1
|
Li C, Liu N, Huang Z, Wei Z, Li K, Hou W, Ye S, Zheng L. Effect of incision location and type of fistula on postoperative urinary retention after radical surgery for anal fistula: a retrospective analysis. BMC Gastroenterol 2024; 24:367. [PMID: 39402442 PMCID: PMC11472438 DOI: 10.1186/s12876-024-03435-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Postoperative urinary retention (POUR) is a common complication characterized by fullness of the bladder without the ability to urinate. Its etiology in proctology surgery is multifactorial. This study aimed to identify the risk factors for POUR after radical surgery for anal fistula. METHODS We retrospectively reviewed the clinical records of 511 patients who underwent radical surgery for anal fistula at the China-Japan Friendship Hospital from August 2022 to December 2023. Risk factors for POUR were analyzed by means of binary logistic regression analyses. RESULTS POUR occurred in 57 patients (11.2%) within 48 h post-surgery, and males were predominantly affected (84.4%). Independent risk factors included a history of urological disease (OR = 6.048; p < 0.001), incisions at position 1 (OR = 2.228; p = 0.046), high anal fistula (OR = 4.768; p < 0.001), VAS score ≥ 7 (OR = 2.805; p = 0.010), and GAD-7 score ≥ 5 (OR = 2.405; P = 0.024). CONCLUSION POUR is a significant complication post-radical surgery for anal fistula, particularly among patients with urological disease, high anal fistula, and incisions at position 1. Surgeons should pay more attention to surgical methods for high anal fistulas and fistulas in the anterior rectum, and monitor postoperative bladder volume in high-risk patients. Enhanced postoperative pain and anxiety management can reduce the incidence of POUR and prevent long-term bladder damage.
Collapse
Affiliation(s)
- Chen Li
- Beijing University of Chinese Medicine, Beijing, 100105, China
- Department of Proctology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Ningyuan Liu
- Department of Proctology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Zichen Huang
- Beijing University of Chinese Medicine, Beijing, 100105, China
- Department of Proctology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Zijian Wei
- Beijing University of Chinese Medicine, Beijing, 100105, China
- Department of Proctology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Keyi Li
- Beijing University of Chinese Medicine, Beijing, 100105, China
- Department of Proctology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Wenxiao Hou
- Department of Proctology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Sangyu Ye
- Beijing University of Chinese Medicine, Beijing, 100105, China
| | - Lihua Zheng
- Department of Proctology, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
2
|
Hao F, Li S, Yu L, Hu Y, Chen L, Cai W. A retrospective study on the prevalence and risk factors of neurogenic lower urinary tract dysfunction for acute ischemic stroke in China: A case-control study. Investig Clin Urol 2024; 65:368-377. [PMID: 38978217 PMCID: PMC11231667 DOI: 10.4111/icu.20240006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/15/2024] [Accepted: 04/15/2024] [Indexed: 07/10/2024] Open
Abstract
PURPOSE This study identified risk factors for neurogenic lower urinary tract dysfunction (NLUTD) in patients with acute ischemic stroke (AIS) through multidimensional analysis of the medical records of patients, aiming to reduce the incidence of NLUTD, improve prognosis, and facilitate rehabilitation. MATERIALS AND METHODS In this case-control study, patients with AIS were recruited from two tertiary general hospitals in Shenzhen, China, from March 2021 to October 2023. Patients were divided into NLUTD and non-NLUTD groups based on the presence and absence of NLUTD, respectively. Comparative analysis was performed using the Mann-Whitney U and chi-square tests, with significant variables being included in logistic regression analysis. RESULTS Of the 652 participants enrolled in this study, 119 participants (18.3%) developed NLUTD. Bivariate analysis showed that 39 of 54 screened factors exhibited a significant correlation (p<0.05) with the incidence of NLUTD after AIS. Significant variables identified through logistic regression analysis included Glasgow coma scale (GCS) and National Institutes of Health Stroke Scale (NIHSS) scores, anemia, aphasia, pneumonia, brainstem involvement, multiple lesions, urine clarity (CLA), random venous blood glucose (GLU) and hemoglobin (HGB) levels, and white blood cell (WBC) count. CONCLUSIONS A total of 11 risk factors for NLUTD were identified in this study. This finding provides valuable guidance for reducing the incidence of NLUTD after AIS and improving the quality of life of patients.
Collapse
Affiliation(s)
- Fengming Hao
- Department of Nursing, Shenzhen Hospital, Southern Medical University, Shenzhen, China
- School of Nursing, Southern Medical University, Guangzhou, China
| | - Shuxian Li
- Department of Nursing, Shenzhen Hospital, Southern Medical University, Shenzhen, China
- School of Nursing, Southern Medical University, Guangzhou, China
| | - Lanlan Yu
- Department of Nursing, Shenzhen Hospital, Southern Medical University, Shenzhen, China
- School of Nursing, Southern Medical University, Guangzhou, China
| | - Yingjie Hu
- Department of Nursing, Shenzhen Hospital, Southern Medical University, Shenzhen, China
- School of Nursing, Southern Medical University, Guangzhou, China
| | - Ling Chen
- Department of Nursing, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Wenzhi Cai
- Department of Nursing, Shenzhen Hospital, Southern Medical University, Shenzhen, China
- School of Nursing, Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Warne N, Heron J, von Gontard A, Joinson C. Mental health problems, stressful life events and new-onset urinary incontinence in primary school-age children: a prospective cohort study. Eur Child Adolesc Psychiatry 2024; 33:871-879. [PMID: 37095371 PMCID: PMC10894090 DOI: 10.1007/s00787-023-02211-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 04/10/2023] [Indexed: 04/26/2023]
Abstract
Emotional/behaviour problems and exposure to stressful life events are thought to contribute to new onset of urinary incontinence (UI) amongst children who have attained bladder control. However, very few prospective studies have examined these associations. We assessed whether mental health problems and stressful life events were associated with subsequent new onset in UI using multivariable logistic regression in a prospective UK cohort (n = 6408). Mothers provided information on their child's symptoms of common mental disorders (Development and Wellbeing Assessment, 7 years), stressful life events (7-8 years) and wetting (day and night, 9 years). There was strong evidence that separation anxiety symptoms were associated with new-onset UI in the fully adjusted model (OR (95% CI) = 2.08 (1.39, 3.13), p < 0.001). Social anxiety, attention-deficit hyperactivity disorder and oppositional defiant disorder symptoms were associated with new-onset UI, but these associations attenuated following adjustment for child developmental level and earlier emotional/behaviour problems. There was weak evidence for a sex interaction with stressful life events (p = 0.065), such that females experiencing more stressful life events were at higher risk of new-onset UI (fully adjusted model OR (95% CI) = 1.66 (1.05, 2.61), p = 0.029), but there was no association in males (fully adjusted model OR (95% CI) = 0.87 (0.52, 1.47), p = 0.608). These results suggest that separation anxiety and stressful life events in girls may lead to an increase in UI.
Collapse
Affiliation(s)
- Naomi Warne
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
| | - Jon Heron
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Alexander von Gontard
- Psychiatric Services Graubünden (PDGR), Outpatient Services for Child and Adolescent Psychiatry, Chur, Switzerland
- Governor Kremers Centre, Department of Urology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Carol Joinson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
4
|
Wu SY, Chao TC, Hsu CK, Chang HH, Yang SSD. Mechanism of Social Stress-Related Erectile Dysfunction in Mice: Impaired Parasympathetic Neurotransmission and Ketamine. Int J Mol Sci 2023; 24:11973. [PMID: 37569356 PMCID: PMC10419259 DOI: 10.3390/ijms241511973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/13/2023] Open
Abstract
This study aimed to investigate the mechanism underlying social stress (SS)-induced erectile dysfunction (ED) and evaluate the effects of a single subanesthetic dose of ketamine on SS-related ED. Male FVB mice were exposed to retired male C57BL/6 mice for 60 min daily over a 4-week period. In the third week, these FVB mice received intraperitoneal injections of either saline (SSS group) or ketamine (SSK group). Erectile function was assessed by measuring the intracavernosal pressure (ICP) during electrical stimulation of the major pelvic ganglia. Corpus cavernosum (CC) strips were utilized for wire myography to assess their reactivity. Both SSS and SSK mice exhibited significantly lower ICP in response to electrical stimulation than control mice. SS mice showed increased contractility of the CC induced by phenylephrine. Acetylcholine-induced relaxation was significantly reduced in SSS and SSK mice. Sodium nitroprusside-induced relaxation was higher in SSS mice compared to control and SSK mice. Nicotine-induced neurogenic and nitric oxide-dependent relaxation was significantly impaired in both SSS and SSK mice. An immunohistochemical analysis revealed co-localization of tyrosine hydroxylase and neuronal nitric oxide synthase-immunoreactive fibers in the CC. These findings highlight the complex nature of SS-related ED and suggest the limited efficacy of ketamine as a therapeutic intervention.
Collapse
Affiliation(s)
- Shu-Yu Wu
- Department of Urology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan; (S.-Y.W.); (T.-C.C.); (C.-K.H.); (H.-H.C.)
- Department of Urology, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Tze-Chen Chao
- Department of Urology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan; (S.-Y.W.); (T.-C.C.); (C.-K.H.); (H.-H.C.)
| | - Chun-Kai Hsu
- Department of Urology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan; (S.-Y.W.); (T.-C.C.); (C.-K.H.); (H.-H.C.)
- Department of Urology, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - His-Hsien Chang
- Department of Urology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan; (S.-Y.W.); (T.-C.C.); (C.-K.H.); (H.-H.C.)
| | - Stephen Shei-Dei Yang
- Department of Urology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan; (S.-Y.W.); (T.-C.C.); (C.-K.H.); (H.-H.C.)
- Department of Urology, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| |
Collapse
|
5
|
Girard BM, Campbell SE, Vizzard MA. Stress-induced symptom exacerbation: Stress increases voiding frequency, somatic sensitivity, and urinary bladder NGF and BDNF expression in mice with subthreshold cyclophosphamide (CYP). FRONTIERS IN UROLOGY 2023; 3:1079790. [PMID: 37811396 PMCID: PMC10558155 DOI: 10.3389/fruro.2023.1079790] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Symptom exacerbation due to stress is prevalent in many disease states, including functional disorders of the urinary bladder (e.g., overactive bladder (OAB), interstitial cystitis/bladder pain syndrome (IC/BPS)); however, the mechanisms underlying the effects of stress on micturition reflex function are unclear. In this study we designed and evaluated a stress-induced symptom exacerbation (SISE) mouse model that demonstrates increased urinary frequency and somatic (pelvic and hindpaw) sensitivity. Cyclophosphamide (CYP) (35 mg/kg; i.p., every 48 hours for a total of 4 doses) or 7 days of repeated variate stress (RVS) did not alter urinary bladder function or somatic sensitivity; however, both CYP alone and RVS alone significantly (p ≤ 0.01) decreased weight gain and increased serum corticosterone. CYP treatment when combined with RVS for 7 days (CYP+RVS) significantly (p ≤ 0.01) increased serum corticosterone, urinary frequency and somatic sensitivity and decreased weight gain. CYP+RVS exposure in mice significantly (p ≤ 0.01) increased (2.6-fold) voiding frequency as we determined using conscious, open-outlet cystometry. CYP+RVS significantly (p ≤ 0.05) increased baseline, threshold, and peak micturition pressures. We also evaluated the expression of NGF, BDNF, CXC chemokines and IL-6 in urinary bladder in CYP alone, RVS alone and CYP+RVS mouse cohorts. Although all treatments or exposures increased urinary bladder NGF, BDNF, CXC and IL-6 content, CYP+RVS produced the largest increase in all inflammatory mediators examined. These results demonstrated that CYP alone or RVS alone creates a change in the inflammatory environment of the urinary bladder but does not result in a change in bladder function or somatic sensitivity until CYP is combined with RVS (CYP+RVS). The SISE model of CYP+RVS will be useful to develop testable hypotheses addressing underlying mechanisms where psychological stress exacerbates symptoms in functional bladder disorders leading to identification of targets and potential treatments.
Collapse
Affiliation(s)
- Beatrice M Girard
- The Larner College of Medicine at The University of Vermont, Department of Neurological Sciences, Burlington, VT, 05405
| | - Susan E Campbell
- The Larner College of Medicine at The University of Vermont, Department of Neurological Sciences, Burlington, VT, 05405
| | - Margaret A Vizzard
- The Larner College of Medicine at The University of Vermont, Department of Neurological Sciences, Burlington, VT, 05405
| |
Collapse
|
6
|
Jung J, Kim A, Yang SH. The Innovative Approach in Functional Bladder Disorders: The Communication Between Bladder and Brain-Gut Axis. Int Neurourol J 2023; 27:15-22. [PMID: 37015721 PMCID: PMC10072998 DOI: 10.5213/inj.2346036.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/21/2023] [Indexed: 04/06/2023] Open
Abstract
Functional bladder disorders including overactive bladder and interstitial cystitis may induce problems in many other parts of our body such as brain and gut. In fact, diagnosis is often less accurate owing to their complex symptoms. To have correct diagnosis of these diseases, we need to understand the pathophysiology behind overlapped clinical presentation. First, we focused on reviewing literatures that have reported the link between bladder and brain, as the patients with bladder disorders frequently accompanied mood disorders such as depression and anxiety. Second, we reviewed literatures that have described the relationship between bladder and gut. There exist many evidences of patients who suffered from both bladder and intestinal diseases, such as irritable bowel syndrome and inflammatory bowel disease, at the same time. Furthermore, the interaction between brain and gut, well-known as brain-gut axis, might be a key factor that could change the activity of bladder and vice versa. For example, the affective disorders could alter the activity of efferent nerves or autonomic nervous system that modulate the gut itself and its microbiota, which might cause the destruction of homeostasis in bladder eventually. In this way, the communication between bladder and brain-gut axis might affect permeability, inflammation, as well as infectious etiology and dysbiosis in bladder diseases. In this review, we aimed to find an innovative insight of the pathophysiology in the functional bladder disorders, and we could provide a new understanding of the overlapped clinical presentation by elucidating the pathophysiology of functional bladder disorders.
Collapse
Affiliation(s)
- Jiwon Jung
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul, Korea
| | - Aram Kim
- Department of Urology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Seung-Hoon Yang
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul, Korea
| |
Collapse
|
7
|
Neto AC, Santos-Pereira M, Abreu-Mendes P, Neves D, Almeida H, Cruz F, Charrua A. The Unmet Needs for Studying Chronic Pelvic/Visceral Pain Using Animal Models. Biomedicines 2023; 11:biomedicines11030696. [PMID: 36979674 PMCID: PMC10045296 DOI: 10.3390/biomedicines11030696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 03/03/2023] Open
Abstract
The different definitions of chronic pelvic/visceral pain used by international societies have changed over the years. These differences have a great impact on the way researchers study chronic pelvic/visceral pain. Recently, the role of systemic changes, including the role of the central nervous system, in the perpetuation and chronification of pelvic/visceral pain has gained weight. Consequently, researchers are using animal models that resemble those systemic changes rather than using models that are organ- or tissue-specific. In this review, we discuss the advantages and disadvantages of using bladder-centric and systemic models, enumerating some of the central nervous system changes and pain-related behaviors occurring in each model. We also present some drawbacks when using animal models and pain-related behavior tests and raise questions about possible, yet to be demonstrated, investigator-related bias. We also suggest new approaches to study chronic pelvic/visceral pain by refining existing animal models or using new ones.
Collapse
Affiliation(s)
- Ana Catarina Neto
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Mariana Santos-Pereira
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Pedro Abreu-Mendes
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Department of Urology, Centro Hospitalar de São João, 4200-319 Porto, Portugal
- Physiology and Surgery Department, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
| | - Delminda Neves
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Henrique Almeida
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Ginecologia-Obstetrícia, Hospital-CUF Porto, 4100-180 Porto, Portugal
| | - Francisco Cruz
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Department of Urology, Centro Hospitalar de São João, 4200-319 Porto, Portugal
- Physiology and Surgery Department, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
| | - Ana Charrua
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Correspondence:
| |
Collapse
|
8
|
Sattayachiti S, Waemong A, Cheaha D, Konthapakdee N. 5-HT3 receptors modulate changes in voiding pattern and bladder contractility in water avoidance stress-induced bladder overactivity in male mice. Auton Neurosci 2022; 243:103040. [DOI: 10.1016/j.autneu.2022.103040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 08/31/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
|
9
|
Hata Y, Shimizu T, Zou S, Yamamoto M, Shimizu Y, Ono H, Aratake T, Shimizu S, Higashi Y, Shimizu N, Karashima T, Saito M. Stimulation of brain corticotropin-releasing factor receptor type1 facilitates the rat micturition via brain glutamatergic receptors. Biochem Biophys Res Commun 2022; 607:54-59. [PMID: 35366544 DOI: 10.1016/j.bbrc.2022.03.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 01/29/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022]
Abstract
Corticotropin-releasing factor (CRF), a representative stress-related neuropeptide, in the central nervous system reportedly both facilitates and suppresses the micturition, therefore, roles of central CRF in regulation of the micturition are still controversial. In this study, we investigated (1) effects of intracerebroventricularly (icv)-administered CRF on the micturition, and (2) brain CRF receptor subtypes (CRFR1/CRFR2) and glutamatergic receptors (NMDA/AMPA subtypes) involved in the CRF-induced effects in male Wistar rats under urethane anesthesia. Intercontraction intervals (ICI), and maximal voiding pressure (MVP), were evaluated by continuous cystometry 45 min before CRF administration or intracerebroventricular pretreatment with other drugs as follows and 3 h after CRF administration. Single-voided volume (Vv), post-voiding residual volume (Rv), bladder capacity (BC), and voiding efficiency (VE) were evaluated by single cystometry 60 min before CRF administration and 60-120 min after the administration. Icv-administered CRF reduced ICI, Vv, and BC without changing MVP, Rv, or VE. The CRF-induced ICI reduction was attenuated by icv-pretreated CP154526 (CRFR1 antagonist), MK-801 (NMDA receptor antagonist), and DNQX (AMPA receptor antagonist), but not by K41498 (CRFR2 antagonist). These results indicate that stimulation of brain CRFR1 can be involved in facilitation of the rat micturition via brain NMDA/AMPA receptors.
Collapse
Affiliation(s)
- Yurika Hata
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan; Center for Innovative and Translational Medicine, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Takahiro Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan.
| | - Suo Zou
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Masaki Yamamoto
- Department of Pediatrics, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Yohei Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan; Center for Innovative and Translational Medicine, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Hideaki Ono
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan; Center for Innovative and Translational Medicine, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Takaaki Aratake
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan; Research Fellow of Japan Society for the Promotion of Science, Japan
| | - Shogo Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Youichirou Higashi
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Nobutaka Shimizu
- Pelvic Floor Center, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Takashi Karashima
- Department of Urology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Motoaki Saito
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| |
Collapse
|
10
|
Gao Y, Rodríguez LV. The Effect of Chronic Psychological Stress on Lower Urinary Tract Function: An Animal Model Perspective. Front Physiol 2022; 13:818993. [PMID: 35388285 PMCID: PMC8978557 DOI: 10.3389/fphys.2022.818993] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/18/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic psychological stress can affect urinary function and exacerbate lower urinary tract (LUT) dysfunction (LUTD), particularly in patients with overactive bladder (OAB) or interstitial cystitis–bladder pain syndrome (IC/BPS). An increasing amount of evidence has highlighted the close relationship between chronic stress and LUTD, while the exact mechanisms underlying it remain unknown. The application of stress-related animal models has provided powerful tools to explore the effect of chronic stress on LUT function. We systematically reviewed recent findings and identified stress-related animal models. Among them, the most widely used was water avoidance stress (WAS), followed by social stress, early life stress (ELS), repeated variable stress (RVS), chronic variable stress (CVS), intermittent restraint stress (IRS), and others. Different types of chronic stress condition the induction of relatively distinguished changes at multiple levels of the micturition pathway. The voiding phenotypes, underlying mechanisms, and possible treatments of stress-induced LUTD were discussed together. The advantages and disadvantages of each stress-related animal model were also summarized to determine the better choice. Through the present review, we hope to expand the current knowledge of the pathophysiological basis of stress-induced LUTD and inspire robust therapies with better outcomes.
Collapse
Affiliation(s)
- Yunliang Gao
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Larissa V. Rodríguez
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- *Correspondence: Larissa V. Rodríguez,
| |
Collapse
|
11
|
Mills KA, West EG, Sellers DJ, Chess-Williams R, McDermott C. Psychological stress induced bladder overactivity in female mice is associated with enhanced afferent nerve activity. Sci Rep 2021; 11:17508. [PMID: 34471159 PMCID: PMC8410840 DOI: 10.1038/s41598-021-97053-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/18/2021] [Indexed: 01/13/2023] Open
Abstract
Psychological stress has been linked to the development and exacerbation of overactive bladder symptoms, as well as afferent sensitisation in other organ systems. Therefore, we aimed to investigate the effects of water avoidance stress on bladder afferent nerve activity in response to bladder filling and pharmaceutical stimulation with carbachol and ATP in mice. Adult female C57BL/6J mice were exposed to either water avoidance stress (WAS) for 1 h/day for 10 days or normal housing conditions. Voiding behaviour was measured before starting and 24-h after final stress exposure and then animals were euthanised to measure afferent nerve activity in association with bladder compliance, spontaneous phasic activity, contractile responses, as well as release of urothelial mediators. WAS caused increased urinary frequency without affecting urine production. The afferent nerve activity at low bladder pressures (4-7 mmHg), relevant to normal physiological filling, was significantly increased after stress. Both low and high threshold nerves demonstrated enhanced activity at physiological bladder pressures. Urothelial ATP and acetylcholine release and bladder compliance were unaffected by stress as was the detrusor response to ATP (1 mM) and carbachol (1 µM). WAS caused enhanced activity of individual afferent nerve fibres in response bladder distension. The enhanced activity was seen in both low and high threshold nerves suggesting that stressed animals may experience enhanced bladder filling sensations at lower bladder volumes as well as increased pain sensations, both potentially contributing to the increased urinary frequency seen after stress.
Collapse
Affiliation(s)
- Kylie A Mills
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, 4229, Australia
| | - Eliza G West
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, 4229, Australia
| | - Donna J Sellers
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, 4229, Australia
| | - Russ Chess-Williams
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, 4229, Australia
| | - Catherine McDermott
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, 4229, Australia.
| |
Collapse
|
12
|
Van Batavia JP, Butler S, Lewis E, Fesi J, Canning DA, Vicini S, Valentino RJ, Zderic SA. Corticotropin-Releasing Hormone from the Pontine Micturition Center Plays an Inhibitory Role in Micturition. J Neurosci 2021; 41:7314-7325. [PMID: 34193553 PMCID: PMC8387110 DOI: 10.1523/jneurosci.0684-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/04/2021] [Accepted: 06/17/2021] [Indexed: 11/21/2022] Open
Abstract
Lower urinary tract or voiding disorders are prevalent across all ages and affect >40% of adults over 40 years old, leading to decreased quality of life and high health care costs. The pontine micturition center (PMC; i.e., Barrington's nucleus) contains a large population of neurons that localize the stress-related neuropeptide, corticotropin-releasing hormone (CRH) and project to neurons in the spinal cord to regulate micturition. How the PMC and CRH-expressing neurons in the PMC control volitional micturition is of critical importance for human voiding disorders. To investigate the specific role of CRH in the PMC, neurons in the PMC-expressing CRH were optogenetically activated during in vivo cystometry in unanesthetized mice of either sex. Optogenetic activation of CRH-PMC neurons led to increased intermicturition interval and voided volume, similar to the altered voiding phenotype produced by social stress. Female mice showed a significantly more pronounced phenotype change compared with male mice. These effects were eliminated by CRH-receptor 1 antagonist pretreatment. Optogenetic inhibition of CRH-PMC neurons led to an altered voiding phenotype characterized by more frequent voids and smaller voided volumes. Last, in a cyclophosphamide cystitis model of bladder overactivity, optogenetic activation of CRH-PMC neurons returned the voiding pattern to normal. Collectively, our findings demonstrate that CRH from PMC spinal-projecting neurons has an inhibitory function on micturition and is a potential therapeutic target for human disease states, such as voiding postponement, urinary retention, and underactive or overactive bladder.SIGNIFICANCE STATEMENT The pontine micturition center (PMC), which is a major regulator of volitional micturition, is neurochemically heterogeneous, and excitatory neurotransmission derived from PMC neurons is thought to mediate the micturition reflex. In the present study, using optogenetic manipulation of CRH-containing neurons in double-transgenic mice, we demonstrate that CRH, which is prominent in PMC-spinal projections, has an inhibitory function on volitional micturition. Moreover, engaging this inhibitory function of CRH can ameliorate bladder hyperexcitability induced by cyclophosphamide in a model of cystitis. The data underscore CRH as a novel target for the treatment of voiding dysfunctions, which are highly prevalent disease processes in children and adults.
Collapse
Affiliation(s)
- Jason P Van Batavia
- Division of Urology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Stephan Butler
- Division of Urology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Eleanor Lewis
- Division of Urology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Joanna Fesi
- Division of Urology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Douglas A Canning
- Division of Urology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Stefano Vicini
- Department of Pharmacology and Physiology, Georgetown, University Medical Center, Washington, DC 20007
| | - Rita J Valentino
- Department of Anesthesia and Critical Care, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Stephen A Zderic
- Division of Urology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| |
Collapse
|
13
|
Shimizu T, Shimizu S, Higashi Y, Saito M. Psychological/mental stress-induced effects on urinary function: Possible brain molecules related to psychological/mental stress-induced effects on urinary function. Int J Urol 2021; 28:1093-1104. [PMID: 34387005 DOI: 10.1111/iju.14663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/13/2021] [Indexed: 11/30/2022]
Abstract
Exposure to psychological/mental stress can affect urinary function, and lead to and exacerbate lower urinary tract dysfunctions. There is increasing evidence showing stress-induced changes not only at phenomenological levels in micturition, but also at multiple levels, lower urinary tract tissues, and peripheral and central nervous systems. The brain plays crucial roles in the regulation of the body's responses to stress; however, it is still unclear how the brain integrates stress-related information to induce changes at these multiple levels, thereby affecting urinary function and lower urinary tract dysfunctions. In this review, we introduce recent urological studies investigating the effects of stress exposure on urinary function and lower urinary tract dysfunctions, and our recent studies exploring "pro-micturition" and "anti-micturition" brain molecules related to stress responses. Based on evidence from these studies, we discuss the future directions of central neurourological research investigating how stress exposure-induced changes at peripheral and central levels affect urinary function and lower urinary tract dysfunctions. Brain molecules that we explored might be entry points into dissecting the stress-mediated process for modulating micturition.
Collapse
Affiliation(s)
- Takahiro Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Shogo Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Youichirou Higashi
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Motoaki Saito
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| |
Collapse
|
14
|
Chess-Williams R, McDermott C, Sellers DJ, West EG, Mills KA. Chronic psychological stress and lower urinary tract symptoms. Low Urin Tract Symptoms 2021; 13:414-424. [PMID: 34132480 DOI: 10.1111/luts.12395] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/30/2022]
Abstract
It is well established that lower urinary tract symptoms (LUTS), particularly urinary urgency and incontinence, cause stress and anxiety for patients. However, there is mounting evidence that the relationship between these two factors is bidirectional and that chronic psychological stress itself can result in the development of symptoms such as urinary frequency, urgency, incontinence, and pelvic pain. This review considers the evidence that such a relationship exists and reviews the literature from clinical and animal studies to identify some of the mechanisms that might be involved. Inflammatory responses induced by chronic stress appear to offer the strongest link to bladder dysfunction. There is overwhelming evidence, both in patients and animal models, for a release of pro-inflammatory cytokines and chemokines during periods of chronic stress. Furthermore, cytokines have been shown to cause bladder dysfunction and pain via actions in the central nervous system and locally in the bladder. In the brain and spinal cord, pro-inflammatory cytokines influence the regulation of micturition pathways by corticotropin-releasing factor (CRF) and its receptors, while peripherally cytokines affect bladder function, directly causing detrusor hypertrophy and afferent nerve hypersensitivity. There is little information on which treatments may have most benefit for stressed/anxious patients with LUTS, but animal studies suggest traditional drugs for overactive bladder (solifenacin, mirabegron) are more effective on LUTS than anxiolytic drugs (fluoxetine, imipramine). The preliminary preclinical data for CRF receptor antagonists is not consistent. A clearer understanding of the mechanisms involved in stress-induced LUTS should provide a basis for improved treatment of this condition.
Collapse
Affiliation(s)
- Russ Chess-Williams
- Centre for Urology Research, Faculty of Health Sciences & Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Catherine McDermott
- Centre for Urology Research, Faculty of Health Sciences & Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Donna J Sellers
- Centre for Urology Research, Faculty of Health Sciences & Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Eliza G West
- Centre for Urology Research, Faculty of Health Sciences & Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Kylie A Mills
- Centre for Urology Research, Faculty of Health Sciences & Medicine, Bond University, Gold Coast, Queensland, Australia
| |
Collapse
|
15
|
Raturi S, Li FX, Wong CM. Recognition and management of bladder bowel dysfunction in children with autism spectrum disorder. BMJ Case Rep 2021; 14:e242646. [PMID: 34078623 PMCID: PMC8173284 DOI: 10.1136/bcr-2021-242646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 11/03/2022] Open
Abstract
Children with autism spectrum disorder (ASD) with rigidities, anxiety or sensory preferences may establish a pattern of holding urine and stool, which places them at high risk of developing bladder bowel dysfunction (BBD). BBD, despite being common, is often unrecognised in children with ASD. With this case report of a 7-year-old girl with ASD presenting with acute retention of urine, we attempt to understand the underlying factors which may contribute to the association between BBD and ASD. Literature review indicates a complex interplay of factors such as brain connectivity changes, maturational delay of bladder function, cognitive rigidities and psychosocial stressors in children with ASD may possibly trigger events which predispose some of them to develop BBD. Simple strategies such as parental education, maintaining a bladder bowel diary and treatment of constipation may result in resolution of symptoms.
Collapse
Affiliation(s)
- Shilpee Raturi
- Child Development, KK Women's and Children's Hospital, Singapore
| | - Fay Xiangzhen Li
- Paediatric Surgery, KK Women's and Children's Hospital, Singapore
| | - Chui Mae Wong
- Child Development, KK Women's and Children's Hospital, Singapore
| |
Collapse
|
16
|
Vanneste M, Segal A, Voets T, Everaerts W. Transient receptor potential channels in sensory mechanisms of the lower urinary tract. Nat Rev Urol 2021; 18:139-159. [PMID: 33536636 DOI: 10.1038/s41585-021-00428-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 01/30/2023]
Abstract
Disruptions to sensory pathways in the lower urinary tract commonly occur and can give rise to lower urinary tract symptoms (LUTS). The unmet clinical need for treatment of LUTS has stimulated research into the molecular mechanisms that underlie neuronal control of the bladder and transient receptor potential (TRP) channels have emerged as key regulators of the sensory processes that regulate bladder function. TRP channels function as molecular sensors in urothelial cells and afferent nerve fibres and can be considered the origin of bladder sensations. TRP channels in the lower urinary tract contribute to the generation of normal and abnormal bladder sensations through a variety of mechanisms, and have demonstrated potential as targets for the treatment of LUTS in functional disorders of the lower urinary tract.
Collapse
Affiliation(s)
- Matthias Vanneste
- Laboratory of Ion Channel Research, VIB Center for Brain & Disease Research, Leuven, and Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Andrei Segal
- Laboratory of Ion Channel Research, VIB Center for Brain & Disease Research, Leuven, and Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research, VIB Center for Brain & Disease Research, Leuven, and Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Wouter Everaerts
- Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| |
Collapse
|
17
|
Lee W, Dowd HN, Nikain C, Dwortz MF, Yang ED, Curley JP. Effect of relative social rank within a social hierarchy on neural activation in response to familiar or unfamiliar social signals. Sci Rep 2021; 11:2864. [PMID: 33536481 PMCID: PMC7859216 DOI: 10.1038/s41598-021-82255-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/22/2020] [Indexed: 01/30/2023] Open
Abstract
Competent social functioning of group-living species relies on the ability of individuals to detect and utilize conspecific social cues to guide behavior. Previous studies have identified numerous brain regions involved in processing these external cues, collectively referred to as the Social Decision-Making Network. However, how the brain encodes social information with respect to an individual's social status has not been thoroughly examined. In mice, cues about an individual's identity, including social status, are conveyed through urinary proteins. In this study, we assessed the neural cFos immunoreactivity in dominant and subordinate male mice exposed to familiar and unfamiliar dominant and subordinate male urine. The posteroventral medial amygdala was the only brain region that responded exclusively to dominant compared to subordinate male urine. In all other brain regions, including the VMH, PMv, and vlPAG, activity is modulated by a combination of odor familiarity and the social status of both the urine donor and the subject receiving the cue. We show that dominant subjects exhibit robust differential activity across different types of cues compared to subordinate subjects, suggesting that individuals perceive social cues differently depending on social experience. These data inform further investigation of neurobiological mechanisms underlying social-status related brain differences and behavior.
Collapse
Affiliation(s)
- Won Lee
- Department of Psychology, Columbia University, New York, NY, USA
- Department of Psychology, University of Texas, Austin, TX, USA
| | - Hollie N Dowd
- School of Public Health, Yale University, New Haven, CT, USA
| | - Cyrus Nikain
- Department of Psychology, Columbia University, New York, NY, USA
| | | | - Eilene D Yang
- Department of Psychology, Columbia University, New York, NY, USA
| | - James P Curley
- Department of Psychology, University of Texas, Austin, TX, USA.
| |
Collapse
|
18
|
Yoshizumi M, Watanabe C, Mizoguchi H. Gabapentin reduces painful bladder hypersensitivity in rats with lipopolysaccharide-induced chronic cystitis. Pharmacol Res Perspect 2021; 9:e00697. [PMID: 33340266 PMCID: PMC7749515 DOI: 10.1002/prp2.697] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Although interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic condition causing bladder pain and urinary symptoms, effective treatments have not been established. The aim of this study was to adapt a chronic cystitis model in rats using lipopolysaccharide (LPS), which reflects IC/BPS pathology, and characterize the model's histological and behavioral effects. Furthermore, we investigated the effect of an α2 δ subunit ligand, gabapentin (GBP), on bladder hypersensitivity of rats with chronic cystitis. Cystitis models were created by repeated intravesical injections of LPS. In the histological examination, the LPS-injected group had greater inflammatory response, fibrosis, and abnormally thick re-epithelialization. In the LPS-injected group, LPS prompted hyperalgesia in both the lower abdomen and hind paw regions after day 1 of the first injection compared with the saline-injected controls, without any recovery for 21 days at least. During cystometry, the LPS-injected group showed bladder hyperactivity at all times. Systemic administration of GBP reduced cystitis-related pain due to chronic inflammation and reduced the increased frequency of voiding in the LPS-injected group. These results suggest that repeated intravesical injections of LPS induce long-lasting bladder inflammation, pain, and overactivity in rats, while GBP is effective in the management of those symptoms in this chronic cystitis model. The current study identifies a relatively simple method to develop an animal model for chronic cystitis and provides evidence that GBP may be an effective treatment option for patients with IC/BPS.
Collapse
Affiliation(s)
- Masaru Yoshizumi
- Department of Physiology and Anatomy Faculty of Pharmaceutical SciencesTohoku Medical and Pharmaceutical UniversitySendaiJapan
| | - Chizuko Watanabe
- Department of Physiology and Anatomy Faculty of Pharmaceutical SciencesTohoku Medical and Pharmaceutical UniversitySendaiJapan
| | - Hirokazu Mizoguchi
- Department of Physiology and Anatomy Faculty of Pharmaceutical SciencesTohoku Medical and Pharmaceutical UniversitySendaiJapan
| |
Collapse
|
19
|
Past, Present, and Future in the Study of Neural Control of the Lower Urinary Tract. Int Neurourol J 2020; 24:191-199. [PMID: 33017890 PMCID: PMC7538290 DOI: 10.5213/inj.2040318.159] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
The neurological coordination of the lower urinary tract can be analyzed from the perspective of motor neurons or sensory neurons. First, sensory nerves with receptors in the bladder and urethra transmits stimuli to the cerebral cortex through the periaqueductal gray (PAG) of the midbrain. Upon the recognition of stimuli, the cerebrum carries out decision-making in response. Motor neurons are divided into upper motor neurons (UMNs) and lower motor neurons (LMNs) and UMNs coordinate storage and urination in the brainstem for synergic voiding. In contrast, LMNs, which originate in the spinal cord, cause muscles to contract. These neurons are present in the sacrum, and in particular, a specific neuron group called Onuf’s nucleus is responsible for the contraction of the external urethral sphincter and maintains continence in states of rising vesical pressure through voluntary contraction of the sphincter. Parasympathetic neurons originating from S2–S4 are responsible for the contraction of bladder muscles, while sympathetic neurons are responsible for contraction of the urethral smooth muscle, including the bladder neck, during the guarding reflex. UMNs are controlled in the pons where various motor stimuli to the LMNs are directed along with control to various other pelvic organs, and in the PAG, where complex signals from the brain are received and integrated. Future understanding of the complex mechanisms of micturition requires integrative knowledge from various fields encompassing these distinct disciplines.
Collapse
|
20
|
Andersson KE, Birder L, Chermansky C, Chess-Williams R, Fry C. Are there relevant animal models to set research priorities in LUTD? ICI-RS 2019. Neurourol Urodyn 2020; 39 Suppl 3:S9-S15. [PMID: 32662562 DOI: 10.1002/nau.24259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 12/02/2019] [Indexed: 11/11/2022]
Abstract
AIM To discuss animal models of lower urinary tract disorders (LUTD) and their translational impact. METHODS Report of discussions based on presented literature-search based reviews relevant for the purpose. RESULTS Animal models can be used to investigate fundamental biological mechanisms, but also as tools to elucidate aspects of the pathogenesis of disease and to provide early evidence of any safety risk. Several different models may be required to obtain information that can have a translational impact. The term "translational research" covers not only the process of directly transferring knowledge from basic sciences to human trials to produce new drugs, devices, and treatment options for patients (T1 type translation) but also the implementation of early clinical research findings (phases I-III) into practice to improve care for patients (T2 type). Direct transfer of animal data to T2 is rarely possible, and the process often does not continue after the first trials in humans (phase I). It should be emphasized that many preclinical observations do not have (and do not need to have) immediate translational impact. CONCLUSIONS No single animal model can mimic the complexity of the human disease. Still, animal models can be useful for gaining information on LUT function in humans, for elucidating pathophysiological mechanisms, and for the definition of targets for future drugs to treat LUT disorders.
Collapse
Affiliation(s)
- Karl-Erik Andersson
- Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina.,Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Lori Birder
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Christopher Chermansky
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Christopher Fry
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
21
|
Zderic SA. Let's not take voiding for granted. Am J Physiol Renal Physiol 2020; 318:F1313-F1314. [PMID: 32281416 DOI: 10.1152/ajprenal.00093.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Stephen A Zderic
- Division of Urology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
22
|
Stress in groups: Lessons from non-traditional rodent species and housing models. Neurosci Biobehav Rev 2020; 113:354-372. [PMID: 32278793 DOI: 10.1016/j.neubiorev.2020.03.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/06/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023]
Abstract
A major feature of life in groups is that individuals experience social stressors of varying intensity and type. Social stress can have profound effects on health, social behavior, and ongoing relationships. Relationships can also buffer the experience of exogenous stressors. Social stress has most commonly been investigated in dyadic contexts in mice and rats that produce intense stress. Here we review findings from studies of diverse rodents and non-traditional group housing paradigms, focusing on laboratory studies of mice and rats housed in visible burrow systems, prairie and meadow voles, and mole-rats. We argue that the use of methods informed by the natural ecology of rodent species provides novel insights into the relationship between social stress, behavior and physiology. In particular, we describe how this ethologically inspired approach reveals how individuals vary in their experience of and response to social stress, and how ecological and social contexts impact the effects of stress. Social stress induces adaptive changes, as well as long-term disruptive effects on behavior and physiology.
Collapse
|
23
|
West EG, Sellers DJ, Chess-Williams R, McDermott C. Voiding Behavior and Efferent Bladder Function Altered in Mice Following Social Defeat but Not Witness Trauma. Front Physiol 2020; 11:247. [PMID: 32265738 PMCID: PMC7098992 DOI: 10.3389/fphys.2020.00247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/04/2020] [Indexed: 12/31/2022] Open
Abstract
Psychological stress is associated with bladder dysfunction, however, the local bladder mechanisms affected are not well understood. This study aimed to determine how psychological stress, caused by social defeat or witness trauma, affects voiding behavior and bladder function. Pairs of male C57Bl/6J mice were placed in a custom-made plexiglass chamber with an aggressor ARC(S) mouse for 1 h/day for 10 days. The social defeat mouse was in physical contact with the aggressor, while the witness was physically separated but could observe interactions between its cage-mate and the aggressor. Age matched control pairs were used for comparison. Voiding analysis was conducted periodically over the 10 days. An ex vivo whole bladder preparation was used to assess functional changes after the period of stress. Plasma corticosterone levels were significantly increased by both social defeat and witness trauma stress when compared to unstressed controls. Voiding analysis revealed a significant decrease in voiding frequency in the social defeat group compared to control animals, indicating an altered voiding phenotype. Witness trauma did not alter voiding behavior. Bladder contractile responses to cholinergic stimulation were not significantly altered in either stress group, nor was relaxation to the beta-adrenoceptor agonist isoprenaline. However, nerve evoked contractile responses were significantly increased at all frequencies in bladders from social defeat but not witness trauma mice. Purinergic contractile responses were also significantly enhanced in this group. Social defeat also resulted in increased urothelial acetylcholine release during bladder distension, with no change in ATP release. In conclusion, functional bladder changes are dependent upon stressor type. Enhanced urothelial acetylcholine may desensitize bladder sensory nerves, which, coupled with more efficient voiding contractions due to enhanced nerve-mediated and purinergic detrusor responses, may account for the altered voiding phenotype observed. This study reports a male model of social defeat stress with reduced urinary frequency, with no voiding changes observed in the witness.
Collapse
Affiliation(s)
- Eliza G West
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia
| | - Donna J Sellers
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia
| | - Russ Chess-Williams
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia
| | - Catherine McDermott
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia
| |
Collapse
|
24
|
Mukhopadhyay S, Stowers L. Choosing to urinate. Circuits and mechanisms underlying voluntary urination. Curr Opin Neurobiol 2020; 60:129-135. [PMID: 31875530 PMCID: PMC7055485 DOI: 10.1016/j.conb.2019.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 01/23/2023]
Abstract
The decision to urinate is a social behavior that is calculated multiple times a day. Many animals perform urine scent-marking which broadcasts their pheromones to regulate the behavior of others and humans are trained at an early age to urinate only at a socially acceptable time and place. The inability to control when and where to void, that is incontinence, causes extreme social discomfort yet targeted therapeutics are lacking because little is known about the underlying circuits and mechanisms. The use of animal models, neurocircuit analysis, and functional manipulation is beginning to reveal basic logic of the circuit that modulates the decision of when and where to void.
Collapse
Affiliation(s)
- Sourish Mukhopadhyay
- Department of Neuroscience, La Jolla, CA, USA; Biomedical Sciences Graduate Program, Scripps Research, La Jolla, CA, USA
| | | |
Collapse
|
25
|
Aguiniga LM, Searl TJ, Rahman-Enyart A, Yaggie RE, Yang W, Schaeffer AJ, Klumpp DJ. Acyloxyacyl hydrolase regulates voiding activity. Am J Physiol Renal Physiol 2020; 318:F1006-F1016. [PMID: 32003596 DOI: 10.1152/ajprenal.00442.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Corticotropin-releasing factor (CRF) regulates diverse physiological functions, including bladder control. We recently reported that Crf expression is under genetic control of Aoah, the locus encoding acyloxyacyl hydrolase (AOAH), suggesting that AOAH may also modulate voiding. Here, we examined the role of AOAH in bladder function. AOAH-deficient mice exhibited enlarged bladders relative to wild-type mice and had decreased voiding frequency and increased void volumes. AOAH-deficient mice had increased nonvoiding contractions and increased peak voiding pressure in awake cystometry. AOAH-deficient mice also exhibited increased bladder permeability and higher neuronal firing rates of bladder afferents in response to stretch. In wild-type mice, AOAH was expressed in bladder projecting neurons and colocalized in CRF-expressing neurons in Barrington's nucleus, an important brain area for voiding behavior, and Crf was elevated in Barrington's nucleus of AOAH-deficient mice. We had previously identified aryl hydrocarbon receptor (AhR) and peroxisome proliferator-activated receptor-γ as transcriptional regulators of Crf, and conditional knockout of AhR or peroxisome proliferator-activated receptor-γ in Crf-expressing cells restored normal voiding in AOAH-deficient mice. Finally, an AhR antagonist improved voiding in AOAH-deficient mice. Together, these data demonstrate that AOAH regulates bladder function and that the AOAH-Crf axis is a therapeutic target for treating voiding dysfunction.
Collapse
Affiliation(s)
- Lizath M Aguiniga
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Timothy J Searl
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Afrida Rahman-Enyart
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ryan E Yaggie
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Wenbin Yang
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Anthony J Schaeffer
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - David J Klumpp
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
26
|
Panicker JN, Selai C, Herve F, Rademakers K, Dmochowski R, Tarcan T, von Gontard A, Vrijens D. Psychological comorbidities and functional neurological disorders in women with idiopathic urinary retention: International Consultation on Incontinence Research Society (ICI-RS) 2019. Neurourol Urodyn 2019; 39 Suppl 3:S60-S69. [PMID: 31782982 DOI: 10.1002/nau.24233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/06/2019] [Indexed: 12/14/2022]
Abstract
AIMS Chronic urinary retention occurring in young women is poorly understood and a cause may not be found in a majority of cases. Different psychological comorbidities and functional neurological symptom disorders (FNDs) have been reported; however, these have been poorly explored. METHODS At the International Consultation on Incontinence Research Society meeting in 2019, a panel of clinicians generated a proposal to explore the relationship between psychological comorbidities, FNDs, and urinary retention in women with chronic idiopathic urinary retention. RESULTS Psychological comorbidities such as depression and anxiety, and FNDs such as leg weakness and loss of consciousness, have been reported in women with idiopathic urinary retention. Individuals react differently to physical and emotional stressors, and experimental models have demonstrated a relationship between the stress response and developing urinary retention. Trauma, particularly sexual trauma, may be a shared risk factor for developing psychological comorbidities and urinary retention. Children with voiding postponement often suffer from psychological comorbidities and behavioral disturbances; however, there is no evidence to suggest that this progresses to urinary retention in adulthood. "Psychogenic urinary retention" has been described in the urology and psychiatry literature in the past, and anecdotal cases of successful voiding following psychotherapy have been reported, though the true pathophysiology of this entity is uncertain. CONCLUSION Psychological and functional disorder comorbidities are reported in women with chronic urinary retention. The nature of the association between urinary retention and functional neurological disorder comorbidities needs to be further explored in terms of a disorder of bladder-brain interaction.
Collapse
Affiliation(s)
- Jalesh N Panicker
- Department of Uro-Neurology, The National Hospital for Neurology and Neurosurgery and UCL Queen Square Institute of Neurology, London, UK
| | - Caroline Selai
- Department of Clinical and Movement Neurosciences and Department of Uro-Neurology, The National Hospital for Neurology and Neurosurgery and UCL Queen Square Institute of Neurology, London, UK
| | - Francois Herve
- Department of Urology, Cliniques Universitaires Saint Luc, Brussels, Belgium
| | - Kevin Rademakers
- Department of Urology, Zuyderland Medical Centre, Heerlen, The Netherlands
| | - Roger Dmochowski
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Tufan Tarcan
- Department of Urology, Marmara University School of Medicine and Koç University School of Medicine, Istanbul, Turkey
| | - Alexander von Gontard
- Department of Child and Adolescent Psychiatry, Saarland University Hospital, Homburg, Germany
| | - Desiree Vrijens
- Department of Urology, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
27
|
Abstract
The pons contains neurons that control urinary bladder function. Using the modern tools of neurobiology, new studies reveal a heterogeneous population of neurons which interact with higher centers and the sacral and lumbar spinal cord to coordinate complex voiding behaviors.
Collapse
|
28
|
Verstegen AMJ, Klymko N, Zhu L, Mathai JC, Kobayashi R, Venner A, Ross RA, VanderHorst VG, Arrigoni E, Geerling JC, Zeidel ML. Non-Crh Glutamatergic Neurons in Barrington's Nucleus Control Micturition via Glutamatergic Afferents from the Midbrain and Hypothalamus. Curr Biol 2019; 29:2775-2789.e7. [PMID: 31422881 PMCID: PMC6736713 DOI: 10.1016/j.cub.2019.07.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 11/23/2022]
Abstract
Lower urinary tract symptoms (LUTS) are exceptionally common and debilitating, and they are likely caused or exacerbated by dysfunction of neural circuits controlling bladder function. An incomplete understanding of neural control of bladder function limits our ability to clinically address LUTS. Barrington's nucleus (Bar) provides descending control of bladder and sphincter function, and its glutamatergic neurons expressing corticotropin releasing hormone (BarCrh/Vglut2) are implicated in bladder control. However, it remains unclear whether this subset of Bar neurons is necessary for voiding, and the broader circuitry providing input to this control center remains largely unknown. Here, we examine the contribution to micturition behavior of BarCrh/Vglut2 neurons relative to the overall BarVglut2 population. First, we identify robust, excitatory synaptic input to Bar. Glutamatergic axons from the periaqueductal gray (PAG) and lateral hypothalamic area (LHA) intensely innervate and are functionally connected to Bar, and optogenetic stimulation of these axon terminals reliably provokes voiding. Similarly, optogenetic stimulation of BarVglut2 neurons triggers voiding, whereas stimulating the BarCrh/Vglut2 subpopulation causes bladder contraction, typically without voiding. Next, we genetically ablate either BarVglut2 or BarCrh/Vglut2 neurons and found that only BarVglut2 ablation replicates the profound urinary retention produced by conventional lesions in this region. Fiber photometry recordings reveal that BarVglut2 neuron activity precedes increased bladder pressure, while activity of BarCrh/Vglut2 is phase delayed. Finally, deleting Crh from Bar neurons has no effect on voiding and related bladder physiology. Our results help identify the circuitry that modulates Bar neuron activity and identify subtypes that may serve different roles in micturition.
Collapse
Affiliation(s)
- Anne M J Verstegen
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA.
| | - Nataliya Klymko
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA
| | - Lin Zhu
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA
| | - John C Mathai
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA
| | - Reina Kobayashi
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA
| | - Anne Venner
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA
| | - Rachel A Ross
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA
| | - Veronique G VanderHorst
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA
| | - Elda Arrigoni
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA
| | - Joel C Geerling
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA
| | - Mark L Zeidel
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA
| |
Collapse
|
29
|
Shimizu S, Shimizu T, Nagao Y, Higashi Y, Saito M. Central angiotensin II type 1 receptor as a therapeutic target against frequent urination. Neurourol Urodyn 2019; 38:2112-2120. [DOI: 10.1002/nau.24141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 07/29/2019] [Indexed: 01/23/2023]
Affiliation(s)
- Shogo Shimizu
- Department of Pharmacology, Kochi Medical SchoolKochi University Nankoku Japan
| | - Takahiro Shimizu
- Department of Pharmacology, Kochi Medical SchoolKochi University Nankoku Japan
| | - Yoshiki Nagao
- Department of Pharmacology, Kochi Medical SchoolKochi University Nankoku Japan
| | - Youichirou Higashi
- Department of Pharmacology, Kochi Medical SchoolKochi University Nankoku Japan
| | - Motoaki Saito
- Department of Pharmacology, Kochi Medical SchoolKochi University Nankoku Japan
| |
Collapse
|
30
|
Management of Overactive Bladder in the Young Man. CURRENT BLADDER DYSFUNCTION REPORTS 2019. [DOI: 10.1007/s11884-019-00528-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Role of corticotropin-releasing factor on bladder function in rats with psychological stress. Sci Rep 2019; 9:9828. [PMID: 31285518 PMCID: PMC6614552 DOI: 10.1038/s41598-019-46267-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/25/2019] [Indexed: 12/27/2022] Open
Abstract
Stress-related peptide corticotropin-releasing factor (CRF) and CRF-related peptides are distributed in the peripheral viscera such as the bladder. We investigated the contribution of psychological stress (PS) and CRF on bladder function. Male rats received sham stress (SS) or PS using a communication box method for 120 min every day for 7 days. One group of rats received the intraperitoneal CRF-R1 antagonist antalarmin for 7 days during stress exposure. Mean voided volume per micturition was significantly lower in PS rats compared to SS rats, which was antagonized by antalarmin treatment. Increases in plasma and bladder CRF, and mRNA expressions of bladder CRF, CRF-R1, and M2/3 muscarinic receptors, were found in PS rats. CRF did not influence bladder contraction in itself; however, stress increased the response of muscarinic contraction of bladder strips. These changes were antagonized by antalarmin treatment. In conclusion, PS reinforces M3 receptor-mediated contractions via CRF-R1, resulting in bladder storage dysfunction.
Collapse
|
32
|
Emotional Stress Facilitates Micturition Reflex: Possible Inhibition by an α1-Adrenoceptor Blocker in the Conscious and Anesthetized State. Int Neurourol J 2019; 23:100-108. [PMID: 31260609 PMCID: PMC6606938 DOI: 10.5213/inj.1836284.142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 03/27/2019] [Indexed: 12/28/2022] Open
Abstract
Purpose To test the hypothesis that naftopidil prolongs intercontraction intervals in rats undergoing chronic stress as observed in previous animal models, voiding behavior and bladder function were measured and analyzed. Methods Female Sprague-Dawley rats weighing 200–230 g were exposed to repeated variate stress (RVS) for 1 week, chronic variable mild stress for 2 weeks, or simple mild stress for 1 week. Voiding behavior was assessed in metabolic cages. Voiding frequency and urine output were measured, and changes of these values were compared for the different types of stress. Micturition reflex was analyzed using unconscious cystometry. Naftopidil was administered orally at 30 mg/kg/day for 2 weeks. Results Unexpectedly, no stress-exposed rats exhibited increased micturition frequency compared to the normal nonstressed control. However, intercontraction intervals were shortened with each type of stress in the unconscious condition, especially by RVS (P<0.01). Naftopidil prolonged the shortened intervals. Conclusions Although voiding behavior appears approximately normal in rats chronically exposed to emotional stress, internal bladder function can be affected. With anesthesia, micturition intervals were moderately shortened by emotional stress and clearly improved by naftopidil. Therefore, naftopidil appears to act at the spinal level at least.
Collapse
|
33
|
Roy HA, Green AL. The Central Autonomic Network and Regulation of Bladder Function. Front Neurosci 2019; 13:535. [PMID: 31263396 PMCID: PMC6585191 DOI: 10.3389/fnins.2019.00535] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/08/2019] [Indexed: 12/30/2022] Open
Abstract
The autonomic nervous system (ANS) is involved in the regulation of physiologic and homeostatic parameters relating particularly to the visceral organs and the co-ordination of physiological responses to threat. Blood pressure and heart rate, respiration, pupillomotor reactivity, sexual function, gastrointestinal secretions and motility, and urine storage and micturition are all under a degree of ANS control. Furthermore, there is close integration between the ANS and other neural functions such as emotion and cognition, and thus brain regions that are known to be important for autonomic control are also implicated in emotional functions. In this review we explore the role of the central ANS in the control of the bladder, and the implications of this for bladder dysfunction in diseases of the ANS.
Collapse
Affiliation(s)
- Holly Ann Roy
- Department of Neurosurgery, Plymouth Hospitals NHS Trust, Plymouth, United Kingdom
| | - Alexander L Green
- Nuffield Department of Surgical Sciences, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
34
|
Reyes BAS, Zhang XY, Dufourt EC, Bhatnagar S, Valentino RJ, Van Bockstaele EJ. Neurochemically distinct circuitry regulates locus coeruleus activity during female social stress depending on coping style. Brain Struct Funct 2019; 224:1429-1446. [PMID: 30767070 DOI: 10.1007/s00429-019-01837-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 01/16/2019] [Indexed: 12/18/2022]
Abstract
Stress-related psychiatric diseases are nearly twice as prevalent in women compared to men. We recently showed in male rats that the resident-intruder model of social stress differentially engages stress-related circuitry that regulates norepinephrine-containing neurons of the locus coeruleus (LC) depending on coping strategy as determined by the latency to assume a defeat posture. Here, we determined whether this social stress had similar effects in female rats. LC afferents were retrogradely labeled with Fluorogold (FG) and rats had one or five daily exposures to an aggressive resident. Sections through the nucleus paragigantocellularis (PGi), a source of enkephalin (ENK) afferents to the LC, and central nucleus of the amygdala (CeA), a source of corticotropin-releasing factor (CRF) afferents to the LC, were processed for immunocytochemical detection of c-fos, a marker of neuronal activity, FG and ENK or CRF. Like male rats, female rats defeated with a relatively short latency (SL) in response to a single resident-intruder exposure and showed significant c-fos activation of LC neurons, PGi-ENK LC afferents, and CeA-CRF-LC afferents. With repeated exposure, some rats exhibited a long latency to defeat (LL). LC neurons and CeA-CRF-LC afferents were activated in SL rats compared to control and LL, whereas PGi-ENK LC afferents were not. Conversely, in LL rats, PGi-ENK LC and CeA-CRF-LC afferents were activated compared to controls but not LC neurons. CRF type 1 receptor (CRF1) and µ-opioid receptor (MOR) expression levels in LC were decreased in LL rats. Finally, electron microscopy showed a relative increase in MOR on the plasma membrane of LL rats and a relative increase in CRF1 on the plasma membrane of SL rats. Together, these results suggest that as is the case for males, social stress engages divergent circuitry to regulate the LC in female rats depending on coping strategy, with a bias towards CRF influence in more subordinate rats and opioid influence in less subordinate rats.
Collapse
Affiliation(s)
- Beverly A S Reyes
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, 245 S. 15th Street, Philadelphia, PA, 19102, USA.
| | - Xiao-Yan Zhang
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Elsa C Dufourt
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, 245 S. 15th Street, Philadelphia, PA, 19102, USA
| | - Seema Bhatnagar
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Rita J Valentino
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Elisabeth J Van Bockstaele
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, 245 S. 15th Street, Philadelphia, PA, 19102, USA
| |
Collapse
|
35
|
Hunter DV, Holland SD, Ramer MS. Preserved Adrenal Function After Lumbar Spinal Cord Transection Augments Low Pressure Bladder Activity in the Rat. Front Physiol 2018; 9:1239. [PMID: 30233411 PMCID: PMC6130007 DOI: 10.3389/fphys.2018.01239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 08/15/2018] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) disconnects supraspinal micturition centers from the lower urinary tract resulting in immediate and long-term changes in bladder structure and function. While cervical and high thoracic SCI have a greater range of systemic effects, clinical data suggest that those with lower (suprasacral) injuries develop poorer bladder outcomes. Here we assess the impact of SCI level on acute changes in bladder activity. We used two SCI models, T3 and L2 complete transections in male Wistar rats, and compared bladder pressure fluctuations to those of naïve and bladder-denervated animals. By 2 days after L2 transection, but not T3 transection or bladder denervation, small amplitude rhythmic contractions (1 mmHg, 0.06 Hz) were present at low intravesical pressures (<6 mmHg); these were still present 1 month following injury, and at 3 months, bladders from L2 SCI animals were significantly larger than those from T3 SCI or naïve animals. Low-pressure contractions were unaffected by blocking ganglionic signaling or bladder denervation at the time of measurements. L2 (and sham surgery) but not T3 transection preserves supraspinal adrenal control, and by ELISA we show lower plasma adrenal catecholamine concentration in the latter. When an adrenalectomy preceded the L2 transection, the aberrant low-pressure contractions more closely resembled those after T3 transection, indicating that the increased bladder activity after lumbar SCI is mediated by preserved adrenal function. Since ongoing low-pressure contractions may condition the detrusor and exacerbate detrusor-sphincter dyssynergia, moderating bladder catecholamine signaling may be a clinically viable intervention strategy.
Collapse
Affiliation(s)
- Diana V Hunter
- International Collaboration on Repair Discoveries, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Seth D Holland
- International Collaboration on Repair Discoveries, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Matt S Ramer
- International Collaboration on Repair Discoveries, Department of Zoology, Faculty of Science, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
36
|
Blebbistatin, a Myosin II Inhibitor, Exerts Antidepressant-Like Activity and Suppresses Detrusor Overactivity in an Animal Model of Depression Coexisting with Overactive Bladder. Neurotox Res 2018; 35:196-207. [PMID: 30155683 PMCID: PMC6313360 DOI: 10.1007/s12640-018-9948-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 12/17/2022]
Abstract
Overactive bladder (OAB) coexists with depression in women. Here, we assessed the effects of a 1-week treatment with blebbistatin, a myosin II inhibitor, on changes in behavior and detrusor overactivity (DO) symptoms induced by a 6-week administration of 13-cis-retinoic acid (13-cis-RA), with the aid of the forced swim test (FST), spontaneous locomotor activity test, and in vivo cystometric investigations in female Wistar rats. 13-cis-RA-induced depressive-like behavior and DO symptoms were associated with increased corticotropin-releasing factor (CRF) level in the plasma, prefrontal cortex (PFC), hippocampus (Hp), Barrington’s nucleus (BN), and urinary bladder. Moreover, 13-cis-RA decreased brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) levels in plasma, PFC, Hp, and BN, while it increased BDNF and NGF levels in urinary bladder. Blebbistatin exerted antidepressant-like effect and attenuated changes in the cystometric parameters as well as the central and peripheral levels of CRF, BDNF, and NGF that were induced by 13-cis-RA, while it did not affect urine production, mean, systolic or diastolic blood pressure, or heart rate. The results point to blebbistatin as a potential treatment option for OAB coexisting with depression.
Collapse
|
37
|
Shimizu S, Shimizu T, Nakamura K, Higashi Y, Saito M. Angiotensin II, a stress-related neuropeptide in the CNS, facilitates micturition reflex in rats. Br J Pharmacol 2018; 175:3727-3737. [PMID: 29981238 DOI: 10.1111/bph.14439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/24/2018] [Accepted: 06/26/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND AND PURPOSE We investigated the effects of centrally administered stress-related neuropeptide, angiotensin II, on the micturition reflex and the downstream signalling pathways in rats. EXPERIMENTAL APPROACH Male Wistar rats were anaesthetized with urethane for cystometry before and after i.c.v. administration of vehicle or angiotensin II (30 pmol). Muscimol (a GABAA receptor agonist) or baclofen (a GABAB receptor agonist) was i.c.v. administered 30 min before or 15 min after central angiotensin II administration. Telmisartan [an angiotensin II type 1 (AT1 ) receptor antagonist], valsartan (an AT1 receptor antagonist), PD123319 (an AT2 receptor antagonist), U-73122 (a PLC inhibitor), chelerythrine chloride (a PKC inhibitor), apocynin (a NADPH oxidase inhibitor) or tempol (an antioxidant) was centrally administered 30 min before central angiotensin II administration. KEY RESULTS Centrally administered angiotensin II significantly shortened the intercontraction interval and decreased the voided volume and bladder capacity without altering the maximum voiding pressure, post-voiding residual urine volume or voiding efficacy. Muscimol, baclofen, telmisartan, valsartan, U-73122, chelerythrine chloride, apocynin or tempol pretreatment significantly suppressed the reduction in intercontraction interval induced by central angiotensin II. Post-treatment with muscimol or baclofen also ameliorated the decrease in intercontraction interval induced by central angiotensin II. CONCLUSIONS AND IMPLICATIONS Angiotensin II in the CNS facilitates micturition reflex by inhibiting central GABAergic activity and activating the AT1 receptor/PLC/PKC/NADPH oxidase/superoxide anion pathway.
Collapse
Affiliation(s)
- Shogo Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Takahiro Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Kumiko Nakamura
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Youichirou Higashi
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Motoaki Saito
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Japan
| |
Collapse
|
38
|
Lee W, Khan A, Curley JP. Major urinary protein levels are associated with social status and context in mouse social hierarchies. Proc Biol Sci 2018; 284:rspb.2017.1570. [PMID: 28931741 DOI: 10.1098/rspb.2017.1570] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/16/2017] [Indexed: 01/18/2023] Open
Abstract
We have previously shown that male mice living in groups of 12 males establish and maintain stable linear social hierarchies with each individual having a defined social rank. However, it is not clear which social cues mice use to signal and recognize their relative social status within their hierarchy. In this study, we investigate how individual social status both in pairs and in groups affects the levels of major urinary proteins (MUPs) and specifically MUP20 in urine. We housed groups of adult outbred CD1 male mice in a complex social environment for three weeks and collected urine samples from all individuals repeatedly. We found that dominant males produce more MUPs than subordinates when housed in pairs and that the production of MUPs and MUP20 is significantly higher in alpha males compared with all other individuals in a social hierarchy. Furthermore, we found that hepatic mRNA expression of Mup3 and Mup20 is significantly higher in alpha males than in subordinate males. We also show that alpha males have lower urinary creatinine levels consistent with these males urinating more than others living in hierarchies. These differences emerged within one week of animals being housed together in social hierarchies. This study demonstrates that as males transition to become alpha males, they undergo physiological changes that contribute to communication of their social status that may have implications for the energetic demands of maintaining dominance.
Collapse
Affiliation(s)
- Won Lee
- Department of Psychology, Columbia University, New York, NY, USA
| | - Amber Khan
- The Sophie Davis School of Medicine, The City University of New York, New York, NY, USA
| | - James P Curley
- Department of Psychology, Columbia University, New York, NY, USA .,Center for Integrative Animal Behavior, Columbia University, New York, NY, USA.,Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
39
|
Fuentes IM, Christianson JA. The Influence of Early Life Experience on Visceral Pain. Front Syst Neurosci 2018; 12:2. [PMID: 29434541 PMCID: PMC5790786 DOI: 10.3389/fnsys.2018.00002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/12/2018] [Indexed: 12/12/2022] Open
Abstract
Pain is the most reported and troublesome symptom of nearly all functional disorders affecting the genitourinary and gastrointestinal organs. Patients with irritable bowel syndrome (IBS), interstitial cystitis/painful bladder syndrome (IC/PBS), vulvodynia, and/or chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS; collectively termed chronic pelvic pain syndromes) report pain severe enough to impact quality of life and often suffer from symptoms of or are diagnosed with more than one of these syndromes. This increased comorbidity between chronic pelvic pain syndromes, and with pain disorders of disparate body regions, as well as with mood disorders, can be influenced by disruptions in the hypothalamic-pituitary-adrenal (HPA) axis, which regulates the response to stress and influences the perception of pain. Experiencing trauma, neglect, or abuse in early life can permanently affect the functioning of the HPA axis. As such, a significant proportion of patients suffering from comorbid chronic pelvic pain syndromes report a history of early life stress or trauma. Here we will report on how these early life experiences influence chronic pelvic pain in patients. We will also discuss various rodent models that have been developed to study this phenomenon to understand the mechanisms underlying HPA axis dysfunction, as well as potential underlying mechanisms connecting these syndromes to one another.
Collapse
Affiliation(s)
- Isabella M Fuentes
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Julie A Christianson
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
40
|
Does sire replacement trigger plural reproduction in matrifilial groups of a singular breeder, Ellobius tancrei? Mamm Biol 2018. [DOI: 10.1016/j.mambio.2017.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
Girard BM, Tooke K, Vizzard MA. PACAP/Receptor System in Urinary Bladder Dysfunction and Pelvic Pain Following Urinary Bladder Inflammation or Stress. Front Syst Neurosci 2017; 11:90. [PMID: 29255407 PMCID: PMC5722809 DOI: 10.3389/fnsys.2017.00090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/16/2017] [Indexed: 12/11/2022] Open
Abstract
Complex organization of CNS and PNS pathways is necessary for the coordinated and reciprocal functions of the urinary bladder, urethra and urethral sphincters. Injury, inflammation, psychogenic stress or diseases that affect these nerve pathways and target organs can produce lower urinary tract (LUT) dysfunction. Numerous neuropeptide/receptor systems are expressed in the neural pathways of the LUT and non-neural components of the LUT (e.g., urothelium) also express peptides. One such neuropeptide receptor system, pituitary adenylate cyclase-activating polypeptide (PACAP; Adcyap1) and its cognate receptor, PAC1 (Adcyap1r1), have tissue-specific distributions in the LUT. Mice with a genetic deletion of PACAP exhibit bladder dysfunction and altered somatic sensation. PACAP and associated receptors are expressed in the LUT and exhibit neuroplastic changes with neural injury, inflammation, and diseases of the LUT as well as psychogenic stress. Blockade of the PACAP/PAC1 receptor system reduces voiding frequency in preclinical animal models and transgenic mouse models that mirror some clinical symptoms of bladder dysfunction. A change in the balance of the expression and resulting function of the PACAP/receptor system in CNS and PNS bladder reflex pathways may underlie LUT dysfunction including symptoms of urinary urgency, increased voiding frequency, and visceral pain. The PACAP/receptor system in micturition pathways may represent a potential target for therapeutic intervention to reduce LUT dysfunction.
Collapse
Affiliation(s)
| | | | - Margaret A. Vizzard
- Department of Neurological Sciences, Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| |
Collapse
|
42
|
Central Network Dynamics Regulating Visceral and Humoral Functions. J Neurosci 2017; 37:10848-10854. [PMID: 29118214 DOI: 10.1523/jneurosci.1833-17.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/03/2017] [Accepted: 10/08/2017] [Indexed: 02/07/2023] Open
Abstract
The brain processes information from the periphery and regulates visceral and immune activity to maintain internal homeostasis, optimally respond to a dynamic external environment, and integrate these functions with ongoing behavior. In addition to its relevance for survival, this integration underlies pathology as evidenced by diseases exhibiting comorbid visceral and psychiatric symptoms. Advances in neuroanatomical mapping, genetically specific neuronal manipulation, and neural network recording are overcoming the challenges of dissecting complex circuits that underlie this integration and deciphering their function. Here we focus on reciprocal communication between the brain and urological, gastrointestinal, and immune systems. These studies are revealing how autonomic activity becomes integrated into behavior as part of a social strategy, how the brain regulates innate immunity in response to stress, and how drugs impact emotion and gastrointestinal function. These examples highlight the power of the functional organization of circuits at the interface of the brain and periphery.
Collapse
|
43
|
Wróbel A, Doboszewska U, Rechberger E, Wlaź P, Rechberger T. SN003, a CRF 1 receptor antagonist, attenuates depressive-like behavior and detrusor overactivity symptoms induced by 13- cis -retinoic acid in rats. Eur J Pharmacol 2017; 812:216-224. [DOI: 10.1016/j.ejphar.2017.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/29/2017] [Accepted: 07/04/2017] [Indexed: 01/13/2023]
|
44
|
Kim SY, Bang W, Choi HG. Analysis of the prevalence of and factors associated with overactive bladder in adult Korean women. PLoS One 2017; 12:e0185592. [PMID: 28957446 PMCID: PMC5619804 DOI: 10.1371/journal.pone.0185592] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 09/17/2017] [Indexed: 01/27/2023] Open
Abstract
Background Overactive bladder (OAB) is one of the most prevalent lower urinary tract conditions and has been suggested to be related to various factors. We assessed the prevalence of and factors associated with OAB in women based on a large cross-sectional, population-based study of adult Korean women. Methods The Korean community health survey (KCHS) of 2012 was reviewed, and 107,950 female participants aged 19 to 107 years were identified for inclusion in this study. The overactive bladder symptom score (OABSS) was used to define and classify OAB as mild, moderate, or severe. Numerous variables, including marital status; physical activity; education and income levels; type of occupation; body mass index (BMI); smoking; alcohol; sleep time; and medical history of hypertension, diabetes mellitus, hyperlipidemia, or cerebral stroke, were evaluated. The correlation of these variables with the prevalence of OAB was analyzed using simple and multiple logistic regression analyses with complex sampling. Results The results showed that 5.2% of adult women experienced OAB. Multiple regression analyses showed a significant correlation between the following variables and OAB: older age (adjusted odds ratio [AOR] = 1.44, 95% confidence interval [CI] = 1.39–1.50, P < 0.001 as 10 years older); married status (AOR = 0.83, 95%CI = 0.70–0.96, P = 0.016); lower level of income (AOR = 1.50, 95%CI = 1.34–1.68, P < 0.001); high BMI (AOR = 1.33, 95%CI = 1.23–1.44, P < 0.001); smoking (AOR = 1.24, 95%CI = 1.04–1.47, P < 0.001); long sleep time (AOR = 1.95, 95%CI = 1.69–2.26); and medical history of hypertension (AOR = 1.11, 95%CI = 1.03–1.21, P = 0.011), diabetes mellitus (AOR = 1.38, 95%CI = 1.25–1.53, P < 0.001), hyperlipidemia (AOR = 1.27, 95%CI = 1.16–1.39, P < 0.001), and cerebral stroke (AOR = 2.04, 95%CI = 1.73–2.41, P < 0.001). The level of stress showed a dose-dependent association with OAB (AOR [95%CI] = 3.28 [2.81–3.83] > 2.11 [1.91–2.33] >1.28 [1.16–1.41] for severe > moderate > some stress, respectively, P < 0.001). Conclusion The prevalence of OAB was approximately 5.2% among adult Korean women. Older age; high BMI; stress level; sleep duration; levels of income and education; marital status; smoking; and medical history of hypertension, diabetes mellitus, hyperlipidemia, and cerebral stroke were significantly related to OAB in women.
Collapse
Affiliation(s)
- So Young Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Woojin Bang
- Department of Urology, Hallym University College of Medicine, Seoul, Korea
| | - Hyo Geun Choi
- Department of Otorhinolaryngology-Head & Neck Surgery, Hallym University College of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
45
|
Chen H, Zhang L, Hill WG, Yu W. Evaluating the voiding spot assay in mice: a simple method with complex environmental interactions. Am J Physiol Renal Physiol 2017; 313:F1274-F1280. [PMID: 28835420 DOI: 10.1152/ajprenal.00318.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 11/22/2022] Open
Abstract
The voiding spot assay (VSA) on filter paper is an increasingly popular method for studying lower urinary tract physiology in mice. However, the ways VSAs are performed differ significantly between laboratories, and many variables are introduced compared with the mouse's normal housing situation. Rodents are intelligent social animals, and it is increasingly understood that social and environmental stresses have significant effects on their physiology. Surprisingly, little is known about whether change of environment during VSA affects mouse voiding and what the best methodologies are for retaining "natural" micturition patterns. It is well known that stress-related neuropeptide corticotropin-releasing factor is significantly elevated and induces dramatic voiding changes when rodents encounter stresses. Therefore we hypothesized that changes in the environmental situation could potentially alter voiding during VSA. We have examined multiple factors to test whether they affect female mouse voiding patterns during VSA, including cage type, cage floor, water availability, water bottle location, single or group housing, and different handlers. Our results indicate that mice are surprisingly sensitive to changes in cage type and floor surface, water bottle location, and single/group housing, each of which induces significant changes in voiding patterns, indicative of a stress response. In contrast, neither changing handler nor 4 h of water deprivation affected voiding patterns. Our data indicate that VSA should be performed under conditions as close as possible to the mouse's normal housing. Optimizing VSA methodology will be useful in uncovering voiding alterations in both genetic and disease models of lower urinary dysfunctions.
Collapse
Affiliation(s)
- Huan Chen
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Lanlan Zhang
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Warren G Hill
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Weiqun Yu
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
46
|
Malykhina AP, Brodie KE, Wilcox DT. Genitourinary and gastrointestinal co-morbidities in children: The role of neural circuits in regulation of visceral function. J Pediatr Urol 2017; 13:177-182. [PMID: 28392009 PMCID: PMC5501166 DOI: 10.1016/j.jpurol.2016.04.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/05/2016] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Pediatric lower urinary tract dysfunction (LUTD) is a common problem in childhood. Lower urinary tract symptoms in children include overactive bladder, voiding postponement, stress incontinence, giggle incontinence, and dysfunctional voiding. Gastrointestinal co-morbidities, including constipation or fecal incontinence, are commonly associated with lower urinary tract (LUT) symptoms in children, often reaching 22-34%. This review summarized the potential mechanisms underlying functional lower urinary and gastrointestinal co-morbidities in children. It also covered the current understanding of clinical pathophysiology in the pediatric population, anatomy and embryological development of the pelvic organs, role of developing neural circuits in regulation of functional co-morbidities, and relevant translational animal models. MATERIALS AND METHODS This was a non-systematic review of the published literature, which summarized the available clinical and translational studies on functional urologic and gastrointestinal co-morbidities in children, as well as neural mechanisms underlying pelvic organ 'cross-talk' and 'cross-sensitization'. RESULTS Co-morbidity of pediatric lower urinary and gastrointestinal dysfunctions could be explained by multiple factors, including a shared developmental origin, close anatomical proximity, and pelvic organ 'cross-talk'. Daily physiological activity and viscero-visceral reflexes between the lower gastrointestinal and urinary tracts are controlled by both autonomic and central nervous systems, suggesting the dominant modulatory role of the neural pathways. Recent studies have provided evidence that altered sensation in the bladder and dysfunctional voiding can be triggered by pathological changes in neighboring pelvic organs due to a phenomenon known as pelvic organ 'cross-sensitization'. Cross-sensitization between pelvic organs is thought to be mainly coordinated by convergent neurons that receive dual afferent inputs from discrete pelvic organs. Investigation of functional changes in nerve fibers and neurons sets certain limits in conducting appropriate research in humans, making the use of animal models necessary to uncover the underlying mechanisms and for the development of novel therapeutic approaches for long-term symptomatic treatment of LUTD in the pediatric population. CONCLUSION Pediatric LUTD is often complicated by gastrointestinal co-morbidities; however, the mechanisms linking bladder and bowel dysfunctions are not well understood. Clinical studies have suggested that therapeutic modulation of one system may improve the other system's function. To better manage children with LUTD, the interplay between the two systems, and how co-morbid GI and voiding dysfunctions can be more specifically targeted in pediatric clinics need to be understood.
Collapse
Affiliation(s)
- A P Malykhina
- Division of Urology, Department of Surgery, University of Colorado School of Medicine, USA
| | - K E Brodie
- Division of Urology, Department of Surgery, University of Colorado School of Medicine, USA; Department of Pediatric Urology, Children's Hospital of Colorado, 13123 E 16th Avenue, Aurora, CO 80045, USA
| | - D T Wilcox
- Division of Urology, Department of Surgery, University of Colorado School of Medicine, USA.
| |
Collapse
|
47
|
Hegde S, Capell WR, Ibrahim BA, Klett J, Patel NS, Sougiannis AT, Kelly MP. Phosphodiesterase 11A (PDE11A), Enriched in Ventral Hippocampus Neurons, is Required for Consolidation of Social but not Nonsocial Memories in Mice. Neuropsychopharmacology 2016; 41:2920-2931. [PMID: 27339393 PMCID: PMC5061884 DOI: 10.1038/npp.2016.106] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 06/08/2016] [Accepted: 06/13/2016] [Indexed: 01/01/2023]
Abstract
The capacity to form long-lasting social memories is critical to our health and survival. cAMP signaling in the ventral hippocampal formation (VHIPP) appears to be required for social memory formation, but the phosphodiesterase (PDE) involved remains unknown. Previously, we showed that PDE11A, which degrades cAMP and cGMP, is preferentially expressed in CA1 and subiculum of the VHIPP. Here, we determine whether PDE11A is expressed in neurons where it could directly influence synaptic plasticity and whether expression is required for the consolidation and/or retrieval of social memories. In CA1, and possibly CA2, PDE11A4 is expressed throughout neuronal cell bodies, dendrites (stratum radiatum), and axons (fimbria), but not astrocytes. Unlike PDE2A, PDE9A, or PDE10A, PDE11A4 expression begins very low at postnatal day 7 (P7) and dramatically increases until P28, at which time it stabilizes to young adult levels. This expression pattern is consistent with the fact that PDE11A is required for social long-term memory (LTM) formation during adolescence and adulthood. Male and female PDE11 knockout (KO) mice show normal short-term memory (STM) for social odor recognition (SOR) and social transmission of food preference (STFP), but no LTM 24 h post training. Importantly, PDE11A KO mice show normal LTM for nonsocial odor recognition. Deletion of PDE11A may impair memory consolidation by impairing requisite protein translation in the VHIPP. Relative to WT littermates, PDE11A KO mice show reduced expression of RSK2 and lowered phosphorylation of S6 (pS6-235/236). Together, these data suggest PDE11A is selectively required for the proper consolidation of recognition and associative social memories.
Collapse
Affiliation(s)
- Shweta Hegde
- University of South Carolina School of Medicine, Columbia, SC, USA
| | - Will R Capell
- University of South Carolina School of Medicine, Columbia, SC, USA
| | - Baher A Ibrahim
- University of South Carolina School of Medicine, Columbia, SC, USA
| | - Jennifer Klett
- University of South Carolina School of Medicine, Columbia, SC, USA
| | - Neema S Patel
- University of South Carolina School of Medicine, Columbia, SC, USA
| | | | - Michy P Kelly
- University of South Carolina School of Medicine, Columbia, SC, USA,University of South Carolina School of Medicine, 6439 Garners Ferry Road, VA Building 1, 3rd Floor, D-12, Columbia, SC 29209, USA, Tel: +1 803 216 3546, Fax: +1 803 216 3351, E-mail:
| |
Collapse
|
48
|
Abstract
Overactive bladder (OAB) is a ubiquitous syndrome that is defined by urinary urgency with, or without urinary incontinence. OAB is observed in all parts of the world, with a prevalence of 5-12% in children (5-10 years of age) and a prevalence of 0.5% in older adolescents (16-18 years of age). Published data indicate that around a third of children with OAB are likely to become adults with similar complaints. Studies in children and in adults with OAB indicate that these individuals are more likely to also have anxiety, depression and attention deficit problems, and that appropriate treatment of these comorbidities can often improve the patient's OAB symptoms. Furthermore, data from twin studies and familial surveys seem to indicate a genetic component of OAB. Pharmacological treatments of OAB in children have improved in the past 5 years, moving beyond anticholinergic agents and including the off-label use of α-blockers, β3-agonists and intravesical botulinum toxin. Use of several different electrical stimulation techniques is also effective, both as first-line treatments, and for patients with treatment-refractory symptoms. Overall the outlook of children with OAB seems to be improving, with a greater understanding of the pathophysiology of this syndrome. Treatment modalities that target the source of the underlying problem, especially in children, are likely to provide the best patient outcomes.
Collapse
|
49
|
Evidence of Need to Use Self-Report Measures of Psychosocial Functioning in Older Children and Adolescents with Voiding Dysfunction. J Urol 2016; 195:1570-1574. [DOI: 10.1016/j.juro.2015.11.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2015] [Indexed: 11/19/2022]
|
50
|
Basal and stress-activated hypothalamic pituitary adrenal axis function in postmenopausal women with overactive bladder. Int Urogynecol J 2016; 27:1383-91. [PMID: 26942596 DOI: 10.1007/s00192-016-2988-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/16/2016] [Indexed: 12/19/2022]
Abstract
INTRODUCTION AND HYPOTHESIS The aim of this study was to measure physiologic and psychologic stress reactivity in women with overactive bladder (OAB). There is growing evidence in preclinical models that central nervous system dysregulation, particularly in response to psychological stress, may contribute to lower urinary tract symptoms in women with OAB. METHODS Postmenopausal women with OAB and healthy controls underwent Structured Clinical Interview for DSM-IV Axis I disorders (SCID) to identify those without identifiable psychiatric disease. Eligible participants underwent physiologic measures including basal (cortisol-awakening response; CAR) and stress-activated salivary cortisol levels, heart rate (HR), urinary metanephrines and neurotrophins, as well as validated symptom assessment for stress, anxiety, depression, and bladder dysfunction at baseline and during, and following an acute laboratory stressor, the Trier Social Stress Test (TSST). RESULTS Baseline measures of cortisol reactivity measured by CAR showed blunted response among women with OAB (p = 0.015), while cortisol response to the TSST was greater in the OAB group (p = 0.019). Among OAB patients, bladder urgency as measured by visual analog scale (VAS) increased from pre- to post-TSST (p = 0.04). There was a main effect of TSST on HR (p < 0.001), but no group interaction. CONCLUSIONS Preliminary findings suggest that women with OAB have greater physiologic and psychologic stress reactivity than healthy controls. Importantly for women with OAB, acute stress appears to exacerbate bladder urgency. Evaluation of the markers of stress response may suggest targets for potential diagnostic and therapeutic interventions.
Collapse
|