1
|
Rayego-Mateos S, Marquez-Exposito L, Basantes P, Tejedor-Santamaria L, Sanz AB, Nguyen TQ, Goldschmeding R, Ortiz A, Ruiz-Ortega M. CCN2 Activates RIPK3, NLRP3 Inflammasome, and NRF2/Oxidative Pathways Linked to Kidney Inflammation. Antioxidants (Basel) 2023; 12:1541. [PMID: 37627536 PMCID: PMC10451214 DOI: 10.3390/antiox12081541] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Inflammation is a key characteristic of both acute and chronic kidney diseases. Preclinical data suggest the involvement of the NLRP3/Inflammasome, receptor-interacting protein kinase-3 (RIPK3), and NRF2/oxidative pathways in the regulation of kidney inflammation. Cellular communication network factor 2 (CCN2, also called CTGF in the past) is an established fibrotic biomarker and a well-known mediator of kidney damage. CCN2 was shown to be involved in kidney damage through the regulation of proinflammatory and profibrotic responses. However, to date, the potential role of the NLRP3/RIPK3/NRF2 pathways in CCN2 actions has not been evaluated. In experimental acute kidney injury induced with folic acid in mice, CCN2 deficiency diminished renal inflammatory cell infiltration (monocytes/macrophages and T lymphocytes) as well as the upregulation of proinflammatory genes and the activation of NLRP3/Inflammasome-related components and specific cytokine products, such as IL-1β. Moreover, the NRF2/oxidative pathway was deregulated. Systemic administration of CCN2 to C57BL/6 mice induced kidney immune cell infiltration and activated the NLRP3 pathway. RIPK3 deficiency diminished the CCN2-induced renal upregulation of proinflammatory mediators and prevented NLRP3 modulation. These data suggest that CCN2 plays a fundamental role in sterile inflammation and acute kidney injury by modulating the RIKP3/NLRP3/NRF2 inflammatory pathways.
Collapse
Affiliation(s)
- Sandra Rayego-Mateos
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (P.B.); (L.T.-S.)
- Ricor2040, 28029 Madrid, Spain
| | - Laura Marquez-Exposito
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (P.B.); (L.T.-S.)
- Ricor2040, 28029 Madrid, Spain
| | - Pamela Basantes
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (P.B.); (L.T.-S.)
- Ricor2040, 28029 Madrid, Spain
| | - Lucia Tejedor-Santamaria
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (P.B.); (L.T.-S.)
- Ricor2040, 28029 Madrid, Spain
| | - Ana B. Sanz
- Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain; (A.B.S.); (A.O.)
| | - Tri Q. Nguyen
- Department of Pathology, University Medical Center Utrecht, H04.312, Heidelberglaan 100, 3584 Utrecht, The Netherlands; (T.Q.N.); (R.G.)
| | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, H04.312, Heidelberglaan 100, 3584 Utrecht, The Netherlands; (T.Q.N.); (R.G.)
| | - Alberto Ortiz
- Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain; (A.B.S.); (A.O.)
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (P.B.); (L.T.-S.)
- Ricor2040, 28029 Madrid, Spain
| |
Collapse
|
2
|
Hypertensive Nephropathy: Unveiling the Possible Involvement of Hemichannels and Pannexons. Int J Mol Sci 2022; 23:ijms232415936. [PMID: 36555574 PMCID: PMC9785367 DOI: 10.3390/ijms232415936] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Hypertension is one of the most common risk factors for developing chronic cardiovascular diseases, including hypertensive nephropathy. Within the glomerulus, hypertension causes damage and activation of mesangial cells (MCs), eliciting the production of large amounts of vasoactive and proinflammatory agents. Accordingly, the activation of AT1 receptors by the vasoactive molecule angiotensin II (AngII) contributes to the pathogenesis of renal damage, which is mediated mostly by the dysfunction of intracellular Ca2+ ([Ca2+]i) signaling. Similarly, inflammation entails complex processes, where [Ca2+]i also play crucial roles. Deregulation of this second messenger increases cell damage and promotes fibrosis, reduces renal blood flow, and impairs the glomerular filtration barrier. In vertebrates, [Ca2+]i signaling depends, in part, on the activity of two families of large-pore channels: hemichannels and pannexons. Interestingly, the opening of these channels depends on [Ca2+]i signaling. In this review, we propose that the opening of channels formed by connexins and/or pannexins mediated by AngII induces the ATP release to the extracellular media, with the subsequent activation of purinergic receptors. This process could elicit Ca2+ overload and constitute a feed-forward mechanism, leading to kidney damage.
Collapse
|
3
|
Sadri G, Fischer AG, Brittian KR, Elliott E, Nystoriak MA, Uchida S, Wysoczynski M, Leask A, Jones SP, Moore JB. Collagen type XIX regulates cardiac extracellular matrix structure and ventricular function. Matrix Biol 2022; 109:49-69. [PMID: 35346795 PMCID: PMC9161575 DOI: 10.1016/j.matbio.2022.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/13/2022] [Accepted: 03/22/2022] [Indexed: 12/26/2022]
Abstract
The cardiac extracellular matrix plays essential roles in homeostasis and injury responses. Although the role of fibrillar collagens have been thoroughly documented, the functions of non-fibrillar collagen members remain underexplored. These include a distinct group of non-fibrillar collagens, termed, fibril-associated collagens with interrupted triple helices (FACITs). Recent reports of collagen type XIX (encoded by Col19a1) expression in adult heart and evidence of its enhanced expression in cardiac ischemia suggest important functions for this FACIT in cardiac ECM structure and function. Here, we examined the cellular source of collagen XIX in the adult murine heart and evaluated its involvement in ECM structure and ventricular function. Immunodetection of collagen XIX in fractionated cardiovascular cell lineages revealed fibroblasts and smooth muscle cells as the primary sources of collagen XIX in the heart. Based on echocardiographic and histologic analyses, Col19a1 null (Col19a1N/N) mice exhibited reduced systolic function, thinning of left ventricular walls, and increased cardiomyocyte cross-sectional areas-without gross changes in myocardial collagen content or basement membrane morphology. Col19a1N/N cardiac fibroblasts had augmented expression of several enzymes involved in the synthesis and stability of fibrillar collagens, including PLOD1 and LOX. Furthermore, second harmonic generation-imaged ECM derived from Col19a1N/N cardiac fibroblasts, and transmission electron micrographs of decellularized hearts from Col19a1N/N null animals, showed marked reductions in fibrillar collagen structural organization. Col19a1N/N mice also displayed enhanced phosphorylation of focal adhesion kinase (FAK), signifying de-repression of the FAK pathway-a critical mediator of cardiomyocyte hypertrophy. Collectively, we show that collagen XIX, which had a heretofore unknown role in the mammalian heart, participates in the regulation of cardiac structure and function-potentially through modulation of ECM fibrillar collagen structural organization. Further, these data suggest that this FACIT may modify ECM superstructure via acting at the level of the fibroblast to regulate their expression of collagen synthetic and stabilization enzymes.
Collapse
Affiliation(s)
- Ghazal Sadri
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Annalara G Fischer
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Kenneth R Brittian
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Erin Elliott
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Matthew A Nystoriak
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Marcin Wysoczynski
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Steven P Jones
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Joseph B Moore
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
4
|
Rayego-Mateos S, Morgado-Pascual JL, Lavoz C, Rodrigues-Díez RR, Márquez-Expósito L, Tejera-Muñoz A, Tejedor-Santamaría L, Rubio-Soto I, Marchant V, Ruiz-Ortega M. CCN2 Binds to Tubular Epithelial Cells in the Kidney. Biomolecules 2022; 12:biom12020252. [PMID: 35204752 PMCID: PMC8869303 DOI: 10.3390/biom12020252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023] Open
Abstract
Cellular communication network-2 (CCN2), also called connective tissue growth factor (CTGF), is considered a fibrotic biomarker and has been suggested as a potential therapeutic target for kidney pathologies. CCN2 is a matricellular protein with four distinct structural modules that can exert a dual function as a matricellular protein and as a growth factor. Previous experiments using surface plasmon resonance and cultured renal cells have demonstrated that the C-terminal module of CCN2 (CCN2(IV)) interacts with the epidermal growth factor receptor (EGFR). Moreover, CCN2(IV) activates proinflammatory and profibrotic responses in the mouse kidney. The aim of this paper was to locate the in vivo cellular CCN2/EGFR binding sites in the kidney. To this aim, the C-terminal module CCN2(IV) was labeled with a fluorophore (Cy5), and two different administration routes were employed. Both intraperitoneal and direct intra-renal injection of Cy5-CCN2(IV) in mice demonstrated that CCN2(IV) preferentially binds to the tubular epithelial cells, while no signal was detected in glomeruli. Moreover, co-localization of Cy5-CCN2(IV) binding and activated EGFR was found in tubules. In cultured tubular epithelial cells, live-cell confocal microscopy experiments showed that EGFR gene silencing blocked Cy5-CCN2(IV) binding to tubuloepithelial cells. These data clearly show the existence of CCN2/EGFR binding sites in the kidney, mainly in tubular epithelial cells. In conclusion, these studies show that circulating CCN2(IV) can directly bind and activate tubular cells, supporting the role of CCN2 as a growth factor involved in kidney damage progression.
Collapse
Affiliation(s)
- Sandra Rayego-Mateos
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (A.T.-M.); (L.T.-S.); (I.R.-S.); (V.M.)
- Red de Investigación Renal (REDinREN), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain;
| | - José Luis Morgado-Pascual
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Cordoba, Spain;
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14071 Cordoba, Spain
| | - Carolina Lavoz
- Division of Nephrology, School of Medicine, Universidad Austral Chile, Valdivia 5090000, Chile;
| | - Raúl R. Rodrigues-Díez
- Red de Investigación Renal (REDinREN), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain;
- Translational Immunology Laboratory, Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| | - Laura Márquez-Expósito
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (A.T.-M.); (L.T.-S.); (I.R.-S.); (V.M.)
- Red de Investigación Renal (REDinREN), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain;
| | - Antonio Tejera-Muñoz
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (A.T.-M.); (L.T.-S.); (I.R.-S.); (V.M.)
- Red de Investigación Renal (REDinREN), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain;
| | - Lucía Tejedor-Santamaría
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (A.T.-M.); (L.T.-S.); (I.R.-S.); (V.M.)
- Red de Investigación Renal (REDinREN), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain;
| | - Irene Rubio-Soto
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (A.T.-M.); (L.T.-S.); (I.R.-S.); (V.M.)
- Red de Investigación Renal (REDinREN), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain;
| | - Vanessa Marchant
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (A.T.-M.); (L.T.-S.); (I.R.-S.); (V.M.)
- Red de Investigación Renal (REDinREN), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain;
| | - Marta Ruiz-Ortega
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (A.T.-M.); (L.T.-S.); (I.R.-S.); (V.M.)
- Red de Investigación Renal (REDinREN), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain;
- Correspondence:
| |
Collapse
|
5
|
Interplay between extracellular matrix components and cellular and molecular mechanisms in kidney fibrosis. Clin Sci (Lond) 2021; 135:1999-2029. [PMID: 34427291 DOI: 10.1042/cs20201016] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022]
Abstract
Chronic kidney disease (CKD) is characterized by pathological accumulation of extracellular matrix (ECM) proteins in renal structures. Tubulointerstitial fibrosis is observed in glomerular diseases as well as in the regeneration failure of acute kidney injury (AKI). Therefore, finding antifibrotic therapies comprises an intensive research field in Nephrology. Nowadays, ECM is not only considered as a cellular scaffold, but also exerts important cellular functions. In this review, we describe the cellular and molecular mechanisms involved in kidney fibrosis, paying particular attention to ECM components, profibrotic factors and cell-matrix interactions. In response to kidney damage, activation of glomerular and/or tubular cells may induce aberrant phenotypes characterized by overproduction of proinflammatory and profibrotic factors, and thus contribute to CKD progression. Among ECM components, matricellular proteins can regulate cell-ECM interactions, as well as cellular phenotype changes. Regarding kidney fibrosis, one of the most studied matricellular proteins is cellular communication network-2 (CCN2), also called connective tissue growth factor (CTGF), currently considered as a fibrotic marker and a potential therapeutic target. Integrins connect the ECM proteins to the actin cytoskeleton and several downstream signaling pathways that enable cells to respond to external stimuli in a coordinated manner and maintain optimal tissue stiffness. In kidney fibrosis, there is an increase in ECM deposition, lower ECM degradation and ECM proteins cross-linking, leading to an alteration in the tissue mechanical properties and their responses to injurious stimuli. A better understanding of these complex cellular and molecular events could help us to improve the antifibrotic therapies for CKD.
Collapse
|
6
|
Murali A, Krishnakumar S, Subramanian A, Parameswaran S. Bruch's membrane pathology: A mechanistic perspective. Eur J Ophthalmol 2020; 30:1195-1206. [PMID: 32345040 DOI: 10.1177/1120672120919337] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bruch's membrane, an extracellular matrix located between the retinal pigment epithelium and the choroid, plays a vital role as structural and functional support to the retinal pigment epithelium. Dysfunction of Bruch's membrane in both age-related macular degeneration and other ocular diseases is caused mostly by extracellular matrix degeneration, deposit formation, and angiogenesis. Although these factors are dealt in greater detail with respect to the cells that are degenerated such as the retinal pigment epithelium and the endothelial cells, the pathology involving the Bruch's membrane is often underrated. Since in most of the macular degenerations early degenerative changes are also observed in the Bruch's membrane, addressing only the cellular component without the underlying membrane will not yield an ideal clinical benefit. This review aims to discuss the factors and the mechanisms affecting the integrity of the Bruch's membrane, which would aid in developing an effective therapy for these pathologies.
Collapse
Affiliation(s)
- Aishwarya Murali
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, India
| | - Subramanian Krishnakumar
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, India
| | - Anuradha Subramanian
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA University, Thanjavur, India
| | - Sowmya Parameswaran
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, India
| |
Collapse
|
7
|
Abstract
Chronic kidney disease (CKD) is a devastating condition that is reaching epidemic levels owing to the increasing prevalence of diabetes mellitus, hypertension and obesity, as well as ageing of the population. Regardless of the underlying aetiology, CKD is slowly progressive and leads to irreversible nephron loss, end-stage renal disease and/or premature death. Factors that contribute to CKD progression include parenchymal cell loss, chronic inflammation, fibrosis and reduced regenerative capacity of the kidney. Current therapies have limited effectiveness and only delay disease progression, underscoring the need to develop novel therapeutic approaches to either stop or reverse progression. Preclinical studies have identified several approaches that reduce fibrosis in experimental models, including targeting cytokines, transcription factors, developmental and signalling pathways and epigenetic modulators, particularly microRNAs. Some of these nephroprotective strategies are now being tested in clinical trials. Lessons learned from the failure of clinical studies of transforming growth factor β1 (TGFβ1) blockade underscore the need for alternative approaches to CKD therapy, as strategies that target a single pathogenic process may result in unexpected negative effects on simultaneously occurring processes. Additional promising avenues include preventing tubular cell injury and anti-fibrotic therapies that target activated myofibroblasts, the main collagen-producing cells.
Collapse
|
8
|
Morita W, Snelling SJB, Wheway K, Watkins B, Appleton L, Carr AJ, Dakin SG. ERK1/2 drives IL-1β-induced expression of TGF-β1 and BMP-2 in torn tendons. Sci Rep 2019; 9:19005. [PMID: 31831776 PMCID: PMC6908634 DOI: 10.1038/s41598-019-55387-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023] Open
Abstract
Diseased and injured tendons develop fibrosis, driven by factors including TGF-β, BMPs and CTGF. IL-1β and its signal transducer Erk1/2 are known to regulate TGF-β expression in animal tendons. We utilised tissues and cells isolated from patients with shoulder tendon tears and tendons of healthy volunteers to advance understanding of how inflammation induces fibrosis in diseased human tendons. ERK1/2 expression was reduced in torn (diseased) compared to healthy patient tendon tissues. We next investigated the fibrotic responses of tendon-derived cells isolated from healthy and diseased human tendon tissues in an inflammatory milieu. IL-1β treatment induced profound ERK1/2 signalling, TGFB1 and BMP2 mRNA expression in diseased compared to healthy tendon-derived cells. In the diseased cells, the ERK1/2 inhibitor (PD98059) completely blocked the IL-1β-induced TGFB1 and partially reduced BMP2 mRNA expression. Conversely, the same treatment of healthy cells did not modulate IL-1β-induced TGFB1 or BMP2 mRNA expression. ERK1/2 inhibition did not attenuate IL-1β-induced CTGF mRNA expression in healthy or diseased tendon cells. These findings highlight differences between ERK1/2 signalling pathway activation and expression of TGF-β1 and BMP-2 between healthy and diseased tendon tissues and cells, advancing understanding of inflammation induced fibrosis during the development of human tendon disease and subsequent repair.
Collapse
Affiliation(s)
- Wataru Morita
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Windmill Road, Oxford, UK. .,NIHR Oxford Biomedical Research Centre, Botnar Research Centre, NDORMS, University of Oxford, Windmill Road, Oxford, OX3 7LD, UK.
| | - Sarah J B Snelling
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Windmill Road, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Botnar Research Centre, NDORMS, University of Oxford, Windmill Road, Oxford, OX3 7LD, UK
| | - Kim Wheway
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Windmill Road, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Botnar Research Centre, NDORMS, University of Oxford, Windmill Road, Oxford, OX3 7LD, UK
| | - Bridget Watkins
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Windmill Road, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Botnar Research Centre, NDORMS, University of Oxford, Windmill Road, Oxford, OX3 7LD, UK
| | - Louise Appleton
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Windmill Road, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Botnar Research Centre, NDORMS, University of Oxford, Windmill Road, Oxford, OX3 7LD, UK
| | - Andrew J Carr
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Windmill Road, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Botnar Research Centre, NDORMS, University of Oxford, Windmill Road, Oxford, OX3 7LD, UK
| | - Stephanie G Dakin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Windmill Road, Oxford, UK. .,NIHR Oxford Biomedical Research Centre, Botnar Research Centre, NDORMS, University of Oxford, Windmill Road, Oxford, OX3 7LD, UK.
| |
Collapse
|
9
|
Role of a RhoA/ROCK-Dependent Pathway on Renal Connexin43 Regulation in the Angiotensin II-Induced Renal Damage. Int J Mol Sci 2019; 20:ijms20184408. [PMID: 31500276 PMCID: PMC6770162 DOI: 10.3390/ijms20184408] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 12/21/2022] Open
Abstract
In various models of chronic kidney disease, the amount and localization of Cx43 in the nephron is known to increase, but the intracellular pathways that regulate these changes have not been identified. Therefore, we proposed that: "In the model of renal damage induced by infusion of angiotensin II (AngII), a RhoA/ROCK-dependent pathway, is activated and regulates the abundance of renal Cx43". In rats, we evaluated: 1) the time-point where the renal damage induced by AngII is no longer reversible; and 2) the involvement of a RhoA/ROCK-dependent pathway and its relationship with the amount of Cx43 in this irreversible stage. Systolic blood pressure (SBP) and renal function (urinary protein/urinary creatinine: Uprot/UCrea) were evaluated as systemic and organ outcomes, respectively. In kidney tissue, we also evaluated: 1) oxidative stress (amount of thiobarbituric acid reactive species), 2) inflammation (immunoperoxidase detection of the inflammatory markers ED-1 and IL-1β), 3) fibrosis (immune detection of type III collagen; Col III) and 4) activity of RhoA/ROCK (amount of phosphorylated MYPT1; p-MYPT1). The ratio Uprot/UCrea, SBP, oxidative stress, inflammation, amount of Cx43 and p-MYPT1 remained high 2 weeks after suspending AngII treatment in rats treated for 4 weeks with AngII. These responses were not observed in rats treated with AngII for less than 4 weeks, in which all measurements returned spontaneously close to the control values after suspending AngII treatment. Rats treated with AngII for 6 weeks and co-treated for the last 4 weeks with Fasudil, an inhibitor of ROCK, showed high SBP but did not present renal damage or increased amount of renal Cx43. Therefore, renal damage induced by AngII correlates with the activation of RhoA/ROCK and the increase in Cx43 amounts and can be prevented by inhibitors of this pathway.
Collapse
|
10
|
Nagai Y, Matoba K, Kawanami D, Takeda Y, Akamine T, Ishizawa S, Kanazawa Y, Yokota T, Utsunomiya K, Nishimura R. ROCK2 regulates TGF-β-induced expression of CTGF and profibrotic genes via NF-κB and cytoskeleton dynamics in mesangial cells. Am J Physiol Renal Physiol 2019; 317:F839-F851. [PMID: 31364374 DOI: 10.1152/ajprenal.00596.2018] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The small GTPase Rho and its effector Rho kinase (ROCK) are involved in the pathogenesis of diabetic kidney disease. Rho kinase has two isoforms: ROCK1 and ROCK2. However, it remains unclear which is mainly involved in the progression of diabetic glomerulosclerosis and the regulation of profibrotic mediators. Glomeruli isolated from type 2 diabetic db/db mice demonstrated increased gene expression of transforming growth factor (TGF)-β and its downstream profibrotic mediators. Chemical inhibition of ROCK suppressed the expression of profibrotic mediators in both isolated glomeruli and cultured mesangial cells. An investigation of mechanisms underlying this observation revealed activated ROCK functions through the phosphorylation of JNK and Erk and the nuclear translocation of NF-κB via actin dynamics. Knockdown by siRNA against ROCK1 and ROCK2 showed that ROCK2 but not ROCK1 controls this fibrotic machinery. Further in vivo experiments showed that ROCK2 activity in the renal cortex of db/db mice was elevated compared with control db/m mice. Importantly, oral administration of ROCK2 inhibitor attenuated renal ROCK2 activity, albuminuria, and glomerular fibrosis in db/db mice. These observations indicate that ROCK2 is a key player in the development of diabetic renal injury. Glomerular ROCK2 may be a potential therapeutic target for the treatment of diabetic kidney disease.
Collapse
Affiliation(s)
- Yosuke Nagai
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Keiichiro Matoba
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Daiji Kawanami
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Yusuke Takeda
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Tomoyo Akamine
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Sho Ishizawa
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yasushi Kanazawa
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Tamotsu Yokota
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazunori Utsunomiya
- Center for Preventive Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Rimei Nishimura
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Abstract
The ECM (extracellular matrix) network plays a crucial role in cardiac homeostasis, not only by providing structural support, but also by facilitating force transmission, and by transducing key signals to cardiomyocytes, vascular cells, and interstitial cells. Changes in the profile and biochemistry of the ECM may be critically implicated in the pathogenesis of both heart failure with reduced ejection fraction and heart failure with preserved ejection fraction. The patterns of molecular and biochemical ECM alterations in failing hearts are dependent on the type of underlying injury. Pressure overload triggers early activation of a matrix-synthetic program in cardiac fibroblasts, inducing myofibroblast conversion, and stimulating synthesis of both structural and matricellular ECM proteins. Expansion of the cardiac ECM may increase myocardial stiffness promoting diastolic dysfunction. Cardiomyocytes, vascular cells and immune cells, activated through mechanosensitive pathways or neurohumoral mediators may play a critical role in fibroblast activation through secretion of cytokines and growth factors. Sustained pressure overload leads to dilative remodeling and systolic dysfunction that may be mediated by changes in the interstitial protease/antiprotease balance. On the other hand, ischemic injury causes dynamic changes in the cardiac ECM that contribute to regulation of inflammation and repair and may mediate adverse cardiac remodeling. In other pathophysiologic conditions, such as volume overload, diabetes mellitus, and obesity, the cell biological effectors mediating ECM remodeling are poorly understood and the molecular links between the primary insult and the changes in the matrix environment are unknown. This review article discusses the role of ECM macromolecules in heart failure, focusing on both structural ECM proteins (such as fibrillar and nonfibrillar collagens), and specialized injury-associated matrix macromolecules (such as fibronectin and matricellular proteins). Understanding the role of the ECM in heart failure may identify therapeutic targets to reduce geometric remodeling, to attenuate cardiomyocyte dysfunction, and even to promote myocardial regeneration.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- From the Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
12
|
Sanz AB, Ramos AM, Soler MJ, Sanchez-Niño MD, Fernandez-Fernandez B, Perez-Gomez MV, Ortega MR, Alvarez-Llamas G, Ortiz A. Advances in understanding the role of angiotensin-regulated proteins in kidney diseases. Expert Rev Proteomics 2018; 16:77-92. [DOI: 10.1080/14789450.2018.1545577] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ana Belén Sanz
- Nephrology, IIS-Fundacion Jimenez Diaz and Universidad Autonoma de Madrid, Madrid, Spain
| | - Adrian Mario Ramos
- Nephrology, IIS-Fundacion Jimenez Diaz and Universidad Autonoma de Madrid, Madrid, Spain
| | - Maria Jose Soler
- Department of Nephrology, Hospital del Mar-IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | | | | | | | - Marta Ruiz Ortega
- Nephrology, IIS-Fundacion Jimenez Diaz and Universidad Autonoma de Madrid, Madrid, Spain
| | - Gloria Alvarez-Llamas
- Nephrology, IIS-Fundacion Jimenez Diaz and Universidad Autonoma de Madrid, Madrid, Spain
| | - Alberto Ortiz
- Nephrology, IIS-Fundacion Jimenez Diaz and Universidad Autonoma de Madrid, Madrid, Spain
| |
Collapse
|
13
|
Boldine Improves Kidney Damage in the Goldblatt 2K1C Model Avoiding the Increase in TGF-β. Int J Mol Sci 2018; 19:ijms19071864. [PMID: 29941815 PMCID: PMC6073111 DOI: 10.3390/ijms19071864] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/15/2018] [Accepted: 06/19/2018] [Indexed: 01/01/2023] Open
Abstract
Boldine, a major aporphine alkaloid found in the Chilean boldo tree, is a potent antioxidant. Oxidative stress plays a detrimental role in the pathogenesis of kidney damage in renovascular hypertension (RVH). The activation of the renin-angiotensin system (RAS) is crucial to the development and progression of hypertensive renal damage and TGF-β is closely associated with the activation of RAS. In the present study, we assessed the effect of boldine on the progression of kidney disease using the 2K1C hypertension model and identifying mediators in the RAS, such as TGF-β, that could be modulated by this alkaloid. Toward this hypothesis, rats (n = 5/group) were treated with boldine (50 mg/kg/day, gavage) for six weeks after 2K1C surgery (pressure ≥ 180 mmHg). Kidney function was evaluated by measuring of proteinuria/creatininuria ratio (U prot/U Crea), oxidative stress (OS) by measuring thiobarbituric acid reactive substances (TBARS). The evolution of systolic blood pressure (SBP) was followed weekly. Alpha-smooth muscle actin (α-SMA) and Col III were used as markers of kidney damage; ED-1 and osteopontin (OPN) were used as markers of inflammation. We also explored the effect in RAS mediators, such as ACE-1 and TGF-β. Boldine treatment reduced the UProt/UCrea ratio, plasma TBARS, and slightly reduced SBP in 2K1C hypertensive rats, producing no effect in control animals. In 2K1C rats treated with boldine the levels of α-SMA, Col III, ED-1, and OPN were lower when compared to 2K1C rats. Boldine prevented the increase in ACE-1 and TGF-β in 2K1C rats, suggesting that boldine reduces kidney damage. These results suggest that boldine could potentially be used as a nutraceutic.
Collapse
|
14
|
Quan FS, Jeong KH, Lee GJ. Ultrastructural and mechanical changes in tubular epithelial cells by angiotensin II and aldosterone as observed with atomic force microscopy. Micron 2018; 110:50-56. [PMID: 29734020 DOI: 10.1016/j.micron.2018.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/06/2018] [Accepted: 05/01/2018] [Indexed: 11/29/2022]
Abstract
Tubular epithelial cells (TECs) play an important pathophysiological role in the promotion of renal fibrosis. Quantitative analysis of the mechanical changes in TECs may be helpful in evaluating novel pharmacological strategies. Atomic force microscopy (AFM) is a common nanotechnology tool used for imaging and measuring interaction forces in biological systems. In this study, we used AFM to study ultrastructural and mechanical changes in TECs mediated by the renin-angiotensin-aldosterone system. We quantitatively analyzed changes in the mechanical properties of TECs using three extrinsic factors, namely, chemical fixation, angiotensin II (AT II), and aldosterone (AD). Fixed TECs were 11 times stiffer at the cell body and 3 times stiffer at the cell-cell junction compared to live TECs. After stimulation with AT II, live TECs were four times stiffer at the junctional area than at the cell body, while fixed TECs after AT II stimulation were approximately two times stiffer at the both cell body and cell-cell junction compared to fixed unstimulated TECs. Fixed TECs also reflected changes in the mechanical properties of TECs at the cell body region after AD stimulation. Together, our results suggest that cell stiffness at the cell body region may serve as an effective index for evaluating drugs and stimulation, regardless of whether the cells are live or fixed at the time of analysis. In addition, studying the changes to the intrinsic mechanical property of TECs after application of external stimuli may be useful for investigating pathophysiologic mechanisms and effective therapeutic strategies for renal injury.
Collapse
Affiliation(s)
- Fu-Shi Quan
- Department of Medical Zoology, College of Medicine, Kyung Hee University School of Medicine, Seoul 02447, Republic of Korea
| | - Kyung Hwan Jeong
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul 02447, Republic of Korea
| | - Gi-Ja Lee
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
15
|
Sun PF, Tian T, Chen LN, Fu RG, Xu SS, Ai H, Wang B, Zhang J, Si RY, Chai Z, Cooper ME, Ren ST. Ultrasound Combined with Microbubbles Enhances the Effects of Methylprednisolone in Lipopolysaccharide-Induced Human Mesangial Cells. J Pharmacol Exp Ther 2018; 365:476-484. [DOI: 10.1124/jpet.117.246223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/09/2018] [Indexed: 01/17/2023] Open
|
16
|
Huwiler A, Pfeilschifter J. Sphingolipid signaling in renal fibrosis. Matrix Biol 2018; 68-69:230-247. [PMID: 29343457 DOI: 10.1016/j.matbio.2018.01.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 12/28/2022]
Abstract
Over the last decade, various sphingolipid subspecies have gained increasing attention as important signaling molecules that regulate a multitude of physiological and pathophysiological processes including inflammation and tissue remodeling. These mediators include ceramide, sphingosine 1-phosphate (S1P), the cerebroside glucosylceramide, lactosylceramide, and the gangliosides GM3 and Gb3. These lipids have been shown to accumulate in various chronic kidney diseases that typically end in renal fibrosis and ultimately renal failure. This review will summarize the effects and contributions of those enzymes that regulate the generation and interconversion of these lipids, notably the acid sphingomyelinase, the acid sphingomyelinase-like protein SMPDL3B, the sphingosine kinases, the S1P lyase, the glucosylceramide synthase, the GM3 synthase, and the α-galactosidase A, to renal fibrotic diseases. Strategies of manipulating these enzymes for therapeutic purposes and the impact of existing drugs on renal pathologies will be discussed.
Collapse
Affiliation(s)
- Andrea Huwiler
- Institute of Pharmacology, University of Bern, Inselspital INO-F, CH-3010 Bern, Switzerland.
| | - Josef Pfeilschifter
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe- University, Frankfurt am Main, Germany
| |
Collapse
|
17
|
Rayego-Mateos S, Morgado-Pascual JL, Rodrigues-Diez RR, Rodrigues-Diez R, Falke LL, Mezzano S, Ortiz A, Egido J, Goldschmeding R, Ruiz-Ortega M. Connective tissue growth factor induces renal fibrosis via epidermal growth factor receptor activation. J Pathol 2018; 244:227-241. [PMID: 29160908 DOI: 10.1002/path.5007] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/20/2017] [Accepted: 11/14/2017] [Indexed: 01/04/2023]
Abstract
Connective tissue growth factor (CCN2/CTGF) is a matricellular protein that is overexpressed in progressive human renal diseases, mainly in fibrotic areas. In vitro studies have demonstrated that CCN2 regulates the production of extracellular matrix (ECM) proteins and epithelial-mesenchymal transition (EMT), and could therefore contribute to renal fibrosis. CCN2 blockade ameliorates experimental renal damage, including diminution of ECM accumulation. We have reported that CCN2 and its C-terminal degradation product CCN2(IV) bind to epidermal growth factor receptor (EGFR) to modulate renal inflammation. However, the receptor involved in CCN2 profibrotic actions has not been described so far. Using a murine model of systemic administration of CCN2(IV), we have unveiled a fibrotic response in the kidney that was diminished by EGFR blockade. Additionally, in conditional CCN2 knockout mice, renal fibrosis elicited by folic acid-induced renal damage was prevented, and this was linked to inhibition of EGFR pathway activation. Our in vitro studies demonstrated a direct effect of CCN2 via the EGFR pathway on ECM production by fibroblasts and the induction of EMT in tubular epithelial cells. Our studies clearly show that the EGFR regulates CCN2 fibrotic signalling in the kidney, and suggest that EGFR pathway blockade could be a potential therapeutic option to block CCN2-mediated profibrotic effects in renal diseases. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sandra Rayego-Mateos
- Cellular Biology in Renal Diseases Laboratory. School of Medicine, Universidad Autónoma Madrid, Madrid, Spain
| | - José Luis Morgado-Pascual
- Cellular Biology in Renal Diseases Laboratory. School of Medicine, Universidad Autónoma Madrid, Madrid, Spain
| | | | - Raquel Rodrigues-Diez
- Cellular Biology in Renal Diseases Laboratory. School of Medicine, Universidad Autónoma Madrid, Madrid, Spain
| | - Lucas L Falke
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sergio Mezzano
- Division of Nephrology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Alberto Ortiz
- IIS-Fundación Jiménez Díaz-UAM, School of Medicine, UAM, Madrid, Spain
| | - Jesús Egido
- IIS-Fundación Jiménez Díaz-UAM, School of Medicine, UAM, Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory. School of Medicine, Universidad Autónoma Madrid, Madrid, Spain
| |
Collapse
|
18
|
Gonadectomy prevents the increase in blood pressure and glomerular injury in angiotensin-converting enzyme 2 knockout diabetic male mice. Effects on renin-angiotensin system. J Hypertens 2017; 34:1752-65. [PMID: 27379538 DOI: 10.1097/hjh.0000000000001015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Angiotensin-converting enzyme 2 (ACE2) deletion worsens kidney injury, and its amplification ameliorates diabetic nephropathy. Male sex increases the incidence, prevalence, and progression of chronic kidney disease in our environment. METHOD Here, we studied the effect of ACE2 deficiency and gonadectomy (GDX) on diabetic nephropathy and its relationship with fibrosis, protein kinase B (Akt) activation, and the expression of several components of the renin-angiotensin system (RAS).Mice were injected with streptozotocin to induce diabetes and followed for 19 weeks. Physiological and renal parameters were studied in wild-type and ACE2 knockout (ACE2KO) male mice with and without GDX. RESULTS Diabetic ACE2KO showed increased blood pressure (BP), glomerular injury, and renal fibrosis compared with diabetic wild-type. Gonadectomized diabetic ACE2KO presented a decrease in BP. In the absence of ACE2, GDX attenuated albuminuria and renal lesions, such as mesangial matrix expansion and podocyte loss. Both, α-smooth muscle actin accumulation and collagen deposition were significantly decreased in renal cortex of gonadectomized diabetic ACE2KO but not diabetic wild-type mice. GDX also reduced circulating ACE activity in ACE2KO mice. Loss of ACE2 modified the effect of GDX on cortical gene expression of RAS in diabetic mice. Akt phosphorylation in renal cortex was increased by diabetes and loss of ACE2 and decreased by GDX in control and diabetic ACE2KO but not in wild-type mice. CONCLUSIONS Our results suggest that GDX may exert a protective effect within the kidney under pathological conditions of diabetes and ACE2 deficiency. This renoprotection may be ascribed to different mechanisms such as decrease in BP, modulation of RAS, and downregulation of Akt-related pathways.
Collapse
|
19
|
Feng H, Gu J, Gou F, Huang W, Gao C, Chen G, Long Y, Zhou X, Yang M, Liu S, Lü S, Luo Q, Xu Y. High Glucose and Lipopolysaccharide Prime NLRP3 Inflammasome via ROS/TXNIP Pathway in Mesangial Cells. J Diabetes Res 2016; 2016:6973175. [PMID: 26881256 PMCID: PMC4736396 DOI: 10.1155/2016/6973175] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/12/2015] [Accepted: 10/20/2015] [Indexed: 12/18/2022] Open
Abstract
While inflammation is considered a central component in the development in diabetic nephropathy, the mechanism remains unclear. The NLRP3 inflammasome acts as both a sensor and a regulator of the inflammatory response. The NLRP3 inflammasome responds to exogenous and endogenous danger signals, resulting in cleavage of procaspase-1 and activation of cytokines IL-1β, IL-18, and IL-33, ultimately triggering an inflammatory cascade reaction. This study observed the expression of NLRP3 inflammasome signaling stimulated by high glucose, lipopolysaccharide, and reactive oxygen species (ROS) inhibitor N-acetyl-L-cysteine in glomerular mesangial cells, aiming to elucidate the mechanism by which the NLRP3 inflammasome signaling pathway may contribute to diabetic nephropathy. We found that the expression of thioredoxin-interacting protein (TXNIP), NLRP3, and IL-1β was observed by immunohistochemistry in vivo. Simultaneously, the mRNA and protein levels of TXNIP, NLRP3, procaspase-1, and IL-1β were significantly induced by high glucose concentration and lipopolysaccharide in a dose-dependent and time-dependent manner in vitro. This induction by both high glucose and lipopolysaccharide was significantly inhibited by N-acetyl-L-cysteine. Our results firstly reveal that high glucose and lipopolysaccharide activate ROS/TXNIP/ NLRP3/IL-1β inflammasome signaling in glomerular mesangial cells, suggesting a mechanism by which inflammation may contribute to the development of diabetic nephropathy.
Collapse
Affiliation(s)
- Hong Feng
- Department of Endocrinology, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan 646000, China
- Department of Internal Medicine, Nan'an District People's Hospital, Chongqing 400060, China
| | - Junling Gu
- Department of Endocrinology, The Fifth People's Hospital of Chongqing, Chongqing 400062, China
| | - Fang Gou
- Department of Endocrinology, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan 646000, China
| | - Wei Huang
- Department of Endocrinology, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan 646000, China
| | - Chenlin Gao
- Department of Endocrinology, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan 646000, China
| | - Guo Chen
- Department of Endocrinology, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan 646000, China
| | - Yang Long
- Department of Endocrinology, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan 646000, China
| | - Xueqin Zhou
- Department of Endocrinology, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan 646000, China
| | - Maojun Yang
- Department of Endocrinology, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan 646000, China
| | - Shuang Liu
- Department of Endocrinology, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan 646000, China
| | - Shishi Lü
- Department of Endocrinology, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan 646000, China
| | - Qiaoyan Luo
- Department of Endocrinology, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan 646000, China
| | - Yong Xu
- Department of Endocrinology, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan 646000, China
- *Yong Xu:
| |
Collapse
|
20
|
Rodrigues-Diez RR, Garcia-Redondo AB, Orejudo M, Rodrigues-Diez R, Briones AM, Bosch-Panadero E, Kery G, Pato J, Ortiz A, Salaices M, Egido J, Ruiz-Ortega M. The C-terminal module IV of connective tissue growth factor, through EGFR/Nox1 signaling, activates the NF-κB pathway and proinflammatory factors in vascular smooth muscle cells. Antioxid Redox Signal 2015; 22:29-47. [PMID: 25065408 PMCID: PMC4270131 DOI: 10.1089/ars.2013.5500] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS Connective tissue growth factor (CTGF/CCN2) is a developmental gene upregulated in pathological conditions, including cardiovascular diseases, whose product is a matricellular protein that can be degraded to biologically active fragments. Among them, the C-terminal module IV [CCN2(IV)] regulates many cellular functions, but there are no data about redox process. Therefore, we investigated whether CCN2(IV) through redox signaling regulates vascular responses. RESULTS CCN2(IV) increased superoxide anion (O2(•-)) production in murine aorta (ex vivo and in vivo) and in cultured vascular smooth muscle cells (VSMCs). In isolated murine aorta, CCN2(IV), via O2(•-), increased phenylephrine-induced vascular contraction. CCN2(IV) in vivo regulated several redox-related processes in mice aorta, including increased nonphagocytic NAD(P)H oxidases (Nox)1 activity, protein nitrosylation, endothelial dysfunction, and activation of the nuclear factor-κB (NF-κB) pathway and its related proinflammatory factors. The role of Nox1 in CCN2(IV)-mediated vascular responses in vivo was investigated by gene silencing. The administration of a Nox1 morpholino diminished aortic O2(•-) production, endothelial dysfunction, NF-κB activation, and overexpression of proinflammatory genes in CCN2(IV)-injected mice. The link CCN2(IV)/Nox1/NF-κB/inflammation was confirmed in cultured VSMCs. Epidermal growth factor receptor (EGFR) is a known CCN2 receptor. In VSMCs, CCN2(IV) activates EGFR signaling. Moreover, EGFR kinase inhibition blocked vascular responses in CCN2(IV)-injected mice. INNOVATION AND CONCLUSION CCN2(IV) is a novel prooxidant factor that in VSMCs induces O2(•-) production via EGFR/Nox1 activation. Our in vivo data demonstrate that CCN2(IV) through EGFR/Nox1 signaling pathway induces endothelial dysfunction and activation of the NF-κB inflammatory pathway. Therefore, CCN2(IV) could be considered a potential therapeutic target for redox-related cardiovascular diseases.
Collapse
Affiliation(s)
- Raúl R Rodrigues-Diez
- 1 Cellular Biology in Renal Diseases Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma Madrid , Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Alique M, Sánchez-López E, Rayego-Mateos S, Egido J, Ortiz A, Ruiz-Ortega M. Angiotensin II, via angiotensin receptor type 1/nuclear factor-κB activation, causes a synergistic effect on interleukin-1-β-induced inflammatory responses in cultured mesangial cells. J Renin Angiotensin Aldosterone Syst 2014; 16:23-32. [PMID: 25354522 DOI: 10.1177/1470320314551564] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 08/17/2014] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION The nuclear factor-κB (NF-κB) is an important regulator of the inflammatory response. Angiotensin II (Ang II) activates the NF-κB pathway linked to renal inflammation. Although both AT1 and AT2 receptors are involved in Ang II-mediated NF-κB activation, the biological processes mediated by each receptor are not fully characterized. Interleukin-1β (IL-1β) is an important macrophage-derived cytokine that regulates immune and inflammatory processes, activating intracellular pathways shared with Ang II, including the NF-κB. MATERIALS AND METHODS In vitro studies were done in primary cultured rat mesangial cells. NF-κB pathway was evaluated by phosphorylated levels of p65/IκB and DNA binding activity. The Ang II receptor subtype was determined by pretreatment with AT1 and AT2 antagonists. RESULTS In mesangial cells the simultaneous presence of Ang II and IL-1β caused a synergistic activation of the NF-κB pathway and a marked upregulation of proinflammatory factors under NF-κB control, including monocyte chemoattractant protein-1. The AT1, but not AT2, antagonist abolished the synergistic effect on NF-κB activation and proinflammatory genes caused by coincubation of Ang II and IL-1β. CONCLUSIONS These data indicates that Ang II, via AT1/NF-κB pathway activation, cooperates with IL-β to increase the inflammatory response in mesangial cells.
Collapse
Affiliation(s)
- Matilde Alique
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz Universidad Autónoma Madrid, Spain
| | - Elsa Sánchez-López
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz Universidad Autónoma Madrid, Spain
| | - Sandra Rayego-Mateos
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz Universidad Autónoma Madrid, Spain
| | - Jesús Egido
- Renal Research Laboratory, IIS-Fundación Jiménez Díaz Universidad Autónoma Madrid, Spain
| | - Alberto Ortiz
- Dialysis Unit, IIS-Fundación Jiménez Díaz Universidad Autónoma Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz Universidad Autónoma Madrid, Spain
| |
Collapse
|
22
|
Ienaga K, Sohn M, Naiki M, Jaffa AA. Creatinine metabolite, HMH (5-hydroxy-1-methylhydantoin; NZ-419), modulates bradykinin-induced changes in vascular smooth muscle cells. J Recept Signal Transduct Res 2014; 34:195-200. [DOI: 10.3109/10799893.2013.876039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Ding WY, Li WB, Ti Y, Bi XP, Sun H, Wang ZH, Zhang Y, Zhang W, Zhong M. Protection from renal fibrosis, putative role of TRIB3 gene silencing. Exp Mol Pathol 2013; 96:80-4. [PMID: 24368111 DOI: 10.1016/j.yexmp.2013.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 12/06/2013] [Indexed: 01/19/2023]
Abstract
BACKGROUND Renal fibrosis is thought to be the common pathway in most cases of chronic kidney disease. Recently, TRIB3 was found to play an important role in progression of cardiac fibrosis in an insulin-resistant state. We investigated whether TRIB3 might participate in the pathogenesis of renal fibrosis in insulin-resistant rats. METHODS We randomly separated 40 male Sprague-Dawley into 4 groups for treatment (n = 10 each): control and high-fat diet (HFD) with TRIB3 siRNA adenovirus transfection, vehicle transfection or HFD alone. Insulin resistance markers were measured. Renal tissues were stained with hematoxylin and eosin, Masson's trichrome and periodic acid-Schiff. RESULTS Rats with HFD showed insulin resistance and TRIB3 overexpression. Upregulated TRIB3 expression could induce renal fibrosis accompanied by increased phosphorylation of extracellular signal-regulated kinase (ERK). Also, TRIB3 siRNA knockdown could ameliorate renal fibrosis, which was accompanied by decreased phosphorylation of ERK. CONCLUSIONS TRIB3 gene silencing can attenuate renal fibrosis for beneficial effect on the development of renal fibrosis in chronic kidney disease in rat.
Collapse
Affiliation(s)
- Wen-yuan Ding
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Ji'nan 250012, PR China; Department of Cardiology, Qilu Hospital of Shandong University, Ji'nan 250012, PR China
| | - Wen-bo Li
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Ji'nan 250012, PR China; Department of Cardiology, Qilu Hospital of Shandong University, Ji'nan 250012, PR China
| | - Yun Ti
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Ji'nan 250012, PR China; Department of Cardiology, Qilu Hospital of Shandong University, Ji'nan 250012, PR China
| | - Xiu-ping Bi
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Ji'nan 250012, PR China; Department of Cardiology, Qilu Hospital of Shandong University, Ji'nan 250012, PR China
| | - Hui Sun
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Ji'nan 250012, PR China; Department of Cardiology, Qilu Hospital of Shandong University, Ji'nan 250012, PR China
| | - Zhi-hao Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Ji'nan 250012, PR China; Geriatrics, Qilu Hospital of Shandong University, Ji'nan 250012, PR China
| | - Yun Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Ji'nan 250012, PR China; Department of Cardiology, Qilu Hospital of Shandong University, Ji'nan 250012, PR China
| | - Wei Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Ji'nan 250012, PR China; Department of Cardiology, Qilu Hospital of Shandong University, Ji'nan 250012, PR China.
| | - Ming Zhong
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Ji'nan 250012, PR China; Department of Cardiology, Qilu Hospital of Shandong University, Ji'nan 250012, PR China.
| |
Collapse
|
24
|
The C-terminal module IV of connective tissue growth factor is a novel immune modulator of the Th17 response. J Transl Med 2013; 93:812-24. [PMID: 23648563 DOI: 10.1038/labinvest.2013.67] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Connective tissue growth factor (CTGF/CCN2) is a matricellular protein susceptible to proteolytic degradation. CCN2 levels have been suggested as a potential risk biomarker in several chronic diseases. In body fluids, CCN2 full-length and its degradation fragments can be found; however, their in vivo effects are far from being elucidated. CCN2 was described as a profibrotic mediator, but this concept is changing to a proinflammatory cytokine. In vitro, CCN2 full-length and its C-terminal module IV (CCN2(IV)) exert proinflammatory properties. Emerging evidence suggest that Th17 cells, and its effector cytokine IL-17A, participate in chronic inflammatory diseases. Our aim was to explore whether CCN2(IV) could regulate the Th17 response. In vitro, stimulation of human naive CD4+ T lymphocytes with CCN2(IV) resulted in differentiation to Th17 phenotype. The in vivo effects of CCN2(IV) were studied in C57BL/6 mice. Intraperitoneal administration of recombinant CCN2(IV) did not change serum IL-17A levels, but caused an activation of the Th17 response in the kidney, characterized by interstitial infiltration of Th17 (IL17A+/CD4+) cells and upregulation of proinflammatory mediators. In CCN2(IV)-injected mice, elevated renal levels of Th17-related factors (IL-17A, IL-6, STAT3 and RORγt) were found, whereas Th1/Th2 cytokines or Treg-related factors (TGF-β and Foxp-3) were not modified. Treatment with an anti-IL-17A neutralizing antibody diminished CCN2(IV)-induced renal inflammation. Our findings unveil that the C-terminal module of CCN2 induces the Th17 differentiation of human Th17 cells and causes a renal Th17 inflammatory response. Furthermore, these data bear out that IL-17A targeting is a promising tool for chronic inflammatory diseases, including renal pathologies.
Collapse
|
25
|
Cristovam PC, Carmona AK, Arnoni CP, Maquigussa E, Pereira LG, Boim MA. Role of chymase in diabetic nephropathy. Exp Biol Med (Maywood) 2012; 237:985-92. [PMID: 22875344 DOI: 10.1258/ebm.2012.011356] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chymase is an alternative pathway for angiotensin-converting enzyme in angiotensin II (Ang II) formation, and its expression is increased in human diabetic kidneys and in human mesangial cells (MCs) stimulated with high glucose. In addition, chymase activates transforming growth factor (TGF-β1) via an Ang II-independent pathway. The aim of this study was to evaluate the role of chymase on TGF-β1 activation in diabetic rats and in rat MCs (RMCs) stimulated with high glucose (HG). Diabetes was induced in male Wistar rats by streptozotocin (60 mg/kg, intravenous). After 30 (D30) or 60 (D60) days, chymase activity and the expression of profibrotic markers were evaluated. RMCs were stimulated with HG in the presence or absence of 50 μmol/L chymostatin, a chymase inhibitor, or 100 nmol/L of losartan, an Ang II antagonist. Chymase activity and expression increased in D60 kidneys, with increased expression of fibronectin, type I and III collagen, TGF-β1 and Smad 3 and with no change in Smad 7 expression. RMCs exposed to HG presented increases in chymase activity and expression, together with upregulation in fibrosis markers and in the TGF-β1 signaling pathway. All these effects were reversed by chymostatin and by losartan, but type 1 angiotensin II receptor blockade did not interfere with the Smad 3 and 7 pathway. Similar to HG-stimulated RMCs, control RMCs treated with chymase responded with increased expression of TGF-β1, Smad 3 and fibrosis markers. These effects were reversed by chymostatin but not by losartan. The results indicate an important role for chymase in inducing fibrosis through TGF-β1 activation, parallel with Ang II effects.
Collapse
Affiliation(s)
- Priscila C Cristovam
- Department of Medicine - Renal Division, Federal University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
26
|
Ghosh SS, Krieg R, Massey HD, Sica DA, Fakhry I, Ghosh S, Gehr TWB. Curcumin and enalapril ameliorate renal failure by antagonizing inflammation in 5/6 nephrectomized rats: role of phospholipase and cyclooxygenase. Am J Physiol Renal Physiol 2011; 302:F439-54. [PMID: 22031851 DOI: 10.1152/ajprenal.00356.2010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Previously, we showed that curcumin prevents chronic kidney disease (CKD) development in ⅚ nephrectomized (Nx) rats when given within 1 wk after Nx (Ghosh SS, Massey HD, Krieg R, Fazelbhoy ZA, Ghosh S, Sica DA, Fakhry I, Gehr TW. Am J Physiol Renal Physiol 296: F1146-F1157, 2009). To better mimic the scenario for renal disease in humans, we began curcumin and enalapril therapy when proteinuria was already established. We hypothesized that curcumin, by blocking the inflammatory mediators TNF-α and IL-1β, could also reduce cyclooxygenase (COX) and phospholipase expression in the kidney. Nx animals were divided into untreated Nx, curcumin-treated, and enalapril-treated groups. Curcumin (75 mg/kg) and enalapril (10 mg/kg) were administered for 10 wk. Renal dysfunction in the Nx group, as evidenced by elevated blood urea nitrogen, plasma creatinine, proteinuria, segmental sclerosis, and tubular dilatation, was comparably reduced by curcumin and enalapril, with only enalapril significantly lowering blood pressure. Compared with controls, Nx animals had higher plasma/kidney TNF-α and IL-1β, which were reduced by curcumin and enalapril treatment. Nx animals had significantly elevated kidney levels of cytosolic PLA(2), calcium-independent intracellular PLA(2), COX 1, and COX 2, which were comparably reduced by curcumin and enalapril. Studies in mesangial cells and macrophages were carried out to establish that the in vivo increase in PLA(2) and COX were mediated by TNF-α and IL-1β and that curcumin, by antagonizing the cytokines, could significantly reduce both PLA(2) and COX. We conclude that curcumin ameliorates CKD by blocking inflammatory signals even if it is given at a later stage of the disease.
Collapse
Affiliation(s)
- S S Ghosh
- Virginia Commonwealth Univ., Dept. of Internal Medicine/Nephrology, 1101 E. Marshall St., Sanger Hall, Rm. 8-059, Richmond, VA 23298, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Rüster C, Wolf G. Angiotensin II as a morphogenic cytokine stimulating renal fibrogenesis. J Am Soc Nephrol 2011; 22:1189-99. [PMID: 21719784 DOI: 10.1681/asn.2010040384] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Inhibitors of the renin-angiotensin-aldosterone system attenuate glomerulosclerosis and interstitial fibrosis. Although the mechanisms underlying their antifibrotic effects are complex, angiotensin II (Ang II) emerges as a major profibrogenic cytokine. Ang II modulates renal cell growth, extracellular matrix synthesis, and degradation by multiple fibrotic pathways. One of the main targets of Ang II in renal fibrosis is TGFβ. Many, but not all, of the stimulatory effects of Ang II on fibrogenesis depend on the induction of TGFβ and its downstream mediators of matrix accumulation, inflammation, and apoptosis. However because of the difficulty in targeting TGFβ, connective tissue growth factor β (CTGF), a downstream mediator of TGFβ, has become a more promising antifibrotic target. Ang II can directly induce expression of renal CTGF and mediate epithelial-mesenchymal transition. Other profibrotic factors stimulated by Ang II include endothelin-1, plasminogen activator inhibitor-1, matrix metalloproteinase (MMP)-2, and a tissue inhibitor of metalloproteinase-2. Finally, connections among Ang II, hypoxia, and the induction of hypoxia-inducible factor-1α contribute to fibrogenesis. A better understanding of the multiple morphogenic effects of Ang II may be necessary to develop better strategies to halt the progression of renal disease.
Collapse
Affiliation(s)
- Christiane Rüster
- Department of Internal Medicine III, Friedrich Schiller University, Erlanger-Allee 101, D-07740 Jena, Germany
| | | |
Collapse
|
28
|
Inhibitory effects of honokiol on lipopolysaccharide-induced cellular responses and signaling events in human renal mesangial cells. Eur J Pharmacol 2011; 654:117-21. [DOI: 10.1016/j.ejphar.2010.11.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 11/21/2010] [Accepted: 11/23/2010] [Indexed: 11/16/2022]
|
29
|
Kular L, Pakradouni J, Kitabgi P, Laurent M, Martinerie C. The CCN family: A new class of inflammation modulators? Biochimie 2011; 93:377-88. [DOI: 10.1016/j.biochi.2010.11.010] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 11/24/2010] [Indexed: 01/12/2023]
|
30
|
Honokiol: an effective inhibitor of high-glucose-induced upregulation of inflammatory cytokine production in human renal mesangial cells. Inflamm Res 2010; 59:1073-9. [DOI: 10.1007/s00011-010-0227-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 05/07/2010] [Accepted: 06/10/2010] [Indexed: 10/19/2022] Open
|
31
|
Ding GX, Zhang AH, Huang SM, Pan XQ, Chen RH. SP600125, an inhibitor of c-Jun NH2-terminal kinase, blocks expression of angiotensin II-induced monocyte chemoattractant protein-1 in human mesangial cells. World J Pediatr 2010; 6:169-76. [PMID: 20490773 DOI: 10.1007/s12519-010-0033-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 08/25/2009] [Indexed: 01/11/2023]
Abstract
BACKGROUND We investigated the role of c-Jun NH2-terminal kinase (JNK), a member of the mitogen-activated protein kinase family, in the expression of angiotensin II (Ang II)-induced monocyte chemoattractant protein-1 (MCP-1) and transforming growth factor-1 (TGF-1), and in the production of fibronectin (FN), by human mesangial cells (HMCs). METHODS JNK activation in cultured human mesangial cells was determined by Western blotting with an antibody against the phosphorylated Ser63 residue of c-Jun. Binding of the activator protein (AP-1) to the MCP-1 AP-1 motif was detected via the electrophoretic mobility shift assay (EMSA). The transient luciferase reporter was used to examine MCP-1 promoter activity; an RNase protection assay and ELISA were used respectively to detect the expression of MCP-1 mRNA and production of MCP-1, TGF-beta and FN. RESULTS Anthra (1,9-cd) pyrazol-6(2H)-one (SP600125), a pharmacological inhibitor of JNK, almost completely abolished Ang II-induced Ser63 phosphorylation of c-Jun at concentrations of 5-20 micromol/L: JNK activity was reduced by 75% with 10 micromol/L SP600125, and by 90% with 20 micromol/L. Ang II increased AP-1 binding to the MCP-1 AP-1 motif in a time-dependent manner, as detected by EMSA, while SP600125 effectively blocked this increased AP-1 binding in a concentration-dependent manner. Treatment with 100 nmol/L Ang II led to a steady increase in MCP-1 mRNA expression, and to an enhanced production of MCP-1, TGF-beta and FN. These effects were blocked by SP60025 in a dose-dependent manner. SP600125 also reduced MCP-1 mRNA stability: the halflife of MCP-1 mRNA was approximately 5 hours in cells treated with Ang II only, but was reduced to 2 hours when treated with a combination of Ang II and SP600125. CONCLUSIONS These results show that the JNK/AP-1 pathway is involved in the expression of MCP-1 and TGF-beta, and in extracellular matrix production. JNK is an important therapeutic target for glomerulonephritis and glomerulosclerosis.
Collapse
Affiliation(s)
- Gui-Xia Ding
- Department of Nephrology, Nanjing Children's Hospital, Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
| | | | | | | | | |
Collapse
|
32
|
Lee GJ, Park EJ, Choi S, Park JH, Jeong KH, Kim KS, Lee SH, Park HK. Observation of angiotensin II-induced changes in fixed and live mesangial cells by atomic force microscopy. Micron 2010; 41:220-6. [DOI: 10.1016/j.micron.2009.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 10/29/2009] [Indexed: 11/16/2022]
|
33
|
Okada M, Yamawaki H, Hara Y. Angiotensin II enhances interleukin-1 beta-induced MMP-9 secretion in adult rat cardiac fibroblasts. J Vet Med Sci 2010; 72:735-9. [PMID: 20145375 DOI: 10.1292/jvms.09-0582] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cardiac fibroblasts play important roles during the cardiac remodeling through the secretion of matrix metalloproteinase (MMP)-9. Inflammatory cytokine, interleukin (IL)-1beta induces MMP-9 secretion in cultured cardiac fibroblasts. Angiotensin II is well known to play pivotal roles in cardiac remodeling, but the effect of angiotensin II on MMP-9 secretion in cardiac fibroblasts has not been fully clarified. In the present study, we investigated the effect of angiotensin II on basal and IL-1beta-induced MMP-9 secretion in adult rat cardiac fibroblasts. MMP-9 protein secreted into culture medium, and phosphorylation of nuclear factor (NF)-kappaB, c-Jun NH(2)-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) in cell lysates were measured by Western blotting. Angiotensin II (1 nM, 24 hr) alone-treatment did not induce MMP-9 secretion. However, angiotensin II significantly enhanced IL-1beta (4 ng/ml, 24 hr)-induced MMP-9 secretion. Telmisartan (10 nM), an angiotensin II type 1 receptor (AT1R) antagonist, significantly suppressed the enhancement of IL-1beta-induced MMP-9 secretion by angiotensin II, whereas PD123319 (10 nM), an angiotensin II type 2 receptor antagonist, was ineffective. IL-1beta (4 ng/ml, 10 min) induced phosphorylation of NF-kappaB, JNK, and ERK. Angiotensin II augmented the IL-1beta-induced phosphorylation of ERK but not NF-kappaB and JNK. PD98059 (50 microM), a selective inhibitor of ERK pathway, inhibited the angiotensin II enhancement of IL-1beta-induced MMP-9 secretion. These results suggest that angiotensin II enhances IL-1beta-induced MMP-9 secretion through the augmentation of ERK phosphorylation via AT1R in adult rat cardiac fibroblasts.
Collapse
Affiliation(s)
- Muneyoshi Okada
- Department of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi, Towada, Aomori, Japan.
| | | | | |
Collapse
|
34
|
Satou R, Gonzalez-Villalobos RA, Miyata K, Ohashi N, Urushihara M, Acres OW, Navar LG, Kobori H. IL-6 augments angiotensinogen in primary cultured renal proximal tubular cells. Mol Cell Endocrinol 2009; 311:24-31. [PMID: 19583994 PMCID: PMC2739253 DOI: 10.1016/j.mce.2009.06.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 06/23/2009] [Accepted: 06/25/2009] [Indexed: 01/13/2023]
Abstract
In human kidneys, the mechanisms underlying angiotensinogen (AGT) augmentation by interleukin 6 (IL-6) are poorly understood and the only information available is in HK-2, immortalized human renal proximal tubular epithelial cells. Therefore, the present study was performed to elucidate the effects of IL-6 on AGT expression in primary cultured human renal proximal tubular epithelial cells (RPTEC) after characterization of HK-2 and RPTEC. RPTEC showed low basal AGT mRNA (11+/-1%) and protein (7.0+/-0.9%) expression, high IL-6 receptor (IL-6R) expression (282+/-17%), and low basal NF-kappaB (43+/-7%) and STAT3 (43+/-7%) activities compared to those in HK-2. In RPTEC, AGT mRNA and protein expressions were enhanced by IL-6 (172+/-31% and 378+/-39%, respectively). This AGT augmentation was attenuated by an IL-6R antibody. STAT3 phosphorylation (366+/-55% at 30min) and translocation were enhanced by IL-6. The AGT augmentation was attenuated by a STAT3 inhibitor. These data indicate that IL-6 increases AGT expression via STAT3 pathway in RPTEC.
Collapse
Affiliation(s)
- Ryousuke Satou
- Department of Physiology, Tulane University Health Sciences Center, New Orleans, LA 70112-2699, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Wang Y, Su Y, Xu Y, Pan SH, Liu GD. Genetic polymorphism c.1562C>T of the MMP-9 is associated with macroangiopathy in type 2 diabetes mellitus. Biochem Biophys Res Commun 2009; 391:113-7. [PMID: 19909726 DOI: 10.1016/j.bbrc.2009.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 11/04/2009] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To determine whether the matrix metalloproteinase-9 (MMP-9) c.1562C>T polymorphism has an effect on the plasma MMP-9 levels and the macroangiopathic complications in type 2 diabetes mellitus (T2DM). METHODS The genotypes and allelic frequencies of the MMP-9 c.1562C>T were examined with polymerase chain reaction and restriction fragment length polymorphism in 320 patients with T2DM and 160 unrelated healthy subjects. The plasma concentrations of MMP-9 were determined in all subjects. RESULTS The mean plasma concentrations of MMP-9 of patients with T2DM were significantly higher than that of controls and the plasma levels of MMP-9 were higher in diabetic patients with macroangiopathy than in patients without macroangiopathy (P<0.05). The genotype (CC, CT, and TT) distribution of c.1562C>T polymorphism of the MMP-9 gene was 60.0%, 31.3%, and 8.8% in diabetic patients with macroangiopathy, 76.3%, 21.3%, and 2.5% in patients without macroangiopathy, and 77.5%, 21.3%, 1.3% in controls, respectively, a significant difference was found between diabetic patients with and without macroangiopathy (P<0.05). The frequency of the allele T was higher in patients with macroangiopathy than in patients without macroangiopathy (24.4% vs 13.1%; P<0.05). Moreover, the plasma MMP-9 levels were markedly higher in patients with TT genotype than those with CC or CT genotype in patients with macroangiopathy (P<0.05). CONCLUSION The MMP-9 c.1562C>T gene polymorphism associated with a predisposition to increased plasma MMP-9 levels could constitute a useful predictive marker for diabetic macroangiopathy.
Collapse
Affiliation(s)
- Ying Wang
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, 23 Post Rd Nangang Region, Heilongjiang, Harbin 150001, China
| | | | | | | | | |
Collapse
|
36
|
Xue H, Yuan P, Zhou L, Yao T, Huang Y, Lu LM. Effect of adrenotensin on cell proliferation is mediated by angiotensin II in cultured rat mesangial cells. Acta Pharmacol Sin 2009; 30:1132-7. [PMID: 19597528 DOI: 10.1038/aps.2009.103] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
AIM Both adrenomedullin (ADM) and adrenotensin (ADT) are derived from the same propeptide precursor, and both act as circulating hormones and local paracrine mediators with multiple biological activities. Compared with ADM, little is known about how ADT achieves its functions. In the present study, we investigated the effect of ADT on cell proliferation and transforming growth factor-beta (TGF-beta) secretion in cultured renal mesangial cells (MCs) and determined whether angiotensin II (Ang II) was involved in mediating this process. METHODS Cell proliferation was measured by bromodeoxyuridine (BrdU) incorporation assay, Ang II levels were assayed using an enzyme immunoassay, and real time PCR was used to measure Ang II type 1 (AT1) receptor, Ang II type 2 (AT2) receptor, angiotensinogen (AGT), renin, angiotensin converting enzyme (ACE) and TGF-beta1 mRNA levels. TGF-beta1 and collagen type IV protein levels in cell media were measured using enzyme-linked immunoassays. RESULTS ADT treatment induced cell proliferation in a concentration-dependent manner; it also increased the levels of TGF-beta1 mRNA and protein as well as collagen type IV excretion by cultured MCs. ADT treatment increased renin and AGT mRNAs as well as Ang II protein, but did not affect the ACE mRNA level. ADT up-regulated angiotensin AT1 receptor mRNA, but not that of the AT2 receptor. The angiotensin AT1 receptor antagonist losartan blocked the effects of ADT-induced cell proliferation, TGF-beta1 and collagen type IV synthesis and secretion. CONCLUSION ADT has a stimulating role in cell proliferation in cultured MCs. Increases in the levels of Ang II and the AT1 receptor after ADT treatment mediate the stimulating effects of ADT on cell proliferation and extracellular matrix synthesis and secretion.
Collapse
|
37
|
Sánchez-López E, Rayego S, Rodrigues-Díez R, Rodriguez JS, Rodrigues-Díez R, Rodríguez-Vita J, Carvajal G, Aroeira LS, Selgas R, Mezzano SA, Ortiz A, Egido J, Ruiz-Ortega M. CTGF promotes inflammatory cell infiltration of the renal interstitium by activating NF-kappaB. J Am Soc Nephrol 2009; 20:1513-26. [PMID: 19423687 DOI: 10.1681/asn.2008090999] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Connective tissue growth factor (CTGF) is an important profibrotic factor in kidney diseases. Blockade of endogenous CTGF ameliorates experimental renal damage and inhibits synthesis of extracellular matrix in cultured renal cells. CTGF regulates several cellular responses, including adhesion, migration, proliferation, and synthesis of proinflammatory factors. Here, we investigated whether CTGF participates in the inflammatory process in the kidney by evaluating the nuclear factor-kappa B (NF-kappaB) pathway, a key signaling system that controls inflammation and immune responses. Systemic administration of CTGF to mice for 24 h induced marked infiltration of inflammatory cells in the renal interstitium (T lymphocytes and monocytes/macrophages) and led to elevated renal NF-kappaB activity. Administration of CTGF increased renal expression of chemokines (MCP-1 and RANTES) and cytokines (INF-gamma, IL-6, and IL-4) that recruit immune cells and promote inflammation. Treatment with a NF-kappaB inhibitor, parthenolide, inhibited CTGF-induced renal inflammatory responses, including the up-regulation of chemokines and cytokines. In cultured murine tubuloepithelial cells, CTGF rapidly activated the NF-kappaB pathway and the cascade of mitogen-activated protein kinases, demonstrating crosstalk between these signaling pathways. CTGF, via mitogen-activated protein kinase and NF-kappaB activation, increased proinflammatory gene expression. These data show that in addition to its profibrotic properties, CTGF contributes to the recruitment of inflammatory cells in the kidney by activating the NF-kappaB pathway.
Collapse
Affiliation(s)
- Elsa Sánchez-López
- Cellular Biology in Renal Diseases Laboratory, Universidad Autónoma Madrid, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Striker GE, Praddaude F, Alcazar O, Cousins SW, Marin-Castaño ME. Regulation of angiotensin II receptors and extracellular matrix turnover in human retinal pigment epithelium: role of angiotensin II. Am J Physiol Cell Physiol 2008; 295:C1633-46. [PMID: 18923060 PMCID: PMC2603567 DOI: 10.1152/ajpcell.00092.2008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 10/11/2008] [Indexed: 11/22/2022]
Abstract
The early stage of age-related macular degeneration (AMD) is characterized by the formation of subretinal pigment epithelium (RPE) deposits as a result of the dysregulation in the turnover of extracellular matrix (ECM) molecules. However, the mechanism involved remains unclear. Hypertension (HTN) is an important risk factor for AMD, and angiotensin II (ANG II) is the most important hormone associated with HTN. However, the relevance of ANG II receptors and ANG II effects on RPE have not been investigated yet. Therefore, the expression and regulation of ANG II receptors as well as the ECM turnover were studied in human RPE. ANG II receptors were expressed and upregulated by ANG II in human RPE. This regulation resulted in functional receptor expression, since an increase in intracellular concentration of calcium was observed upon ANG II stimulation. ANG II also increased matrix metalloproteinase (MMP)-2 activity and MMP-14 at the mRNA and protein levels as well as type IV collagen degradation. These ANG II effects were abolished in the presence of the ANG II receptor subtype 1 (AT1) receptor antagonist candesartan. In contrast, ANG II decreased type IV collagen via both AT1 and AT2 receptors, suggesting a synergistic effect of the two receptor subtypes. In conclusion, we have confirmed the presence of ANG II receptors in human RPE and their regulation by ANG II as well as the regulation of ECM molecules via ANG II receptors. Our data support the hypothesis that ANG II may exert biological function in RPE through ANG II receptors and that ANG II may cause dysregulation of molecules that play a major role in the turnover of ECM in RPE basement membrane and Bruch's membrane, suggesting a pathogenic mechanism to explain the link between HTN and AMD.
Collapse
Affiliation(s)
- Gary E Striker
- Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | |
Collapse
|
39
|
Nagai N, Klimava A, Lee WH, Izumi-Nagai K, Handa JT. CTGF is increased in basal deposits and regulates matrix production through the ERK (p42/p44mapk) MAPK and the p38 MAPK signaling pathways. Invest Ophthalmol Vis Sci 2008; 50:1903-10. [PMID: 19011018 DOI: 10.1167/iovs.08-2383] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Matrix expansion is an early change in age-related maculopathy. The aim of this study was to determine whether connective tissue growth factor (CTGF) regulates the production of extracellular matrix components by retinal pigmented epithelial (RPE) cells. METHODS ARPE-19 cells were treated with CTGF and analyzed for fibronectin, laminin, and MMP-2 by RT-qPCR, Western blot analysis, or zymography. Cells were also pretreated with an MEK-1/2 inhibitor (PD98059) or a p38 inhibitor (SB203580) and an anti-CTGF antibody to analyze the signaling contributing to fibronectin, laminin, and MMP-2 production. Human maculas were analyzed for mRNA using laser capture microdissected RPE cells and by immunohistochemistry for the topographic distribution of CTGF. RESULTS CTGF induced fibronectin mRNA (P=0.006) and protein (P=0.006), and laminin mRNA (P=0.006) and protein (P=0.02) by ARPE-19 cells. CTGF also induced MMP-2 mRNA (P=0.002) and protein secretion (P=0.04). Using zymography, CTGF increased the latent and active forms of MMP-2 compared to controls (P=0.02). An anti-CTGF antibody inhibited fibronectin, laminin, and MMP-2 after CTGF stimulation. CTGF increased the phosphorylation of p38 and ERK1/2. Fibronectin and MMP-2 mRNA and protein were suppressed by a MEK-1/2 inhibitor, but not with a p38 inhibitor. Laminin expression was suppressed by both inhibitors. RT-qPCR analysis showed that macular RPE cells from human donors express CTGF. Immunohistochemistry of human maculas showed strong labeling of CTGF in Bruch membrane, including basal deposits and drusen. CONCLUSIONS CTGF is increased in basal deposits and drusen of AMD specimens, and it induces matrix protein production in ARPE-19 cells through the ERK (p42/p44(mapk)) and p38(mapk) signaling pathways.
Collapse
Affiliation(s)
- Norihiro Nagai
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21287, USA
| | | | | | | | | |
Collapse
|
40
|
Striker GE, Praddaude F, Alcazar O, Cousins SW, Marin-Castaño ME. Regulation of angiotensin II receptors and extracellular matrix turnover in human retinal pigment epithelium: role of angiotensin II. Am J Physiol Cell Physiol 2008. [PMID: 18923060 DOI: 10.1152/ajpcell.00092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The early stage of age-related macular degeneration (AMD) is characterized by the formation of subretinal pigment epithelium (RPE) deposits as a result of the dysregulation in the turnover of extracellular matrix (ECM) molecules. However, the mechanism involved remains unclear. Hypertension (HTN) is an important risk factor for AMD, and angiotensin II (ANG II) is the most important hormone associated with HTN. However, the relevance of ANG II receptors and ANG II effects on RPE have not been investigated yet. Therefore, the expression and regulation of ANG II receptors as well as the ECM turnover were studied in human RPE. ANG II receptors were expressed and upregulated by ANG II in human RPE. This regulation resulted in functional receptor expression, since an increase in intracellular concentration of calcium was observed upon ANG II stimulation. ANG II also increased matrix metalloproteinase (MMP)-2 activity and MMP-14 at the mRNA and protein levels as well as type IV collagen degradation. These ANG II effects were abolished in the presence of the ANG II receptor subtype 1 (AT1) receptor antagonist candesartan. In contrast, ANG II decreased type IV collagen via both AT1 and AT2 receptors, suggesting a synergistic effect of the two receptor subtypes. In conclusion, we have confirmed the presence of ANG II receptors in human RPE and their regulation by ANG II as well as the regulation of ECM molecules via ANG II receptors. Our data support the hypothesis that ANG II may exert biological function in RPE through ANG II receptors and that ANG II may cause dysregulation of molecules that play a major role in the turnover of ECM in RPE basement membrane and Bruch's membrane, suggesting a pathogenic mechanism to explain the link between HTN and AMD.
Collapse
Affiliation(s)
- Gary E Striker
- Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | |
Collapse
|
41
|
Angiotensin II activates the Smad pathway during epithelial mesenchymal transdifferentiation. Kidney Int 2008; 74:585-95. [DOI: 10.1038/ki.2008.213] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Pharmacological modulation of epithelial mesenchymal transition caused by angiotensin II. Role of ROCK and MAPK pathways. Pharm Res 2008; 25:2447-61. [PMID: 18633694 DOI: 10.1007/s11095-008-9636-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 05/21/2008] [Indexed: 10/21/2022]
Abstract
PURPOSE Tubulointerstitial fibrosis is a final common pathway to end-stage chronic kidney diseases, which are characterized by elevated renal angiotensin II (AngII) production. This peptide participates in kidney damage inducing fibrosis and epithelial mesenchymal transition (EMT). Our aim was to describe potential therapeutic targets in AngII-induced EMT, investigating the blockade of different intracellular pathways. METHODS Studies were done in human tubular epithelial cells (HK2 cell line), evaluating changes in phenotype and EMT markers (Western blot and immunofluorescence). RESULTS Treatment of HK2 cells with AngII for 3 days caused transdifferentiation into myofibroblast-like cells. The blockade of MAPKs cascade, using specific inhibitors of p38 (SB203580), extracellular signal-regulated kinase1/2 (ERK; PD98059) and Jun N-terminal kinase (JNK) (SP600125), diminished AngII-induced EMT. The blockade of RhoA/ROCK pathway, by transfection of a RhoA dominant-negative vector or by ROCK inhibition with Y-27632 or fasudil, inhibited EMT caused by AngII. Connective tissue growth factor (CTGF) is a downstream mediator of AngII-induced EMT. MAPKs and ROCK inhibitors blocked CTGF overexpression induced by AngII. HMG-CoA reductase inhibitors, although blocked AngII-mediated kinases activation, only partially diminished EMT and did not regulate CTGF. CONCLUSIONS These data suggest a potential therapeutic use of kinase inhibitors in renal fibrosis.
Collapse
|