1
|
Gao H, Dong G, Yao Y, Yang H. Identification and validation of aging-related genes in neuropathic pain using bioinformatics. Front Genet 2024; 15:1430275. [PMID: 39113685 PMCID: PMC11303200 DOI: 10.3389/fgene.2024.1430275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/04/2024] [Indexed: 08/10/2024] Open
Abstract
Background Neuropathic pain (NP) is a debilitating and refractory chronic pain with a higher prevalence especially in elderly patients. Cell senescence considered a key pathogenic factor in NP. The objective of this research is to discover genes associated with aging in peripheral blood of individuals with NP using bioinformatics techniques. Methods Two cohorts (GSE124272 and GSE150408) containing peripheral blood samples of NP were downloaded from the GEO database. By merging the two cohorts, differentially expressed aging-related genes (DE-ARGs) were obtained by intersection with aging-related genes. The potential biological mechanisms of DE-ARGs were further analyzed through GO and KEGG. Three machine learning methods, namely, LASSO, SVM-RFE, and Random Forest, were utilized to identify diagnostic biomarkers. A Nomogram model was developed to assess their diagnostic accuracy. The validation of biomarker expression and diagnostic effectiveness was conducted in three distinct pain cohorts. The CIBERSORT algorithm was employed to evaluate the immune cell composition in the peripheral blood of patients with NP and investigate its association with the expression of diagnostic biomarkers. Results This study identified a total of 24 DE-ARGs, mainly enriched in "Chemokine signaling pathway," "Inflammatory mediator regulation of TRP channels," "HIF-1 signaling pathway" and "FOXO signaling pathway". Three machine learning algorithms identified a total of four diagnostic biomarkers (CEBPA, CEACAM1, BTG3 and IL-1R1) with good diagnostic performance and the similar expression difference trend in different types of pain cohorts. The expression levels of CEACAM1 and IL-1R1 exhibit a positive correlation with the percentage of neutrophils. Conclusion Using machine learning techniques, our research identified four diagnostic biomarkers related to aging in peripheral blood, providing innovative approaches for the diagnosis and treatment of NP.
Collapse
Affiliation(s)
| | | | | | - Huayuan Yang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Li Z, Xing J. Potential therapeutic applications of circular RNA in acute kidney injury. Biomed Pharmacother 2024; 174:116502. [PMID: 38569273 DOI: 10.1016/j.biopha.2024.116502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024] Open
Abstract
Acute kidney injury (AKI) is a common clinical syndrome characterized by a rapid deterioration in renal function, manifested by a significant increase in creatinine and a sharp decrease in urine output. The incidence of morbidity and mortality associated with AKI is on the rise, with most patients progressing to chronic kidney disease or end-stage renal disease. Treatment options for patients with AKI remain limited. Circular RNA (circRNA) is a wide and diverse class of non-coding RNAs that are present in a variety of organisms and are involved in gene expression regulation. Studies have shown that circRNA acts as a competing RNA, is involved in disease occurrence and development, and has potential as a disease diagnostic and prognostic marker. CircRNA is involved in the regulation of important biological processes, including apoptosis, oxidative stress, and inflammation. This study reviews the current status and progress of circRNA research in the context of AKI.
Collapse
Affiliation(s)
- Zheng Li
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Jihong Xing
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
3
|
Chen Y, Lu X, Whitney RL, Li Y, Robson MJ, Blakely RD, Chi JT, Crowley SD, Privratsky JR. Novel anti-inflammatory effects of the IL-1 receptor in kidney myeloid cells following ischemic AKI. Front Mol Biosci 2024; 11:1366259. [PMID: 38693918 PMCID: PMC11061482 DOI: 10.3389/fmolb.2024.1366259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/01/2024] [Indexed: 05/03/2024] Open
Abstract
Introduction: Acute kidney injury (AKI) is one of the most common causes of organ failure in critically ill patients. Following AKI, the canonical pro-inflammatory cytokine interleukin-1β (IL-1β) is released predominantly from activated myeloid cells and binds to the interleukin-1 receptor R1 (IL-1R1) on leukocytes and kidney parenchymal cells. IL-1R1 on kidney tubular cells is known to amplify the immune response and exacerbate AKI. However, the specific role of IL-1R1 on myeloid cells during AKI is poorly understood. The objective of the present study was to elucidate the function of myeloid cell IL-1R1 during AKI. As IL-1R1 is known to signal through the pro-inflammatory Toll-like receptor (TLR)/MyD88 pathway, we hypothesized that myeloid cells expressing IL-1R1 would exacerbate AKI. Methods: IL-1R1 was selectively depleted in CD11c+-expressing myeloid cells with CD11cCre + /IL-1R1 fl/fl (Myel KO) mice. Myel KO and littermate controls (CD11cCre - /IL-1R1 fl/fl-Myel WT) were subjected to kidney ischemia/reperfusion (I/R) injury. Kidney injury was assessed by blood urea nitrogen (BUN), serum creatinine and injury marker neutrophil gelatinase-associated lipocalin (NGAL) protein expression. Renal tubular cells (RTC) were co-cultured with CD11c+ bone marrow-derived dendritic cells (BMDC) from Myel KO and Myel WT mice. Results: Surprisingly, compared to Myel WT mice, Myel KO mice displayed exaggerated I/R-induced kidney injury, as measured by elevated levels of serum creatinine and BUN, and kidney NGAL protein expression. In support of these findings, in vitro co-culture studies showed that RTC co-cultured with Myel KO BMDC (in the presence of IL-1β) exhibited higher mRNA levels of the kidney injury marker NGAL than those co-cultured with Myel WT BMDC. In addition, we observed that IL-1R1 on Myel WT BMDC preferentially augmented the expression of anti-inflammatory cytokine interleukin-1 receptor antagonist (IL-1ra/Il1rn), effects that were largely abrogated in Myel KO BMDC. Furthermore, recombinant IL-1Ra could rescue IL-1β-induced tubular cell injury. Discussion: Our findings suggest a novel function of IL-1R1 is to serve as a critical negative feedback regulator of IL-1 signaling in CD11c+ myeloid cells to dampen inflammation to limit AKI. Our results lend further support for cell-specific, as opposed to global, targeting of immunomodulatory agents.
Collapse
Affiliation(s)
- Yanting Chen
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, United States
| | - Xiaohan Lu
- Department of Medicine, Duke University, Durham, NC, United States
| | - Raeann L. Whitney
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, United States
- Department of Medicine, Duke University, Durham, NC, United States
| | - Yu Li
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, United States
- Department of Anesthesiology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Shanxi, China
| | - Matthew J. Robson
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Randy D. Blakely
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, United States
| | - Jen-Tsan Chi
- Department of Microbiology and Molecular Genetics, Duke University, Durham, NC, United States
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, United States
| | - Steven D. Crowley
- Department of Medicine, Duke University, Durham, NC, United States
- Durham VA Medical Center, Durham, NC, United States
| | - Jamie R. Privratsky
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, United States
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, United States
| |
Collapse
|
4
|
Wen Y, Lu X, Privratsky JR, Ren J, Ali S, Yang B, Rudemiller NP, Zhang J, Nedospasov SA, Crowley SD. TNF- α from the Proximal Nephron Exacerbates Aristolochic Acid Nephropathy. KIDNEY360 2024; 5:44-56. [PMID: 37986166 PMCID: PMC10833606 DOI: 10.34067/kid.0000000000000314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
Key Points Proximal tubular TNF aggravates kidney injury and fibrogenesis in aristolochic acid nephropathy. Tubular TNF disrupts the cell cycle in injured tubular epithelial cells. TNF-mediated toxic renal injury is independent of systemic immune responses. Background Aristolochic acid nephropathy (AAN) presents with tubular epithelial cell (TEC) damage and tubulointerstitial inflammation. Although TNF-α regulates cell apoptosis and inflammatory responses, the effects of tubular TNF in the progression of AAN require elucidation. Methods Floxed TNF mice on the 129/SvEv background were crossed with PEPCK-Cre mice to generate PEPCK-Cre + TNF flox/flox (TNF PTKO) mice or bred with Ksp-Cre mice to generate KSP-Cre + TNF flox/flox (TNF DNKO) mice. TNF PTKO, TNF DNKO, and wild-type controls (Cre negative littermates) were subjected to acute and chronic AAN. Results Deletion of TNF in the proximal but not distal nephron attenuated kidney injury, renal inflammation, and tubulointerstitial fibrosis after acute or chronic aristolochic acid (AA) exposure. The TNF PTKO mice did not have altered numbers of infiltrating myeloid cells in AAN kidneys. Nevertheless, kidneys from AA-treated TNF PTKO mice had reduced levels of proteins involved in regulated cell death, higher proportions of TECs in the G0/G1 phase, and reduced TEC proportions in the G2/M phase. Pifithrin-α , which restores the cell cycle, abrogated differences between the wild-type and PTKO cohorts in G2/M phase arrest of TECs and kidney fibrosis after AA exposure. Conclusions TNF from the proximal but not the distal nephron propagates kidney injury and fibrogenesis in AAN in part by inducing G2/M cell cycle arrest of TECs.
Collapse
Affiliation(s)
- Yi Wen
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina
- Department of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Xiaohan Lu
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina
| | - Jamie R. Privratsky
- Department of Anesthesiology, Durham VA and Duke University Medical Center, Durham, North Carolina
| | - Jiafa Ren
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina
| | - Saba Ali
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina
| | - Bo Yang
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina
| | - Nathan P. Rudemiller
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina
| | - Jiandong Zhang
- Division of Cardiology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Sergei A. Nedospasov
- Engelhardt Institute of Molecular Biology, Moscow, Russia
- Institute of Cell Biology and Neurobiology, Universitatsmedizin, Berlin, Germany
| | - Steven D. Crowley
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina
| |
Collapse
|
5
|
Guo R, Fang Y, Zhang Y, Liu L, Li N, Wu J, Yan M, Li Z, Yu J. SHED-derived exosomes attenuate trigeminal neuralgia after CCI of the infraorbital nerve in mice via the miR-24-3p/IL-1R1/p-p38 MAPK pathway. J Nanobiotechnology 2023; 21:458. [PMID: 38031158 PMCID: PMC10685568 DOI: 10.1186/s12951-023-02221-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Microglial activation in the spinal trigeminal nucleus (STN) plays a crucial role in the development of trigeminal neuralgia (TN). The involvement of adenosine monophosphate-activated protein kinase (AMPK) and N-methyl-D-aspartate receptor 1 (NMDAR1, NR1) in TN has been established. Initial evidence suggests that stem cells from human exfoliated deciduous teeth (SHED) have a potential therapeutic effect in attenuating TN. In this study, we propose that SHED-derived exosomes (SHED-Exos) may alleviate TN by inhibiting microglial activation. This study sought to assess the curative effect of SHED-Exos administrated through the tail vein on a unilateral infraorbital nerve chronic constriction injury (CCI-ION) model in mice to reveal the role of SHED-Exos in TN and further clarify the potential mechanism. RESULTS Animals subjected to CCI-ION were administered SHED-Exos extracted by differential ultracentrifugation. SHED-Exos significantly alleviated TN in CCI mice (increasing the mechanical threshold and reducing p-NR1) and suppressed microglial activation (indicated by the levels of TNF-α, IL-1β and IBA-1, as well as p-AMPK) in vivo and in vitro. Notably, SHED-Exos worked in a concentration dependent manner. Mechanistically, miR-24-3p-upregulated SHED-Exos exerted a more significant effect, while miR-24-3p-inhibited SHED-Exos had a weakened effect. Bioinformatics analysis and luciferase reporter assays were utilized for target gene prediction and verification between miR-24-3p and IL1R1. Moreover, miR-24-3p targeted the IL1R1/p-p38 MAPK pathway in microglia was increased in CCI mice, and participated in microglial activation in the STN. CONCLUSIONS miR-24-3p-encapsulated SHED-Exos attenuated TN by suppressing microglial activation in the STN of CCI mice. Mechanistically, miR-24-3p blocked p-p38 MAPK signaling by targeting IL1R1. Theoretically, targeted delivery of miR-24-3p may offer a potential strategy for TN.
Collapse
Affiliation(s)
- Rong Guo
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Shanghai Road, Nanjing, 210029, Jiangsu, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Yuxin Fang
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Shanghai Road, Nanjing, 210029, Jiangsu, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Yuyao Zhang
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Shanghai Road, Nanjing, 210029, Jiangsu, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Liu Liu
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Shanghai Road, Nanjing, 210029, Jiangsu, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Na Li
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Shanghai Road, Nanjing, 210029, Jiangsu, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Jintao Wu
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Shanghai Road, Nanjing, 210029, Jiangsu, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Ming Yan
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Shanghai Road, Nanjing, 210029, Jiangsu, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Zehan Li
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Shanghai Road, Nanjing, 210029, Jiangsu, China.
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China.
| | - Jinhua Yu
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Shanghai Road, Nanjing, 210029, Jiangsu, China.
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
6
|
Ren J, Liu K, Wu B, Lu X, Sun L, Privratsky JR, Xing C, Robson MJ, Mao H, Blakely RD, Abe K, Souma T, Crowley SD. Divergent Actions of Renal Tubular and Endothelial Type 1 IL-1 Receptor Signaling in Toxin-Induced AKI. J Am Soc Nephrol 2023; 34:1629-1646. [PMID: 37545036 PMCID: PMC10561822 DOI: 10.1681/asn.0000000000000191] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/02/2023] [Indexed: 08/08/2023] Open
Abstract
SIGNIFICANCE STATEMENT Activation of the type 1 IL-1 receptor (IL-1R1) triggers a critical innate immune signaling cascade that contributes to the pathogenesis of AKI. However, blockade of IL-1 signaling in AKI has not consistently demonstrated kidney protection. The current murine experiments show that IL-1R1 activation in the proximal tubule exacerbates toxin-induced AKI and cell death through local suppression of apolipoprotein M. By contrast, IL-1R1 activation in endothelial cells ameliorates AKI by restoring VEGFA-dependent endothelial cell viability. Using this information, future delivery strategies can maximize the protective effects of blocking IL-1R1 while mitigating unwanted actions of IL-1R1 manipulation. BACKGROUND Activation of the type 1 IL-1 receptor (IL-1R1) triggers a critical innate immune signaling cascade that contributes to the pathogenesis of AKI. IL-1R1 is expressed on some myeloid cell populations and on multiple kidney cell lineages, including tubular and endothelial cells. Pharmacological inhibition of the IL-1R1 does not consistently protect the kidney from injury, suggesting there may be complex, cell-specific effects of IL-1R1 stimulation in AKI. METHODS To examine expression of IL-1 and IL-1R1 in intrinsic renal versus infiltrating immune cell populations during AKI, we analyzed single-cell RNA sequencing (scRNA-seq) data from kidney tissues of humans with AKI and mice with acute aristolochic acid exposure. We then investigated cell-specific contributions of renal IL-1R1 signaling to AKI using scRNA-seq, RNA microarray, and pharmacological interventions in mice with IL-1R1 deletion restricted to the proximal tubule or endothelium. RESULTS scRNA-seq analyses demonstrated robust IL-1 expression in myeloid cell populations and low-level IL-1R1 expression in kidney parenchymal cells during toxin-induced AKI. Our genetic studies showed that IL-1R1 activation in the proximal tubule exacerbated toxin-induced AKI and cell death through local suppression of apolipoprotein M. By contrast, IL-1R1 activation in endothelial cells ameliorated aristolochic acid-induced AKI by restoring VEGFA-dependent endothelial cell viability and density. CONCLUSIONS These data highlight opposing cell-specific effects of IL-1 receptor signaling on AKI after toxin exposure. Disrupting pathways activated by IL-1R1 in the tubule, while preserving those triggered by IL-1R1 activation on endothelial cells, may afford renoprotection exceeding that of global IL-1R1 inhibition while mitigating unwanted actions of IL-1R1 blockade.
Collapse
Affiliation(s)
- Jiafa Ren
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Kang Liu
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Buyun Wu
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Xiaohan Lu
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Lianqin Sun
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jamie R. Privratsky
- Division of Critical Care Medicine, Center for Perioperative Organ Protection, Durham, North Caorlina
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - Changying Xing
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Matthew J. Robson
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio
| | - Huijuan Mao
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Randy D. Blakely
- Division of Biomedical Science, Charles E. Schmidt College of Medicine and Stiles-Nicholson FAU Brain Institute, Jupiter, Florida
| | - Koki Abe
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Tomokazu Souma
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Steven D. Crowley
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
- Durham VA Medical Center, Durham, North Carolina
| |
Collapse
|
7
|
Privratsky JR, Ide S, Chen Y, Kitai H, Ren J, Fradin H, Lu X, Souma T, Crowley SD. A macrophage-endothelial immunoregulatory axis ameliorates septic acute kidney injury. Kidney Int 2023; 103:514-528. [PMID: 36334787 PMCID: PMC9974788 DOI: 10.1016/j.kint.2022.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022]
Abstract
The most common cause of acute kidney injury (AKI) in critically ill patients is sepsis. Kidney macrophages consist of both F4/80hi and CD11bhi cells. The role of macrophage subpopulations in septic AKI pathogenesis remains unclear. As F4/80hi macrophages are reported to contribute to immunomodulation following injury, we hypothesized that selective depletion of F4/80hi macrophages would worsen septic AKI. F4/80hi macrophages were depleted via diphtheria toxin injection in CD11cCre(+)/CX3CR1dtr/wt (F4/80 MKO mice) compared to CD11cCre(-)/CX3CR1dtr/wt (F4/80 MWT) mice. F4/80 MWT and F4/80 MKO mice were subjected to sham or cecal ligation and puncture to induce sepsis. Compared to F4/80 MWT mice, F4/80 MKO mice displayed worsened septic AKI at 24 hours as measured by serum creatinine and histologic injury scoring. Kidneys from F4/80 MKO mice elaborated higher kidney interleukin-6 levels. Mechanistically, single cell RNA sequencing identified a macrophage-endothelial cell immunoregulatory axis that underlies interleukin-6 expression. F4/80hi macrophages expressed interleukin-1 receptor antagonist and limited interleukin-6 expression in endothelial cells. In turn, anti-interleukin-6 therapy ameliorated septic AKI in F4/80 MKO mice. Thus, F4/80hi macrophages express interleukin-1 receptor antagonist and constrain interleukin-6 generation from endothelial cells to limit septic AKI, representing a targetable cellular crosstalk in septic AKI. These findings are particularly relevant owing to the efficacy of anti-interleukin-6 therapies during COVID-19 infection, a disease associated with high rates of AKI and endothelial dysfunction.
Collapse
Affiliation(s)
- Jamie R Privratsky
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA; Division of Critical Care Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Shintaro Ide
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Yanting Chen
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Hiroki Kitai
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Jiafa Ren
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Helene Fradin
- Duke Center for Genomic and Computational Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Xiaohan Lu
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Tomokazu Souma
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Steven D Crowley
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA; Durham VA Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
8
|
Cisplatin nephrotoxicity: new insights and therapeutic implications. Nat Rev Nephrol 2023; 19:53-72. [PMID: 36229672 DOI: 10.1038/s41581-022-00631-7] [Citation(s) in RCA: 139] [Impact Index Per Article: 139.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2022] [Indexed: 11/08/2022]
Abstract
Cisplatin is an effective chemotherapeutic agent for various solid tumours, but its use is limited by adverse effects in normal tissues. In particular, cisplatin is nephrotoxic and can cause acute kidney injury and chronic kidney disease. Preclinical studies have provided insights into the cellular and molecular mechanisms of cisplatin nephrotoxicity, which involve intracellular stresses including DNA damage, mitochondrial pathology, oxidative stress and endoplasmic reticulum stress. Stress responses, including autophagy, cell-cycle arrest, senescence, apoptosis, programmed necrosis and inflammation have key roles in the pathogenesis of cisplatin nephrotoxicity. In addition, emerging evidence suggests a contribution of epigenetic changes to cisplatin-induced acute kidney injury and chronic kidney disease. Further research is needed to determine how these pathways are integrated and to identify the cell type-specific roles of critical molecules involved in regulated necrosis, inflammation and epigenetic modifications in cisplatin nephrotoxicity. A number of potential therapeutic targets for cisplatin nephrotoxicity have been identified. However, the effects of renoprotective strategies on the efficacy of cisplatin chemotherapy needs to be thoroughly evaluated. Further research using tumour-bearing animals, multi-omics and genome-wide association studies will enable a comprehensive understanding of the complex cellular and molecular mechanisms of cisplatin nephrotoxicity and potentially lead to the identification of specific targets to protect the kidney without compromising the chemotherapeutic efficacy of cisplatin.
Collapse
|
9
|
Alsawaf S, Alnuaimi F, Afzal S, Thomas RM, Chelakkot AL, Ramadan WS, Hodeify R, Matar R, Merheb M, Siddiqui SS, Vazhappilly CG. Plant Flavonoids on Oxidative Stress-Mediated Kidney Inflammation. BIOLOGY 2022; 11:biology11121717. [PMID: 36552226 PMCID: PMC9774981 DOI: 10.3390/biology11121717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
The kidney is susceptible to reactive oxygen species-mediated cellular injury resulting in glomerulosclerosis, tubulointerstitial fibrosis, tubular cell apoptosis, and senescence, leading to renal failure, and is a significant cause of death worldwide. Oxidative stress-mediated inflammation is a key player in the pathophysiology of various renal injuries and diseases. Recently, flavonoids' role in alleviating kidney diseases has been reported with an inverse correlation between dietary flavonoids and kidney injuries. Flavonoids are plant polyphenols possessing several health benefits and are distributed in plants from roots to leaves, flowers, and fruits. Dietary flavonoids have potent antioxidant and free-radical scavenging properties and play essential roles in disease prevention. Flavonoids exert a nephroprotective effect by improving antioxidant status, ameliorating excessive reactive oxygen species (ROS) levels, and reducing oxidative stress, by acting as Nrf2 antioxidant response mediators. Moreover, flavonoids play essential roles in reducing chemical toxicity. Several studies have demonstrated the effects of flavonoids in reducing oxidative stress, preventing DNA damage, reducing inflammatory cytokines, and inhibiting apoptosis-mediated cell death, thereby preventing or improving kidney injuries/diseases. This review covers the recent nephroprotective effects of flavonoids against oxidative stress-mediated inflammation in the kidney and their clinical advancements in renal therapy.
Collapse
Affiliation(s)
- Seba Alsawaf
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah P.O. Box 10021, United Arab Emirates
| | - Fatema Alnuaimi
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah P.O. Box 10021, United Arab Emirates
| | - Saba Afzal
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah P.O. Box 10021, United Arab Emirates
| | - Rinku Mariam Thomas
- Department of Mathematics and Natural Sciences, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah P.O. Box 10021, United Arab Emirates
| | | | - Wafaa S. Ramadan
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Rawad Hodeify
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah P.O. Box 10021, United Arab Emirates
| | - Rachel Matar
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah P.O. Box 10021, United Arab Emirates
| | - Maxime Merheb
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah P.O. Box 10021, United Arab Emirates
| | - Shoib Sarwar Siddiqui
- School of Life and Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield AL10 9AB, UK
| | - Cijo George Vazhappilly
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah P.O. Box 10021, United Arab Emirates
- Correspondence: ; Tel.: +971-7-246-8842
| |
Collapse
|
10
|
Purkerson JM, Everett CA, Schwartz GJ. Ammonium chloride-induced acidosis exacerbates cystitis and pyelonephritis caused by uropathogenic E. coli. Physiol Rep 2022; 10:e15471. [PMID: 36151614 PMCID: PMC9508385 DOI: 10.14814/phy2.15471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023] Open
Abstract
Acute pyelonephritis caused by uropathogenic E. coli (UPEC) can cause renal scarring and lead to development of chronic kidney disease. Prevention of kidney injury requires an understanding of host factors and/or UPEC adaptive responses that are permissive for UPEC colonization of the urinary tract. Although some studies have suggested urine acidification limits UPEC growth in culture, other studies have described acid-resistance mechanisms (AR) in E. coli such as the CadC/CadBA module that promotes adaptation to acid and nitrosative stress. Herein we confirm and extend our previous study by demonstrating that despite urine acidification, metabolic acidosis induced by dietary ammonium chloride (NH4 Cl-A) exacerbates cystitis and pyelonephritis in innate immune competent (C3H-HeN) mice characterized by: (1) markedly elevated UPEC burden and increased chemokine/cytokine and NOS2 mRNA expression, (2) accumulation of intravesicular debris noninvasively detected by Power Doppler Ultrasound (PDUS), and (3) collecting duct (CD) dysfunction that manifests as a urine concentration defect. Bladder debris and CD dysfunction were due to the inflammatory response, as neither was observed in Tlr4-deficient (C3H-HeJ) mice. The effect of NH4 Cl-A was unrelated to acidosis as dietary administration of hydrochloric acid (HCl-A) yielded a comparable acid-base status yet did not increase UPEC burden. NH4 Cl-A increased polyamines and decreased nitric oxide (NO) metabolites in urine indicating that excess dietary ammonium shifts arginine metabolism toward polyamines at the expense of NO synthesis. Furthermore, despite increased expression of NOS2, NO production post UPEC infection was attenuated in NH4 Cl-A mice compared to controls. Thus, in addition to induction of metabolic acidosis and urine acidification, excess dietary ammonium alters the polyamine:NO balance and thereby compromises NOS2-mediated innate immune defense.
Collapse
Affiliation(s)
- Jeffrey M. Purkerson
- Pediatric NephrologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
- Strong Children's Research CenterUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Coralee A. Everett
- Pediatric NephrologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
- Strong Children's Research CenterUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - George J. Schwartz
- Pediatric NephrologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
- Strong Children's Research CenterUniversity of Rochester Medical CenterRochesterNew YorkUSA
| |
Collapse
|
11
|
Martin K, Deleveaux S, Cunningham M, Ramaswamy K, Thomas B, Lerma E, Madariaga H. The presentation, etiologies, pathophysiology, and treatment of pulmonary renal syndrome: A review of the literature. Dis Mon 2022; 68:101465. [PMID: 36008166 DOI: 10.1016/j.disamonth.2022.101465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Pulmonary renal syndrome (PRS) is a constellation of different disorders that cause both rapidly progressive glomerulonephritis and diffuse alveolar hemorrhage. While antineutrophil cytoplasmic antibody associated vasculitis and anti-glomerular basement membrane disease are the predominant causes of PRS, numerous other mechanisms have been shown to cause this syndrome, including thrombotic microangiopathies, drug exposures, and infections, among others. This syndrome has high morbidity and mortality, and early diagnosis and treatment is imperative to improve outcomes. Treatment generally involves glucocorticoids and immunosuppressive agents, but treatment targeted to the underlying disorder can improve outcomes and mitigate side effects. Familiarity with the wide range of possible causes of PRS can aid the clinician in workup, diagnosis and early initiation of treatment. This review provides a summary of the clinical presentation, etiologies, pathophysiology, and treatment of PRS.
Collapse
Affiliation(s)
| | | | | | | | - Beje Thomas
- Medstar Georgetown University Hospital, United States
| | - Edgar Lerma
- Advocate Christ Medical Center, United States
| | | |
Collapse
|
12
|
Magkrioti C, Antonopoulou G, Fanidis D, Pliaka V, Sakellaropoulos T, Alexopoulos LG, Ullmer C, Aidinis V. Lysophosphatidic Acid Is a Proinflammatory Stimulus of Renal Tubular Epithelial Cells. Int J Mol Sci 2022; 23:ijms23137452. [PMID: 35806457 PMCID: PMC9267536 DOI: 10.3390/ijms23137452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic kidney disease (CKD) refers to a spectrum of diseases defined by renal fibrosis, permanent alterations in kidney structure, and low glomerular-filtration rate. Prolonged epithelial-tubular damage involves a series of changes that eventually lead to CKD, highlighting the importance of tubular epithelial cells in this process. Lysophosphatidic acid (LPA) is a bioactive lipid that signals mainly through its six cognate LPA receptors and is implicated in several chronic inflammatory pathological conditions. In this report, we have stimulated human proximal tubular epithelial cells (HKC-8) with LPA and 175 other possibly pathological stimuli, and simultaneously detected the levels of 27 intracellular phosphoproteins and 32 extracellular secreted molecules with multiplex ELISA. This quantification revealed a large amount of information concerning the signaling and the physiology of HKC-8 cells that can be extrapolated to other proximal tubular epithelial cells. LPA responses clustered with pro-inflammatory stimuli such as TNF and IL-1, promoting the phosphorylation of important inflammatory signaling hubs, including CREB1, ERK1, JUN, IκΒα, and MEK1, as well as the secretion of inflammatory factors of clinical relevance, including CCL2, CCL3, CXCL10, ICAM1, IL-6, and IL-8, most of them shown for the first time in proximal tubular epithelial cells. The identified LPA-induced signal-transduction pathways, which were pharmacologically validated, and the secretion of the inflammatory factors offer novel insights into the possible role of LPA in CKD pathogenesis.
Collapse
Affiliation(s)
- Christiana Magkrioti
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece; (C.M.); (G.A.); (D.F.)
| | - Georgia Antonopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece; (C.M.); (G.A.); (D.F.)
| | - Dionysios Fanidis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece; (C.M.); (G.A.); (D.F.)
| | - Vaia Pliaka
- ProtATonce Ltd., 15343 Athens, Greece; (V.P.); (T.S.); (L.G.A.)
| | | | - Leonidas G. Alexopoulos
- ProtATonce Ltd., 15343 Athens, Greece; (V.P.); (T.S.); (L.G.A.)
- School of Mechanical Engineering, National Technical University of Athens, 15780 Zografou, Greece
| | - Christoph Ullmer
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland;
| | - Vassilis Aidinis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece; (C.M.); (G.A.); (D.F.)
- Correspondence:
| |
Collapse
|
13
|
Ren J, Lu X, Hall G, Privratsky JR, Robson MJ, Blakely RD, Crowley SD. IL-1 receptor signaling in podocytes limits susceptibility to glomerular damage. Am J Physiol Renal Physiol 2022; 322:F164-F174. [PMID: 34894725 PMCID: PMC8782651 DOI: 10.1152/ajprenal.00353.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/22/2021] [Accepted: 12/07/2021] [Indexed: 02/03/2023] Open
Abstract
Interleukin (IL)-1 receptor type 1 (IL-1R1) activation triggers a proinflammatory signaling cascade that can exacerbate kidney injury. However, the functions of podocyte IL-1R1 in glomerular disease remain unclear. To study the role of IL-1R1 signaling in podocytes, we selectively ablated podocyte IL-1R1 in mice (PKO mice). We then subjected PKO mice and wild-type controls to two glomerular injury models: nephrotoxic serum (NTS)- and adriamycin-induced nephropathy. Surprisingly, we found that IL-1R1 activation in podocytes limited albuminuria and podocyte injury during NTS- and adriamycin-induced nephropathy. Moreover, deletion of IL-1R1 in podocytes drove podocyte apoptosis and glomerular injury through diminishing Akt activation. Activation of Akt signaling abrogated the differences in albuminuria and podocyte injury between wild-type and PKO mice during NTS. Thus, IL-1R1 signaling in podocytes limits susceptibility to glomerular injury via an Akt-dependent signaling pathway. These data identify an unexpected protective role for IL-1R1 signaling in podocytes in the pathogenesis of glomerular disease.NEW & NOTEWORTHY The present study establishes that activation of the receptor for interleukin-1 limits susceptibility to damage to the kidney glomerulus in preclinical mouse models by stimulating Akt signaling cascades inside the podocyte.
Collapse
Affiliation(s)
- Jiafa Ren
- Division of Nephrology, Department of Medicine, Durham Veterans Affairs and Duke University Medical Centers, Durham, North Carolina
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiaohan Lu
- Division of Nephrology, Department of Medicine, Durham Veterans Affairs and Duke University Medical Centers, Durham, North Carolina
| | - Gentzon Hall
- Division of Nephrology, Department of Medicine, Durham Veterans Affairs and Duke University Medical Centers, Durham, North Carolina
| | - Jamie R Privratsky
- Department of Anesthesiology, Durham Veterans Affairs and Duke University Medical Centers, Durham, North Carolina
| | - Matthew J Robson
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio
| | - Randy D Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and FAU Brain Institute, Jupiter, Florida
| | - Steven D Crowley
- Division of Nephrology, Department of Medicine, Durham Veterans Affairs and Duke University Medical Centers, Durham, North Carolina
| |
Collapse
|
14
|
Molecular Mechanisms of Kidney Injury and Repair. Int J Mol Sci 2022; 23:ijms23031542. [PMID: 35163470 PMCID: PMC8835923 DOI: 10.3390/ijms23031542] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/17/2022] Open
Abstract
Chronic kidney disease (CKD) will become the fifth global cause of death by 2040, thus emphasizing the need to better understand the molecular mechanisms of damage and regeneration in the kidney. CKD predisposes to acute kidney injury (AKI) which, in turn, promotes CKD progression. This implies that CKD or the AKI-to-CKD transition are associated with dysfunctional kidney repair mechanisms. Current therapeutic options slow CKD progression but fail to treat or accelerate recovery from AKI and are unable to promote kidney regeneration. Unraveling the cellular and molecular mechanisms involved in kidney injury and repair, including the failure of this process, may provide novel biomarkers and therapeutic tools. We now review the contribution of different molecular and cellular events to the AKI-to-CKD transition, focusing on the role of macrophages in kidney injury, the different forms of regulated cell death and necroinflammation, cellular senescence and the senescence-associated secretory phenotype (SAPS), polyploidization, and podocyte injury and activation of parietal epithelial cells. Next, we discuss key contributors to repair of kidney injury and opportunities for their therapeutic manipulation, with a focus on resident renal progenitor cells, stem cells and their reparative secretome, certain macrophage subphenotypes within the M2 phenotype and senescent cell clearance.
Collapse
|
15
|
Akhter J, Khan J, Baghel M, Beg MMA, Goswami P, Afjal MA, Ahmad S, Habib H, Najmi AK, Raisuddin S. NLRP3 inflammasome in rosmarinic acid-afforded attenuation of acute kidney injury in mice. Sci Rep 2022; 12:1313. [PMID: 35079027 PMCID: PMC8789898 DOI: 10.1038/s41598-022-04785-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/31/2021] [Indexed: 12/15/2022] Open
Abstract
Cisplatin (CP) is a well-known anticancer drug used to effectively treat various kinds of solid tumors. CP causes acute kidney injury (AKI) and unfortunately, there is no therapeutic approach in hand to prevent AKI. Several signaling pathways are responsible for inducing AKI which leads to inflammation in proximal convoluted tubule cells in the kidney. Furthermore, the nucleotide-binding oligomerization domain (NOD)-like receptor containing pyrin domain 3 (NLRP3) inflammasome is involved in the CP-induced AKI. In this study, we investigated therapeutic effects of rosmarinic acid (RA) against inflammation-induced AKI. RA was orally administered at the dose of 100 mg/kg for two consecutive days after 24 h of a single injection of CP at the dose of 20 mg/kg administered intraperitoneally in Swiss albino male mice. Treatment of RA inhibited the activation of NLRP3 signaling pathway by blocking the activated caspase-1 and downstream signal molecules such as IL-1β and IL18. CP activated HMGB1-TLR4/MyD88 axis was also found to be downregulated with the RA treatment. Activation of nuclear factor-κB and elevated protein expression of cyclooxygenase-2 (COX-2) were also found to be downregulated in RA-treated animals. Alteration of early tubular injury biomarker, kidney injury molecule-1 (KIM-1), was found to be subsided in RA-treated mice. RA has been earlier reported for antioxidant and anti-inflammatory properties. Our findings show that blocking a critical step of inflammasome signaling pathway by RA treatment can be a novel and beneficial approach to prevent the CP-induced AKI.
Collapse
Affiliation(s)
- Juheb Akhter
- Molecular Toxicology Laboratory, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, 110062, India
| | - Jasim Khan
- Molecular Toxicology Laboratory, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, 110062, India
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Madhu Baghel
- Metabolic Research Laboratory, National Institute of Immunology, New Delhi, 110067, India
| | - Mirza Masroor Ali Beg
- Molecular Toxicology Laboratory, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, 110062, India
| | - Poonam Goswami
- Molecular Toxicology Laboratory, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, 110062, India
| | - Mohd Amir Afjal
- Molecular Toxicology Laboratory, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, 110062, India
| | - Shahzad Ahmad
- Molecular Toxicology Laboratory, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, 110062, India
| | - Haroon Habib
- Molecular Toxicology Laboratory, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, 110062, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Sheikh Raisuddin
- Molecular Toxicology Laboratory, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, 110062, India.
| |
Collapse
|
16
|
Li J, Gong X. Tetramethylpyrazine: An Active Ingredient of Chinese Herbal Medicine With Therapeutic Potential in Acute Kidney Injury and Renal Fibrosis. Front Pharmacol 2022; 13:820071. [PMID: 35145414 PMCID: PMC8821904 DOI: 10.3389/fphar.2022.820071] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/10/2022] [Indexed: 12/23/2022] Open
Abstract
As an increasing public health concern worldwide, acute kidney injury (AKI) is characterized by rapid deterioration of kidney function. Although continuous renal replacement therapy (CRRT) could be used to treat severe AKI, effective drug treatment methods for AKI are largely lacking. Tetramethylpyrazine (TMP) is an active ingredient of Chinese herb Ligusticum wallichii (Chuan Xiong) with antioxidant and anti-inflammatory functions. In recent years, more and more clinical and experimental studies suggest that TMP might effectively prevent AKI. The present article reviews the potential mechanisms of TMP against AKI. Through search and review, a total of 23 studies were finally included. Our results indicate that the undergoing mechanisms of TMP preventing AKI are mainly related to reducing oxidative stress injury, inhibiting inflammation, preventing apoptosis of intrinsic renal cells, and regulating autophagy. Meanwhile, given that AKI and chronic kidney disease (CKD) are very tightly linked by each other, and AKI is also an important inducement of CKD, we thus summarized the potential of TMP impeding the progression of CKD through anti-renal fibrosis.
Collapse
|
17
|
Purkerson JM, Corley JL, Schwartz GJ. Metabolic acidosis exacerbates pyelonephritis in mice prone to vesicoureteral reflux. Physiol Rep 2021; 8:e14525. [PMID: 33030238 PMCID: PMC7543054 DOI: 10.14814/phy2.14525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/15/2022] Open
Abstract
Acute pyelonephritis is a common, serious bacterial infection in children. The prevalence of acute pyelonephritis is due at least in part to vesicoureteral reflux (VUR). Although an association between abnormalities in electrolyte and acid–base balance and pyelonephritis is common in young children, the impact of metabolic acidosis (MA) on progression of acute pyelonephritis is not fully understood. In this study, the effect of MA on pyelonephritis was studied in C3H mouse strains prone to VUR. MA induced by ammonium chloride supplementation in food specifically impaired clearance of urinary tract infection with uropathogenic Escherichia. coli (UPEC‐UTI) in innate immune competent C3H strains (HeOuJ, HeN), whereas kidney UPEC burden in Tlr‐4‐deficient HeJ mice was unaffected. Antibody‐mediated depletion of myeloid cells (monocytes, neutrophil) markedly increased UPEC burden in the bladder and kidney confirming the pivotal role of neutrophils and tissue‐resident macrophages in clearance of UPEC‐UTI. MA concurrent with UPEC‐UTI markedly increased expression of cytokine (TNFα, IL‐1β, IL‐6) and chemokine (CXCL 1, 2, and 5) mRNA in isolated kidney CD cells and kidney neutrophil infiltrates were increased four‐ to fivefold compared to normal, UPEC‐infected mice. Thus, MA intensified pyelonephritis and increased the risk of kidney injury by impairing clearance of UPEC‐UTI and potentiating renal inflammation characterized by an elevated kidney neutrophil infiltrate.
Collapse
Affiliation(s)
- Jeffrey M Purkerson
- Pediatric Nephrology, University of Rochester Medical Center, Rochester, NY, USA.,Strong Children's Research Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Janine L Corley
- Pediatric Nephrology, University of Rochester Medical Center, Rochester, NY, USA.,Strong Children's Research Center, University of Rochester Medical Center, Rochester, NY, USA
| | - George J Schwartz
- Pediatric Nephrology, University of Rochester Medical Center, Rochester, NY, USA.,Strong Children's Research Center, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Macrophages play an important role in regulating homeostasis, kidney injury, repair, and tissue fibrogenesis. The present review will discuss recent advances that explore the novel subsets and functions of macrophage in the pathogenesis of kidney damage and hypertension. RECENT FINDINGS Macrophages differentiate into a variety of subsets in microenvironment-dependent manner. Although the M1/M2 nomenclature is still applied in considering the pro-inflammatory versus anti-inflammatory effects of macrophages in kidney injury, novel, and accurate macrophage phenotypes are defined by flow cytometric markers and single-cell RNA signatures. Studies exploring the crosstalk between macrophages and other cells are rapidly advancing with the additional recognition of exosome trafficking between cells. Using murine conditional mutants, actions of macrophage can be defined more precisely than in bone marrow transfer models. Some studies revealed the opposing effects of the same protein in renal parenchymal cells and macrophages, highlighting a need for the development of cell-specific immune therapies for translation. SUMMARY Macrophage-targeted therapies hold potential for limiting kidney injury and hypertension. To realize this potential, future studies will be required to understand precise mechanisms in macrophage polarization, crosstalk, proliferation, and maturation in the setting of renal disease.
Collapse
|
19
|
Xia W, Li Y, Wu M, Jin Q, Wang Q, Li S, Huang S, Zhang A, Zhang Y, Jia Z. Gasdermin E deficiency attenuates acute kidney injury by inhibiting pyroptosis and inflammation. Cell Death Dis 2021; 12:139. [PMID: 33542198 PMCID: PMC7862699 DOI: 10.1038/s41419-021-03431-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/11/2022]
Abstract
Pyroptosis, one kind of inflammatory regulated cell death, is involved in various inflammatory diseases, including acute kidney injury (AKI). Besides Gasdermin D (GSDMD), GSDME is a newly identified mediator of pyroptosis via the cleavage of caspase-3 generating pyroptotic GSDME-N. Here, we investigated the role of GSDME in renal cellular pyroptosis and AKI pathogenesis employing GSDME-deficient mice and human tubular epithelial cells (TECs) with the interventions of pharmacological and genetic approaches. After cisplatin treatment, GSDME-mediated pyroptosis was induced as shown by the characteristic pyroptotic morphology in TECs, upregulated GSDME-N expression and enhanced release of IL-1β and LDH, and decreased cell viability. Strikingly, silencing GSDME in mice attenuated acute kidney injury and inflammation. The pyroptotic role of GSDME was also verified in human TECs in vitro. Further investigation showed that inhibition of caspase-3 blocked GSDME-N cleavage and attenuated cisplatin-induced pyroptosis and kidney dysfunction. Moreover, deletion of GSDME also protected against kidney injury induced by ischemia-reperfusion. Taken together, the findings from current study demonstrated that caspase-3/GSDME-triggered pyroptosis and inflammation contributes to AKI, providing new insights into the understanding and treatment of this disease.
Collapse
Affiliation(s)
- Weiwei Xia
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 210008, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, 210008, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, 210029, Nanjing, China
| | - Yuanyuan Li
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 210008, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, 210008, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, 210029, Nanjing, China
| | - Mengying Wu
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 210008, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, 210008, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, 210029, Nanjing, China
| | - Qianqian Jin
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 210008, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, 210008, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, 210029, Nanjing, China
| | - Qian Wang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 210008, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, 210008, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, 210029, Nanjing, China
| | - Shuzhen Li
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 210008, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, 210008, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, 210029, Nanjing, China
| | - Songming Huang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 210008, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, 210008, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, 210029, Nanjing, China
| | - Aihua Zhang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 210008, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, 210008, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, 210029, Nanjing, China
| | - Yue Zhang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 210008, Nanjing, China. .,Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, 210008, Nanjing, China. .,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, 210029, Nanjing, China.
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 210008, Nanjing, China. .,Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, 210008, Nanjing, China. .,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, 210029, Nanjing, China.
| |
Collapse
|
20
|
Zhang Y, Tang PMK, Niu Y, García Córdoba CA, Huang XR, Yu C, Lan HY. Long Non-coding RNA LRNA9884 Promotes Acute Kidney Injury via Regulating NF-kB-Mediated Transcriptional Activation of MIF. Front Physiol 2020; 11:590027. [PMID: 33192605 PMCID: PMC7658631 DOI: 10.3389/fphys.2020.590027] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/08/2020] [Indexed: 12/22/2022] Open
Abstract
Acute kidney injury (AKI) is one of the most common complications affecting hospitalized patients associated with an extremely high mortality rate. However, the underlying pathogenesis of AKI remains unclear that largely limits its effective management in clinic. Increasing evidence demonstrated the importance of long non-coding RNAs (lncRNAs) in the pathogenesis of AKI, because of their regulatory roles in transcription, translation, chromatin modification, and cellular organization. Here, we reported a new role of LRNA9884 in AKI. Using experimental cisplatin-induced AKI model, we found that LRNA9884 was markedly up-regulated in the nucleus of renal tubular epithelium in mice with AKI. We found that silencing of LRNA9884 effectively inhibited the production of inflammatory cytokines MCP-1, IL-6, and TNF-α in the mouse renal tubular epithelial cells (mTECs) under IL-1β stimulation in vitro. Mechanistically, LRNA9884 was involved into NF-κB-mediated inflammatory cytokines production especially on macrophage migration inhibitory factor (MIF). Collectedly, our study suggested LRNA9884 promoted MIF-triggered the production of inflammatory cytokines via NF-κB pathway after AKI injury. This study uncovered LRNA9884 has an adverse impact in AKI, and targeting LRNA9884 might represent a potential therapeutic target for AKI.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yangyang Niu
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Cristina Alexandra García Córdoba
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xiao-Ru Huang
- Department of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong.,Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chen Yu
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui-Yao Lan
- Department of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong.,Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
21
|
Sabapathy V, Venkatadri R, Dogan M, Sharma R. The Yin and Yang of Alarmins in Regulation of Acute Kidney Injury. Front Med (Lausanne) 2020; 7:441. [PMID: 32974364 PMCID: PMC7472534 DOI: 10.3389/fmed.2020.00441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022] Open
Abstract
Acute kidney injury (AKI) is a major clinical burden affecting 20 to 50% of hospitalized and intensive care patients. Irrespective of the initiating factors, the immune system plays a major role in amplifying the disease pathogenesis with certain immune cells contributing to renal damage, whereas others offer protection and facilitate recovery. Alarmins are small molecules and proteins that include granulysins, high-mobility group box 1 protein, interleukin (IL)-1α, IL-16, IL-33, heat shock proteins, the Ca++ binding S100 proteins, adenosine triphosphate, and uric acid. Alarmins are mostly intracellular molecules, and their release to the extracellular milieu signals cellular stress or damage, generally leading to the recruitment of the cells of the immune system. Early studies indicated a pro-inflammatory role for the alarmins by contributing to immune-system dysregulation and worsening of AKI. However, recent developments demonstrate anti-inflammatory mechanisms of certain alarmins or alarmin-sensing receptors, which may participate in the prevention, resolution, and repair of AKI. This dual function of alarmins is intriguing and has confounded the role of alarmins in AKI. In this study, we review the contribution of various alarmins to the pathogenesis of AKI in experimental and clinical studies. We also analyze the approaches for the therapeutic utilization of alarmins for AKI.
Collapse
Affiliation(s)
| | | | | | - Rahul Sharma
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation, and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
22
|
Jiang Y, Quan J, Chen Y, Liao X, Dai Q, Lu R, Yu Y, Hu G, Li Q, Meng J, Xie Y, Peng Z, Tao L. Fluorofenidone protects against acute kidney injury. FASEB J 2019; 33:14325-14336. [DOI: 10.1096/fj.201901468rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- YuPeng Jiang
- Department of Nephrology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jiao Quan
- Department of Nutriology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yang Chen
- Department of Nephrology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xiaohua Liao
- Department of Nephrology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Qin Dai
- Department of Nephrology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Rong Lu
- Department of Nephrology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yue Yu
- Department of Nephrology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Gaoyun Hu
- Department of Pharmaceutical Chemistry, Xiangya Hospital, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Qianbin Li
- Department of Pharmaceutical Chemistry, Xiangya Hospital, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jie Meng
- Department of Respirology, Xiangya Hospital, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yanyun Xie
- Department of Nephrology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Zhangzhe Peng
- Department of Nephrology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Lijian Tao
- Department of Nephrology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
23
|
Ren J, Zhang J, Rudemiller NP, Griffiths R, Wen Y, Lu X, Privratsky JR, Gunn MD, Crowley SD. Twist1 in Infiltrating Macrophages Attenuates Kidney Fibrosis via Matrix Metallopeptidase 13-Mediated Matrix Degradation. J Am Soc Nephrol 2019; 30:1674-1685. [PMID: 31315922 PMCID: PMC6727252 DOI: 10.1681/asn.2018121253] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/18/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Following an acute insult, macrophages regulate renal fibrogenesis through the release of various factors that either encourage the synthesis of extracellular matrix synthesis or the degradation of matrix via endocytosis, proteolysis, or both. However, the roles of infiltrating versus resident myeloid cells in these opposing processes require elucidation. The transcription factor Twist1 controls diverse essential cellular functions through induction of several downstream targets, including matrix metalloproteinases (MMPs). In macrophages, Twist1 can influence patterns of cytokine generation, but the role of macrophage Twist1 in renal fibrogenesis remains undefined. METHODS To study Twist1 functions in different macrophage subsets during kidney scar formation, we used two conditional mutant mouse models in which Twist1 was selectively ablated either in infiltrating, inflammatory macrophages or in resident tissue macrophages. We assessed fibrosis-related parameters, matrix metallopeptidase 13 (MMP13, or collagen 3, which catalyzes collagen degradation), inflammatory cytokines, and other factors in these Twist1-deficient mice compared with wild-type controls after subjecting the animals to unilateral ureteral obstruction. We also treated wild-type and Twist1-deficient mice with an MMP13 inhibitor after unilateral ureteral obstruction. RESULTS Twist1 in infiltrating inflammatory macrophages but not in resident macrophages limited kidney fibrosis after ureteral obstruction by driving extracellular matrix degradation. Moreover, deletion of Twist1 in infiltrating macrophages attenuated the expression of MMP13 in CD11b+Ly6Clo myeloid cells. Inhibition of MMP13 abrogated the protection from renal fibrosis afforded by macrophage Twist1. CONCLUSIONS Twist1 in infiltrating myeloid cells mitigates interstitial matrix accumulation in the injured kidney by promoting MMP13 production, which drives extracellular matrix degradation. These data highlight the complex cell-specific actions of Twist1 in the pathogenesis of kidney fibrosis.
Collapse
Affiliation(s)
- Jiafa Ren
- Divisions of Nephrology and
- Departments of Medicine and
| | | | | | | | - Yi Wen
- Divisions of Nephrology and
- Departments of Medicine and
| | - Xiaohan Lu
- Divisions of Nephrology and
- Departments of Medicine and
| | - Jamie R Privratsky
- Anesthesiology, Durham VA and Duke University Medical Centers, Durham, North Carolina
| | | | | |
Collapse
|
24
|
Yang B, Fu L, Privratsky JR, Lu X, Ren J, Mei C, Crowley SD. Interleukin-1 receptor activation aggravates autosomal dominant polycystic kidney disease by modulating regulated necrosis. Am J Physiol Renal Physiol 2019; 317:F221-F228. [PMID: 31141402 PMCID: PMC6732457 DOI: 10.1152/ajprenal.00104.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 01/08/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is associated with increased chemokines, cytokines, and growth factors in the diseased kidney. We found that both isoforms of IL-1, IL-1α and IL-1β, were upregulated in ADPKD tissues. Here, we used a unique murine ADPKD model with selective deletion of polycystin-1 (pkd1) in the kidney (KPKD1) to study the role of IL-1 signaling in ADPKD progression. In KPKD mice, genetic deletion of the IL-1 receptor [IL-1 receptor (IL-1R) knockout (KO)] prolongs survival and attenuates cyst volume. Compared with IL-1R wild-type KPKD1 kidneys, IL-1R KO KPKD1 kidneys have upregulated TNF-α gene expression, with consequent elevations in markers for TNF-dependent regulated necrosis. We further observed that regulated necrosis was increased in ADPKD tissues from both humans and mice. To confirm that enhanced necroptosis is protective in ADPKD, we treated KPKD1 mice with an inhibitor of regulated necrosis (Nec-1). Regulated necrosis suppression augments kidney weights, suggesting that regulated necrosis is required to limit kidney growth in ADPKD. Thus, IL-1R activation drives ADPKD progression by paradoxically limiting regulated necrosis.
Collapse
Affiliation(s)
- Bo Yang
- Division of Nephrology, Kidney Institution of Chinese People's Liberation Army, Changzheng Hospital , Shanghai , China
- Division of Nephrology, Department of Medicine, Duke University School of Medicine , Durham, North Carolina
| | - Lili Fu
- Division of Nephrology, Kidney Institution of Chinese People's Liberation Army, Changzheng Hospital , Shanghai , China
| | - Jamie R Privratsky
- Department of Anesthesiology, Department of Medicine, Duke University School of Medicine , Durham, North Carolina
| | - Xiaohan Lu
- Division of Nephrology, Department of Medicine, Duke University School of Medicine , Durham, North Carolina
| | - Jiafa Ren
- Division of Nephrology, Department of Medicine, Duke University School of Medicine , Durham, North Carolina
| | - Changlin Mei
- Division of Nephrology, Kidney Institution of Chinese People's Liberation Army, Changzheng Hospital , Shanghai , China
| | - Steven D Crowley
- Division of Nephrology, Department of Medicine, Duke University School of Medicine , Durham, North Carolina
- Durham Veterans Affairs Medical Center , Durham, North Carolina
| |
Collapse
|
25
|
Holditch SJ, Brown CN, Lombardi AM, Nguyen KN, Edelstein CL. Recent Advances in Models, Mechanisms, Biomarkers, and Interventions in Cisplatin-Induced Acute Kidney Injury. Int J Mol Sci 2019; 20:ijms20123011. [PMID: 31226747 PMCID: PMC6627318 DOI: 10.3390/ijms20123011] [Citation(s) in RCA: 233] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/31/2019] [Accepted: 06/12/2019] [Indexed: 12/14/2022] Open
Abstract
Cisplatin is a widely used chemotherapeutic agent used to treat solid tumours, such as ovarian, head and neck, and testicular germ cell. A known complication of cisplatin administration is acute kidney injury (AKI). The development of effective tumour interventions with reduced nephrotoxicity relies heavily on understanding the molecular pathophysiology of cisplatin-induced AKI. Rodent models have provided mechanistic insight into the pathophysiology of cisplatin-induced AKI. In the subsequent review, we provide a detailed discussion of recent advances in the cisplatin-induced AKI phenotype, principal mechanistic findings of injury and therapy, and pre-clinical use of AKI rodent models. Cisplatin-induced AKI murine models faithfully develop gross manifestations of clinical AKI such as decreased kidney function, increased expression of tubular injury biomarkers, and tubular injury evident by histology. Pathways involved in AKI include apoptosis, necrosis, inflammation, and increased oxidative stress, ultimately providing a translational platform for testing the therapeutic efficacy of potential interventions. This review provides a discussion of the foundation laid by cisplatin-induced AKI rodent models for our current understanding of AKI molecular pathophysiology.
Collapse
Affiliation(s)
- Sara J Holditch
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Box C281, 12700 East, 19th Ave, Aurora, CO 80045, USA.
| | - Carolyn N Brown
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Box C281, 12700 East, 19th Ave, Aurora, CO 80045, USA.
| | - Andrew M Lombardi
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Box C281, 12700 East, 19th Ave, Aurora, CO 80045, USA.
| | - Khoa N Nguyen
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Box C281, 12700 East, 19th Ave, Aurora, CO 80045, USA.
| | - Charles L Edelstein
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Box C281, 12700 East, 19th Ave, Aurora, CO 80045, USA.
| |
Collapse
|
26
|
Privratsky JR, Wang N, Qi Y, Ren J, Morris BT, Hunting JC, Johnson GA, Crowley SD. Dynamic contrast-enhanced MRI promotes early detection of toxin-induced acute kidney injury. Am J Physiol Renal Physiol 2019; 316:F351-F359. [PMID: 30516426 PMCID: PMC6397378 DOI: 10.1152/ajprenal.00416.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/26/2018] [Accepted: 12/02/2018] [Indexed: 12/26/2022] Open
Abstract
Acute kidney injury (AKI) is a common cause of morbidity and mortality in hospitalized patients. Nevertheless, there is limited ability to diagnose AKI in its earliest stages through the collection of structural and functional information. Magnetic resonance imaging (MRI) is increasingly being used to provide structural and functional data that characterize the injured kidney. Dynamic contrast-enhanced (DCE) MRI is an imaging modality with robust spatial and temporal resolution; however, its ability to detect changes in kidney function following AKI has not been determined. We hypothesized that DCE MRI would detect a prolongation in contrast transit time following toxin-induced AKI earlier than commonly used serum and tissue biomarkers. To test our hypothesis, we injected mice with either vehicle or cisplatin (30 mg/kg) and performed DCE MRI at multiple time points. We found that commonly used kidney injury biomarkers, including creatinine, blood urea nitrogen, and neutrophil gelatinase-associated lipocalin, did not rise until day 2 following cisplatin. Tissue levels of the proinflammatory cytokines and chemokines, tumor necrosis factor-α, interleukin (IL)-1β, IL-1α, IL-6, C-C motif chemokine ligand 2, and C-X-C motif chemokine ligand 2 similarly did not upregulate until day 2 following cisplatin. However, the time to peak intensity of contrast in the renal collecting system was already prolonged at day 1 following cisplatin compared with vehicle-treated mice. This intensity change mirrored changes in kidney injury as measured by histological analysis and in transporter expression in the proximal tubule. Taken together, DCE MRI is a promising preclinical imaging modality that is useful for assessing functional capacity of the kidney in the earliest stages following AKI.
Collapse
Affiliation(s)
- Jamie R Privratsky
- Department of Anesthesiology, Duke University Medical Center , Durham, North Carolina
| | - Nian Wang
- Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center , Durham, North Carolina
| | - Yi Qi
- Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center , Durham, North Carolina
| | - Jiafa Ren
- Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Benjamin T Morris
- Department of Anesthesiology, Duke University Medical Center , Durham, North Carolina
| | - John C Hunting
- Department of Biostatistics and Bioinformatics, Duke University Medical Center , Durham, North Carolina
| | - G Allan Johnson
- Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center , Durham, North Carolina
| | - Steven D Crowley
- Department of Medicine, Duke University Medical Center , Durham, North Carolina
- Durham Veterans Affairs Medical Center , Durham, North Carolina
| |
Collapse
|