1
|
Blumstein D, MacManes M. The multi-tissue gene expression and physiological responses of water deprived Peromyscus eremicus. BMC Genomics 2024; 25:770. [PMID: 39118009 PMCID: PMC11308687 DOI: 10.1186/s12864-024-10629-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024] Open
Abstract
The harsh and dry conditions of desert environments have resulted in genomic adaptations, allowing for desert organisms to withstand prolonged drought, extreme temperatures, and limited food resources. Here, we present a comprehensive exploration of gene expression across five tissues (kidney, liver, lung, gastrointestinal tract, and hypothalamus) and 19 phenotypic measurements to explore the whole-organism physiological and genomic response to water deprivation in the desert-adapted cactus mouse (Peromyscus eremicus). The findings encompass the identification of differentially expressed genes and correlative analysis between phenotypes and gene expression patterns across multiple tissues. Specifically, we found robust activation of the vasopressin renin-angiotensin-aldosterone system (RAAS) pathways, whose primary function is to manage water and solute balance. Animals reduced food intake during water deprivation, and upregulation of PCK1 highlights the adaptive response to reduced oral intake via its actions aimed at maintained serum glucose levels. Even with such responses to maintain water balance, hemoconcentration still occurred, prompting a protective downregulation of genes responsible for the production of clotting factors while simultaneously enhancing angiogenesis which is thought to maintain tissue perfusion. In this study, we elucidate the complex mechanisms involved in water balance in the desert-adapted cactus mouse, P. eremicus. By prioritizing a comprehensive analysis of whole-organism physiology and multi-tissue gene expression in a simulated desert environment, we describe the complex response of regulatory processes.
Collapse
Affiliation(s)
- Danielle Blumstein
- Biomedical Sciences Department, University of New Hampshire, Molecular, Cellular, Durham, NH, DMB, 03824, USA.
| | - Matthew MacManes
- Biomedical Sciences Department, University of New Hampshire, Molecular, Cellular, Durham, NH, DMB, 03824, USA
| |
Collapse
|
2
|
Blumstein DM, MacManes MD. Impacts of dietary fat on multi tissue gene expression in the desert-adapted cactus mouse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592397. [PMID: 38746252 PMCID: PMC11092757 DOI: 10.1101/2024.05.03.592397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Understanding the relationship between dietary fat and physiological responses is crucial in species adapted to arid environments where water scarcity is common. In this study, we present a comprehensive exploration of gene expression across five tissues (kidney, liver, lung, gastrointestinal tract, and hypothalamus) and 19 phenotypic measurements, investigating the effects of dietary fat in the desert-adapted cactus mouse ( Peromyscus eremicus ). We show impacts on immune function, circadian gene regulation, and mitochondrial function for mice fed a lower-fat diet compared to mice fed a higher-fat diet. In arid environments with severe water scarcity, even subtle changes in organismal health and water balance can affect physical performance, potentially impacting survival and reproductive success. The study sheds light on the complex interplay between diet, physiological processes, and environmental adaptation, providing valuable insights into the multifaceted impacts of dietary choices on organismal well-being and adaptation strategies in arid habitats.
Collapse
|
3
|
Blumstein DM, MacManes MD. When the tap runs dry: The multi-tissue gene expression and physiological responses of water deprived Peromyscus eremicus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576658. [PMID: 38328088 PMCID: PMC10849551 DOI: 10.1101/2024.01.22.576658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The harsh and dry conditions of desert environments have resulted in genomic adaptations, allowing for desert organisms to withstand prolonged drought, extreme temperatures, and limited food resources. Here, we present a comprehensive exploration of gene expression across five tissues (kidney, liver, lung, gastrointestinal tract, and hypothalamus) and 19 phenotypic measurements to explore the whole-organism physiological and genomic response to water deprivation in the desert-adapted cactus mouse (Peromyscus eremicus). The findings encompass the identification of differentially expressed genes and correlative analysis between phenotypes and gene expression patterns across multiple tissues. Specifically, we found robust activation of the vasopressin renin-angiotensin-aldosterone system (RAAS) pathways, whose primary function is to manage water and solute balance. Animals reduce food intake during water deprivation, and upregulation of PCK1 highlights the adaptive response to reduced oral intake via its actions aimed at maintained serum glucose levels. Even with such responses to maintain water balance, hemoconcentration still occurred, prompting a protective downregulation of genes responsible for the production of clotting factors while simultaneously enhancing angiogenesis which is thought to maintains tissue perfusion. In this study, we elucidate the complex mechanisms involved in water balance in the desert-adapted cactus mouse, P. eremicus. By prioritizing a comprehensive analysis of whole-organism physiology and multi-tissue gene expression in a simulated desert environment, we describe the complex and successful response of regulatory processes.
Collapse
Affiliation(s)
- Danielle M Blumstein
- University of New Hampshire, Molecular, Cellular, and Biomedical Sciences Department, Durham, NH 03824
| | - Matthew D MacManes
- University of New Hampshire, Molecular, Cellular, and Biomedical Sciences Department, Durham, NH 03824
| |
Collapse
|
4
|
Blumstein DM, MacManes MD. When the tap runs dry: the physiological effects of acute experimental dehydration in Peromyscus eremicus. J Exp Biol 2023; 226:jeb246386. [PMID: 37921453 PMCID: PMC10714145 DOI: 10.1242/jeb.246386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/12/2023] [Indexed: 11/04/2023]
Abstract
Desert organisms have evolved physiological, biochemical and genomic mechanisms to survive the extreme aridity of desert environments. Studying desert-adapted species provides a unique opportunity to investigate the survival strategies employed by organisms in some of the harshest habitats on Earth. Two of the primary challenges faced in desert environments are maintaining water balance and thermoregulation. We collected data in a simulated desert environment and a captive colony of cactus mice (Peromyscus eremicus) and used lab-based experiments with real time physiological measurements; energy expenditure, water loss rate and respiratory exchange rate, to characterize the response to water deprivation. Mice without access to water had significantly lower energy expenditures and in turn, reduced water loss compared to mice with access to water after the first 24 h of the experiment. Additionally, we observed significant mass loss that is probably due to dehydration-associated anorexia a response to limit fluid loss by reducing waste and the solute load as well as allowing water reabsorption from the kidneys and gastrointestinal tract. Finally, we observed body temperature correlated with sex, with males without access to water maintaining body temperature when compared with hydrated males, whereas body temperature decreased for females without access to water, suggesting daily metabolic depression in females.
Collapse
Affiliation(s)
- Danielle M. Blumstein
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Matthew D. MacManes
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
5
|
Chevalier RL. Why is chronic kidney disease progressive? Evolutionary adaptations and maladaptations. Am J Physiol Renal Physiol 2023; 325:F595-F617. [PMID: 37675460 DOI: 10.1152/ajprenal.00134.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/08/2023] [Accepted: 08/27/2023] [Indexed: 09/08/2023] Open
Abstract
Despite significant advances in renal physiology, the global prevalence of chronic kidney disease (CKD) continues to increase. The emergence of multicellular organisms gave rise to increasing complexity of life resulting in trade-offs reflecting ancestral adaptations to changing environments. Three evolutionary traits shape CKD over the lifespan: 1) variation in nephron number at birth, 2) progressive nephron loss with aging, and 3) adaptive kidney growth in response to decreased nephron number. Although providing plasticity in adaptation to changing environments, the cell cycle must function within constraints dictated by available energy. Prioritized allocation of energy available through the placenta can restrict fetal nephrogenesis, a risk factor for CKD. Moreover, nephron loss with aging is a consequence of cell senescence, a pathway accelerated by adaptive nephron hypertrophy that maintains metabolic homeostasis at the expense of increased vulnerability to stressors. Driven by reproductive fitness, natural selection operates in early life but diminishes thereafter, leading to an exponential increase in CKD with aging, a product of antagonistic pleiotropy. A deeper understanding of the evolutionary constraints on the cell cycle may lead to manipulation of the balance between progenitor cell renewal and differentiation, regulation of cell senescence, and modulation of the balance between cell proliferation and hypertrophy. Application of an evolutionary perspective may enhance understanding of adaptation and maladaptation by nephrons in the progression of CKD, leading to new therapeutic advances.
Collapse
Affiliation(s)
- Robert L Chevalier
- Department of Pediatrics, The University of Virginia, Charlottesville, Virginia, United States
| |
Collapse
|
6
|
Gillard BT, Amor N, Iraizoz FA, Pauža AG, Campbell C, Greenwood MP, Alagaili AN, Murphy D. Mobilisation of jerboa kidney gene networks during dehydration and opportunistic rehydration. iScience 2023; 26:107574. [PMID: 37664605 PMCID: PMC10470305 DOI: 10.1016/j.isci.2023.107574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/30/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
Desert animals have evolved systems that enable them to thrive under dry conditions. Focusing on the kidney, we have investigated the transcriptomic adaptations that enable a desert rodent, the Lesser Egyptian Jerboa (Jaculus jaculus), to withstand water deprivation and opportunistic rehydration. Analysis of the whole kidney transcriptome showed many differentially expressed genes in the Jerboa kidney, 6.4% of genes following dehydration and an even greater number (36.2%) following rehydration compared to control. Genes correlated with the rehydration condition included many ribosomal protein coding genes suggesting a concerted effort to accelerate protein synthesis when water is made available. We identify an increase in TGF-beta signaling antagonists in dehydration (e.g., GREM2). We also describe expression of multiple aquaporin and solute carrier transporters mapped to specific nephron segments. The desert adapted renal transcriptome presented here is a valuable resource to expand our understanding of osmoregulation beyond that derived from model organisms.
Collapse
Affiliation(s)
- Benjamin T. Gillard
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, England
| | - Nabil Amor
- LR18ES05, Laboratory of Biodiversity, Parasitology and Ecology of Aquatic Ecosystems, Department of Biology - Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia
| | - Fernando Alvira Iraizoz
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, England
| | - Audrys G. Pauža
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, England
| | - Colin Campbell
- Department of Engineering Mathematics, Ada Lovelace Building, University of Bristol, Bristol, England
| | - Michael P. Greenwood
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, England
| | | | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, England
| |
Collapse
|
7
|
Blumstein DM, MacManes MD. When the tap runs dry: The physiological effects of acute experimental dehydration in Peromyscus eremicus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547568. [PMID: 37461486 PMCID: PMC10349944 DOI: 10.1101/2023.07.03.547568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Desert organisms have evolved physiological, biochemical, and genomic mechanisms to survive the extreme aridity of desert environments. Studying desert-adapted species provides a unique opportunity to investigate the survival strategies employed by organisms in some of the harshest habitats on Earth. Two of the primary challenges faced in desert environments are maintaining water balance and thermoregulation. We collected data in a simulated desert environment and a captive colony of cactus mice (Peromyscus eremicus) and used lab-based experiments with real time physiological measurements to characterize the response to water-deprivation. Mice without access to water had significantly lower energy expenditures and in turn, reduced water loss compared to mice with access to water after the first 24 hours of the experiment. Additionally, we observed significant weight loss likely related to dehydration-associated anorexia a response to limit fluid loss by reducing waste and the solute load as well as allowing water reabsorption from the kidneys and gastrointestinal tract. Finally, we observed body temperature correlated with sex, with males without access to water maintaining body temperature when compared to hydrated males while body temperature decreased for females without access to water compared to hydrated, suggesting daily torpor in females.
Collapse
Affiliation(s)
- Danielle M Blumstein
- University of New Hampshire, Molecular, Cellular, and Biomedical Sciences Department, Durham, NH 03824
| | - Matthew D MacManes
- University of New Hampshire, Molecular, Cellular, and Biomedical Sciences Department, Durham, NH 03824
| |
Collapse
|
8
|
Qiu Z, Jiang T, Li Y, Wang W, Yang B. Aquaporins in Urinary System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:155-177. [PMID: 36717493 DOI: 10.1007/978-981-19-7415-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
There are at least eight aquaporins (AQPs) expressed in the kidney. Including AQP1 expressed in proximal tubules, thin descending limb of Henle and vasa recta; AQP2, AQP3, AQP4, AQP5, and AQP6 expressed in collecting ducts; AQP7 expressed in proximal tubules; AQP8 expressed in proximal tubules and collecting ducts; and AQP11 expressed in the endoplasmic reticulum of proximal tubular epithelial cells. Over years, researchers have constructed different AQP knockout mice and explored the effect of AQP knockout on kidney function. Thus, the roles of AQPs in renal physiology are revealed, providing very useful information for addressing fundamental questions about transepithelial water transport and the mechanism of near isoosmolar fluid reabsorption. This chapter introduces the localization and function of AQPs in the kidney and their roles in different kidney diseases to reveal the prospects of AQPs in further basic and clinical studies.
Collapse
Affiliation(s)
- Zhiwei Qiu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Tao Jiang
- College of Basic Medicine, Beihua University, Jilin, China
| | - Yingjie Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Weiling Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Baoxue Yang
- School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
9
|
Bittner NKJ, Mack KL, Nachman MW. Shared Patterns of Gene Expression and Protein Evolution Associated with Adaptation to Desert Environments in Rodents. Genome Biol Evol 2022; 14:evac155. [PMID: 36268582 PMCID: PMC9648513 DOI: 10.1093/gbe/evac155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 01/18/2023] Open
Abstract
Desert specialization has arisen multiple times across rodents and is often associated with a suite of convergent phenotypes, including modification of the kidneys to mitigate water loss. However, the extent to which phenotypic convergence in desert rodents is mirrored at the molecular level is unknown. Here, we sequenced kidney mRNA and assembled transcriptomes for three pairs of rodent species to search for shared differences in gene expression and amino acid sequence associated with adaptation to deserts. We conducted phylogenetically independent comparisons between a desert specialist and a non-desert relative in three families representing ∼70 million years of evolution. Overall, patterns of gene expression faithfully recapitulated the phylogeny of these six taxa providing a strong evolutionary signal in levels of mRNA abundance. We also found that 8.6% of all genes showed shared patterns of expression divergence between desert and non-desert taxa, much of which likely reflects convergent evolution, and representing more than expected by chance under a model of independent gene evolution. In addition to these shared changes, we observed many species-pair-specific changes in gene expression indicating that instances of adaptation to deserts include a combination of unique and shared changes. Patterns of protein evolution revealed a small number of genes showing evidence of positive selection, the majority of which did not show shared changes in gene expression. Overall, our results suggest that convergent changes in gene regulation play an important role in the complex trait of desert adaptation in rodents.
Collapse
Affiliation(s)
- Noëlle K J Bittner
- Department of Integrative Biology and Museum of Vertebrate Zoology, 3101 Valley Life Sciences Building, University of California Berkeley, California 94720
| | - Katya L Mack
- Department of Integrative Biology and Museum of Vertebrate Zoology, 3101 Valley Life Sciences Building, University of California Berkeley, California 94720
| | - Michael W Nachman
- Department of Integrative Biology and Museum of Vertebrate Zoology, 3101 Valley Life Sciences Building, University of California Berkeley, California 94720
| |
Collapse
|
10
|
Yagound B, West AJ, Richardson MF, Gruber J, Reid JG, Whiting MJ, Rollins LA. Captivity induces large and population-dependent brain transcriptomic changes in wild-caught cane toads (Rhinella marina). Mol Ecol 2022; 31:4949-4961. [PMID: 35894800 PMCID: PMC9804778 DOI: 10.1111/mec.16633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/14/2022] [Accepted: 07/25/2022] [Indexed: 01/09/2023]
Abstract
Gene expression levels are key molecular phenotypes at the interplay between genotype and environment. Mounting evidence suggests that short-term changes in environmental conditions, such as those encountered in captivity, can substantially affect gene expression levels. Yet, the exact magnitude of this effect, how general it is, and whether it results in parallel changes across populations are not well understood. Here, we take advantage of the well-studied cane toad, Rhinella marina, to examine the effect of short-term captivity on brain gene expression levels, and determine whether effects of captivity differ between long-colonized and vanguard populations of the cane toad's Australian invasion range. We compared the transcriptomes of wild-caught toads immediately assayed with those from toads captured from the same populations but maintained in captivity for seven months. We found large differences in gene expression levels between captive and wild-caught toads from the same population, with an over-representation of processes related to behaviour and the response to stress. Captivity had a much larger effect on both gene expression levels and gene expression variability in toads from vanguard populations compared to toads from long-colonized areas, potentially indicating an increased plasticity in toads at the leading edge of the invasion. Overall, our findings indicate that short-term captivity can induce large and population-specific transcriptomic changes, which has significant implications for studies comparing phenotypic traits of wild-caught organisms from different populations that have been held in captivity.
Collapse
Affiliation(s)
- Boris Yagound
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Andrea J. West
- Centre for Integrative Ecology, School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Mark F. Richardson
- Centre for Integrative Ecology, School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia,Deakin Genomics Centre, School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Jodie Gruber
- College of Life and Environmental SciencesUniversity of ExeterPenrynUK,School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
| | - Jack G. Reid
- Centre for Integrative Ecology, School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Martin J. Whiting
- Department of Biological SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Lee A. Rollins
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia,Centre for Integrative Ecology, School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| |
Collapse
|
11
|
Renal transcriptome profiles in mice reveal the need for sufficient water intake irrespective of the drinking water type. Sci Rep 2022; 12:10911. [PMID: 35764881 PMCID: PMC9240086 DOI: 10.1038/s41598-022-14815-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/13/2022] [Indexed: 12/05/2022] Open
Abstract
This study sought to characterize the impact of long-term dehydration in terms of physiological and biochemical parameters, as well as renal transcriptomes. Furthermore, we assessed whether consumption of specific types of water elicit more beneficial effects on these health parameters. To this end, C57BL/6 mice were either provided water for 15 min/day over 2 and 4 weeks (water restricted; RES), or ad libitum access to distilled (CON), tap, spring, or purified water. Results show that water restriction decreases urine output and hematocrit levels while increasing brain vasopressin mRNA levels in RES mice compared to control mice (CON). Meanwhile, blood urea nitrogen and creatinine levels were higher in the RES group compared to the CON group. Kidney transcriptome analysis further identified kidney damage as the most significant biological process modulated by dehydration. Mechanistically, prolonged dehydration induces kidney damage by suppressing the NRF2-signaling pathway, which targets the cytoprotective defense system. However, type of drinking water does not appear to impact physiological or blood biochemical parameters, nor the renal transcriptome profile, suggesting that sufficient water consumption is critical, irrespective of the water type. Importantly, these findings also inform practical action for environmental sustainability by providing a theoretical basis for reducing bottled water consumption.
Collapse
|
12
|
Boumansour L, Benhafri N, Guillon G, Corbani M, Touati H, Dekar-Madoui A, Ouali-Hassenaoui S. Vasopressin and oxytocin expression in hypothalamic supraoptic nucleus and plasma electrolytes changes in water-deprived male Meriones libycus. Anim Cells Syst (Seoul) 2021; 25:337-346. [PMID: 34745439 PMCID: PMC8567926 DOI: 10.1080/19768354.2021.1986130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In mammals, plasmatic osmolality needs to be stable, and it is highly related to the hydric state of the animals which depends on the activity of the hypothalamic neurohypophysial system and more particularly by vasopressin secretion. Meriones, a desert rodent, can survive even without drinking for more than one month. The mechanism(s) by which they survive under these conditions remains poorly understood. In this study, we examine the water’s deprivation consequences on the: (1) anatomy, morphology, and physiology of the hypothalamic supraoptic nucleus, (2) body mass and plasma electrolytes changes in male desert rodents ‘Meriones libycus’ subjected to water deprivation for 30 days. The effect of water deprivation was evaluated on the structural and cellular organization of the supraoptic nucleus by morphological observations and immunohistochemical approaches, allowing the labeling of AVP but also oxytocin. Our finding demonstrated that upon water deprivation (1) the body weight decreased and reached a plateau after a month of water restriction. (2) The plasmatic osmolality began to decrease and return to values similar to control animals at day 30. (3) The SON, both in hydrated and water-deprived animals, is highly developed.(4) The AVP labeling in the SON increased upon dehydration at variance with OT. These changes observed in body mass and plasma osmolality reveal an important adaptive process of male Meriones in response to prolonged water deprivation. Overall, this animal represents an interesting model for the study of water body homeostasis and the mechanisms underlying the survival of desert rodents to xeric environments.
Collapse
Affiliation(s)
- Lydia Boumansour
- Faculty of Biological Sciences, Laboratory of Biology and Physiology of Organisms, Neurobiology, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria.,Université de Montpellier, CNRS, ISERM, Institut de Génomique Fonctionnelle, Montpellier, France
| | - Nadir Benhafri
- Faculty of Biological Sciences, Laboratory of Biology and Physiology of Organisms, Neurobiology, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| | - Gilles Guillon
- Université de Montpellier, CNRS, ISERM, Institut de Génomique Fonctionnelle, Montpellier, France
| | - Maithe Corbani
- Université de Montpellier, CNRS, ISERM, Institut de Génomique Fonctionnelle, Montpellier, France
| | - Hanane Touati
- Faculty of Biological Sciences, Laboratory of Biology and Physiology of Organisms, Neurobiology, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| | - Aicha Dekar-Madoui
- Faculty of Biological Sciences, Laboratory of Biology and Physiology of Organisms, Neurobiology, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| | - Saliha Ouali-Hassenaoui
- Faculty of Biological Sciences, Laboratory of Biology and Physiology of Organisms, Neurobiology, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| |
Collapse
|
13
|
Colella JP, Blumstein DM, MacManes MD. Disentangling environmental drivers of circadian metabolism in desert-adapted mice. J Exp Biol 2021; 224:jeb242529. [PMID: 34495305 PMCID: PMC8502254 DOI: 10.1242/jeb.242529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/13/2021] [Indexed: 01/21/2023]
Abstract
Metabolism is a complex phenotype shaped by natural environmental rhythms, as well as behavioral, morphological and physiological adaptations. Metabolism has been historically studied under constant environmental conditions, but new methods of continuous metabolic phenotyping now offer a window into organismal responses to dynamic environments, and enable identification of abiotic controls and the timing of physiological responses relative to environmental change. We used indirect calorimetry to characterize metabolic phenotypes of the desert-adapted cactus mouse (Peromyscus eremicus) in response to variable environmental conditions that mimic their native environment versus those recorded under constant warm and constant cool conditions, with a constant photoperiod and full access to resources. We found significant sexual dimorphism, with males being more prone to dehydration than females. Under circadian environmental variation, most metabolic shifts occurred prior to physical environmental change and the timing was disrupted under both constant treatments. The ratio of CO2 produced to O2 consumed (the respiratory quotient) reached greater than 1.0 only during the light phase under diurnally variable conditions, a pattern that strongly suggests that lipogenesis contributes to the production of energy and endogenous water. Our results are consistent with historical descriptions of circadian torpor in this species (torpid by day, active by night), but reject the hypothesis that torpor is initiated by food restriction or negative water balance.
Collapse
Affiliation(s)
| | | | - Matthew D. MacManes
- University of New Hampshire, Department of Molecular, Cellular, and Biomedical Sciences, Durham, NH 03824, USA
| |
Collapse
|
14
|
Alvira-Iraizoz F, Gillard BT, Lin P, Paterson A, Pauža AG, Ali MA, Alabsi AH, Burger PA, Hamadi N, Adem A, Murphy D, Greenwood MP. Multiomic analysis of the Arabian camel (Camelus dromedarius) kidney reveals a role for cholesterol in water conservation. Commun Biol 2021; 4:779. [PMID: 34163009 PMCID: PMC8222267 DOI: 10.1038/s42003-021-02327-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/06/2021] [Indexed: 02/05/2023] Open
Abstract
The Arabian camel (Camelus dromedarius) is the most important livestock animal in arid and semi-arid regions and provides basic necessities to millions of people. In the current context of climate change, there is renewed interest in the mechanisms that enable camelids to survive in arid conditions. Recent investigations described genomic signatures revealing evolutionary adaptations to desert environments. We now present a comprehensive catalogue of the transcriptomes and proteomes of the dromedary kidney and describe how gene expression is modulated as a consequence of chronic dehydration and acute rehydration. Our analyses suggested an enrichment of the cholesterol biosynthetic process and an overrepresentation of categories related to ion transport. Thus, we further validated differentially expressed genes with known roles in water conservation which are affected by changes in cholesterol levels. Our datasets suggest that suppression of cholesterol biosynthesis may facilitate water retention in the kidney by indirectly facilitating the AQP2-mediated water reabsorption.
Collapse
Affiliation(s)
- Fernando Alvira-Iraizoz
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, UK.
| | - Benjamin T Gillard
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, UK
| | - Panjiao Lin
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, UK
| | - Alex Paterson
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, UK
| | - Audrys G Pauža
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, UK
| | - Mahmoud A Ali
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, AL Ain, United Arab Emirates
| | - Ammar H Alabsi
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Pamela A Burger
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, Vetmeduni Vienna, Vienna, Austria
| | - Naserddine Hamadi
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| | - Abdu Adem
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, AL Ain, United Arab Emirates.
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.
| | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, UK
| | - Michael P Greenwood
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
15
|
Bittner NKJ, Mack KL, Nachman MW. Gene expression plasticity and desert adaptation in house mice. Evolution 2021; 75:1477-1491. [PMID: 33458812 PMCID: PMC8218737 DOI: 10.1111/evo.14172] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 12/10/2020] [Accepted: 12/27/2020] [Indexed: 12/26/2022]
Abstract
Understanding how organisms adapt to new environments is a key problem in evolution, yet it remains unclear whether phenotypic plasticity generally facilitates or hinders this process. Here we studied evolved and plastic responses to water-stress in lab-born descendants of wild house mice (Mus musculus domesticus) collected from desert and non-desert environments and measured gene expression and organismal phenotypes under control and water-stressed conditions. After many generations in the lab, desert mice consumed significantly less water than mice from other localities, indicating that this difference has a genetic basis. Under water-stress, desert mice maintained more weight than non-desert mice, and exhibited differences in blood chemistry related to osmoregulatory function. Gene expression in the kidney revealed evolved differences between mice from different environments as well as plastic responses between hydrated and dehydrated mice. Desert mice showed reduced expression plasticity under water-stress compared to non-desert mice. Importantly, non-desert mice under water-stress generally showed shifts toward desert-like expression, consistent with adaptive plasticity. Finally, we identify several co-expression modules linked to phenotypes of interest. These findings provide evidence for local adaptation after a recent invasion and suggest that adaptive plasticity may have facilitated colonization of the desert environment.
Collapse
Affiliation(s)
- Noëlle K J Bittner
- Deparment of Integrative Biology and Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, California, 94720
| | - Katya L Mack
- Deparment of Integrative Biology and Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, California, 94720
- Department of Biology, Stanford University, Stanford, California, 94305
| | - Michael W Nachman
- Deparment of Integrative Biology and Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, California, 94720
| |
Collapse
|
16
|
Colella JP, Tigano A, Dudchenko O, Omer AD, Khan R, Bochkov ID, Aiden EL, MacManes MD. Limited Evidence for Parallel Evolution Among Desert-Adapted Peromyscus Deer Mice. J Hered 2021; 112:286-302. [PMID: 33686424 PMCID: PMC8141686 DOI: 10.1093/jhered/esab009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/27/2021] [Indexed: 01/14/2023] Open
Abstract
Warming climate and increasing desertification urge the identification of genes involved in heat and dehydration tolerance to better inform and target biodiversity conservation efforts. Comparisons among extant desert-adapted species can highlight parallel or convergent patterns of genome evolution through the identification of shared signatures of selection. We generate a chromosome-level genome assembly for the canyon mouse (Peromyscus crinitus) and test for a signature of parallel evolution by comparing signatures of selective sweeps across population-level genomic resequencing data from another congeneric desert specialist (Peromyscus eremicus) and a widely distributed habitat generalist (Peromyscus maniculatus), that may be locally adapted to arid conditions. We identify few shared candidate loci involved in desert adaptation and do not find support for a shared pattern of parallel evolution. Instead, we hypothesize divergent molecular mechanisms of desert adaptation among deer mice, potentially tied to species-specific historical demography, which may limit or enhance adaptation. We identify a number of candidate loci experiencing selective sweeps in the P. crinitus genome that are implicated in osmoregulation (Trypsin, Prostasin) and metabolic tuning (Kallikrein, eIF2-alpha kinase GCN2, APPL1/2), which may be important for accommodating hot and dry environmental conditions.
Collapse
Affiliation(s)
- Jocelyn P Colella
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH.,Hubbard Genome Center, University of New Hampshire, Durham, NH.,Biodiversity Institute, University of Kansas, Lawrence, KS
| | - Anna Tigano
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH.,Hubbard Genome Center, University of New Hampshire, Durham, NH
| | - Olga Dudchenko
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX.,Center for Theoretical and Biological Physics, Rice University, Houston, TX.,Department of Computer Science, Department of Computational and Applied Mathematics, Rice University, Houston, TX
| | - Arina D Omer
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Ruqayya Khan
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX.,Department of Computer Science, Department of Computational and Applied Mathematics, Rice University, Houston, TX
| | - Ivan D Bochkov
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX.,Department of Computer Science, Department of Computational and Applied Mathematics, Rice University, Houston, TX
| | - Erez L Aiden
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX.,Center for Theoretical and Biological Physics, Rice University, Houston, TX.,Department of Computer Science, Department of Computational and Applied Mathematics, Rice University, Houston, TX.,Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China.,School of Agriculture and Environment, University of Western Australia, Perth, WA, Australia
| | - Matthew D MacManes
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH.,Hubbard Genome Center, University of New Hampshire, Durham, NH
| |
Collapse
|
17
|
Rocha JL, Godinho R, Brito JC, Nielsen R. Life in Deserts: The Genetic Basis of Mammalian Desert Adaptation. Trends Ecol Evol 2021; 36:637-650. [PMID: 33863602 DOI: 10.1016/j.tree.2021.03.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022]
Abstract
Deserts are among the harshest environments on Earth. The multiple ages of different deserts and their global distribution provide a unique opportunity to study repeated adaptation at different timescales. Here, we summarize recent genomic research on the genetic mechanisms underlying desert adaptations in mammals. Several studies on different desert mammals show large overlap in functional classes of genes and pathways, consistent with the complexity and variety of phenotypes associated with desert adaptation to water and food scarcity and extreme temperatures. However, studies of desert adaptation are also challenged by a lack of accurate genotype-phenotype-environment maps. We encourage development of systems that facilitate functional analyses, but also acknowledge the need for more studies on a wider variety of desert mammals.
Collapse
Affiliation(s)
- Joana L Rocha
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, 4485-661 Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal.
| | - Raquel Godinho
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, 4485-661 Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; Department of Zoology, University of Johannesburg, PO Box 534, Auckland Park 2006, South Africa
| | - José C Brito
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, 4485-661 Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Rasmus Nielsen
- Department of Integrative Biology and Department of Statistics, University of California Berkeley, Berkeley, CA 94820, USA; Globe Institute, University of Copenhagen, DK-1165 Copenhagen, Denmark.
| |
Collapse
|
18
|
Ali MA, Abu Damir H, Ali OM, Amir N, Tariq S, Greenwood MP, Lin P, Gillard B, Murphy D, Adem A. The effect of long-term dehydration and subsequent rehydration on markers of inflammation, oxidative stress and apoptosis in the camel kidney. BMC Vet Res 2020; 16:458. [PMID: 33228660 PMCID: PMC7686779 DOI: 10.1186/s12917-020-02628-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 10/19/2020] [Indexed: 12/24/2022] Open
Abstract
Background Dehydration has deleterious effects in many species, but camels tolerate long periods of water deprivation without serious health compromise. The kidney plays crucial role in water conservation, however, some reports point to elevated kidney function tests in dehydrated camels. In this work, we investigated the effects of dehydration and rehydration on kidney cortex and medulla with respect to pro-inflammatory markers, oxidative stress and apoptosis along with corresponding gene expression. Results The cytokines IL-1β and IL-18 levels were significantly elevated in the kidney cortex of dehydrated camel, possibly expressed by tubular epithelium, podocytes and/or mesangial cells. Elevation of IL-18 persisted after rehydration. Dehydration induced oxidative stress in kidney cortex evident by significant increases in MDA and GSH, but significant decreases in SOD and CAT. In the medulla, CAT decreased significantly, but MDA, GSH and SOD levels were not affected. Rehydration abolished the oxidative stress. In parallel with the increased levels of MDA, we observed increased levels of PTGS1 mRNA, in MDA synthesis pathway. GCLC mRNA expression level, involved in GSH synthesis, was upregulated in kidney cortex by rehydration. However, both SOD1 and SOD3 mRNA levels dropped, in parallel with SOD activity, in the cortex by dehydration. There were significant increases in caspases 3 and 9, p53 and PARP1, indicating apoptosis was triggered by intrinsic pathway. Expression of BCL2l1 mRNA levels, encoding for BCL-xL, was down regulated by dehydration in cortex. CASP3 expression level increased significantly in medulla by dehydration and continued after rehydration whereas TP53 expression increased in cortex by rehydration. Changes in caspase 8 and TNF-α were negligible to instigate extrinsic apoptotic trail. Generally, apoptotic markers were extremely variable after rehydration indicating that animals did not fully recover within three days. Conclusions Dehydration causes oxidative stress in kidney cortex and apoptosis in cortex and medulla. Kidney cortex and medulla were not homogeneous in all parameters investigated indicating different response to dehydration/rehydration. Some changes in tested parameters directly correlate with alteration in steady-state mRNA levels.
Collapse
Affiliation(s)
- Mahmoud A Ali
- Department of Pharmacology, CollegeofMedicine&HealthSciences, United Arab Emirates University, Al- Ain, United Arab Emirates
| | - Hassan Abu Damir
- Department of Pharmacology, CollegeofMedicine&HealthSciences, United Arab Emirates University, Al- Ain, United Arab Emirates
| | - Osman M Ali
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Naheed Amir
- Department of Pharmacology, CollegeofMedicine&HealthSciences, United Arab Emirates University, Al- Ain, United Arab Emirates
| | - Saeed Tariq
- Department of Anatomy, CollegeofMedicine&HealthSciences, Emirates University, Al-Ain, United Arab Emirates
| | - Michael P Greenwood
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, BS13NY, UK
| | - Panjiao Lin
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, BS13NY, UK
| | - Benjamin Gillard
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, BS13NY, UK
| | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, BS13NY, UK.
| | - Abdu Adem
- Department of Pharmacology, CollegeofMedicine&HealthSciences, United Arab Emirates University, Al- Ain, United Arab Emirates. .,Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University, P.O.Box 127788, Abu Dhabi, UAE.
| |
Collapse
|
19
|
Tigano A, Colella JP, MacManes MD. Comparative and population genomics approaches reveal the basis of adaptation to deserts in a small rodent. Mol Ecol 2020; 29:1300-1314. [PMID: 32130752 PMCID: PMC7204510 DOI: 10.1111/mec.15401] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/19/2020] [Accepted: 02/27/2020] [Indexed: 12/30/2022]
Abstract
Organisms that live in deserts offer the opportunity to investigate how species adapt to environmental conditions that are lethal to most plants and animals. In the hot deserts of North America, high temperatures and lack of water are conspicuous challenges for organisms living there. The cactus mouse (Peromyscus eremicus) displays several adaptations to these conditions, including low metabolic rate, heat tolerance, and the ability to maintain homeostasis under extreme dehydration. To investigate the genomic basis of desert adaptation in cactus mice, we built a chromosome‐level genome assembly and resequenced 26 additional cactus mouse genomes from two locations in southern California (USA). Using these data, we integrated comparative, population, and functional genomic approaches. We identified 16 gene families exhibiting significant contractions or expansions in the cactus mouse compared to 17 other Myodontine rodent genomes, and found 232 sites across the genome associated with selective sweeps. Functional annotations of candidate gene families and selective sweeps revealed a pervasive signature of selection at genes involved in the synthesis and degradation of proteins, consistent with the evolution of cellular mechanisms to cope with protein denaturation caused by thermal and hyperosmotic stress. Other strong candidate genes included receptors for bitter taste, suggesting a dietary shift towards chemically defended desert plants and insects, and a growth factor involved in lipid metabolism, potentially involved in prevention of dehydration. Understanding how species adapted to deserts will provide an important foundation for predicting future evolutionary responses to increasing temperatures, droughts and desertification in the cactus mouse and other species.
Collapse
Affiliation(s)
- Anna Tigano
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA.,Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH, USA
| | - Jocelyn P Colella
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA.,Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH, USA
| | - Matthew D MacManes
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA.,Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
20
|
Hora M, Pontzer H, Wall-Scheffler CM, Sládek V. Dehydration and persistence hunting in Homo erectus. J Hum Evol 2020; 138:102682. [DOI: 10.1016/j.jhevol.2019.102682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 09/06/2019] [Accepted: 09/16/2019] [Indexed: 12/19/2022]
|
21
|
Ribeiro ÂM, Puetz L, Pattinson NB, Dalén L, Deng Y, Zhang G, da Fonseca RR, Smit B, Gilbert MTP. 31° South: The physiology of adaptation to arid conditions in a passerine bird. Mol Ecol 2019; 28:3709-3721. [PMID: 31291502 DOI: 10.1111/mec.15176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 12/17/2022]
Abstract
Arid environments provide ideal ground for investigating the mechanisms of adaptive evolution. High temperatures and low water availability are relentless stressors for many endotherms, including birds; yet birds persist in deserts. While physiological adaptation probably involves metabolic phenotypes, the underlying mechanisms (plasticity, genetics) are largely uncharacterized. To explore this, we took an intraspecific approach that focused on a species that is resident over a mesic to arid gradient, the Karoo scrub-robin (Cercotrichas coryphaeus). Specifically, we integrated environmental (climatic and primary productivity), physiological (metabolic rates: a measure of energy expenditure), genotypic (genetic variation underlying the machinery of energy production) and microbiome (involved in processing food from where energy is retrieved) data, to infer the mechanism of physiological adaptation. We that found the variation in energetic physiology phenotypes and gut microbiome composition are associated with environmental features as well as with variation in genes underlying energy metabolic pathways. Specifically, we identified a small list of candidate adaptive genes, some of them with known ties to relevant physiology phenotypes. Together our results suggest that selective pressures on energetic physiology mediated by genes related to energy homeostasis and possibly microbiota composition may facilitate adaptation to local conditions and provide an explanation to the high avian intraspecific divergence observed in harsh environments.
Collapse
Affiliation(s)
- Ângela M Ribeiro
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Lara Puetz
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | | | - Love Dalén
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Yuan Deng
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Guojie Zhang
- China National GeneBank, BGI-Shenzhen, Shenzhen, China.,Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Rute R da Fonseca
- Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Ben Smit
- Department of Zoology, Nelson Mandela University, Port Elizabeth, South Africa.,Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa
| | - M Thomas P Gilbert
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.,Norwegian University of Science and Technology, University Museum, Trondheim, Norway
| |
Collapse
|
22
|
Daily JW, Zhang T, Wu X, Park S. Chronic water insufficiency induced kidney damage and energy dysregulation despite reduced food intake, which improved gut microbiota in female rats. J Physiol Sci 2019; 69:599-612. [PMID: 30953307 PMCID: PMC10717426 DOI: 10.1007/s12576-019-00668-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 02/17/2019] [Indexed: 01/03/2023]
Abstract
Water intake is recommended for weight loss, but the relationship between water intake and energy metabolism is not clear. We hypothesized that long-term water insufficiency would influence energy, glucose, and lipid metabolism while modulating gut microbiota. Female rats were provided with high-fat diets with different amounts of water and food intake for 6 weeks as follows: water provided for 1 h per day with food ad libitum (WRFA), water supply ad libitum plus pair feeding of with water restricted rats(WAFR), water restriction with ad libitum food for 3 weeks and water and food intake ad libitum for 3 weeks (WR-WA) and ad libitum supply of water and food (WAFA). Water intake in WRFA was about one-third of WAFR and WAFA, whereas food intake was lowered by 30% in WRFA and WAFR than WAFA. Body fat decreased in WRFA and WAFR, but WAFR decreased fat mass more than WRFA. Energy expenditure was lower in WRFA than WAFA and carbohydrate utilization was much higher in WRFA than the other groups. The peak serum glucose concentrations were lower in WAFA than the other groups and WRFA lowered serum insulin levels more than WAFA during OGTT. WRFA shrank the glomerulus with increased apoptotic cells and damaged renal tubules compared to the WAFA and WAFR. WR-WA also exhibited greater glomerular shrinkage and apoptosis that WAFA, but not as much WRFA, indicating that the kidneys were healing after water restriction damage. WRFA exacerbated dyslipidemia compared to the WAFA and WAFR groups. The gut microbiome was similarly modulated in WRFA and WAFR, compared to WAFA, but it was mainly affected by food intake, not water restriction in the host. WRFA and WAFR increased Bacteroidetes and decreased Firmicutes compared WAFA. In conclusion, chronic insufficient water intake induced renal damage, decreased energy expenditure, and exacerbated dyslipidemia in rats with reduced food intake. However, the reduction of food intake improved gut microbiome regardless of insufficient water intake and only minor effects on the microbiome were observed due to water restriction.
Collapse
Affiliation(s)
| | - Ting Zhang
- Department of Food and Nutrition, Obesity/Diabetes Center, Hoseo University, 165 Sechul-Ri, BaeBang-Yup, Asan-Si, ChungNam-Do, Asan, 336-795, South Korea
| | - Xuangao Wu
- Department of Food and Nutrition, Obesity/Diabetes Center, Hoseo University, 165 Sechul-Ri, BaeBang-Yup, Asan-Si, ChungNam-Do, Asan, 336-795, South Korea
| | - Sunmin Park
- Department of Food and Nutrition, Obesity/Diabetes Center, Hoseo University, 165 Sechul-Ri, BaeBang-Yup, Asan-Si, ChungNam-Do, Asan, 336-795, South Korea.
| |
Collapse
|
23
|
Chevalier RL. Evolution, kidney development, and chronic kidney disease. Semin Cell Dev Biol 2019; 91:119-131. [PMID: 29857053 PMCID: PMC6281795 DOI: 10.1016/j.semcdb.2018.05.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/29/2018] [Accepted: 05/28/2018] [Indexed: 12/21/2022]
Abstract
There is a global epidemic of chronic kidney disease (CKD) characterized by a progressive loss of nephrons, ascribed in large part to a rising incidence of hypertension, metabolic syndrome, and type 2 diabetes mellitus. There is a ten-fold variation in nephron number at birth in the general population, and a 50% overall decrease in nephron number in the last decades of life. The vicious cycle of nephron loss stimulating hypertrophy by remaining nephrons and resulting in glomerulosclerosis has been regarded as maladaptive, and only partially responsive to angiotensin inhibition. Advances over the past century in kidney physiology, genetics, and development have elucidated many aspects of nephron formation, structure and function. Parallel advances have been achieved in evolutionary biology, with the emergence of evolutionary medicine, a discipline that promises to provide new insight into the treatment of chronic disease. This review provides a framework for understanding the origins of contemporary developmental nephrology, and recent progress in evolutionary biology. The establishment of evolutionary developmental biology (evo-devo), ecological developmental biology (eco-devo), and developmental origins of health and disease (DOHaD) followed the discovery of the hox gene family, the recognition of the contribution of cumulative environmental stressors to the changing phenotype over the life cycle, and mechanisms of epigenetic regulation. The maturation of evolutionary medicine has contributed to new investigative approaches to cardiovascular disease, cancer, and infectious disease, and promises the same for CKD. By incorporating these principles, developmental nephrology is ideally positioned to answer important questions regarding the fate of nephrons from embryo through senescence.
Collapse
Affiliation(s)
- Robert L Chevalier
- Department of Pediatrics, The University of Virginia, P.O. Box 800386, Charlottesville, VA, United States.
| |
Collapse
|
24
|
Hou Z, Wei C. De novo comparative transcriptome analysis of a rare cicada, with identification of candidate genes related to adaptation to a novel host plant and drier habitats. BMC Genomics 2019; 20:182. [PMID: 30845906 PMCID: PMC6407286 DOI: 10.1186/s12864-019-5547-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/20/2019] [Indexed: 01/18/2023] Open
Abstract
Background Although the importance of host plant chemistry in plant–insect interactions is widely recognized, our understanding about the genetic basis underlying the relationship between changes in midgut proteins and adaptation of plant-feeding insects to novel host plants and habitats is very limited. To address this knowledge gap, the transcriptional profiles of midguts among three populations of the cicada Subpsaltria yangi Chen were compared. Among which, the Hancheng (HC) and Fengxiang (FX) populations occurring in the Loess Plateau feed on Ziziphus jujuba Mill. var. spinosa (Bunge) Hu ex H. F. Chow, while the population occurring in a much drier habitat in the Helan (HL) Mountains is locally specialized on a chemically divergent plant, Ephedra lepidosperma C. Y. Cheng. Results Based on comparative analysis, 1826 (HL vs HC) differentially expressed genes (DEGs) and 723 DEGs (HL vs FX) were identified between the populations utilizing different host plants, including 20, 36, 2, 5 and 2 genes related to digestion, detoxification, oxidation-reduction, stress response and water-deprivation response, respectively, and 35 genes presumably associated with osmoregulation. However, only 183 DEGs were identified between the HC and FX populations, including two genes related to detoxification, two genes related to stress response, and one gene presumably associated with osmoregulation. These results suggest that the weakest expression differences were between the populations utilizing the same host plant and occurring in the closest habitats, which may help explain the metabolic mechanism of adaptation in S. yangi populations to novel host plants and new niches. Conclusions The observed differences in gene expression among S. yangi populations are consistent with the hypothesis that the host plant shift and habitat adaptation in the HL population was facilitated by differential regulation of genes related to digestion, detoxification, oxidation-reduction, stress response, water-deprivation response and osmoregulation. The results may inform future studies on the molecular mechanisms underlying the relationship between changes in midgut proteins and adaptation of herbivorous insects to novel host plants and new niches. Electronic supplementary material The online version of this article (10.1186/s12864-019-5547-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zehai Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Cong Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
25
|
Sexual dimorphism in brain transcriptomes of Amami spiny rats (Tokudaia osimensis): a rodent species where males lack the Y chromosome. BMC Genomics 2019; 20:87. [PMID: 30683046 PMCID: PMC6347839 DOI: 10.1186/s12864-019-5426-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023] Open
Abstract
Background Brain sexual differentiation is sculpted by precise coordination of steroid hormones during development. Programming of several brain regions in males depends upon aromatase conversion of testosterone to estrogen. However, it is not clear the direct contribution that Y chromosome associated genes, especially sex-determining region Y (Sry), might exert on brain sexual differentiation in therian mammals. Two species of spiny rats: Amami spiny rat (Tokudaia osimensis) and Tokunoshima spiny rat (T. tokunoshimensis) lack a Y chromosome/Sry, and these individuals possess an XO chromosome system in both sexes. Both Tokudaia species are highly endangered. To assess the neural transcriptome profile in male and female Amami spiny rats, RNA was isolated from brain samples of adult male and female spiny rats that had died accidentally and used for RNAseq analyses. Results RNAseq analyses confirmed that several genes and individual transcripts were differentially expressed between males and females. In males, seminal vesicle secretory protein 5 (Svs5) and cytochrome P450 1B1 (Cyp1b1) genes were significantly elevated compared to females, whereas serine (or cysteine) peptidase inhibitor, clade A, member 3 N (Serpina3n) was upregulated in females. Many individual transcripts elevated in males included those encoding for zinc finger proteins, e.g. zinc finger protein X-linked (Zfx). Conclusions This method successfully identified several genes and transcripts that showed expression differences in the brain of adult male and female Amami spiny rat. The functional significance of these findings, especially differential expression of transcripts encoding zinc finger proteins, in this unusual rodent species remains to be determined. Electronic supplementary material The online version of this article (10.1186/s12864-019-5426-6) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
Aquaporins in Renal Diseases. Int J Mol Sci 2019; 20:ijms20020366. [PMID: 30654539 PMCID: PMC6359174 DOI: 10.3390/ijms20020366] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 12/16/2022] Open
Abstract
Aquaporins (AQPs) are a family of highly selective transmembrane channels that mainly transport water across the cell and some facilitate low-molecular-weight solutes. Eight AQPs, including AQP1, AQP2, AQP3, AQP4, AQP5, AQP6, AQP7, and AQP11, are expressed in different segments and various cells in the kidney to maintain normal urine concentration function. AQP2 is critical in regulating urine concentrating ability. The expression and function of AQP2 are regulated by a series of transcriptional factors and post-transcriptional phosphorylation, ubiquitination, and glycosylation. Mutation or functional deficiency of AQP2 leads to severe nephrogenic diabetes insipidus. Studies with animal models show AQPs are related to acute kidney injury and various chronic kidney diseases, such as diabetic nephropathy, polycystic kidney disease, and renal cell carcinoma. Experimental data suggest ideal prospects for AQPs as biomarkers and therapeutic targets in clinic. This review article mainly focuses on recent advances in studying AQPs in renal diseases.
Collapse
|
27
|
Giorello FM, Feijoo M, D'Elía G, Naya DE, Valdez L, Opazo JC, Lessa EP. An association between differential expression and genetic divergence in the Patagonian olive mouse (Abrothrix olivacea). Mol Ecol 2018; 27:3274-3286. [PMID: 29940092 DOI: 10.1111/mec.14778] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 12/19/2022]
Abstract
Recent molecular studies have found striking differences between desert-adapted species and model mammals regarding water conservation. In particular, aquaporin 4, a classical gene involved in water regulation of model species, is absent or not expressed in the kidneys of desert-adapted species. To further understand the molecular response to water availability, we studied the Patagonian olive mouse Abrothrix olivacea, a species with an unusually broad ecological tolerance that exhibits a great urine concentration capability. The species is able to occupy both the arid Patagonian steppe and the Valdivian and Magellanic forests. We sampled 95 olive mouse specimens from four localities (two in the steppe and two in the forests) and analysed both phenotypic variables and transcriptomic data to investigate the response of this species to the contrasting environmental conditions. The relative size of the kidney and the ratio of urine to plasma concentrations were, as expected, negatively correlated with annual rainfall. Expression analyses uncovered nearly 3,000 genes that were differentially expressed between steppe and forest samples and indicated that this species resorts to the "classical" gene pathways for water regulation. Differential expression across biomes also involves genes that involved in immune and detoxification functions. Overall, genes that were differentially expressed showed a slight tendency to be more divergent and to display an excess of intermediate allele frequencies, relative to the remaining loci. Our results indicate that both differential expression in pathways involved in water conservation and geographical allelic variation are important in the occupation of contrasting habitats by the Patagonian olive mouse.
Collapse
Affiliation(s)
- Facundo M Giorello
- Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Espacio de Biología Vegetal del Noreste, Centro Universitario de Tacuarembó, Universidad de la República, Tacuarembó, Uruguay
| | - Matias Feijoo
- Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Guillermo D'Elía
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Daniel E Naya
- Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Lourdes Valdez
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Juan C Opazo
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Enrique P Lessa
- Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
28
|
Bulbul M, Dagel T, Afsar B, Ulusu N, Kuwabara M, Covic A, Kanbay M. Disorders of Lipid Metabolism in Chronic Kidney Disease. Blood Purif 2018; 46:144-152. [DOI: 10.1159/000488816] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/25/2018] [Indexed: 01/09/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of death in chronic kidney disease (CKD). One of the most important pathophysiological mechanisms for CVD in patients with CKD is the widespread and possibly accelerated formation of atherosclerotic plaques due to hyperlipidemia, uremic toxins, inflammation, oxidative stress, and endothelial dysfunction. Recent studies showed that the level of oxidized low-density lipoprotein cholesterol increases, and that high-density lipoprotein cholesterol dysfunction occurs as kidney function declines and inflammation becomes more prevalent. In this review, we aimed to discuss the effect of kidney dysfunction, oxidative stress, and inflammation on lipid profile.
Collapse
|
29
|
Elgot A, El Hiba O, Belkouch M, Gamrani H. The underlying physiological basis of the desert rodent Meriones shawi's survival to prolonged water deprivation: Central vasopressin regulation on peripheral kidney water channels AQPs-2. Acta Histochem 2018; 120:65-72. [PMID: 29217107 DOI: 10.1016/j.acthis.2017.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 12/19/2022]
Abstract
Meriones shawi (M. shawi) is a particular semi-desert rodent known by its resistance to long periods of thirst. The aim of the present investigation is to clarify the underlying mechanisms allowing M. shawi to resist to hard conditions of dehydration. For this reason we used two different approaches: i) a morphometric study, which consists in measuring the effect of dehydration on body and kidneys weights as well as the report kidney weight/body weight, ii) By immunohistochemistry, we proceed to study the effect of dehydration on the immunoreactivity of central vasopressin (AVP) and the kidney aquaporin-2 (AQP-2) which is a channel protein that allows water to permeate across cell membranes. Our results showed both a body mass decrease accompanied by a remarkable kidneys hypertrophy. The immunohistochemical study showed a significant increase of AQP-2 immunoreactivity in the medullar part of Meriones kidneys allowing probably to Meriones a great ability to water retention. Consistently, we demonstrate that the increased AQP-2 expression occurred together with an increase in vasopressin (AVP) expression in both hypothalamic supraoptic (SON) and paraventricular nucleus (PVN), which are a major hub in the osmotic control circuitry. These various changes seen either in body weight and kidneys or at the cellular level might be the basis of peripheral control of body water homeostasis, providing to M. shawia strong resistance against chronic dehydration.
Collapse
|
30
|
Kordonowy L, MacManes M. Characterizing the reproductive transcriptomic correlates of acute dehydration in males in the desert-adapted rodent, Peromyscus eremicus. BMC Genomics 2017; 18:473. [PMID: 28645248 PMCID: PMC5481918 DOI: 10.1186/s12864-017-3840-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 06/02/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The understanding of genomic and physiological mechanisms related to how organisms living in extreme environments survive and reproduce is an outstanding question facing evolutionary and organismal biologists. One interesting example of adaptation is related to the survival of mammals in deserts, where extreme water limitation is common. Research on desert rodent adaptations has focused predominantly on adaptations related to surviving dehydration, while potential reproductive physiology adaptations for acute and chronic dehydration have been relatively neglected. This study aims to explore the reproductive consequences of acute dehydration by utilizing RNAseq data in the desert-specialized cactus mouse (Peromyscus eremicus). RESULTS We exposed 22 male cactus mice to either acute dehydration or control (fully hydrated) treatment conditions, quasimapped testes-derived reads to a cactus mouse testes transcriptome, and then evaluated patterns of differential transcript and gene expression. Following statistical evaluation with multiple analytical pipelines, nine genes were consistently differentially expressed between the hydrated and dehydrated mice. We hypothesized that male cactus mice would exhibit minimal reproductive responses to dehydration; therefore, this low number of differentially expressed genes between treatments aligns with current perceptions of this species' extreme desert specialization. However, these differentially expressed genes include Insulin-like 3 (Insl3), a regulator of male fertility and testes descent, as well as the solute carriers Slc45a3 and Slc38a5, which are membrane transport proteins that may facilitate osmoregulation. CONCLUSIONS These results suggest that in male cactus mice, acute dehydration may be linked to reproductive modulation via Insl3, but not through gene expression differences in the subset of other a priori tested reproductive hormones. Although water availability is a reproductive cue in desert-rodents exposed to chronic drought, potential reproductive modification via Insl3 in response to acute water-limitation is a result which is unexpected in an animal capable of surviving and successfully reproducing year-round without available external water sources. Indeed, this work highlights the critical need for integrative research that examines every facet of organismal adaptation, particularly in light of global climate change, which is predicted, amongst other things, to increase climate variability, thereby exposing desert animals more frequently to the acute drought conditions explored here.
Collapse
Affiliation(s)
- Lauren Kordonowy
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Rudman Hall (MCBS), 46 College Road, Durham, 03824 NH USA
| | - Matthew MacManes
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Rudman Hall (MCBS), 46 College Road, Durham, 03824 NH USA
| |
Collapse
|