1
|
Tahir H, Munir N, Iqbal SS, Bacha U, Amir S, Umar H, Riaz M, Tahir IM, Ali Shah SM, Shafiq A, Akram M. Maternal vitamin D status and attention deficit hyperactivity disorder (ADHD), an under diagnosed risk factor; A review. EUR J INFLAMM 2023. [DOI: 10.1177/1721727x231161013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Vitamin D is important to mediate several brain processes such as proliferation, apoptosis, and neurotransmission in early stages of life. Vitamin D deficiency during critical periods of development can lead to persistent brain alterations. Vitamin D homeostasis during pregnancy is affected by two factors which includes an increase in mother’s calcitriol levels and an increase in mother’s Vitamin D Binding protein concentrations. Attention deficient hyperactivity disorder (ADHD) is an outcome of a complicated interaction between genetic, environmental, and developmental traits, and genetic factors cover about 80% of the cases. The efficiency of the immune system can be altered by a deficiency of Vitamin D in maternal body and maternal stress during gestation such as perinatal depression. Studies have proved that during gestation if there is a deficiency of vitamin D in maternal body, it can influence the brain development of the fetus and can also alter the synthesis of the brain-derived neurotropic factor. The current manuscript has been compiled to elaborate different factors which are associated with ADHD particularly focusing on the relationship of vitamin D deficiency in mothers. References material was selected from NCBI (PUBMED), Science direct, Google scholar, Publons etc. Using the terms ADHD, Vitamin D and Maternal nutritional status. Although, controversial relationship was found between the deficiency of Vitamin D level in pregnant women and development of ADHD in children but more controlled trials are required for future direction as well as to rule out other associated causes.
Collapse
Affiliation(s)
- Hafsa Tahir
- Department of Nutrition Sciences, School of Health Sciences, University of Management and Technology, Lahore, Pakistan
| | - Naveed Munir
- Department of Biomedical Lab Sciences, School of Health Sciences, University of Management and Technology, Lahore, Pakistan
| | - Syeda Saira Iqbal
- Knowledge Research and Support Services, University of Management and Technology, Lahore, Pakistan
| | - Umar Bacha
- Department of Nutrition Sciences, School of Health Sciences, University of Management and Technology, Lahore, Pakistan
| | - Saira Amir
- Department of Nutrition Sciences, School of Health Sciences, University of Management and Technology, Lahore, Pakistan
| | - Hassaan Umar
- School of Pharmaceutical Sciences, Universiti Sains, Malaysia
| | - Muhammad Riaz
- Department of Allied Health Sciences, Sargodha Medical College, University of Sargodha, Sargodha, Pakistan
| | - Imtiaz Mahmood Tahir
- College of Allied Health Professional, Directorate of Medical Sciences, Government College University‐Faisalabad, Faisalabad, Pakistan
| | - Syed Muhammad Ali Shah
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| | - Almina Shafiq
- Department of Biomedical Lab Sciences, School of Health Sciences, University of Management and Technology, Lahore, Pakistan
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
2
|
Vitamin D: Before, during and after Pregnancy: Effect on Neonates and Children. Nutrients 2022; 14:nu14091900. [PMID: 35565867 PMCID: PMC9105305 DOI: 10.3390/nu14091900] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
A worldwide high prevalence of vitamin D (VD) deficiency has become of growing concern because of potential adverse effects on human health, including pregnant women and their offsprings. Beyond its classical function as a regulator of calcium and phosphate metabolism, together with its fundamental role in bone health in every stage of life, its deficiency has been associated to multiple adverse health effects. The classic effects of VD deficiency in pregnancy and neonates have been late hypocalcemia and nutritional rickets. Nevertheless, recent studies have linked VD to fertility and 25(OH)D with several clinical conditions in pregnancy: preeclampsia, gestational diabetes, higher incidence of cesarean section and preterm birth, while in infants, the clinical conditions are low birth weight, lower bone mass and possible relationship with the development of such diseases as bronchiolitis, asthma, type 1 diabetes, multiple sclerosis and autism included as VD non-classical actions. The supplementation with Vitamin D and achievement of optimal levels reduce maternal-fetal and newborn complications. Supplementation in children with VD deficiency reduces the risk of respiratory infections and possibly autoimmune diseases and autism. This review emphasizes the roles of Vitamin D deficiency and the consequences of intervention from preconception to infancy.
Collapse
|
3
|
Abstract
Osteoporosis, characterised by low bone mass, poor bone structure, and an increased risk of fracture, is a major public health problem. There is increasing evidence that the influence of the environment on gene expression, through epigenetic processes, contributes to variation in BMD and fracture risk across the lifecourse. Such epigenetic processes include DNA methylation, histone and chromatin modifications and non-coding RNAs. Examples of associations with phenotype include DNA methylation in utero linked to maternal vitamin D status, and to methylation of target genes such as OPG and RANKL being associated with osteoporosis in later life. Epigenome-wide association studies and multi-omics technologies have further revealed susceptibility loci, and histone acetyltransferases, deacetylases and methylases are being considered as therapeutic targets. This review encompasses recent advances in our understanding of epigenetic mechanisms in the regulation of bone mass and osteoporosis development, and outlines possible diagnostic and prognostic biomarker applications.
Collapse
Affiliation(s)
| | | | - Cyrus Cooper
- MRC Lifecourse Epidemiology Centre, University of Southampton, UK; NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK; NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Nicholas C Harvey
- MRC Lifecourse Epidemiology Centre, University of Southampton, UK; NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK.
| |
Collapse
|
4
|
Curtis EM, Moon RJ, Harvey NC, Cooper C. Maternal vitamin D supplementation during pregnancy. Br Med Bull 2018; 126:57-77. [PMID: 29684104 PMCID: PMC6003599 DOI: 10.1093/bmb/ldy010] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 03/26/2018] [Indexed: 12/19/2022]
Abstract
Introduction Maternal vitamin D status in pregnancy has been linked to many health outcomes in mother and offspring. A wealth of observational studies have reported on both obstetric outcomes and complications, including pre-eclampsia, gestational diabetes, mode and timing of delivery. Many foetal and childhood outcomes are also linked to vitamin D status, including measures of foetal size, body composition and skeletal mineralization, in addition to later childhood outcomes, such as asthma. Sources of data Synthesis of systematic and narrative reviews. Areas of agreement and controversy The findings are generally inconsistent in most areas, and, at present, there is a lack of data from high-quality intervention studies to confirm a causal role for vitamin D in these outcomes. In most areas, the evidence tends towards maternal vitamin D being of overall benefit, but often does not reach statistical significance in meta-analyses. Growing points and areas timely for developing research The most conclusive evidence is in the role of maternal vitamin D supplementation in the prevention of neonatal hypocalcaemia; as a consequence the UK department of health recommends that pregnant women take 400 IU vitamin D daily. High-quality randomized placebo-controlled trials, such as the UK-based MAVIDOS trial, will inform the potential efficacy and safety of vitamin D supplementation in pregnancy across a variety of outcomes.
Collapse
Affiliation(s)
- Elizabeth M Curtis
- MRC Lifecourse Epidemiology Unit, University of Southampton,
Southampton, SO16 6YD, UK
| | - Rebecca J Moon
- MRC Lifecourse Epidemiology Unit, University of Southampton,
Southampton, SO16 6YD, UK
- Paediatric Endocrinology, Southampton University Hospitals NHS
Foundation Trust, Southampton, SO16 6YD, UK
| | - Nicholas C Harvey
- MRC Lifecourse Epidemiology Unit, University of Southampton,
Southampton, SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University of
Southampton and University Hospital Southampton NHS Foundation Trust, Tremona Road,
Southampton, SO16 6YD, UK
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton,
Southampton, SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University of
Southampton and University Hospital Southampton NHS Foundation Trust, Tremona Road,
Southampton, SO16 6YD, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford,
Oxford, OX3 7LD, UK
| |
Collapse
|
5
|
Curtis EM, Suderman M, Phillips CM, Relton C, Harvey NC. Early-life dietary and epigenetic influences on childhood musculoskeletal health: Update on the UK component of the ALPHABET project. NUTR BULL 2018. [DOI: 10.1111/nbu.12322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- E. M. Curtis
- MRC Lifecourse Epidemiology Unit, University of Southampton; Southampton UK
| | - M. Suderman
- MRC Integrative Epidemiology Unit, University of Bristol; Bristol UK
| | - C. M. Phillips
- HRB Centre for Diet and Health Research, University College Dublin; Dublin Ireland
| | - C. Relton
- MRC Integrative Epidemiology Unit, University of Bristol; Bristol UK
| | - N. C. Harvey
- MRC Lifecourse Epidemiology Unit, University of Southampton; Southampton UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust; Southampton UK
| |
Collapse
|
6
|
Vinaiphat A, Thongboonkerd V. Characterizations of PMCA2-interacting complex and its role as a calcium oxalate crystal-binding protein. Cell Mol Life Sci 2018; 75:1461-1482. [PMID: 29085954 PMCID: PMC11105569 DOI: 10.1007/s00018-017-2699-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 12/27/2022]
Abstract
Three isoforms of plasma membrane Ca2+-ATPase (PMCA) are expressed in the kidney. While PMCA1 and PMCA4 play major role in regulating Ca2+ reabsorption, the role for PMCA2 remains vaguely defined. To define PMCA2 function, PMCA2-interacting complex was characterized by immunoprecipitation followed by nanoLC-ESI-Qq-TripleTOF MS/MS (IP-MS). After subtracting non-specific binders using isotype-controlled IP-MS, 474 proteins were identified as PMCA2-interacting partners. Among these, eight were known and 20 were potential PMCA2-interacting partners based on bioinformatic prediction, whereas other 446 were novel and had not been previously reported/predicted. Quantitative immuno-co-localization assay confirmed the association of PMCA2 with these partners. Gene ontology analysis revealed binding activity as the major molecular function of PMCA2-interacting complex. Functional validation using calcium oxalate monohydrate (COM) crystal-protein binding, crystal-cell adhesion, and crystal internalization assays together with neutralization by anti-PMCA2 antibody compared to isotype-controlled IgG and blank control, revealed a novel role of PMCA2 as a COM crystal-binding protein that was crucial for crystal retention and uptake. In summary, a large number of novel PMCA2-interacting proteins have been defined and a novel function of PMCA2 as a COM crystal-binding protein sheds light onto its involvement, at least in part, in kidney stone pathogenesis.
Collapse
Affiliation(s)
- Arada Vinaiphat
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor-SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
- Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor-SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
- Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
7
|
Stafford N, Wilson C, Oceandy D, Neyses L, Cartwright EJ. The Plasma Membrane Calcium ATPases and Their Role as Major New Players in Human Disease. Physiol Rev 2017; 97:1089-1125. [PMID: 28566538 DOI: 10.1152/physrev.00028.2016] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 02/07/2023] Open
Abstract
The Ca2+ extrusion function of the four mammalian isoforms of the plasma membrane calcium ATPases (PMCAs) is well established. There is also ever-increasing detail known of their roles in global and local Ca2+ homeostasis and intracellular Ca2+ signaling in a wide variety of cell types and tissues. It is becoming clear that the spatiotemporal patterns of expression of the PMCAs and the fact that their abundances and relative expression levels vary from cell type to cell type both reflect and impact on their specific functions in these cells. Over recent years it has become increasingly apparent that these genes have potentially significant roles in human health and disease, with PMCAs1-4 being associated with cardiovascular diseases, deafness, autism, ataxia, adenoma, and malarial resistance. This review will bring together evidence of the variety of tissue-specific functions of PMCAs and will highlight the roles these genes play in regulating normal physiological functions and the considerable impact the genes have on human disease.
Collapse
Affiliation(s)
- Nicholas Stafford
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Claire Wilson
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Delvac Oceandy
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Ludwig Neyses
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Elizabeth J Cartwright
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
8
|
Ribiczey P, Papp B, Homolya L, Enyedi Á, Kovács T. Selective upregulation of the expression of plasma membrane calcium ATPase isoforms upon differentiation and 1,25(OH)2D3-vitamin treatment of colon cancer cells. Biochem Biophys Res Commun 2015; 464:189-94. [DOI: 10.1016/j.bbrc.2015.06.113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 11/15/2022]
|
9
|
Lajdova I, Spustova V, Oksa A, Kaderjakova Z, Chorvat D, Morvova M, Sikurova L, Marcek Chorvatova A. The Impact of Vitamin D3 Supplementation on Mechanisms of Cell Calcium Signaling in Chronic Kidney Disease. BIOMED RESEARCH INTERNATIONAL 2015; 2015:807673. [PMID: 26064953 PMCID: PMC4434177 DOI: 10.1155/2015/807673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/19/2014] [Indexed: 01/24/2023]
Abstract
Intracellular calcium concentration in peripheral blood mononuclear cells (PBMCs) of patients with chronic kidney disease (CKD) is significantly increased, and the regulatory mechanisms maintaining cellular calcium homeostasis are impaired. The purpose of this study was to examine the effect of vitamin D3 on predominant regulatory mechanisms of cell calcium homeostasis. The study involved 16 CKD stages 2-3 patients with vitamin D deficiency treated with cholecalciferol 7000-14000 IU/week for 6 months. The regulatory mechanisms of calcium signaling were studied in PBMCs and red blood cells. After vitamin D3 supplementation, serum concentration of 25(OH)D3 increased (P < 0.001) and [Ca(2+)]i decreased (P < 0.001). The differences in [Ca(2+)]i were inversely related to differences in 25(OH)D3 concentration (P < 0.01). Vitamin D3 supplementation decreased the calcium entry through calcium release activated calcium (CRAC) channels and purinergic P2X7 channels. The function of P2X7 receptors was changed in comparison with their baseline status, and the expression of these receptors was reduced. There was no effect of vitamin D3 on P2X7 pores and activity of plasma membrane Ca(2+)-ATPases. Vitamin D3 supplementation had a beneficial effect on [Ca(2+)]i decreasing calcium entry via CRAC and P2X7 channels and reducing P2X7 receptors expression.
Collapse
Affiliation(s)
- Ingrid Lajdova
- Department of Clinical and Experimental Pharmacology, Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Viera Spustova
- Department of Clinical and Experimental Pharmacology, Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Adrian Oksa
- Department of Clinical and Experimental Pharmacology, Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Zuzana Kaderjakova
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 833 03 Bratislava, Slovakia
| | - Dusan Chorvat
- Department of Biophotonics, International Laser Centre, 833 03 Bratislava, Slovakia
| | - Marcela Morvova
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 833 03 Bratislava, Slovakia
| | - Libusa Sikurova
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 833 03 Bratislava, Slovakia
| | | |
Collapse
|
10
|
Ryan ZC, Craig TA, McGee-Lawrence M, Westendorf JJ, Kumar R. Alterations in vitamin D metabolite, parathyroid hormone and fibroblast growth factor-23 concentrations in sclerostin-deficient mice permit the maintenance of a high bone mass. J Steroid Biochem Mol Biol 2015; 148:225-31. [PMID: 25446885 PMCID: PMC4361263 DOI: 10.1016/j.jsbmb.2014.11.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/18/2014] [Accepted: 11/20/2014] [Indexed: 12/30/2022]
Abstract
Humans with mutations of the sclerostin (SOST) gene, and knockout animals in which the Sost gene has been experimentally deleted, exhibit an increase in bone mass. We review the mechanisms by which Sost knockout mice are able to accrete increased amounts of calcium and phosphorus required for the maintenance of a high bone mass. Recently published information from our laboratory, shows that bone mass is increased in Sost-deficient mice through an increase in osteoblast and a decrease in osteoclast activity, which is mediated by activation of β-catenin and an increase in prostacyclin synthesis in osteocytes and osteoblasts. The increases in calcium and phosphorus retention required for enhanced bone mineral accretion are brought about by changes in the vitamin D endocrine system, parathyroid hormone (PTH) and fibroblast growth factor-23 (FGF-23). Thus, in Sost knockout mice, concentrations of serum 1,25-dihydroxyvitamin D (1,25(OH)2D) are increased and concentrations of FGF-23 are decreased thereby allowing a positive calcium and phosphorus balance. Additionally, in the absence of Sost expression, urinary calcium is decreased, either through a direct effect of sclerostin on renal calcium handling, or through its effect on the synthesis of 1,25(OH)2D. Adaptations in vitamin D, PTH and FGF-23 physiology occur in the absence of sclerostin expression and mediate increased calcium and phosphorus retention required for the increase in bone mineralization. This article is part of a Special Issue entitled '17th Vitamin D Workshop'.
Collapse
Affiliation(s)
- Zachary C Ryan
- Division of Nephrology and Hypertension, Mayo Clinic, 200 1st St., SW, Rochester, MN 55905, USA; Department of Internal Medicine, Mayo Clinic, 200 1st St., SW, Rochester, MN 55905 USA
| | - Theodore A Craig
- Division of Nephrology and Hypertension, Mayo Clinic, 200 1st St., SW, Rochester, MN 55905, USA; Department of Internal Medicine, Mayo Clinic, 200 1st St., SW, Rochester, MN 55905 USA
| | - Meghan McGee-Lawrence
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA, USA
| | - Jennifer J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St., SW, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 1st St., SW, Rochester, MN 55905, USA
| | - Rajiv Kumar
- Division of Nephrology and Hypertension, Mayo Clinic, 200 1st St., SW, Rochester, MN 55905, USA; Department of Internal Medicine, Mayo Clinic, 200 1st St., SW, Rochester, MN 55905 USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 1st St., SW, Rochester, MN 55905, USA.
| |
Collapse
|
11
|
Harvey N, Dennison E, Cooper C. Osteoporosis: a lifecourse approach. J Bone Miner Res 2014; 29:1917-25. [PMID: 24861883 DOI: 10.1002/jbmr.2286] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/25/2014] [Accepted: 05/16/2014] [Indexed: 01/20/2023]
Abstract
It is becoming increasingly apparent that the risk of developing osteoporosis is accrued throughout the entire lifecourse, even from as early as conception. Thus early growth is associated with bone mass at peak and in older age, and risk of hip fracture. Novel findings from mother-offspring cohorts have yielded greater understanding of relationships between patterns of intrauterine and postnatal growth in the context of later bone development. Study of biological samples from these populations has helped characterize potential mechanistic underpinnings, such as epigenetic processes. Global policy has recognized the importance of early growth and nutrition to the risk of developing adult chronic noncommunicable diseases such as osteoporosis; testing of pregnancy interventions aimed at optimizing offspring bone health is now underway. It is hoped that through such programs, novel public health strategies may be established with the ultimate goal of reducing the burden of osteoporotic fracture in older age.
Collapse
Affiliation(s)
- Nicholas Harvey
- Medical Research Council (MRC) Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK; National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | | | |
Collapse
|
12
|
Curtis EM, Moon RJ, Dennison EM, Harvey NC. Prenatal calcium and vitamin D intake, and bone mass in later life. Curr Osteoporos Rep 2014; 12:194-204. [PMID: 24740166 DOI: 10.1007/s11914-014-0210-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The aging population will result in an increasing burden of osteoporotic fractures, necessitating the identification of novel strategies for prevention. There is increasing recognition that factors in utero may influence bone mineral accrual, and, thus, osteoporosis risk. The role of calcium and vitamin D has received much attention in recent years, and in this review, we will survey available studies relating maternal calcium and vitamin D status during pregnancy to offspring bone development. The evidence base supporting a positive influence on intrauterine skeletal growth appears somewhat stronger for maternal 25(OH)-vitamin D concentration than for calcium intake, and the available data point toward the need for high-quality randomized controlled trials in order to inform public health policy. It is only with such a rigorous approach that it will be possible to delineate the optimal strategy for vitamin D supplementation in pregnancy in relation to offspring bone health.
Collapse
Affiliation(s)
- Elizabeth M Curtis
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK
| | | | | | | |
Collapse
|
13
|
Kumar R, Vallon V. Reduced renal calcium excretion in the absence of sclerostin expression: evidence for a novel calcium-regulating bone kidney axis. J Am Soc Nephrol 2014; 25:2159-68. [PMID: 24876121 DOI: 10.1681/asn.2014020166] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The kidneys contribute to calcium homeostasis by adjusting the reabsorption and excretion of filtered calcium through processes that are regulated by parathyroid hormone (PTH) and 1α,25-dihydroxyvitamin D3 (1α,25[OH]2D3). Most of the filtered calcium is reabsorbed in the proximal tubule, primarily by paracellular mechanisms that are not sensitive to calcium-regulating hormones in physiologically relevant ways. In the distal tubule, however, calcium is reabsorbed by channels and transporters, the activity or expression of which is highly regulated and increased by PTH and 1α,25(OH)2D3. Recent research suggests that other, heretofore unrecognized factors, such as the osteocyte-specific protein sclerostin, also regulate renal calcium excretion. Clues in this regard have come from the study of humans and mice with inactivating mutations of the sclerostin gene that both have increased skeletal density, which would necessitate an increase in intestinal absorption and/or renal reabsorption of calcium. Deletion of the sclerostin gene in mice significantly diminishes urinary calcium excretion and increases fractional renal calcium reabsorption. This is associated with increased circulating 1α,25(OH)2D3 levels, whereas sclerostin directly suppresses 1α-hydroxylase in immortalized proximal tubular cells. Thus, evidence is accumulating that sclerostin directly or indirectly reduces renal calcium reabsorption, suggesting the presence of a novel calcium-excreting bone-kidney axis.
Collapse
Affiliation(s)
- Rajiv Kumar
- Division of Nephrology and Hypertension, Department of Medicine, Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota; and
| | - Volker Vallon
- Division of Nephrology and Hypertension, Departments of Medicine and Pharmacology, University of California San Diego, and Veterans Affairs San Diego Healthcare System, San Diego, California
| |
Collapse
|
14
|
Harvey NC, Sheppard A, Godfrey KM, McLean C, Garratt E, Ntani G, Davies L, Murray R, Inskip HM, Gluckman PD, Hanson MA, Lillycrop KA, Cooper C. Childhood bone mineral content is associated with methylation status of the RXRA promoter at birth. J Bone Miner Res 2014; 29:600-7. [PMID: 23907847 PMCID: PMC3836689 DOI: 10.1002/jbmr.2056] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 07/16/2013] [Accepted: 07/22/2013] [Indexed: 01/17/2023]
Abstract
Maternal vitamin D deficiency has been associated with reduced offspring bone mineral accrual. Retinoid-X receptor-alpha (RXRA) is an essential cofactor in the action of 1,25-dihydroxyvitamin D (1,25[OH]2 -vitamin D), and RXRA methylation in umbilical cord DNA has been associated with later offspring adiposity. We tested the hypothesis that RXRA methylation in umbilical cord DNA collected at birth is associated with offspring skeletal development, assessed by dual-energy X-ray absorptiometry, in a population-based mother-offspring cohort (Southampton Women's Survey). Relationships between maternal plasma 25-hydroxyvitamin D (25[OH]-vitamin D) concentrations and cord RXRA methylation were also investigated. In 230 children aged 4 years, a higher percent methylation at four of six RXRA CpG sites measured was correlated with lower offspring bone mineral content (BMC) corrected for body size (β = -2.1 to -3.4 g/SD, p = 0.002 to 0.047). In a second independent cohort (n = 64), similar negative associations at two of these CpG sites, but positive associations at the two remaining sites, were observed; however, none of the relationships in this replication cohort achieved statistical significance. The maternal free 25(OH)-vitamin D index was negatively associated with methylation at one of these RXRA CpG sites (β = -3.3 SD/unit, p = 0.03). Thus, perinatal epigenetic marking at the RXRA promoter region in umbilical cord was inversely associated with offspring size-corrected BMC in childhood. The potential mechanistic and functional significance of this finding remains a subject for further investigation.
Collapse
Affiliation(s)
| | - Allan Sheppard
- Liggins Institute, University of Auckland, New Zealand
- AgResearch, Ruakura Research Centre, Hamilton, New Zealand
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Unit, University of Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton, UK
| | - Cameron McLean
- Liggins Institute, University of Auckland, New Zealand
- AgResearch, Ruakura Research Centre, Hamilton, New Zealand
| | - Emma Garratt
- Southampton Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Georgia Ntani
- MRC Lifecourse Epidemiology Unit, University of Southampton, UK
| | - Lucy Davies
- MRC Lifecourse Epidemiology Unit, University of Southampton, UK
| | - Robert Murray
- Southampton Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Hazel M Inskip
- MRC Lifecourse Epidemiology Unit, University of Southampton, UK
| | - Peter D Gluckman
- Liggins Institute, University of Auckland, New Zealand
- Singapore Institute for Clinical Sciences, Singapore
| | - Mark A Hanson
- Southampton Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Karen A Lillycrop
- Southampton Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, UK
| |
Collapse
|
15
|
Coordinated regulation of TRPV5-mediated Ca²⁺ transport in primary distal convolution cultures. Pflugers Arch 2014; 466:2077-87. [PMID: 24557712 DOI: 10.1007/s00424-014-1470-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 01/31/2014] [Indexed: 01/29/2023]
Abstract
Fine-tuning of renal calcium ion (Ca(2+)) reabsorption takes place in the distal convoluted and connecting tubules (distal convolution) of the kidney via transcellular Ca(2+) transport, a process controlled by the epithelial Ca(2+) channel Transient Receptor Potential Vanilloid 5 (TRPV5). Studies to delineate the molecular mechanism of transcellular Ca(2+) transport are seriously hampered by the lack of a suitable cell model. The present study describes the establishment and validation of a primary murine cell model of the distal convolution. Viable kidney tubules were isolated from mice expressing enhanced Green Fluorescent Protein (eGFP) under the control of a TRPV5 promoter (pTRPV5-eGFP), using Complex Object Parametric Analyser and Sorting (COPAS) technology. Tubules were grown into tight monolayers on semi-permeable supports. Radioactive (45)Ca(2+) assays showed apical-to-basolateral transport rates of 13.5 ± 1.2 nmol/h/cm(2), which were enhanced by the calciotropic hormones parathyroid hormone and 1,25-dihydroxy vitamin D3. Cell cultures lacking TRPV5, generated by crossbreeding pTRPV5-eGFP with TRPV5 knockout mice (TRPV5(-/-)), showed significantly reduced transepithelial Ca(2+) transport (26 % of control), for the first time directly confirming the key role of TRPV5. Most importantly, using this cell model, a novel molecular player in transepithelial Ca(2+) transport was identified: mRNA analysis revealed that ATP-dependent Ca(2+)-ATPase 4 (PMCA4) instead of PMCA1 was enriched in isolated tubules and downregulated in TRPV5(-/-) material. Immunohistochemical stainings confirmed co-localization of PMCA4 with TRPV5 in the distal convolution. In conclusion, a novel primary cell model with TRPV5-dependent Ca(2+) transport characteristics was successfully established, enabling comprehensive studies of transcellular Ca(2+) transport.
Collapse
|
16
|
Oliveira AG, Aquino DJQ, Mahecha GAB, Oliveira CA. Involvement of the transepithelial calcium transport disruption and the formation of epididymal stones in roosters. Reproduction 2012; 143:835-44. [PMID: 22454531 DOI: 10.1530/rep-12-0034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Epididymal lithiasis is a dysfunction of unknown origin characterized by the formation of calcium stones into the lumen of efferent ductules of roosters. Affected animals present an imbalance in the hormonal responsive systems that regulate the expression of proteins involved in the transepithelial calcium transport, as TRPV6, CaBP-D28K, NCX1, and PMCA. Because the efferent ductules are the major site of fluid and calcium reabsorption in excurrent ducts, it was hypothesized that impairment in local calcium homeostasis would lead to lithiasis. To test this hypothesis, we addressed the expression of these proteins in the epididymal region of affected animals. The present study focused on the investigation of the occurrence, tissue distribution, and physiological impact of the transepithelial calcium transport in roosters under normal and pathological conditions. The results showed that affected roosters presented a significant increase in TRPV6 and CaBP-D28k levels, whereas NCX1 and PMCA were not changed. Such alterations were more conspicuous in the proximal efferent ductules, in which was also observed accumulation of calcium within the epithelial cells. These findings provided the first evidences for the involvement of alteration in the expression of proteins essential for calcium reabsorption as a plausible mechanism for the formation of calcium stones within efferent ductules.
Collapse
Affiliation(s)
- André Gustavo Oliveira
- Department of Morphology, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | | | | | | |
Collapse
|
17
|
Xi Q, Wang S, Ye Z, Liu J, Yu X, Zhu Z, Su S, Bai J, Li C. Adenovirus-delivered microRNA targeting the vitamin D receptor reduces intracellular Ca²⁺ concentrations by regulating the expression of Ca²⁺-transport proteins in renal epithelial cells. BJU Int 2011; 107:1314-9. [PMID: 20553254 DOI: 10.1111/j.1464-410x.2010.09444.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
UNLABELLED What’s known on the subject? and What does the study add? Experimental data have shown that VDR overexpression in the duodenum and kidney cortex is a biological characteristic of genetic hypercalciuric stone-forming rats (GHS rat), and a link between idiopathic calcium stone formation and the microstatellite marker D12S339 (near the VDR locus) has been proven in humans. Our study shows that VDR can positively regulate the mRNA and protein expression of TRPV5, calbindin-D28k and PMCA1b in NRK cell lines. VDR knockdown results in a decrease in intracellular Ca²⁺ concentration in NRK cell lines. The effect of the elevated VDR level in the kidney on hypercalciuria and the underlying mechanisms need to be further addressed. OBJECTIVE • To determine the effects of vitamin D receptor (VDR) on hypercalciuria and the mechanisms underlying such effects. MATERIALS AND METHODS • The adenovirus vector-delivered microRNA targeting rat VDR was constructed. We infected the normal rat kidney epithelial cell line NRK (Cellbank, China) with the adenovirus and then collected the cells at 0, 48, 72, 96, 120 h after infection. The mRNA and protein levels of VDR and VDR-dependent epithelial Ca2+ transport proteins were detected using real-time polymerase chain reaction and Western blot assays, respectively. • Fluorescent Ca²⁺ indicator Fluo-4 NW (Fluo-4 NW calcium assay kit, Molecular Probes, Invitrogen, USA) and laser scanning confocal microscope (Olympus, FV500-IX71, Japan) were used to detect the cytosolic free Ca²⁺ concentration at different time points after infection. RESULTS • The mRNA and protein level of VDR, transient receptor potential vanilloid receptor subtype 5 (TRPV5), calbindin-D28k and plasma membrane Ca²⁺-ATPase (PMCA1b) in infected NRK cells was significantly lower at 72 and 96 h after infection than that in control cells. • There was no significant difference between the two groups in the mRNA and protein level of TRPV6 and the Na⁺/Ca²⁺-exchanger (NCX1). • Furthermore, VDR knockdown results in a decrease in intracellular Ca²⁺ concentration ([Ca²⁺]i) in NRK cell lines. CONCLUSIONS • Our study shows that VDR can positively regulate the mRNA and protein expression of TRPV5, calbindin-D28k and PMCA1b, but not of TRPV6 or NCX1, in NRK cell lines. VDR knockdown results in a decrease in [Ca²⁺]i in NRK cell lines. • The effect of the elevated VDR level in the kidney on hypercalciuria and the mechanisms underlying need to be further addressed.
Collapse
Affiliation(s)
- Qilin Xi
- Department of Urology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, HuBei, China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Oliveira AG, Dornas RAP, Praes LC, Hess RA, Mahecha GAB, Oliveira CA. Roosters affected by epididymal lithiasis present local alteration in vitamin D3, testosterone and estradiol levels as well as estrogen receptor 2 (β) expression. Reproduction 2011; 142:439-46. [DOI: 10.1530/rep-11-0131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Epididymal lithiasis is a reproductive dysfunction of roosters that is associated with loss of fertility and is characterized by the formation of calcium stones in the lumen of the efferent ductules of the epididymal region. The efferent ductules of birds are responsible for the reabsorption of the fluid coming from the testis as well as luminal calcium. It has been hypothesized that the epididymal stone formation may be related to the impairment of local fluid or calcium homeostasis, which depends on hormones such as estradiol (E2). Therefore, this study aimed to investigate possible alterations in the expression of ERα (ESR1) and ERβ (ESR2) in the epididymal region of roosters affected by epididymal lithiasis. The study was performed by immunohistochemistry and western blotting assays. In addition, the concentrations of E2, vitamin D3, and testosterone, which are also key hormones in maintenance of calcium homeostasis, were determined in the plasma and epididymal region, by ELISA. It was observed that ESR2 expression is increased in all segments of the epididymal region of affected roosters, whereas ESR1 levels are not altered. Moreover, the hormone concentration profiles were changed, as in the epididymal region of roosters with lithiasis the E2levels were increased and vitamin D3 as well as testosterone concentrations were significantly decreased. These results suggest that a hormonal imbalance may be involved with the origin and progression of the epididymal lithiasis, possibly by affecting the local fluid or calcium homeostasis.
Collapse
|
19
|
Zhang Y, Papasian CJ, Deng HW. Alteration of vitamin D metabolic enzyme expression and calcium transporter abundance in kidney involved in type 1 diabetes-induced bone loss. Osteoporos Int 2011; 22:1781-8. [PMID: 20878391 PMCID: PMC4537183 DOI: 10.1007/s00198-010-1404-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 08/17/2010] [Indexed: 12/24/2022]
Abstract
UNLABELLED This study aimed to delineate the mechanism involved in type 1 diabetes-induced bone loss. The results revealed the alteration of vitamin D metabolic enzyme expression and the downregulation of renal calcium transporter abundance in type 1 diabetic mice. INTRODUCTION The purpose of this study was to investigate the changes of the expression of vitamin D metabolic enzymes and transcellular calcium-transporting proteins in kidneys from mice with experimentally induced diabetes. METHODS Male DBA/2J mice were injected with either vehicle (control) or streptozotocin (STZ) daily for five consecutive days. Bone mineral density was measured by peripheral quantitative computerized tomography, and bone histomorphology was analyzed by Safranin O staining. Real-time PCR and Western blotting were applied to determine the expression of target genes and proteins. RESULTS Type 1 diabetes produced high urinary calcium excretion and loss of trabecular bone measured at the proximal metaphysis of the tibia and the distal femur. Bone loss was associated with deterioration of trabecular bone microstructure. Quantified PCR results showed that mRNA expression level in the kidney of diabetic mice for 25-hydroxyvitamin D-24-hydroxylase was downregulated at week 10, while those for 25-hydroxyvitamin D-1α-hydroxylase were upregulated at week 20. In addition, mRNA expression levels for renal transient receptor potential V6, plasma membrane Ca-ATPase (PMCA)1b, and vitamin D receptor (VDR) genes were decreased in STZ-treated mice. Western blot analysis showed that protein expression of PMCA1b and VDR was significantly decreased in kidneys from STZ-treated mice compared to that of controls. CONCLUSIONS The limitation in this study is the lack of vitamin D, parathyroid hormone, and phosphorus levels in serum. However, the present study supports the conclusion that the underlying mechanism contributing to type 1 diabetes-associated bone loss may be alterations of vitamin D metabolic enzyme expression and associated decreases in expression of renal calcium transporters.
Collapse
Affiliation(s)
- Y Zhang
- Center of System Biomedical Sciences, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China.
| | | | | |
Collapse
|
20
|
Lafont AG, Wang YF, Chen GD, Liao BK, Tseng YC, Huang CJ, Hwang PP. Involvement of calcitonin and its receptor in the control of calcium-regulating genes and calcium homeostasis in zebrafish (Danio rerio). J Bone Miner Res 2011; 26:1072-83. [PMID: 21542008 DOI: 10.1002/jbmr.301] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Calcitonin (CT) is one of the hormones involved in vertebrate calcium regulation. It has been proposed to act as a hypocalcemic factor, but the regulatory pathways remain to be clarified. We investigated the CT/calcitonin gene-related peptide (CGRP) family in zebrafish and its potential involvement in calcium homeostasis. We identified the presence of four receptors: CTR, CRLR1, CRLR2, and CRLR3. From the phylogenetic analysis, together with the effect observed after CT and CGRP overexpression, we concluded that CTR appears to be a CT receptor and CRLR1 a CGRP receptor. The distribution of these two receptors shows a major presence in the central nervous system and in tissues involved in ionoregulation. Zebrafish embryos kept in high-Ca(2+)-concentration medium showed upregulation of CT and CTR expression and downregulation of the epithelial calcium channel (ECaC). Embryos injected with CT morpholino (CALC MO) incubated in high-Ca(2+) medium, showed downregulation of CTR together with upregulation on ECaC mRNA expression. In contrast, overexpression of CT cRNA induced the downregulation of ECaC mRNA synthesis, concomitant with the downregulation in the calcium content after 30 hours postfertilization. At 4 days postfertilization, CT cRNA injection induced upregulation of hypercalcemic factors, with subsequent increase in the calcium content. These results suggest that CT acts as a hypocalcemic factor in calcium regulation, probably through inhibition of ECaC synthesis.
Collapse
Affiliation(s)
- Anne-Gaëlle Lafont
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
21
|
Goodfellow LR, Cooper C, Harvey NC. Regulation of placental calcium transport and offspring bone health. Front Endocrinol (Lausanne) 2011; 2:3. [PMID: 22649358 PMCID: PMC3355895 DOI: 10.3389/fendo.2011.00003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 01/31/2011] [Indexed: 11/24/2022] Open
Abstract
Osteoporosis causes considerable morbidity and mortality in later life, and the risk of the disease is strongly determined by peak bone mass, which is achieved in early adulthood. Poor intrauterine and early childhood growth are associated with reduced peak bone mass, and increased risk of osteoporotic fracture in older age. In this review we describe the regulatory aspects of intrauterine bone development, and then summarize the evidence relating early growth to later fracture risk. Physiological systems include vitamin D, parathyroid hormone, leptin, GH/IGF-1; finally the potential role of epigenetic processes in the underlying mechanisms will be explored. Thus factors such as maternal lifestyle, diet, body build, physical activity, and vitamin D status in pregnancy all appear to influence offspring bone mineral accrual. These data demonstrate a likely interaction between environmental factors and gene expression, a phenomenon ubiquitous in the natural world (developmental plasticity), as the potential key process. Intervention studies are now required to test the hypotheses generated by these epidemiological and physiological findings, to inform potential novel public health interventions aimed at improving childhood bone health and reducing the burden of osteoporotic fracture in future generations.
Collapse
Affiliation(s)
- Laura R. Goodfellow
- The MRC Lifecourse Epidemiology Unit, Southampton General Hospital, University of SouthamptonSouthampton, UK
| | - Cyrus Cooper
- The MRC Lifecourse Epidemiology Unit, Southampton General Hospital, University of SouthamptonSouthampton, UK
| | - Nicholas C. Harvey
- The MRC Lifecourse Epidemiology Unit, Southampton General Hospital, University of SouthamptonSouthampton, UK
| |
Collapse
|
22
|
Ritchie MF, Zhou Y, Soboloff J. Transcriptional mechanisms regulating Ca(2+) homeostasis. Cell Calcium 2010; 49:314-21. [PMID: 21074851 DOI: 10.1016/j.ceca.2010.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Revised: 09/29/2010] [Accepted: 10/01/2010] [Indexed: 01/08/2023]
Abstract
Ca(2+) is a dynamic cellular secondary messenger which mediates a vast array of cellular responses. Control over these processes is achieved via an extensive combination of pumps and channels which regulate the concentration of Ca(2+) within not only the cytosol but also all intracellular compartments. Precisely how these pumps and channels are regulated is only partially understood, however, recent investigations have identified members of the Early Growth Response (EGR) family of zinc finger transcription factors as critical players in this process. The roles of several other transcription factors in control of Ca(2+) homeostasis have also been demonstrated, including Wilms Tumor Suppressor 1 (WT1), Nuclear Factor of Activated T cells (NFAT) and c-myc. In this review, we will discuss not only how these transcription factors regulate the expression of the major proteins involved in control of Ca(2+) homeostasis, but also how this transcriptional remodeling of Ca(2+) homeostasis affects Ca(2+) dynamics and cellular responses.
Collapse
Affiliation(s)
- Michael F Ritchie
- Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA 19140, United States
| | | | | |
Collapse
|
23
|
Rocafull MA, Thomas LE, Barrera GJ, Castillo JRD. Differential expression of P-type ATPases in intestinal epithelial cells: Identification of putative new atp1a1 splice-variant. Biochem Biophys Res Commun 2010; 391:152-8. [PMID: 19900414 DOI: 10.1016/j.bbrc.2009.11.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 11/03/2009] [Indexed: 11/28/2022]
Affiliation(s)
- Miguel A Rocafull
- Lab. Fisiología Molecular, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Apartado 20632, Caracas 1020-A, Venezuela.
| | | | | | | |
Collapse
|
24
|
Moya A, Tambutté S, Béranger G, Gaume B, Scimeca JC, Allemand D, Zoccola D. Cloning and use of a coral 36B4 gene to study the differential expression of coral genes between light and dark conditions. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2008; 10:653-663. [PMID: 18425549 DOI: 10.1007/s10126-008-9101-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 02/19/2008] [Accepted: 03/17/2008] [Indexed: 05/26/2023]
Abstract
This paper aims to validate reference genes for gene expression studies between light and dark conditions in the scleractinian coral Stylophora pistillata for future gene expression studies of the "light-enhanced calcification" phenomenon. For this purpose, we cloned, sequenced, and characterized a candidate reference gene, the 36B4 gene from the coral S. pistillata, and validated 36B4 and beta-actin as reference genes. To illustrate the future applications of these reference genes, we tested the dark and light expression of two photosynthetic genes (Rubisco and D1 protein of the photosystem II) and two genes encoding proteins involved in calcium transport for coral calcification (a calcium ATPase and a calcium channel). Results show that both photosynthetic genes are enhanced during the light when standardized against 36B4 and beta-actin, whereas the two genes encoding proteins involved in calcium transport are not differentially expressed between light and dark conditions. The characterization of a coral 36B4 and the establishment of such valid reference genes will be useful for future gene expression studies between diverse conditions (aposymbiotic/symbiotic, stress/control, light/dark conditions) in scleractinian corals.
Collapse
Affiliation(s)
- Aurélie Moya
- Centre Scientifique de Monaco, Avenue Saint-Martin, MC-98000, Monaco, Principality of Monaco
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
1. Calcium (re)absorption occurs in epithelia, including the intestine, kidney, mammary glands, placenta and gills (in the case of fish). 2. Calcium is transported across epithelia by two transport mechanisms, paracellular and transcellular, and the movement is regulated by a complex array of transport processes that are mediated by hormonal, developmental and physiological factors involving the gastrointestinal tract, bone, kidney and the parathyroids. 3. Clear understanding of the calcium transport pathways and their endocrine regulation is critical for minimizing various metabolic and health disorders at different physiological stages. Here, we first briefly review the calcium transport mechanisms before discussing in detail the endocrine factors that regulate calcium transport in the epithelia.
Collapse
Affiliation(s)
- Ramesh C Khanal
- Department of Food Science, University of Arkansas, Fayetteville, Arizona, Utah State University, Logan, Utah, USA
| | | |
Collapse
|
26
|
Garland CF, Grant WB, Mohr SB, Gorham ED, Garland FC. What is the dose-response relationship between vitamin D and cancer risk? Nutr Rev 2007; 65:S91-5. [PMID: 17867379 DOI: 10.1111/j.1753-4887.2007.tb00349.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Cedric F Garland
- Department of Family and Preventive Medicine, School of Medicine, University of California-San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA.
| | | | | | | | | |
Collapse
|
27
|
Martin R, Harvey NC, Crozier SR, Poole JR, Javaid MK, Dennison EM, Inskip HM, Hanson M, Godfrey KM, Cooper C, Lewis R. Placental calcium transporter (PMCA3) gene expression predicts intrauterine bone mineral accrual. Bone 2007; 40:1203-8. [PMID: 17336174 DOI: 10.1016/j.bone.2006.12.060] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 11/28/2006] [Accepted: 12/18/2006] [Indexed: 11/22/2022]
Abstract
Evidence is accruing that environmental exposures during critical periods of early development induce persisting changes in skeletal growth, and alter fracture risk in later life. We have previously demonstrated that placental calcium transport, partly determined by maternal 25-(OH) vitamin D status, may underlie this phenomenon. However, the precise relationship between expression of calcium transport proteins in the human placenta, and neonatal bone mineral accrual in the offspring, remains unknown. Tissue samples from 70 human placentae were fast frozen in liquid nitrogen and stored at -70 degrees C. A quantitative real time reverse transcriptase polymerase chain reaction was used to measure the mRNA expression of PMCA isoforms 1-4, using beta-actin as a control gene. Neonatal whole body bone area, mineral content and areal density (BA, BMC, BMD) were measured within 2 weeks of birth using DXA. PMCA3 mRNA expression predicted BA (r=0.28, p=0.02), BMC (r=0.25, p=0.04), placental weight (r=0.26, p=0.04) and birth weight (r=0.33, p=0.006) of the neonate. In a multivariate model, the relationship between placental PMCA3 expression and neonatal BMC was independent of maternal height, pre-pregnant fat stores, parity, physical activity, smoking, and calcium intake (p<0.05). Expression of the placental calcium transporter PMCA3 mRNA predicts neonatal whole body bone mineral content. This association may explain, in part, the mechanism whereby a mother's 25(OH)-vitamin D stores influence her offspring's bone mass.
Collapse
Affiliation(s)
- R Martin
- Centre for the Developmental Origins of Health and Disease, University of Southampton, Southampton, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
van de Graaf SFJ, Bindels RJM, Hoenderop JGJ. Physiology of epithelial Ca2+ and Mg2+ transport. Rev Physiol Biochem Pharmacol 2007; 158:77-160. [PMID: 17729442 DOI: 10.1007/112_2006_0607] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ca2+ and Mg2+ are essential ions in a wide variety of cellular processes and form a major constituent of bone. It is, therefore, essential that the balance of these ions is strictly maintained. In the last decade, major breakthrough discoveries have vastly expanded our knowledge of the mechanisms underlying epithelial Ca2+ and Mg2+ transport. The genetic defects underlying various disorders with altered Ca2+ and/or Mg2+ handling have been determined. Recently, this yielded the molecular identification of TRPM6 as the gatekeeper of epithelial Mg2+ transport. Furthermore, expression cloning strategies have elucidated two novel members of the transient receptor potential family, TRPV5 and TRPV6, as pivotal ion channels determining transcellular Ca2+ transport. These two channels are regulated by a variety of factors, some historically strongly linked to Ca2+ homeostasis, others identified in a more serendipitous manner. Herein we review the processes of epithelial Ca2+ and Mg2+ transport, the molecular mechanisms involved, and the various forms of regulation.
Collapse
Affiliation(s)
- S F J van de Graaf
- Radboud University Nijmegen Medical Centre, 286 Cell Physiology, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | |
Collapse
|
29
|
Abstract
A constant extracellular Ca2+ concentration is required for numerous physiological functions at tissue and cellular levels. This suggests that minor changes in Ca2+ will be corrected by appropriate homeostatic systems. The system regulating Ca2+ homeostasis involves several organs and hormones. The former are mainly the kidneys, skeleton, intestine and the parathyroid glands. The latter comprise, amongst others, the parathyroid hormone, vitamin D and calcitonin. Progress has recently been made in the identification and characterisation of Ca2+ transport proteins CaT1 and ECaC and this has provided new insights into the molecular mechanisms of Ca2+ transport in cells. The G-protein coupled calcium-sensing receptor, responsible for the exquisite ability of the parathyroid gland to respond to small changes in serum Ca2+ concentration was discovered about a decade ago. Research has focussed on the molecular mechanisms determining the serum levels of 1,25(OH)2D3, and on the transcriptional activity of the vitamin D receptor. The aim of recent work has been to elucidate the mechanisms and the intracellular signalling pathways by which parathyroid hormone, vitamin D and calcitonin affect Ca2+ homeostasis. This article summarises recent advances in the understanding and the molecular basis of physiological Ca2+ homeostasis.
Collapse
Affiliation(s)
- Indra Ramasamy
- Department of Chemical Pathology, Newham University Hospital, London, UK.
| |
Collapse
|
30
|
Abstract
Ca(2+) is an essential ion in all organisms, where it plays a crucial role in processes ranging from the formation and maintenance of the skeleton to the temporal and spatial regulation of neuronal function. The Ca(2+) balance is maintained by the concerted action of three organ systems, including the gastrointestinal tract, bone, and kidney. An adult ingests on average 1 g Ca(2+) daily from which 0.35 g is absorbed in the small intestine by a mechanism that is controlled primarily by the calciotropic hormones. To maintain the Ca(2+) balance, the kidney must excrete the same amount of Ca(2+) that the small intestine absorbs. This is accomplished by a combination of filtration of Ca(2+) across the glomeruli and subsequent reabsorption of the filtered Ca(2+) along the renal tubules. Bone turnover is a continuous process involving both resorption of existing bone and deposition of new bone. The above-mentioned Ca(2+) fluxes are stimulated by the synergistic actions of active vitamin D (1,25-dihydroxyvitamin D(3)) and parathyroid hormone. Until recently, the mechanism by which Ca(2+) enter the absorptive epithelia was unknown. A major breakthrough in completing the molecular details of these pathways was the identification of the epithelial Ca(2+) channel family consisting of two members: TRPV5 and TRPV6. Functional analysis indicated that these Ca(2+) channels constitute the rate-limiting step in Ca(2+)-transporting epithelia. They form the prime target for hormonal control of the active Ca(2+) flux from the intestinal lumen or urine space to the blood compartment. This review describes the characteristics of epithelial Ca(2+) transport in general and highlights in particular the distinctive features and the physiological relevance of the new epithelial Ca(2+) channels accumulating in a comprehensive model for epithelial Ca(2+) absorption.
Collapse
Affiliation(s)
- Joost G J Hoenderop
- Department of Physiology, Nijmegen Center for Moecular Life Sciences, University Medical Center Nijmegen, The Netherlands
| | | | | |
Collapse
|