscle. In the past few years, we and other groups have studied the beneficial effects of aerobic exercise training as a safe therapy to avoid the progression of HF. As summarized in this chapter, exercise training, a non-pharmacological tool without side effects, corrects most of the HF-induced neurohormonal and local dysfunctions within the brain, heart and skeletal muscles. These adaptive responses reverse oxidative stress, reduce inflammation, ameliorate neurohormonal control and improve both cardiovascular and skeletal muscle function, thus increasing the quality of life and reducing patients' morbimortality.
Collapse
Affiliation(s)
- Marcelo H A Ichige
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Marcelo G Pereira
- Department of Biodynamics of Human Body Movement, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Patrícia C Brum
- Department of Biodynamics of Human Body Movement, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil. .,National Institute for Science & Technology - INCT (In)activity & Exercise, CNPq - Niterói (RJ), Rio de Janeiro, Brazil.
| | - Lisete C Michelini
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.,National Institute for Science & Technology - INCT (In)activity & Exercise, CNPq - Niterói (RJ), Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Lawler JM, Rodriguez DA, Hord JM. Mitochondria in the middle: exercise preconditioning protection of striated muscle. J Physiol 2016; 594:5161-83. [PMID: 27060608 PMCID: PMC5023703 DOI: 10.1113/jp270656] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 04/01/2016] [Indexed: 12/24/2022] Open
Abstract
Cellular and physiological adaptations to an atmosphere which became enriched in molecular oxygen spurred the development of a layered system of stress protection, including antioxidant and stress response proteins. At physiological levels reactive oxygen and nitrogen species regulate cell signalling as well as intracellular and intercellular communication. Exercise and physical activity confer a variety of stressors on skeletal muscle and the cardiovascular system: mechanical, metabolic, oxidative. Transient increases of stressors during acute bouts of exercise or exercise training stimulate enhancement of cellular stress protection against future insults of oxidative, metabolic and mechanical stressors that could induce injury or disease. This phenomenon has been termed both hormesis and exercise preconditioning (EPC). EPC stimulates transcription factors such as Nrf-1 and heat shock factor-1 and up-regulates gene expression of a cadre of cytosolic (e.g. glutathione peroxidase and heat shock proteins) and mitochondrial adaptive or stress proteins (e.g. manganese superoxide dismutase, mitochondrial KATP channels and peroxisome proliferator activated receptor γ coactivator-1 (PGC-1)). Stress response and antioxidant enzyme inducibility with exercise lead to protection against striated muscle damage, oxidative stress and injury. EPC may indeed provide significant clinical protection against ischaemia-reperfusion injury, Type II diabetes and ageing. New molecular mechanisms of protection, such as δ-opioid receptor regulation and mitophagy, reinforce the notion that mitochondrial adaptations (e.g. heat shock proteins, antioxidant enzymes and sirtuin-1/PGC-1 signalling) are central to the protective effects of exercise preconditioning.
Collapse
Affiliation(s)
- John M Lawler
- Redox Biology & Cell Signalling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition & Food Science, Texas A&M University, College Station, TX, USA.
| | - Dinah A Rodriguez
- Redox Biology & Cell Signalling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition & Food Science, Texas A&M University, College Station, TX, USA
| | - Jeffrey M Hord
- Redox Biology & Cell Signalling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition & Food Science, Texas A&M University, College Station, TX, USA
| |
Collapse
|
13
|
Guan Y, Cui ZJ, Sun B, Han LP, Li CJ, Chen LM. Celastrol attenuates oxidative stress in the skeletal muscle of diabetic rats by regulating the AMPK-PGC1α-SIRT3 signaling pathway. Int J Mol Med 2016; 37:1229-38. [PMID: 27049825 PMCID: PMC4829141 DOI: 10.3892/ijmm.2016.2549] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/28/2016] [Indexed: 12/25/2022] Open
Abstract
Oxidative stress plays a key role in the pathogenesis of diabetic myopathy. Celastrol provides a wide range of health benefits, including antioxidant, anti-inflammatory and antitumor effects. We hypothesized that celastrol may exert an antioxidant effect in the skeletal muscle of diabetic rats. In the present study, MnSOD activity was determined by spectrophotometry. The protein levels were evaluated by western blot analysis and mRNA content was quantified by RT‑qPCR. We firstly found that the levels of AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor coactivator 1α (PGC1α), silent mating-type information regulation 2 homolog 3 (Sirt3) and manganese superoxide dismutase (MnSOD) were all decreased in the skeletal muscle of diabetic patients. Male rats with diabetes were also treated with the vehicle or with celastrol at 1, 3 and 6 mg/kg/day for 8 weeks. The administration of celastrol at 3 and 6 mg/kg attenuated the deterioration of skeletal muscle, as shown by histological analysis, decreased the malondialdehyde (MDA) level and increased the glutathione (GSH) level assayed by enzyme-linked immunosorbent assay (ELISA) method. It also enhanced the enzyme activity and increased the expression of MnSOD, and increased the AMPK phosphorylation level, as well as PGC1α and Sirt3 expression. The findings of our study suggest that the expression of AMPK, PGC1α, Sirt3 and MnSOD are decreased in the skeletal muscle of diabetic patients. Celastrol exerted antioxidant effects on skeletal muscle partly by regulating the AMPK-PGC1α-Sirt3 signaling pathway.
Collapse
Affiliation(s)
- Yue Guan
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Zi-Jian Cui
- Department of Spinal Surgery, Tianjin Union Medicine Center, Tianjin 300121, P.R. China
| | - Bei Sun
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Li-Ping Han
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Chun-Jun Li
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Li-Ming Chen
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, P.R. China
| |
Collapse
|
14
|
Alterations in Plasma Glucose and Cardiac Antioxidant Enzymes Activity in Streptozotocin-Induced Diabetic Rats: Effects of Trigonella foenum-graecum Extract and Swimming Training. Can J Diabetes 2016; 40:135-42. [DOI: 10.1016/j.jcjd.2015.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 07/03/2015] [Accepted: 08/19/2015] [Indexed: 01/27/2023]
|
15
|
Exercise Modulates Oxidative Stress and Inflammation in Aging and Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:7239639. [PMID: 26823952 PMCID: PMC4707375 DOI: 10.1155/2016/7239639] [Citation(s) in RCA: 210] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/28/2015] [Indexed: 12/11/2022]
Abstract
Despite the wealth of epidemiological and experimental studies indicating the protective role of regular physical activity/exercise training against the sequels of aging and cardiovascular diseases, the molecular transducers of exercise/physical activity benefits are not fully identified but should be further investigated in more integrative and innovative approaches, as they bear the potential for transformative discoveries of novel therapeutic targets. As aging and cardiovascular diseases are associated with a chronic state of oxidative stress and inflammation mediated via complex and interconnected pathways, we will focus in this review on the antioxidant and anti-inflammatory actions of exercise, mainly exerted on adipose tissue, skeletal muscles, immune system, and cardiovascular system by modulating anti-inflammatory/proinflammatory cytokines profile, redox-sensitive transcription factors such as nuclear factor kappa B, activator protein-1, and peroxisome proliferator-activated receptor gamma coactivator 1-alpha, antioxidant and prooxidant enzymes, and repair proteins such as heat shock proteins, proteasome complex, oxoguanine DNA glycosylase, uracil DNA glycosylase, and telomerase. It is important to note that the effects of exercise vary depending on the type, intensity, frequency, and duration of exercise as well as on the individual's characteristics; therefore, the development of personalized exercise programs is essential.
Collapse
|
16
|
Lee Y, Kwak HB, Hord J, Kim JH, Lawler JM. Exercise training attenuates age-dependent elevation of angiotensin II type 1 receptor and Nox2 signaling in the rat heart. Exp Gerontol 2015; 70:163-73. [DOI: 10.1016/j.exger.2015.07.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 07/26/2015] [Accepted: 07/30/2015] [Indexed: 11/25/2022]
|
17
|
Li M, Li W, Yoon JH, Jeon BH, Lee SK. Resistance exercise training increase activation of AKT-eNOS and Ref-1 expression by FOXO-1 activation in aorta of F344 rats. J Exerc Nutrition Biochem 2015; 19:165-71. [PMID: 26526775 PMCID: PMC4624117 DOI: 10.5717/jenb.2015.15071702] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 06/12/2015] [Accepted: 07/17/2015] [Indexed: 02/02/2023] Open
Abstract
PURPOSE This study investigated the effects of resistance exercise on the Akt-eNOS, the activation of antioxidant protein and FOXO1 in the aorta of F344 rats. METHODS Male 7 week-old F344 rats were randomly divided into 2 groups: a climbing group (n = 6) and a sedentary group (n = 6). H&E staining and western blotting were used to analyze the rat aortas and target proteins. RESULTS Resistance exercise training did not significantly affect aortic structure. Phosphorylation of AKT and eNOS and expression of MnSOD and Ref-1 were significantly increased while FOXO1 phosphorylation was significantly decreased in the resistance exercise group compared with the sedentary group. CONCLUSION We demonstrate that resistance exercise activates the Akt-eNOS and Ref-1 protein without changes to aortic thickness via FOXO-1 activation in the aorta of F344 rats.
Collapse
Affiliation(s)
- Meng Li
- Department of Sports Science, Chungnam National University, Daejeon,
Republic of Korea
| | - Wei Li
- Department of Sports Science, Chungnam National University, Daejeon,
Republic of Korea
| | - Jin-Hwan Yoon
- Department of Sports Science, Hannam University, Daejeon,
Republic of Korea
| | - Byeong Hwa Jeon
- Department of physiology, Chungnam National University, Deajeon,
Republic of Korea
| | - Sang Ki Lee
- Department of Sports Science, Chungnam National University, Daejeon,
Republic of Korea
| |
Collapse
|
18
|
Golbidi S, Botta A, Gottfred S, Nusrat A, Laher I, Ghosh S. Glutathione administration reduces mitochondrial damage and shifts cell death from necrosis to apoptosis in ageing diabetic mice hearts during exercise. Br J Pharmacol 2015; 171:5345-60. [PMID: 25039894 DOI: 10.1111/bph.12847] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 06/30/2014] [Accepted: 07/09/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE The effect of antioxidants on ageing type 2 diabetic (T2D) hearts during exercise is unclear. We hypothesized that GSH therapy during exercise reduces mitochondrial oxidative stress (mOXS) and cell death in ageing db/db mice hearts. EXPERIMENTAL APPROACH The effect of GSH on cardiac mOXS and cell death was evaluated both in vivo and in vitro. KEY RESULTS During exercise, GSH treatment protected db/db hearts from exaggerated mOXS without reducing total cell death. Despite similar cell death, investigations on apoptosis-specific single-stranded DNA breaks and necrosis-specific damage provided the first in vivo evidence of a shift from necrosis to apoptosis, with reduced fibrosis following GSH administration in exercised db/db hearts. Further support for a GSH-regulated 'switch' in death phenotypes came from NIH-3T3 fibroblasts and H9c2 cardiomyocytes treated with H2 O2 , a reactive oxygen species (ROS). Similar to in vivo findings, augmenting GSH by overexpressing glutamyl cysteine ligase (GCLc) protected fibroblasts and cardiomyocytes from necrosis induced by H2 O2 , but elevated caspase-3 and apoptosis instead. Similar to in vivo findings, where GSH therapy in normoglycaemic mice suppressed endogenous antioxidants and augmented caspase-3 activity, GCLc overexpression during staurosporine-induced death, which was not characterized by ROS, increased GSH efflux and aggravated death in fibroblasts and cardiomyocytes, confirming that oxidative stress is required for GSH-mediated cytoprotection. CONCLUSIONS AND IMPLICATIONS While GSH treatment is useful for reducing mOXS and attenuating necrosis and fibrosis in ageing T2D hearts during exercise, such antioxidant treatment could be counterproductive in the healthy heart during exercise.
Collapse
Affiliation(s)
- S Golbidi
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Crisafulli A, Mancardi D, Marongiu E, Rastaldo R, Penna C, Pagliaro P. Preconditioning cardioprotection and exercise performance: a radical point of view. SPORT SCIENCES FOR HEALTH 2015. [DOI: 10.1007/s11332-015-0225-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
20
|
Zucker IH, Schultz HD, Patel KP, Wang H. Modulation of angiotensin II signaling following exercise training in heart failure. Am J Physiol Heart Circ Physiol 2015; 308:H781-91. [PMID: 25681422 PMCID: PMC4398865 DOI: 10.1152/ajpheart.00026.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/04/2015] [Indexed: 02/07/2023]
Abstract
Sympathetic activation is a consistent finding in the chronic heart failure (CHF) state. Current therapy for CHF targets the renin-angiotensin II (ANG II) and adrenergic systems. Angiotensin converting enzyme (ACE) inhibitors and ANG II receptor blockers are standard treatments along with β-adrenergic blockade. However, the mortality and morbidity of this disease is still extremely high, even with good medical management. Exercise training (ExT) is currently being used in many centers as an adjunctive therapy for CHF. Clinical studies have shown that ExT is a safe, effective, and inexpensive way to improve quality of life, work capacity, and longevity in patients with CHF. This review discusses the potential neural interactions between ANG II and sympatho-excitation in CHF and the modulation of this interaction by ExT. We briefly review the current understanding of the modulation of the angiotensin type 1 receptor in sympatho-excitatory areas of the brain and in the periphery (i.e., in the carotid body and skeletal muscle). We discuss possible cellular mechanisms by which ExT may impact the sympatho-excitatory process by reducing oxidative stress, increasing nitric oxide. and reducing ANG II. We also discuss the potential role of ACE2 and Ang 1-7 in the sympathetic response to ExT. Fruitful areas of further investigation are the role and mechanisms by which pre-sympathetic neuronal metabolic activity in response to individual bouts of exercise regulate redox mechanisms and discharge at rest in CHF and other sympatho-excitatory states.
Collapse
Affiliation(s)
- Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Harold D Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kaushik P Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Hanjun Wang
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
21
|
Li M, Tang YQ, Du RH, Shi FH, Hussein HK, Dai DZ, Dai Y. CPUY11018, an azimilide derivative, ameliorates isoproterenol-induced cardiac insufficiency through relieving dysfunctional mitochondria and endoplasmic reticulum. J Pharm Pharmacol 2015; 67:1029-41. [DOI: 10.1111/jphp.12401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 01/18/2015] [Indexed: 12/11/2022]
Abstract
Abstract
Objectives
Deterioration of cardiac performance under stress may be partly mediated by dysfunctional mitochondria and endoplasmic reticulum (ER) that is likely related to an activation of NADPH oxidase (NOX) and an increase in pro-inflammatory factors. We investigated if a new compound CPUY11018 (CPUY) derived from Azimilide could ameliorate the stress impaired cardiac performance.
Methods
Forty-eight male Sprague Dawley rats were randomly divided into six groups and were injected with isoproterenol (ISO, 1 ml/kg, s.c.) for 10 days. Cardiac myocytes and fibroblasts from neonate rats were incubated with ISO. CPUY was employed and compared with apocynin (APO) – an inhibitor of NOX.
Key findings
In ISO-treated group, the compromised haemodynamics and cardiac remodelling were significant with dysfunctional mitochondria indicated by decreased MnSOD and mitochondrial membrane potential, and an enhanced reactive oxygen species genesis. Downregulation of FKBP12.6, CASQ2 and SERCA2a was also remarkable in vivo and in vitro implying an abnormal ER. Upregulated Nox4, p22phox and p47phox were significant, associated with upregulation of Src, IκBβ and NFκB, and downregulation of pAMPK/AMPK and Cx40 in vivo and in vitro. These abnormalities were relieved by CPUY and APO.
Conclusions
CPUY is potential in managing cardiac insufficiency through normalizing mitochondria and ER in the affected heart.
Collapse
Affiliation(s)
- Meng Li
- Research Division of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Yi-Qun Tang
- Research Division of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Rong-Hui Du
- Department of Pharmacology, The Medical School, University of Nanjing, Nanjing, China
| | - Fang-Hong Shi
- Research Division of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Humed Khan Hussein
- Research Division of Pharmacology, China Pharmaceutical University, Nanjing, China
- Pharmacology Department, Faculty of Pharmacy, University of Aden, Aden, Yemen
| | - De-Zai Dai
- Research Division of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Yin Dai
- Research Division of Pharmacology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
22
|
Hart PC, Mao M, de Abreu ALP, Ansenberger-Fricano K, Ekoue DN, Ganini D, Kajdacsy-Balla A, Diamond AM, Minshall RD, Consolaro MEL, Santos JH, Bonini MG. MnSOD upregulation sustains the Warburg effect via mitochondrial ROS and AMPK-dependent signalling in cancer. Nat Commun 2015; 6:6053. [PMID: 25651975 PMCID: PMC4319569 DOI: 10.1038/ncomms7053] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 12/09/2014] [Indexed: 12/14/2022] Open
Abstract
Manganese superoxide dismutase (MnSOD/SOD2) is a mitochondria-resident enzyme that governs the types of reactive oxygen species egressing from the organelle to affect cellular signaling. Here, we demonstrate that MnSOD upregulation in cancer cells establishes a steady flow of H2O2 originating from mitochondria that sustains AMP-activated kinase (AMPK) activation and the metabolic shift to glycolysis. Restricting MnSOD expression or inhibiting AMPK suppress the metabolic switch and dampens the viability of transformed cells indicating that the MnSOD/AMPK axis is critical in support cancer cell bioenergetics. Recapitulating in vitro findings, clinical and epidemiologic analyses of MnSOD expression and AMPK activation indicated that the MnSOD/AMPK pathway is most active in advanced stage and aggressive breast cancer subtypes. Taken together, our results indicate that MnSOD serves as a biomarker of cancer progression and acts as critical regulator of tumor cell metabolism.
Collapse
Affiliation(s)
- Peter C Hart
- 1] Department of Medicine, University of Illinois at Chicago, 909 South Wolcott Avenue, COMRB 1131, Chicago, Illinois 60612, USA [2] Department of Pathology, University of Illinois at Chicago, 909 South Wolcott Avenue, COMRB 1131, Chicago, Illinois 60612, USA
| | - Mao Mao
- 1] Department of Medicine, University of Illinois at Chicago, 909 South Wolcott Avenue, COMRB 1131, Chicago, Illinois 60612, USA [2] Department of Pharmacology, University of Illinois at Chicago, 909 South Wolcott Avenue, COMRB 1131, Chicago, Illinois 60612, USA
| | - Andre Luelsdorf P de Abreu
- 1] Department of Medicine, University of Illinois at Chicago, 909 South Wolcott Avenue, COMRB 1131, Chicago, Illinois 60612, USA [2] Department of Pharmacology, University of Illinois at Chicago, 909 South Wolcott Avenue, COMRB 1131, Chicago, Illinois 60612, USA [3] Universidade Estadual de Maringa, Avenida Colombo, 5790, CEP, 87020-900 Maringa, PR, Brazil
| | - Kristine Ansenberger-Fricano
- 1] Department of Medicine, University of Illinois at Chicago, 909 South Wolcott Avenue, COMRB 1131, Chicago, Illinois 60612, USA [2] Department of Pharmacology, University of Illinois at Chicago, 909 South Wolcott Avenue, COMRB 1131, Chicago, Illinois 60612, USA
| | - Dede N Ekoue
- Department of Pathology, University of Illinois at Chicago, 909 South Wolcott Avenue, COMRB 1131, Chicago, Illinois 60612, USA
| | - Douglas Ganini
- Free Radical Metabolite Section, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences/NIH, 111T.W., Alexander Drive MD-F02, Research Triangle Park, North Carolina 27709, USA
| | - Andre Kajdacsy-Balla
- Department of Pathology, University of Illinois at Chicago, 909 South Wolcott Avenue, COMRB 1131, Chicago, Illinois 60612, USA
| | - Alan M Diamond
- Department of Pathology, University of Illinois at Chicago, 909 South Wolcott Avenue, COMRB 1131, Chicago, Illinois 60612, USA
| | - Richard D Minshall
- 1] Department of Pharmacology, University of Illinois at Chicago, 909 South Wolcott Avenue, COMRB 1131, Chicago, Illinois 60612, USA [2] Department of Anesthesiology, University of Illinois at Chicago, 909 South Wolcott Avenue, COMRB 1131, Chicago, Illinois 60612, USA
| | - Marcia E L Consolaro
- Universidade Estadual de Maringa, Avenida Colombo, 5790, CEP, 87020-900 Maringa, PR, Brazil
| | - Janine H Santos
- Department of Physiology and Pharmacology, University of Medicine and Dentistry of New Jersey, 185 South Orange Avenue, Newark, New Jersey 07103, USA
| | - Marcelo G Bonini
- 1] Department of Medicine, University of Illinois at Chicago, 909 South Wolcott Avenue, COMRB 1131, Chicago, Illinois 60612, USA [2] Department of Pathology, University of Illinois at Chicago, 909 South Wolcott Avenue, COMRB 1131, Chicago, Illinois 60612, USA [3] Department of Pharmacology, University of Illinois at Chicago, 909 South Wolcott Avenue, COMRB 1131, Chicago, Illinois 60612, USA
| |
Collapse
|
23
|
Abstract
Oxidative stress is characterized by imbalanced reactive oxygen species (ROS) production and antioxidant defenses. Two main antioxidant systems exist. The nonenzymatic system relies on molecules to directly quench ROS and the enzymatic system is composed of specific enzymes that detoxify ROS. Among the latter, the superoxide dismutase (SOD) family is important in oxidative stress modulation. Of these, manganese-dependent SOD (MnSOD) plays a major role due to its mitochondrial location, i.e., the main site of superoxide (O(2)(·-)) production. As such, extensive research has focused on its capacity to modulate oxidative stress. Early data demonstrated the relevance of MnSOD as an O(2)(·-) scavenger. More recent research has, however, identified a prominent role for MnSOD in carcinogenesis. In addition, SOD downregulation appears associated with health risk in heart and brain. A single nucleotide polymorphism which alters the mitochondria signaling sequence for the cytosolic MnSOD form has been identified. Transport into the mitochondria was differentially affected by allelic presence and a new chapter in MnSOD research thus begun. As a result, an ever-increasing number of diseases appear associated with this allelic variation including metabolic and cardiovascular disease. Although diet and exercise upregulate MnSOD, the relationship between environmental and genetic factors remains unclear.
Collapse
|
24
|
Efficacy of female rat models in translational cardiovascular aging research. J Aging Res 2014; 2014:153127. [PMID: 25610649 PMCID: PMC4294461 DOI: 10.1155/2014/153127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/05/2014] [Accepted: 12/05/2014] [Indexed: 01/11/2023] Open
Abstract
Cardiovascular disease is the leading cause of death in women in the United States. Aging is a primary risk factor for the development of cardiovascular disease as well as cardiovascular-related morbidity and mortality. Aging is a universal process that all humans undergo; however, research in aging is limited by cost and time constraints. Therefore, most research in aging has been done in primates and rodents; however it is unknown how well the effects of aging in rat models translate into humans. To compound the complication of aging gender has also been indicated as a risk factor for various cardiovascular diseases. This review addresses the systemic pathophysiology of the cardiovascular system associated with aging and gender for aging research with regard to the applicability of rat derived data for translational application to human aging.
Collapse
|
25
|
Oliveira V, Akamine EH, Carvalho MHC, Michelini LC, Fortes ZB, Cunha TS, do Carmo Franco M. Influence of aerobic training on the reduced vasoconstriction to angiotensin II in rats exposed to intrauterine growth restriction: possible role of oxidative stress and AT2 receptor of angiotensin II. PLoS One 2014; 9:e113035. [PMID: 25406086 PMCID: PMC4236150 DOI: 10.1371/journal.pone.0113035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 07/21/2014] [Indexed: 12/31/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is associated with impaired vascular function, which contributes to the increased incidence of chronic disease. The aim of this study was to investigate whether aerobic training improves AngII-induced vasoconstriction in IUGR rats. Moreover, we assess the role of superoxide dismutase (SOD) isoforms and NADPH oxidase-derived superoxide anions in this improvement. Female Wistar rats were randomly divided into two groups on day 1 of pregnancy. A control group was fed standard chow ad libitum, and a restricted group was fed 50% of the ad libitum intake throughout gestation. At 8 weeks of age, male offspring from both groups were randomly assigned to 4 experimental groups: sedentary control (SC), trained control (TC), sedentary restricted (SRT), and trained restricted (TRT). The training protocol was performed on a treadmill and consisted of a continuous 60-min session 5 days/week for 10 weeks. Following aerobic training, concentration–response curves to AngII were obtained in endothelium-intact aortic rings. Protein expression of SOD isoforms, AngII receptors and the NADPH oxidase component p47phox was assessed by Western blot analysis. The dihydroethidium was used to evaluate the in situ superoxide levels under basal conditions or in the presence of apocynin, losartan or PD 123,319. Our results indicate that aerobic training can prevent IUGR-associated increases in AngII-dependent vasoconstriction and can restore basal superoxide levels in the aortic rings of TRT rats. Moreover, we observed that aerobic training normalized the increased p47phox protein expression and increased MnSOD and AT2 receptor protein expression in thoracic aortas of SRT rats. In summary, aerobic training can result in an upregulation of antioxidant defense by improved of MnSOD expression and attenuation of NADPH oxidase component p47phox. These effects are accompanied by increased expression of AT2 receptor, which provide positive effects against Ang II–induced superoxide generation, resulting in attenuation of AngII-induced vasoconstriction.
Collapse
Affiliation(s)
- Vanessa Oliveira
- Nephrology Division, School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | | | - Tatiana Sousa Cunha
- Science and Technology Institute, Federal University of São Paulo, São Paulo, Brazil
| | - Maria do Carmo Franco
- Nephrology Division, School of Medicine, Federal University of São Paulo, São Paulo, Brazil
- Physiology Department, School of Medicine, Federal University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
26
|
Aksu U, Yanar K, Terzioglu D, Erkol T, Ece E, Aydin S, Uslu E, Çakatay U. Effect of tempol on redox homeostasis and stress tolerance in mimetically aged Drosophila. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2014; 87:13-25. [PMID: 25044374 DOI: 10.1002/arch.21176] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We aimed to test our hypothesis that scavenging reactive oxygen species (ROS) with tempol, a membrane permeable antioxidant, affects the type and magnitude of oxidative damage and stress tolerance through mimetic aging process in Drosophila. Drosophila colonies were randomly divided into three groups: (1) no D-galactose, no tempol; (2) D-galactose without tempol; (3) D-galactose, but with tempol. Mimetic aging was induced by d-galactose administration. The tempol-administered flies received tempol at the concentration of 0.2% in addition to d-galactose. Thiobarbituric acid reacting substance (TBARS) concentrations, advanced oxidation protein products (AOPPs), Cu,Zn-superoxide dismutase (Cu,Zn-SOD), sialic acid (SA) were determined. Additionally, stress tolerances were tested. Mimetically aged group without tempol led to a significant decrease in tolerance to heat, cold, and starvation (P < 0.05), but tempol was used for these parameters. The Cu,Zn-SOD activity and SA concentrations were lower in both mimetically aged and tempol-administered Drosophila groups compared to control (P < 0.05), whereas there were no significantly difference between mimetically aged and tempol-administered groups. Mimetically aged group without tempol led to a significant increase in tissue TBARS and AOPPs concentrations (P < 0.05). Coadministration of tempol could prevent these alterations. Scavenging ROS using tempol also restores redox homeostasis in mimetically aged group. Tempol partly restores age-related oxidative injury and increases stress tolerance.
Collapse
Affiliation(s)
- Ugur Aksu
- Department of Biology, Science Faculty, Zoology Division, Istanbul University, Istanbul, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Kwak HB, Lee Y, Kim JH, Van Remmen H, Richardson AG, Lawler JM. MnSOD overexpression reduces fibrosis and pro-apoptotic signaling in the aging mouse heart. J Gerontol A Biol Sci Med Sci 2014; 70:533-44. [PMID: 25016531 DOI: 10.1093/gerona/glu090] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 05/20/2014] [Indexed: 01/15/2023] Open
Abstract
Contractility of the heart is impaired with advancing age via mechanical remodeling, as myocytes are lost through apoptosis and collagenous fibers accumulate. Exercise training confers protection against fibrosis and apoptosis in the aging heart, but the mechanisms remain poorly understood. We recently reported that exercise training elevates Mn isoform of superoxide dismutase (MnSOD) in the aging heart, concomitant with reduction in oxidative stress and fibrosis. Here, we tested the hypothesis that overexpression of MnSOD would be causal in protection against fibrosis and apoptosis in the aging heart. Hearts were extracted from young (8 months) wild-type, young mice overexpressing the Sod2 (MnSOD) gene, old (28 months) wild-type, and old transgenic mice. Left ventricle MnSOD protein levels were elevated in young mice overexpressing the Sod2 (MnSOD) gene and old transgenic mice. MnSODTg mice exhibited lower oxidative stress (total hydroperoxides, 4-hydroxynonenal, and 8-isoprostane) in the old group. Age-related cardiac remodeling and fibrosis was mitigated in MnSOD Tg mice with reductions in extramyocyte space (-65%), collagen-I, and transforming growth factor-β. Pro-apoptotic markers Bax (-38%) and caspase-3 cleavage (-41%) were reduced and apoptosis (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive nuclei, DNA laddering) was mitigated in MnSOD Tg hearts compared with old wild-type. We conclude that MnSOD elevation is indeed protective against oxidative stress, fibrosis, and apoptosis in the aging heart.
Collapse
Affiliation(s)
- Hyo-Bum Kwak
- Department of Health and Kinesiology, Redox Biology and Cell Signaling Laboratory, Texas A&M University, College Station. Department of Kinesiology, Inha University, Incheon, South Korea
| | - Yang Lee
- Department of Health and Kinesiology, Redox Biology and Cell Signaling Laboratory, Texas A&M University, College Station
| | - Jong-Hee Kim
- Department of Health and Kinesiology, Redox Biology and Cell Signaling Laboratory, Texas A&M University, College Station. Department of Health and Human Performance, University of Houston, Texas
| | - Holly Van Remmen
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation
| | - Arlan G Richardson
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Science Center
| | - John M Lawler
- Department of Health and Kinesiology, Redox Biology and Cell Signaling Laboratory, Texas A&M University, College Station.
| |
Collapse
|
28
|
Quindry JC, Hamilton KL. Exercise and cardiac preconditioning against ischemia reperfusion injury. Curr Cardiol Rev 2014; 9:220-9. [PMID: 23909636 PMCID: PMC3780347 DOI: 10.2174/1573403x113099990033] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Accepted: 06/02/2013] [Indexed: 12/30/2022] Open
Abstract
Cardiovascular disease (CVD), including ischemia reperfusion (IR) injury, remains a major cause of morbidity and mortality in industrialized nations. Ongoing research is aimed at uncovering therapeutic interventions against IR injury. Regular exercise participation is recognized as an important lifestyle intervention in the prevention and treatment of CVD and IR injury. More recent understanding reveals that moderate intensity aerobic exercise is also an important experimental model for understanding the cellular mechanisms of cardioprotection against IR injury. An important discovery in this regard was the observation that one-to-several days of exercise will attenuate IR injury. This phenomenon has been observed in young and old hearts of both sexes. Due to the short time course of exercise induced protection, IR injury prevention must be mediated by acute biochemical alterations within the myocardium. Research over the last decade reveals that redundant mechanisms account for exercise induced cardioprotection against IR. While much is now known about exercise preconditioning against IR injury, many questions remain. Perhaps most pressing, is what mechanisms mediate cardioprotection in aged hearts and what sex-dependent differences exist. Given that that exercise preconditioning is a polygenic effect, it is likely that multiple mediators of exercise induced cardioprotection have yet to be uncovered. Also unknown, is whether post translational modifications due to exercise are responsible for IR injury prevention. This review will provide an overview the major mechanisms of IR injury and exercise preconditioning. The discussion highlights many promising avenues for further research and describes how exercise preconditioning may continue to be an important scientific paradigm in the translation of cardioprotection research to the clinic.
Collapse
Affiliation(s)
- John C Quindry
- Cardioprotection Laboratory, Department of Kinesiology, Auburn University, AL 36849, USA
| | | |
Collapse
|
29
|
Bereiter-Hahn J. Do we age because we have mitochondria? PROTOPLASMA 2014; 251:3-23. [PMID: 23794102 DOI: 10.1007/s00709-013-0515-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 05/21/2013] [Indexed: 06/02/2023]
Abstract
The process of aging remains a great riddle. Production of reactive oxygen species (ROS) by mitochondria is an inevitable by-product of respiration, which has led to a hypothesis proposing the oxidative impairment of mitochondrial components (e.g., mtDNA, proteins, lipids) that initiates a vicious cycle of dysfunctional respiratory complexes producing more ROS, which again impairs function. This does not exclude other processes acting in parallel or targets for ROS action in other organelles than mitochondria. Given that aging is defined as the process leading to death, the role of mitochondria-based impairments in those organ systems responsible for human death (e.g., the cardiovascular system, cerebral dysfunction, and cancer) is described within the context of "garbage" accumulation and increasing insulin resistance, type 2 diabetes, and glycation of proteins. Mitochondrial mass, fusion, and fission are important factors in coping with impaired function. Both biogenesis of mitochondria and their degradation are important regulatory mechanisms stimulated by physical exercise and contribute to healthy aging. The hypothesis of mitochondria-related aging should be revised to account for the limitations of the degradative capacity of the lysosomal system. The processes involved in mitochondria-based impairments are very similar across a large range of organisms. Therefore, studies on model organisms from yeast, fungi, nematodes, flies to vertebrates, and from cells to organisms also add considerably to the understanding of human aging.
Collapse
Affiliation(s)
- Jürgen Bereiter-Hahn
- Institut für Zellbiologie und Neurowissenschaften, Goethe Universität Frankfurt am Main, Max-von-Lauestrasse 13, 60438, Frankfurt am Main, Germany,
| |
Collapse
|
30
|
Powers SK, Sollanek KJ, Wiggs MP, Demirel HA, Smuder AJ. Exercise-induced improvements in myocardial antioxidant capacity: the antioxidant players and cardioprotection. Free Radic Res 2013; 48:43-51. [DOI: 10.3109/10715762.2013.825371] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
31
|
OralCard: A bioinformatic tool for the study of oral proteome. Arch Oral Biol 2013; 58:762-72. [DOI: 10.1016/j.archoralbio.2012.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 11/26/2012] [Accepted: 12/30/2012] [Indexed: 10/27/2022]
|
32
|
Zhu J, Rebecchi MJ, Wang Q, Glass PSA, Brink PR, Liu L. Chronic Tempol treatment restores pharmacological preconditioning in the senescent rat heart. Am J Physiol Heart Circ Physiol 2013; 304:H649-59. [DOI: 10.1152/ajpheart.00794.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cardioprotective effects of anesthetic preconditioning and cyclosporine A (CsA) are lost with aging. To extend our previous work and address a possible mechanism underlying age-related differences, we investigated the role of oxidative stress in the aging heart by treating senescent animals with the oxygen free radical scavenger Tempol. Old male Fischer 344 rats (22–24 mo) were randomly assigned to control or Tempol treatment groups for 2 or 4 wk (T×2wk and T×4wk, respectively). Rats received isoflurane 30 min before ischemia-reperfusion injury or CsA just before reperfusion. Myocardial infarction sizes were significantly reduced by isoflurane or CsA in the aged rats treated with Tempol (T×4wk) compared with old control rats. In other experiments, young (4–6 mo) and old rats underwent either chronic Tempol or vehicle treatment, and the levels of myocardial protein oxidative damage, antioxidant enzymes, mitochondrial Ca2+ uptake, cyclophilin D protein, and mitochondrial permeability transition pore opening times were measured. T×4wk significantly increased MnSOD enzyme activity, GSH-to-GSSH ratios, MnSOD protein level, mitochondrial Ca2+ uptake capacity, reduced protein nitrotyrosine levels, and normalized cyclophilin D protein expression in the aged rat heart. T×4wk also significantly prolonged mitochondrial permeability transition pore opening times induced by reactive oxygen species in old cardiomyocytes. Our studies demonstrate that 4 wk of Tempol pretreatment restores anesthetic preconditioning and cardioprotection by CsA in the old rat and that this is associated with decreased oxidative stress and improved mitochondrial function. Our results point to a new protective strategy for the ischemic myocardium in the high-risk older population.
Collapse
Affiliation(s)
- Jiang Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
- Department of Anesthesiology, Stony Brook University School of Medicine, Stony Brook, New York
| | - Mario J. Rebecchi
- Department of Anesthesiology, Stony Brook University School of Medicine, Stony Brook, New York
| | - Qiang Wang
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China; and
| | - Peter S. A. Glass
- Department of Anesthesiology, Stony Brook University School of Medicine, Stony Brook, New York
| | - Peter R. Brink
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, New York
| | - Lixin Liu
- Department of Anesthesiology, Stony Brook University School of Medicine, Stony Brook, New York
| |
Collapse
|
33
|
Rosety-Rodriguez M, Rosety I, Fornieles-Gonzalez G, Diaz-Ordonez AJ, Camacho A, Rosety MA, Pardo A, Rosety M, Alvero R, Ordonez FJ. A 6-week training program increased muscle antioxidant system in elderly diabetic fatty rats. Med Sci Monit 2013; 18:BR346-50. [PMID: 22936183 PMCID: PMC3560652 DOI: 10.12659/msm.883343] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background It is widely accepted that oxidative stress is associated with the physiopathology of type 2 diabetes mellitus. In fact, it has been pointed out as a therapeutic target in T2DM. Fortunately, several papers have reported that long-term training programs improved the antioxidant system in young and adult diabetic rats. Accordingly, this study was designed to assess the influence of a shorter training program in elderly diabetic fatty rats. Material/Methods Study subjects were 24 male homozygous Zucker diabetic fatty rats (Gmi, fa/fa) aged 18 weeks with an average weight of 370–450 g. After a 2-week period of environmental adaptation, animals were randomly distributed into the Exercised Group (n=12) that performed a 6-week swimming training protocol and the Sedentary Group (n=12). Animals were sacrificed under anesthesia 24 h after the last exercise session. Serum metabolic profile was determined. Total antioxidant status (TAS), MnSOD expression, glutathione status and ROS generation were assayed in gastrocnemius muscle. Results When compared with controls, exercised rats significantly improved their metabolic profile. Total antioxidant status (0.19±0.002 vs. 0.13±0.002 μg/mg protein; p<0.001) and MnSOD expression (8471±90 vs. 6258±102 U/μg protein; p=0.003) were also increased in exercised rats. Conclusions A 6-week swimming training program improved the antioxidant system in elderly fatty diabetic rats. Fortunately, this improvement was enough to reduce oxidative damage, expressed as protein oxidation. A major finding of this study was that our training protocol lasted just 6 weeks, in contrast to longer protocols previously published.
Collapse
|
34
|
Laher I, Beam J, Botta A, Barendregt R, Sulistyoningrum D, Devlin A, Rheault M, Ghosh S. Short-term exercise worsens cardiac oxidative stress and fibrosis in 8-month-old db/db mice by depleting cardiac glutathione. Free Radic Res 2012; 47:44-54. [PMID: 23039789 DOI: 10.3109/10715762.2012.737463] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Moderate exercise improves cardiac antioxidant status in young humans and animals with Type-2 diabetes (T2D). Given that both diabetes and advancing age synergistically decrease antioxidant expression in most tissues, it is unclear whether exercise can upregulate cardiac antioxidants in chronic animal models of T2D. To this end, 8-month-old T2D and normoglycemic mice were exercised for 3 weeks, and cardiac redox status was evaluated. As expected, moderate exercise increased cardiac antioxidants and attenuated oxidative damage in normoglycemic mice. In contrast, similar exercise protocol in 8-month-old db/db mice worsened cardiac oxidative damage, which was associated with a specific dysregulation of glutathione (GSH) homeostasis. Expression of enzymes for GSH biosynthesis [γ-glutamylcysteine synthase, glutathione reductase] as well as for GSH-mediated detoxification (glutathione peroxidase, glutathione-S-transferase) was lower, while toxic metabolites dependent on GSH for clearance (4-hydroxynonenal) were increased in exercised diabetic mice hearts. To validate GSH loss as an important factor for such aggravated damage, daily administration of GSH restored cardiac GSH levels in exercised diabetic mice. Such supplementation attenuated both oxidative damage and fibrotic changes in the myocardium. Expression of transforming growth factor beta (TGF-β) and its regulated genes which are responsible for such profibrotic changes were also attenuated with GSH supplementation. These novel findings in a long-term T2D animal model demonstrate that short-term exercise by itself can deplete cardiac GSH and aggravate cardiac oxidative stress. As GSH administration conferred protection in 8-month-old diabetic mice undergoing exercise, supplementation with GSH-enhancing agents may be beneficial in elderly diabetic patients undergoing exercise.
Collapse
Affiliation(s)
- Ismail Laher
- Department of Pharmacology and Therapeutics, University of British Columbia, BC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Effect of ethanolic extract of seeds of Linum usitatissimum (Linn.) in hyperglycaemia associated ROS production in PBMNCs and pancreatic tissue of alloxan induced diabetic rats. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2012. [DOI: 10.1016/s2222-1808(12)60088-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
36
|
Traustadóttir T, Davies SS, Su Y, Choi L, Brown-Borg HM, Roberts LJ, Harman SM. Oxidative stress in older adults: effects of physical fitness. AGE (DORDRECHT, NETHERLANDS) 2012; 34:969-82. [PMID: 21671197 PMCID: PMC3682074 DOI: 10.1007/s11357-011-9277-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 05/30/2011] [Indexed: 05/13/2023]
Abstract
Acute exercise results in transient change in redox balance. High concentrations of reactive oxygen species (ROS) can lead to oxidative damage to macromolecules. However, moderate periodic increases in ROS, such as experienced with habitual exercise, may activate signal transduction pathways which stimulate increases in endogenous antioxidant systems. This study tested the hypothesis that physically fit older adults would have less oxidative stress than unfit age-matched controls, due to greater circulating concentrations of non-enzymatic antioxidants and greater capacity to upregulate antioxidant enzymes. We compared 37 fit (mean age 65.2 ± 5 years) and 35 unfit (mean age 67.7 ± 4 years) men and women. Fitness status was classified by VO(2 max) and maximal leg power. Basal levels of oxidative stress were assessed by measuring urinary markers of nucleic acid damage and lipid peroxidation. Antioxidant status was assessed by measuring total antioxidant power and ratios of reduced to oxidized glutathione in plasma, at rest. The capacity to counteract an oxidative insult was assessed by measuring changes in plasma F(2)-isoprostanes in response to forearm ischemia-reperfusion. The fit individuals had significantly lower levels of urinary markers of oxidative damage (all P <0.05) and lower F(2)-isoprostane response to the oxidative challenge (P < 0.05), but there were no group differences in antioxidant status. The lower levels of oxidative stress in the fit individuals were not mediated by known effects of exercise training such as adiposity, HDL concentrations, or small molecular weight antioxidants. These data suggest that reduced oxidative stress associated with physical fitness results from differences in activity of antioxidant enzymes.
Collapse
Affiliation(s)
- Tinna Traustadóttir
- Kronos Longevity Research Institute, 2222 E. Highland Ave., Phoenix, AZ 85016, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Martinez-Campos C, Lara-Padilla E, Bobadilla-Lugo RA, Kross RD, Villanueva C. Effects of exercise on oxidative stress in rats induced by ozone. ScientificWorldJournal 2012; 2012:135921. [PMID: 22619585 PMCID: PMC3349314 DOI: 10.1100/2012/135921] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 12/22/2011] [Indexed: 11/25/2022] Open
Abstract
Oxidative stress (OS) induced by acute exercise is reduced by chronic exercise. Ozone (O3) exposure produces OS. The aim of this study was to determine if aerobic exercise (AE) reduced OS produced by O3. A pilot experiment was performed with male Wistar rats submitted to AE (trained to swim 90 min/day). Adaptation to exercise was demonstrated three weeks after training by means of changes in reduced nitrates (NOx) in plasma. Therefore, two-week training was chosen for the following experiments. Six of twelve trained rats were exposed to O3 (0.5 ppm, 4 h/day, one hour before exercise). Two groups of sedentary animals (n = 6 each) were used as controls, one of which was exposed to O3. At the end of the experiments NOx, 8-isoprostane (8-IP), malondialdehyde (MDA), superoxide dismutase (SOD) activity, and carbonyls (CBs) were measured in plasma. CBs did not change in any group. O3-induced OS was manifested by reduced NOx and SOD activity, as well as increased 8-IP and MDA. Exercise significantly blocked O3 effects although SOD was also decreased by exercise (a greater drop occurring in the O3 group). It is concluded that AE protects against OS produced by O3 and the effect is independent of SOD.
Collapse
Affiliation(s)
- Catalina Martinez-Campos
- Seción de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, IPN, Plan de San Luis y Salvador Diaz Mirón S/N, Colonia Casco de Santo Tomás, 11340 México, DF, Mexico
| | | | | | | | | |
Collapse
|
38
|
Gosavi TP, Ghosh P, Kandhare AD, Kumar VS, Adil M, Rajmane AR, Bodhankar SL. Therapeutic effect of H. pylori nosode, a homeopathic preparation in healing of chronic H. pylori infected ulcers in laboratory animals. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2012. [DOI: 10.1016/s2222-1808(12)60230-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Ischemic preconditioning: the role of mitochondria and aging. Exp Gerontol 2011; 47:1-7. [PMID: 22100642 DOI: 10.1016/j.exger.2011.11.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/24/2011] [Accepted: 11/02/2011] [Indexed: 11/22/2022]
Abstract
Aging represents a triple threat for myocardial infarction (MI). Not only does the incidence of MI increase with age, but the heart becomes more susceptible to MI induced damage and protective interventions such as ischemic preconditioning (IPC) become less effective. Therefore, any rational therapeutic strategy must be built around the ability to combat the detrimental effects of ischemia in aged individuals. To accomplish this, we need to develop a better understanding of how ischemic damage, protection, and aging are linked. In this regard, mitochondria have emerged as a common theme. First, mitochondria contribute to cell damage during ischemia-reperfusion (IR) and are central to cell death. Second, the protective signaling pathways activated by IPC converge on mitochondria, and the opening of mitochondrial ion channels alone is sufficient to elicit protection. Finally, mitochondria clearly influence the aging process, and specific defects in mitochondrial activity are associated with age-related functional decline. This review will summarize the effects of aging on myocardial IR injury and discuss relevant and emerging strategies to protect against MI with an emphasis on mitochondrial function.
Collapse
|
40
|
McCommis KS, McGee AM, Laughlin MH, Bowles DK, Baines CP. Hypercholesterolemia increases mitochondrial oxidative stress and enhances the MPT response in the porcine myocardium: beneficial effects of chronic exercise. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1250-8. [PMID: 21865543 PMCID: PMC3213933 DOI: 10.1152/ajpregu.00841.2010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 08/18/2011] [Indexed: 02/06/2023]
Abstract
Hypercholesterolemia has been suggested to have direct negative effects on myocardial function due to increased reactive oxygen species (ROS) generation and increased myocyte death. Mitochondrial permeability transition (MPT) is a significant mediator of cell death, which is enhanced by ROS generation and attenuated by exercise training. The purpose of this study was to investigate the effect of hypercholesterolemia on the MPT response of cardiac mitochondria. We tested the hypothesis that familial hypercholesterolemic (FH) pigs would have an enhanced MPT response and that exercise training could reverse this phenotype. MPT was assessed by mitochondrial swelling in response to 10-100 μM Ca(2+). FH pigs did show an increased MPT response to Ca(2+) that was associated with decreases in the expression of the putative MPT pore components mitochondrial phosphate carrier (PiC) and cyclophilin-D (CypD). FH also caused increased oxidative stress, depicted by increased protein nitrotyrosylation, as well as decreased levels of reduced GSH in cardiac mitochondria. Expression of the mitochondrial antioxidant enzymes manganese superoxide dismutase (MnSOD), thioredoxin-2 (Trx2), and peroxiredoxin-3 (Prx3) was greatly reduced in the FH pigs. In contrast, cytosolic catalase expression and activity were increased. However, chronic exercise training was able to normalize the MPT response in FH pigs, reduce mitochondrial oxidative stress, and return MnSOD, Trx2, Prx3, and catalase expression/activities to normal. We conclude that FH reduces mitochondrial antioxidants, increases mitochondrial oxidative stress, and enhances the MPT response in the porcine myocardium, and that exercise training can reverse these detrimental alterations.
Collapse
Affiliation(s)
- Kyle S McCommis
- Department of Biomedical Sciences, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | | | | | | | | |
Collapse
|
41
|
Uzma N, Kumar BS, Priyadarsini KI. Hepatoprotective, immunomodulatory, and anti-inflammatory activities of selenocystine in experimental liver injury of rats. Biol Trace Elem Res 2011; 142:723-34. [PMID: 20737246 DOI: 10.1007/s12011-010-8807-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 08/05/2010] [Indexed: 12/17/2022]
Abstract
The study was evaluated to investigate the efficacy of selenocystine (CysSeSeCys), a well-known organoselenium compound, on the prevention of carbon tetrachloride (CCl(4))-induced acute hepatic injury in Wistar rats. Forty healthy male Wistar rats were utilized in this study. Acute hepatotoxicity was induced by CCl(4) intoxication in rats. Serum biological analysis, oxidative stress, immune parameters, and gene expression of COX-2 and CYP2E1 were carried out. Pretreatment of CysSeSeCys prior to CCl(4) administration significantly prevented an increase in serum hepatic enzymatic activities. In addition, pretreatment of CysSeSeCys significantly prevented the formation of ROS, MDA, depletion of glutathione, and alteration of antioxidant enzyme activities in the liver of CCl(4)-intoxicated rats. This study also revealed that pretreatment with CysSeSeCys normalized the levels of interleukin 6 and10, IgG, and CD4 cell count. Pretreatment of CysSeSeCys significantly reversed COX-2 inflammatory response and the upregulation of CYP2E1 expression as well. Histopathological changes induced by CCl(4) were also significantly attenuated by CysSeSeCys pretreatment. CysSeSeCys has a potent hepatoprotective effect on CCl(4)-induced liver injury in rats through its antioxidative, immunomodulatory and anti-inflammatory activity.
Collapse
Affiliation(s)
- Nazia Uzma
- Department of Physiology, Deccan College of Medical Sciences, Hyderabad 500 058, India
| | | | | |
Collapse
|
42
|
Frasier CR, Moore RL, Brown DA. Exercise-induced cardiac preconditioning: how exercise protects your achy-breaky heart. J Appl Physiol (1985) 2011; 111:905-15. [DOI: 10.1152/japplphysiol.00004.2011] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ability of exercise to protect the heart against ischemia-reperfusion (I/R) injury is well known in both human epidemiological studies and experimental animal models. In this review article, we describe what is currently known about the ability of exercise to precondition the heart against infarction. Just 1 day of exercise can protect the heart against ischemia/reperfusion damage, and this protection is upheld with months of exercise, making exercise one of the few sustainable preconditioning stimuli. Exercise preconditioning depends on the model and intensity of exercise, and appears to involve heightened oxidant buffering capacity, upregulated subunits of sarcolemmal ATP-sensitive potassium channels, and adaptations to cardiac mitochondria. We review the putative mechanisms involved in exercise preconditioning and point out many areas where future research is necessary to advance our understanding of how this stimulus confers resistance against I/R damage.
Collapse
Affiliation(s)
- Chad R. Frasier
- Department of Physiology, Brody School of Medicine, East Carolina University; and
| | - Russell L. Moore
- Department of Integrative Physiology and Office of the Provost, University of Colorado at Boulder, Boulder, Colorado
| | - David A. Brown
- Department of Physiology, Brody School of Medicine, East Carolina University; and
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina; and
| |
Collapse
|
43
|
Kwak HB, Kim JH, Joshi K, Yeh A, Martinez DA, Lawler JM. Exercise training reduces fibrosis and matrix metalloproteinase dysregulation in the aging rat heart. FASEB J 2010; 25:1106-17. [PMID: 21148111 DOI: 10.1096/fj.10-172924] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aging impairs function in the nonischemic heart and is associated with mechanical remodeling. This process includes accumulation of collagen (i.e., fibrosis) and dysregulation of active matrix metalloproteinases (MMPs). Exercise training (ET) improves cardiac function, but the pathways of protection remain poorly understood. Young (3 mo) and old (31 mo) FBNF1 rats were assigned into sedentary and exercise groups, with ET group rats training on a treadmill 45 min/d, 5 d/wk for 12 wk. Nonlinear optical microscopy (NLOM), histology, immunohistochemistry (IHC), and Western blot analyses were performed on the left ventricle and septum. NLOM, IHC, and histological imaging revealed that ET reduced age-associated elevation of collagen type I fibers. Active MMP-1, active MMP-2, and MMP-14 in the ECM fraction of the left ventricle were reduced by aging, an effect abrogated by ET. Tissue inhibitor of MMP (TIMP-1) was elevated with age but protected by ET. Transforming growth factor-β (TGF-β), upstream regulator of TIMP-1, increased with age but was attenuated by ET. Therefore, exercise training could protect the aging heart against dysregulation of MMPs and fibrosis by suppressing elevation of TIMP-1 and TGF-β.
Collapse
Affiliation(s)
- Hyo-Bum Kwak
- Redox Biology and Cell Signaling Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, TX 77843-4243, USA
| | | | | | | | | | | |
Collapse
|
44
|
Li WJ, Shin MK, Oh SJ. Time dependent bladder apoptosis induced by acute bladder outlet obstruction and subsequent emptying is associated with decreased MnSOD expression and Bcl-2/Bax ratio. J Korean Med Sci 2010; 25:1652-6. [PMID: 21060756 PMCID: PMC2967004 DOI: 10.3346/jkms.2010.25.11.1652] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Accepted: 06/11/2010] [Indexed: 12/12/2022] Open
Abstract
Ischemia/reperfusion (I/R) injury-induced oxidative stress plays an important role in the functional impairment of the bladder following acute bladder outlet obstruction (BOO) via induction of apoptosis. The purpose of this study was to investigate the time course of the bladder apoptosis, and apoptosis related molecular changes in the early stage of acute BOO. Twelve-week-old male Sprague Dawley rats were divided into control, acute BOO only (I), and acute BOO plus subsequent emptying (I/R) for 30, 60, 120 min, 3 days and 2 weeks. We examined the extent of bladder apoptosis, expression of Mn-superoxide dismutase (Mn-SOD), Bcl-2, Bax, caspase 3 and poly (ADP-ribose) (PAR) in the bladder. Bladder apoptosis was significantly increased in the I/R group at 30, 60, and 120 min following bladder emptying. BOO plus subsequent emptying for 30, 60, 120 min showed significant decrease in MnSOD and Bcl-2 expression, and significant increase in caspase 3, Bax expression, and amounts of PAR. These results indicate that bladder apoptosis, induced by acute BOO and subsequent emptying, is associated with decreased MnSOD expression, increased PARP activity and imbalance in apoptosis pathways.
Collapse
Affiliation(s)
- Wen Ji Li
- Department of Urology, Seoul National University Hospital, and Neuroscience Research Institute, Medical Research Center, Seoul National University, Seoul, Korea
| | - Mi-Kyung Shin
- Department of Pharmacology, Center for Advanced Medical Education, Inha University College of Medicine, BK-21 Project, MTRC, Inha Research Institute for Medical Science, Inha University, Incheon, Korea
| | - Seung-June Oh
- Department of Urology, Seoul National University Hospital, and Neuroscience Research Institute, Medical Research Center, Seoul National University, Seoul, Korea
| |
Collapse
|
45
|
Kumar BS, Tiwari SK, Saikant R, Manoj G, Kunwar A, Sivaram G, Abid Z, Ahmad A, Priyadarsini KI, Khan AA. Antibacterial and ulcer healing effects of organoselenium compounds in naproxen induced and Helicobacter pylori infected Wistar rat model. J Trace Elem Med Biol 2010; 24:263-70. [PMID: 20678908 DOI: 10.1016/j.jtemb.2010.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 04/01/2010] [Accepted: 04/13/2010] [Indexed: 12/22/2022]
Abstract
Aim of the present study was to evaluate in vitro toxicity and in vivo antibacterial, anti-inflammatory, antiulcer, and antioxidant activities of two organoselenium compounds, selenocystine (SeCys) and ebselen (Ebs). The study was conducted in experimentally induced ulcers in rodent model infected with Helicobacter pylori (H. pylori). In vitro toxicological studies on normal splenic lymphocytes revealed that SeCys and Ebs were non-toxic to the cells even at 100 μM concentration. Antibacterial activity was observed at 500 μg/mL concentration of either of the compounds against H. pylori. In vivo studies after treatment with SeCys and Ebs (500 μg/kg/day) resulted in significant reduction in ROS production and inhibition of lipid peroxidation in gastric tissue. The antioxidant and anti-inflammatory activities of both the compounds were also confirmed by their ability to lower GSH reduction, to induce the expression of antioxidant genes such as GPx-4, and MnSOD and to suppress inflammatory genes namely COX-2, TNF-α and TGF-β. In addition, the immunomodulatory activity of both the compounds was evident by enhance of the CD4 levels and maintenance of the IgG, IL-6 and IL-10 levels. Persistent treatment (500 μg/kg, for 28 days) with both the compounds showed considerable (p<0.05) ulcer healing property supporting its role in gastro protection. In conclusion, the results of our study suggest that both SeCys and Ebs possess broad spectrum of activities without any potential toxicity.
Collapse
Affiliation(s)
- B Santhosh Kumar
- Department of Physiology, Deccan College of Medical Sciences, Hyderabad, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Thomas RR, Khan SM, Portell FR, Smigrodzki RM, Bennett JP. Recombinant human mitochondrial transcription factor A stimulates mitochondrial biogenesis and ATP synthesis, improves motor function after MPTP, reduces oxidative stress and increases survival after endotoxin. Mitochondrion 2010; 11:108-18. [PMID: 20727424 DOI: 10.1016/j.mito.2010.08.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 07/15/2010] [Accepted: 08/06/2010] [Indexed: 11/17/2022]
Abstract
Recombinant human mitochondrial transcription factor A protein (rhTFAM) was evaluated for its acute effects on cultured cells and chronic effects in mice. Fibroblasts incubated with rhTFAM acutely increased respiration in a chloramphenicol-sensitive manner. SH-SY5Y cells showed rhTFAM concentration-dependent reduction of methylpyridinium (MPP(+))-induced oxidative stress and increases in lowered ATP levels and viability. Mice treated with weekly i.v. rhTFAM showed increased mitochondrial gene copy number, complex I protein levels and ATP production rates; oxidative damage to proteins was decreased ~50%. rhTFAM treatment improved motor recovery rate after treatment with MPTP and dose-dependently improved survival in the lipopolysaccharide model of endotoxin sepsis.
Collapse
Affiliation(s)
- Ravindar R Thomas
- Morris Udall Parkinson's Disease Research Center of Excellence, University of Virginia, Charlottesville, VA, United States
| | | | | | | | | |
Collapse
|
47
|
Mayhan WG, Arrick DM, Sun H, Patel KP. Exercise training restores impaired dilator responses of cerebral arterioles during chronic exposure to nicotine. J Appl Physiol (1985) 2010; 109:1109-14. [PMID: 20705948 DOI: 10.1152/japplphysiol.00564.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our goal was to determine whether exercise training (ExT) alleviates impaired nitric oxide synthase (NOS)-dependent dilation of pial arterioles during chronic exposure to nicotine. We measured dilation of cerebral (pial) arterioles in sedentary and exercised control and nicotine-treated (2 mg·kg(-1)·day(-1) for 4 wk via an osmotic minipump) rats to an endothelial NOS (eNOS)-dependent (ADP), a neuronal NOS (nNOS)-dependent [N-methyl-D-aspartic acid (NMDA)], and a NOS-independent (nitroglycerin) agonist. In addition, we harvested brain tissue from sedentary and exercised control and nicotine-treated rats to measure the production of superoxide anion and measured superoxide dismutase-1 (SOD-1) protein in cerebral microvessels using Western blot. We found that eNOS-and nNOS-dependent, but not NOS-independent, vasodilation was impaired in nicotine-treated compared with control rats. In addition, the production of superoxide anion (lucigenin chemiluminescence) was increased, and SOD-1 protein decreased, in rats treated with nicotine compared with control rats. Further, although ExT did not significantly affect eNOS- or nNOS-dependent vasodilation in control rats, ExT restored impaired eNOS- and nNOS-dependent responses in nicotine-treated rats. In addition, the increase in superoxide anion production observed in nicotine-treated rats was reduced by ExT, and SOD-1 protein was increased in nicotine-treated rats by ExT. We suggest that ExT restores impaired NOS-dependent dilation of pial arterioles during chronic exposure to nicotine by a mechanism related to the formation of superoxide anion.
Collapse
Affiliation(s)
- William G Mayhan
- Dept. of Cellular and Integrative Physiology, 985850 Nebraska Medical Center, Omaha, NE 68198-5850, USA.
| | | | | | | |
Collapse
|
48
|
Quindry JC, French J, Hamilton KL, Lee Y, Selsby J, Powers S. Exercise does not increase cyclooxygenase-2 myocardial levels in young or senescent hearts. J Physiol Sci 2010; 60:181-6. [PMID: 20054720 PMCID: PMC2854316 DOI: 10.1007/s12576-009-0082-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 12/15/2009] [Indexed: 12/20/2022]
Abstract
Increased myocardial cyclooxygenase-2 (COX-2) activity is essential for late phase ischemic preconditioning (IPC). Currently unknown is whether cardioprotection elicited by exercise also involves elevated myocardial COX-2 activity. This investigation tested whether aerobic exercise elevates myocardial COX-2 protein content or enzyme activity in young and senescent male Fisher 344 rats assigned to sedentary or cardioprotective endurance exercise treatments (3 consecutive days of treadmill exercise, 60 min/day @ approximately 70% VO(2)max). Assay of cardiac COX-2 protein content, catalytic activity, and inducible nitric oxide synthase (iNOS) protein content reveal that exercise did not alter COX-2 activity (PGE(2), p = 0.866; PGF1alpha, p = 0.796) or protein levels (p = 0.397) within young or senescent hearts. In contrast, myocardial iNOS, an up-stream mediator of COX-2 expression, was over-expressed by an average of 37% in aged hearts (p = 0.005), though iNOS was not influenced by exercise. Findings reveal exercise does not elevate cardiac COX-2 activity and suggests that mechanisms responsible for cardioprotection differ between IPC and aerobic exercise.
Collapse
Affiliation(s)
- John C Quindry
- Department of Applied Physiology and Kinesiology, Center for Exercise Science, University of Florida, Gainesville, FL 32611, USA.
| | | | | | | | | | | |
Collapse
|
49
|
da Rocha RF, de Oliveira MR, de Bittencourt Pasquali MA, Andrades MÉ, Oliveira MWS, Behr GA, Moreira JCF. Vascular redox imbalance in rats submitted to chronic exercise. Cell Biochem Funct 2010; 28:190-6. [DOI: 10.1002/cbf.1640] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
50
|
Ischemic preconditioning in the aging heart: from bench to bedside. Ageing Res Rev 2010; 9:153-62. [PMID: 19615470 DOI: 10.1016/j.arr.2009.07.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 07/05/2009] [Accepted: 07/06/2009] [Indexed: 11/23/2022]
Abstract
Coronary artery disease is the leading cause of death in industrialized countries for people older than 65 years of age. The reasons are still unclear. A reduction of endogenous mechanisms against ischemic insults has been proposed to explain this phenomenon. Cardiac ischemic preconditioning represents the most powerful endogenous protective mechanism against ischemia. Brief episodes of ischemia are able to protect the heart against a following more prolonged ischemic period. This protective mechanism seems to be reduced with aging both in experimental and clinical studies. Alterations of mediators release and/or intracellular pathways may be responsible for age-related ischemic preconditioning reduction. Opposite studies are questionable for the experimental model used, the timing of ischemic preconditioning, and the selection of elderly patients. Several pharmacological stimuli failed to mimic ischemic preconditioning in the aging heart but exercise training and caloric restriction separately, and more powerfully taken together, are able to completely preserve and/or restore the age-related reduction of ischemic preconditioning.
Collapse
|