1
|
Song N, Yang M, Zhang H, Yang SK. Intracellular Calcium Homeostasis and Kidney Disease. Curr Med Chem 2021; 28:3647-3665. [PMID: 33138745 DOI: 10.2174/0929867327666201102114257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 11/22/2022]
Abstract
Kidney disease is a serious health problem that burdens our healthcare system. It is crucial to find the accurate pathogenesis of various types of kidney disease to provide guidance for precise therapies for patients suffering from these diseases. However, the exact molecular mechanisms underlying these diseases have not been fully understood. Disturbance of calcium homeostasis in renal cells plays a fundamental role in the development of various types of kidney disease, such as primary glomerular disease, diabetic nephropathy, acute kidney injury and polycystic kidney disease, through promoting cell proliferation, stimulating extracellular matrix accumulation, aggravating podocyte injury, disrupting cellular energetics as well as dysregulating cell survival and death dynamics. As a result, preventing the disturbance of calcium homeostasis in specific renal cells (such as tubular cells, podocytes and mesangial cells) is becoming one of the most promising therapeutic strategies in the treatment of kidney disease. The endoplasmic reticulum and mitochondria are two vital organelles in this process. Calcium ions cycle between the endoplasmic reticulum and mitochondria at the conjugation of these two organelles known as the mitochondria-associated endoplasmic reticulum membrane, maintaining calcium homeostasis. The pharmacologic modulation of cellular calcium homeostasis can be viewed as a novel therapeutic method for renal diseases. Here, we will introduce calcium homeostasis under physiological conditions and the disturbance of calcium homeostasis in kidney diseases. We will focus on the calcium homeostasis regulation in renal cells (including tubular cells, podocytes and mesangial cells), especially in the mitochondria- associated endoplasmic reticulum membranes of these renal cells.
Collapse
Affiliation(s)
- Na Song
- Department of Nephrology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Shi-Kun Yang
- Department of Nephrology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
2
|
Raffort J, Lareyre F, Clément M, Hassen-Khodja R, Chinetti G, Mallat Z. Diabetes and aortic aneurysm: current state of the art. Cardiovasc Res 2019; 114:1702-1713. [PMID: 30052821 PMCID: PMC6198737 DOI: 10.1093/cvr/cvy174] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/19/2018] [Indexed: 12/17/2022] Open
Abstract
Aortic aneurysm is a life-threatening disease due to the risk of aortic rupture. The only curative treatment available relies on surgical approaches; drug-based therapies are lacking, highlighting an unmet need for clinical practice. Abdominal aortic aneurysm (AAA) is frequently associated with atherosclerosis and cardiovascular risk factors including male sex, age, smoking, hypertension, and dyslipidaemia. Thoracic aortic aneurysm (TAA) is more often linked to genetic disorders of the extracellular matrix and the contractile apparatus but also share similar cardiovascular risk factors. Intriguingly, a large body of evidence points to an inverse association between diabetes and both AAA and TAA. A better understanding of the mechanisms underlying the negative association between diabetes and aortic aneurysm could help the development of innovative diagnostic and therapeutic approaches to tackle the disease. Here, we summarize current knowledge on the relationship between glycaemic parameters, diabetes, and the development of aortic aneurysm. Cellular and molecular pathways that underlie the protective effect of diabetes itself and its treatment are reviewed and discussed, along with their potential implications for clinical translation.
Collapse
Affiliation(s)
- Juliette Raffort
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, Robinson Way, UK.,Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Team 5, Hôpital Européen Georges Pompidou, 56 rue Leblanc, Paris, France.,Department of Clinical Biochemistry, University Hospital of Nice, 30 avenue de la Voie Romaine, Nice Cedex 1, France.,Université Côte d'Azur, CHU, Inserm U1065, C3M, 151 Route de Ginestière, Nice Cedex 3, France
| | - Fabien Lareyre
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, Robinson Way, UK.,Université Côte d'Azur, CHU, Inserm U1065, C3M, 151 Route de Ginestière, Nice Cedex 3, France.,Department of Vascular Surgery, University Hospital of Nice, 30 avenue de la Voie Romaine, Nice Cedex 1, France
| | - Marc Clément
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, Robinson Way, UK
| | - Réda Hassen-Khodja
- Université Côte d'Azur, CHU, Inserm U1065, C3M, 151 Route de Ginestière, Nice Cedex 3, France.,Department of Vascular Surgery, University Hospital of Nice, 30 avenue de la Voie Romaine, Nice Cedex 1, France
| | - Giulia Chinetti
- Department of Clinical Biochemistry, University Hospital of Nice, 30 avenue de la Voie Romaine, Nice Cedex 1, France.,Université Côte d'Azur, CHU, Inserm U1065, C3M, 151 Route de Ginestière, Nice Cedex 3, France
| | - Ziad Mallat
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, Robinson Way, UK.,Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Team 5, Hôpital Européen Georges Pompidou, 56 rue Leblanc, Paris, France
| |
Collapse
|
3
|
Endothelial heparan sulfate deficiency reduces inflammation and fibrosis in murine diabetic nephropathy. J Transl Med 2018; 98:427-438. [PMID: 29330473 PMCID: PMC6247417 DOI: 10.1038/s41374-017-0015-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/22/2017] [Accepted: 12/14/2017] [Indexed: 01/08/2023] Open
Abstract
Inflammation plays a vital role in the development of diabetic nephropathy, but the underlying regulatory mechanisms are only partially understood. Our previous studies demonstrated that, during acute inflammation, endothelial heparan sulfate (HS) contributes to the adhesion and transendothelial migration of leukocytes into perivascular tissues by direct interaction with L-selectin and the presentation of bound chemokines. In the current study, we aimed to assess the role of endothelial HS on chronic renal inflammation and fibrosis in a diabetic nephropathy mouse model. To reduce sulfation of HS specifically in the endothelium, we generated Ndst1 f/f Tie2Cre + mice in which N-deacetylase/N-sulfotransferase-1 (Ndst1), the gene that initiates HS sulfation modifications in HS biosynthesis, was expressly ablated in endothelium. To induce diabetes, age-matched male Ndst1 f/f Tie2Cre - (wild type) and Ndst1 f/f Tie2Cre + mice on a C57Bl/6J background were injected intraperitoneally with streptozotocin (STZ) (50 mg/kg) on five consecutive days (N = 10-11/group). Urine and plasma were collected. Four weeks after diabetes induction the animals were sacrificed and kidneys were analyzed by immunohistochemistry and qRT-PCR. Compared to healthy controls, diabetic Ndst1 f/f Tie2Cre - mice showed increased glomerular macrophage infiltration, mannose binding lectin complement deposition and glomerulosclerosis, whereas these pathological reactions were prevented significantly in the diabetic Ndst1 f/f Tie2Cre + animals (all three p < 0.01). In addition, the expression of the podocyte damage marker desmin was significantly higher in the Ndst1 f/f Tie2Cre - group compared to the Ndst1 f/f Tie2Cre + animals (p < 0.001), although both groups had comparable numbers of podocytes. In the cortical tubulo-interstitium, similar analyses show decreased interstitial macrophage accumulation in the diabetic Ndst1 f/f Tie2Cre + animals compared to the diabetic Ndst1 f/f Tie2Cre - mice (p < 0.05). Diabetic Ndst1 f/f Tie2Cre + animals also showed reduced interstitial fibrosis as evidenced by reduced density of αSMA-positive myofibroblasts (p < 0.01), diminished collagen III deposition (p < 0.001) and reduced mRNA expression of collagen I (p < 0.001) and fibronectin (p < 0.001). Our studies indicate a pivotal role of endothelial HS in the development of renal inflammation and fibrosis in diabetic nephropathy in mice. These results suggest that HS is a possible target for therapy in diabetic nephropathy.
Collapse
|
4
|
Importance of Altered Levels of SERCA, IP 3R, and RyR in Vascular Smooth Muscle Cell. Biophys J 2017; 112:265-287. [PMID: 28122214 DOI: 10.1016/j.bpj.2016.11.3206] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/26/2016] [Accepted: 11/21/2016] [Indexed: 11/23/2022] Open
Abstract
Calcium cycling between the sarcoplasmic reticulum (SR) and the cytosol via the sarco-/endoplasmic reticulum Ca-ATPase (SERCA) pump, inositol-1,4,5-triphosphate receptor (IP3R), and Ryanodine receptor (RyR), plays a major role in agonist-induced intracellular calcium ([Ca2+]cyt) dynamics in vascular smooth muscle cells (VSMC). Levels of these calcium handling proteins in SR get altered under disease conditions. We have developed a mathematical model to understand the significance of altered levels of SERCA, IP3R, and RyR on the intracellular calcium dynamics of VSMC and to understand how variation in protein levels that arise due to diabetes contribute to different VSMC behavior and thus vascular disease. SR is modeled as a single continuous entity with homogeneous intra-SR calcium. Model results show that agonist-induced intracellular calcium dynamics can be modified by changing the levels of SERCA, IP3R, and/or RyR. Lowering SERCA level will enable intracellular calcium oscillations at low agonist concentrations whereas lowered levels of IP3R and RyR need higher agonist concentration for intracellular calcium oscillations. This research suggests that reduced SERCA level is the main factor responsible for the reduced intracellular calcium transients and contractility in VSMCs.
Collapse
|
5
|
Berridge MJ. The Inositol Trisphosphate/Calcium Signaling Pathway in Health and Disease. Physiol Rev 2016; 96:1261-96. [DOI: 10.1152/physrev.00006.2016] [Citation(s) in RCA: 377] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many cellular functions are regulated by calcium (Ca2+) signals that are generated by different signaling pathways. One of these is the inositol 1,4,5-trisphosphate/calcium (InsP3/Ca2+) signaling pathway that operates through either primary or modulatory mechanisms. In its primary role, it generates the Ca2+ that acts directly to control processes such as metabolism, secretion, fertilization, proliferation, and smooth muscle contraction. Its modulatory role occurs in excitable cells where it modulates the primary Ca2+ signal generated by the entry of Ca2+ through voltage-operated channels that releases Ca2+ from ryanodine receptors (RYRs) on the internal stores. In carrying out this modulatory role, the InsP3/Ca2+ signaling pathway induces subtle changes in the generation and function of the voltage-dependent primary Ca2+ signal. Changes in the nature of both the primary and modulatory roles of InsP3/Ca2+ signaling are a contributory factor responsible for the onset of a large number human diseases.
Collapse
Affiliation(s)
- Michael J. Berridge
- Laboratory of Molecular Signalling, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| |
Collapse
|
6
|
Guo J, Yang L, Qiao Y, Liu Z. Glycogen synthase kinase‑3β is required for epithelial‑mesenchymal transition and barrier dysfunction in mouse podocytes under high glucose conditions. Mol Med Rep 2016; 14:4091-4098. [PMID: 27748847 PMCID: PMC5101890 DOI: 10.3892/mmr.2016.5786] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 08/30/2016] [Indexed: 12/31/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is important for diabetic nephropathy (DN). Podocytes are specialized epithelial cells, which form a major component of the glomerular filtration barrier. Podocyte damage has been suggested to be the primary mechanism behind the albuminuria associated with DN. The present study aimed to determine the function of glycogen synthase kinase (GSK)-3β in EMT and barrier dysfunction of mouse podocytes exposed to high glucose (HG) conditions. Matured and differentiated podocytes were treated with normal glucose (NG), HG or NG + mannitol. Podocytes were also transfected with a small interfering RNA (siRNA) against GSK-3β or a scrambled siRNA, or were treated with lithium chloride (LiCl), a GSK-3β inhibitor, under NG or HG conditions. The expression levels of the epithelial cell markers, nephrin and podocin, and the myofibroblast cell markers, α-smooth muscle actin (SMA) and fibronectin, in podocytes by western blot analysis and immunofluorescence staining, respectively. The monolayer barrier function was assessed by albumin inflow. The phosphorylation and activity levels of GSK-3β were also quantified. It was observed that HG promotes EMT in podocytes, due to the increased levels of podocin and nephrin expression and the reduced α-SMA and fibronectin expression levels. HG also induced barrier dysfunction and increased the expression level of total GSK-3β, Try216-phosphorylated-GSK-3β and the GSK-3β activity in podocytes. Transfection of GSK-3β siRNA or treatment with LiCl reversed the HG-induced EMT and barrier dysfunction in podocytes. In conclusion, the present study determined that GSK-3β is required for EMT and barrier dysfunction in podocytes under HG conditions; therefore, GSK-3β may be a novel target for the treatment of DN.
Collapse
Affiliation(s)
- Jia Guo
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Lili Yang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yingjin Qiao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
7
|
Silva AP, Mendes F, Fragoso A, Jeronimo T, Pimentel A, Gundlach K, Büchel J, Santos N, Neves PL. Altered serum levels of FGF-23 and magnesium are independent risk factors for an increased albumin-to-creatinine ratio in type 2 diabetics with chronic kidney disease. J Diabetes Complications 2016; 30:275-80. [PMID: 26750742 DOI: 10.1016/j.jdiacomp.2015.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 12/12/2022]
Abstract
AIMS To investigate the role of FGF-23 and magnesium in relation to the albumin-to-creatinine ratio in type 2 diabetics with chronic kidney disease (CKD) stages 2-4. METHODS In a cross-sectional study we included all eligible type 2 diabetic patients with CKD stages 2-4, followed in our outpatient Diabetic Kidney clinic. We used descriptive statistics, the Student'st-test, ANOVA and the chi-square tests. Our population was divided according to the UACR (G1 30-300 mg/g and G2≥300 mg/g), and compared these groups regarding several biological and laboratorial parameters. We employed a multiple regression model to identify risk factors of increased UACR. RESULTS The patients in G2 displayed a lower eGFR (p=0.0001) and, had lower levels of magnesium (p=0.004) as well as higher levels of FGF-23 (p=0.043) compared to patients in G1. FGF-23 (β=0.562, P=0.0001) and the magnesium (β=- 8.916, p=0.0001) were associated with increased UACR. CONCLUSIONS A dysregulation of mineral metabolism, reflected by altered levels of magnesium and FGF-23, correlates with an increased UACR in type 2 diabetic patients with CKD stages 2-4.
Collapse
Affiliation(s)
- Ana Paula Silva
- Nephrology, Centro Hospitalar do Algarve, Faro, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal.
| | - Filipa Mendes
- Nephrology, Centro Hospitalar do Algarve, Faro, Portugal
| | - André Fragoso
- Nephrology, Centro Hospitalar do Algarve, Faro, Portugal
| | | | - Ana Pimentel
- Nephrology, Centro Hospitalar do Algarve, Faro, Portugal
| | - Kristina Gundlach
- Fresenius Medical Care Deutschland GmbH, Bad Homburg vor der Höhe, Germany
| | - Janine Büchel
- Fresenius Medical Care Deutschland GmbH, Bad Homburg vor der Höhe, Germany
| | - Nélio Santos
- Pathology Clinic, Centro Hospitalar do Algarve, Faro, Portugal
| | - Pedro Leão Neves
- Nephrology, Centro Hospitalar do Algarve, Faro, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
| |
Collapse
|
8
|
Fernández-Velasco M, Ruiz-Hurtado G, Gómez AM, Rueda A. Ca(2+) handling alterations and vascular dysfunction in diabetes. Cell Calcium 2014; 56:397-407. [PMID: 25218935 DOI: 10.1016/j.ceca.2014.08.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/30/2014] [Accepted: 08/07/2014] [Indexed: 12/12/2022]
Abstract
More than 65% of patients with diabetes mellitus die from cardiovascular disease or stroke. Hyperglycemia, due to either reduced insulin secretion or reduced insulin sensitivity, is the hallmark feature of diabetes mellitus. Vascular dysfunction is a distinctive phenotype found in both types of diabetes and could be responsible for the high incidence of stroke, heart attack, and organ damage in diabetic patients. In addition to well-documented endothelial dysfunction, Ca(2+) handling alterations in vascular smooth muscle cells (VSMCs) play a key role in the development and progression of vascular complications in diabetes. VSMCs provide not only structural integrity to the vessels but also control myogenic arterial tone and systemic blood pressure through global and local Ca(2+) signaling. The Ca(2+) signalosome of VSMCs is integrated by an extensive number of Ca(2+) handling proteins (i.e. channels, pumps, exchangers) and related signal transduction components, whose function is modulated by endothelial effectors. This review summarizes recent findings concerning alterations in endothelium and VSMC Ca(2+) signaling proteins that may contribute to the vascular dysfunction found in the diabetic condition.
Collapse
Affiliation(s)
| | - Gema Ruiz-Hurtado
- Unidad de Hipertensión, Instituto de Investigación imas12, Hospital 12 de Octubre, Madrid, Spain; Instituto Pluridisciplinar, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | - Ana M Gómez
- Inserm, UMR S769, Faculté de Pharmacie, Université Paris Sud, Labex LERMIT, DHU TORINO, Châtenay-Malabry, France
| | - Angélica Rueda
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, Mexico.
| |
Collapse
|
9
|
Boucher J, Simard E, Froehlich U, Grandbois M. Amplification of AngII-dependent cell contraction by glyoxal: implication of cell mechanical properties and actomyosin activity. Integr Biol (Camb) 2014; 6:411-21. [PMID: 24503653 DOI: 10.1039/c3ib40243f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Glyoxal (GO), a highly reactive metabolite of glucose, is associated with diabetic vascular complications via the formation of advanced glycation end-products. Considering its ability to react with proteins' amino acids and its crosslinking potential, we suggest that GO affects cellular mechanical functions such as contractility. Therefore, we tested the effects of GO on cellular contractile response following AngII stimulation of human embryonic kidney cells over-expressing the AT1 receptor (HEK 293 AT1aR). Prior to cell stimulation with AngII, cells exposed to GO exhibited carboxymethyllysine-adduct formation and an increase in cellular stiffness, which could be prevented by pre-treatment with aminoguanidine. The time-dependent cellular contractile response to AngII was measured by monitoring cell membrane displacement by atomic force atomic force microscopy (AFM) and by quantifying myosin light chain phosphorylation (p-MLC) via immunoblotting. Interestingly, short-term GO exposure increased by 2.6 times the amplitude of cell contraction induced by AngII and this was also associated with a sustained rise in p-MLC. This increased response to AngII induced by GO appears to be linked to its glycation potential, as aminoguanidine pre-treatment prevented this increased cellular mechanical response. Our results also suggest that GO could have an impact on ROCK activity, as ROCK inhibition with Y-27632 blocked the enhanced contractile response (p = 0.011) measured under GO conditions. Together, these results indicate that GO enhances the cellular response to AngII and modifies cellular mechanical properties via a mechanism that relies on its glycation potential and on the activation of the ROCK-dependent pathway.
Collapse
Affiliation(s)
- Julie Boucher
- Department of Pharmacology, Faculty of Medicine & Health Sciences, Université de Sherbrooke, 3001 12e avenue, Sherbrooke, J1H 5N4, QC, Canada.
| | | | | | | |
Collapse
|
10
|
Dugan LL, You YH, Ali SS, Diamond-Stanic M, Miyamoto S, DeCleves AE, Andreyev A, Quach T, Ly S, Shekhtman G, Nguyen W, Chepetan A, Le TP, Wang L, Xu M, Paik KP, Fogo A, Viollet B, Murphy A, Brosius F, Naviaux RK, Sharma K. AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function. J Clin Invest 2013; 123:4888-99. [PMID: 24135141 DOI: 10.1172/jci66218] [Citation(s) in RCA: 359] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 08/08/2013] [Indexed: 12/27/2022] Open
Abstract
Diabetic microvascular complications have been considered to be mediated by a glucose-driven increase in mitochondrial superoxide anion production. Here, we report that superoxide production was reduced in the kidneys of a steptozotocin-induced mouse model of type 1 diabetes, as assessed by in vivo real-time transcutaneous fluorescence, confocal microscopy, and electron paramagnetic resonance analysis. Reduction of mitochondrial biogenesis and phosphorylation of pyruvate dehydrogenase (PDH) were observed in kidneys from diabetic mice. These observations were consistent with an overall reduction of mitochondrial glucose oxidation. Activity of AMPK, the major energy-sensing enzyme, was reduced in kidneys from both diabetic mice and humans. Mitochondrial biogenesis, PDH activity, and mitochondrial complex activity were rescued by treatment with the AMPK activator 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR). AICAR treatment induced superoxide production and was linked with glomerular matrix and albuminuria reduction in the diabetic kidney. Furthermore, diabetic heterozygous superoxide dismutase 2 (Sod2(+/-)) mice had no evidence of increased renal disease, and Ampka2(-/-) mice had increased albuminuria that was not reduced with AICAR treatment. Reduction of mitochondrial superoxide production with rotenone was sufficient to reduce AMPK phosphorylation in mouse kidneys. Taken together, these results demonstrate that diabetic kidneys have reduced superoxide and mitochondrial biogenesis and activation of AMPK enhances superoxide production and mitochondrial function while reducing disease activity.
Collapse
|
11
|
Lee JY, Huo TI, Wang SS, Huang HC, Lee FY, Lin HC, Chuang CL, Lee SD. Diabetes diminishes the portal-systemic collateral vascular response to vasopressin via vasopressin receptor and Gα proteins regulations in cirrhotic rats. PLoS One 2013; 8:e67703. [PMID: 23874439 PMCID: PMC3706475 DOI: 10.1371/journal.pone.0067703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 05/22/2013] [Indexed: 12/25/2022] Open
Abstract
Liver cirrhosis may lead to portal-systemic collateral formation and bleeding. The hemostatic effect is influenced by the response of collateral vessels to vasoconstrictors. Diabetes and glucose also influence vasoresponsiveness, but their net effect on collaterals remains unexplored. This study investigated the impact of diabetes or glucose application on portal-systemic collateral vasoresponsiveness to arginine vasopressin (AVP) in cirrhosis. Spraque-Dawley rats with bile duct ligation (BDL)-induced cirrhosis received vehicle (citrate buffer) or streptozotocin (diabetic, BDL/STZ). The in situ collateral perfusion was done after hemodynamic measurements: Both were perfused with Krebs solution, D-glucose, or D-glucose and NaF, with additional OPC-31260 for the BDL/STZ group. Splenorenal shunt vasopressin receptors and Gα proteins mRNA expressions were evaluated. The survival rate of cirrhotic rats was decreased by STZ injection. The collateral perfusion pressure changes to AVP were lower in STZ-injected groups, which were reversed by OPC-31260 (a V2R antagonist) and overcome by NaF (a G protein activator). The splenorenal shunt V2R mRNA expression was increased while Gα proteins mRNA expressions were decreased in BDL/STZ rats compared to BDL rats. The Gαq and Gα11 mRNA expressions also correlated with the maximal perfusion pressure changes to AVP. Diabetes diminished the portal-systemic collateral vascular response to AVP in rats with BDL-induced cirrhosis, probably via V2 receptor up-regulation and Gα proteins down-regulation.
Collapse
Affiliation(s)
- Jing-Yi Lee
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Teh-Ia Huo
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
- Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Sun-Sang Wang
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Medical Affair and Planning, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hui-Chun Huang
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
- Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- * E-mail: (FYL); (HCH)
| | - Fa-Yauh Lee
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
- Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- * E-mail: (FYL); (HCH)
| | - Han-Chieh Lin
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
- Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chiao-Lin Chuang
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
- Divisions of General Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shou-Dong Lee
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Gastroenterology, Department of Medicine, Cheng Hsin General Hospital, Taipei, Taiwan
| |
Collapse
|
12
|
Gao YD, Zheng JW, Li P, Cheng M, Yang J. Store-operated Ca2+ entry is involved in transforming growth factor-β1 facilitated proliferation of rat airway smooth muscle cells. J Asthma 2013; 50:439-48. [PMID: 23452113 DOI: 10.3109/02770903.2013.778275] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To investigate the role and underlying mechanisms of store-operated Ca(2+) entry (SOCE) in mediating the promoting effect of transforming growth factor (TGF)-β1 on the proliferation of airway smooth muscle cells (ASMCs). METHODS Rat bronchial smooth muscle cells were cultured as we described previously. The intracellular Ca(2+) concentration ([Ca(2+)]i) of ASMCs was measured by laser confocal microscope Ca(2+) fluorescence imaging with Fluo-3/AM. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and p27 expression assay were used to determine the proliferation rate of ASMCs. RESULTS We demonstrated that TGF-β1 (10 ng/ml) increased basal (Ca(2+)]i) level, [Ca(2+)]i rise induced by thapsigargin-induced Ca(2+) release and SOCE in rat ASMCs. This effect of TGF-β1 on SOCE was not inhibited by glucocorticoid dexamethasone (DXM, 100 nM), antioxidant α-tocopherol (100 μM), and intermediate-conductance Ca(2+)-activated K(+) channels (IKCa) inhibitor charybdotoxin (100 nM), suggesting that reactive oxygen species and IKCa channels might not mediate the effect of TGF-β1. TGF-β1 slightly increased the expression of Orai1 and STIM1, two important molecules involved in the molecule component and regulation of SOC channels, in the presence of 10% fetal bovine serum (FBS). The proliferation of ASMC stimulated with 2.5% FBS was promoted by TGF-β1, and partly inhibited by non-specific Ca(2+) channel blocker SKF-96365 (10 μM) and Ni(2+) (100 μM). DXM, α-tocopherol, and charybdotoxin had no effect on the proliferation promoted by TGF-β1. CONCLUSION TGF-β1 promotes ASMC proliferation partly through increasing the expression and activity of SOC channels.
Collapse
Affiliation(s)
- Ya-Dong Gao
- Department of Respiratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan, China.
| | | | | | | | | |
Collapse
|
13
|
Abstract
Diabetes mellitus is rapidly becoming a global health issue that may overtake cancer during the next two decades as it covertly affects multiple organ systems that goes undiagnosed long after the onset. A number of complications are associated with poorly controlled hyperglycemia. Diabetic nephropathy is one of the most common complications of diabetes mellitus. Other than angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blocker (ARB) there is not much in the armamentarium with which to treat patients with overt diabetic nephropathy. Research points towards a multifactorial etiology and complex interplay of several pathogenic pathways that can contribute to the declining kidney function in diabetes. Patients with diabetic nephropathy (and with any chronic kidney disease) eventually develop kidney fibrosis. Despite the financial and labor investment spent on determining the basic mechanism of fibrosis, not much progress has been made in terms of therapeutic targets available to us today. This may be in part due to paucity in the experimental animal models available. However, there now seems to be a concerted effort from several pharmaceutical companies to develop a drug that would halt/delay the process of fibrosis, if not reverse it. This review discusses the current state of research in the field while staying within the context of diabetic nephropathy.
Collapse
Affiliation(s)
- Anil Karihaloo
- Section of Nephrology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
14
|
Soler MJ, Riera M, Gutierrez A, Pascual J. New options and perspectives for proteinuria management after kidney transplantation. Transplant Rev (Orlando) 2012; 26:44-52. [PMID: 22137732 DOI: 10.1016/j.trre.2011.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 07/28/2011] [Indexed: 12/31/2022]
Abstract
Proteinuria has been strongly correlated with reduced function and graft survival in kidney-transplanted patients. Data regarding new strategies in proteinuria treatment and subsequent allograft survival are lacking. Similarities between chronic graft injury and chronic kidney disease (CKD) suggest that the same therapeutic antiproteinuric tools should be effective in kidney-transplanted patients. The classic strategies to decrease proteinuria such as blood pressure control, nicotine cessation, low-salt diet, and maintaining an ideal body weight seem to be not enough to achieve proteinuria control. Improvements in our understanding of the pathogenesis of CKD have led to the identification of several novel targets for proteinuria management. In this review, we discuss novel pharmacological approaches that aim to decrease proteinuria in CKD patients, including the use of direct renin inhibitors, vitamin D analogs, pentoxifylline, and endothelin receptor antagonists. We also discuss the promise of using antifibrotic agents to treat proteinuria. The identification of new biomarkers of CKD and its progression can help in the selection of the most effective treatment for decreasing proteinuria and maintaining kidney function.
Collapse
Affiliation(s)
- María José Soler
- Department of Nephrology, Hospital del Mar-IMIM, Barcelona, Spain.
| | | | | | | |
Collapse
|
15
|
|
16
|
Narayanan D, Adebiyi A, Jaggar JH. Inositol trisphosphate receptors in smooth muscle cells. Am J Physiol Heart Circ Physiol 2012; 302:H2190-210. [PMID: 22447942 DOI: 10.1152/ajpheart.01146.2011] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP(3)Rs) are a family of tetrameric intracellular calcium (Ca(2+)) release channels that are located on the sarcoplasmic reticulum (SR) membrane of virtually all mammalian cell types, including smooth muscle cells (SMC). Here, we have reviewed literature investigating IP(3)R expression, cellular localization, tissue distribution, activity regulation, communication with ion channels and organelles, generation of Ca(2+) signals, modulation of physiological functions, and alterations in pathologies in SMCs. Three IP(3)R isoforms have been identified, with relative expression and cellular localization of each contributing to signaling differences in diverse SMC types. Several endogenous ligands, kinases, proteins, and other modulators control SMC IP(3)R channel activity. SMC IP(3)Rs communicate with nearby ryanodine-sensitive Ca(2+) channels and mitochondria to influence SR Ca(2+) release and reactive oxygen species generation. IP(3)R-mediated Ca(2+) release can stimulate plasma membrane-localized channels, including transient receptor potential (TRP) channels and store-operated Ca(2+) channels. SMC IP(3)Rs also signal to other proteins via SR Ca(2+) release-independent mechanisms through physical coupling to TRP channels and local communication with large-conductance Ca(2+)-activated potassium channels. IP(3)R-mediated Ca(2+) release generates a wide variety of intracellular Ca(2+) signals, which vary with respect to frequency, amplitude, spatial, and temporal properties. IP(3)R signaling controls multiple SMC functions, including contraction, gene expression, migration, and proliferation. IP(3)R expression and cellular signaling are altered in several SMC diseases, notably asthma, atherosclerosis, diabetes, and hypertension. In summary, IP(3)R-mediated pathways control diverse SMC physiological functions, with pathological alterations in IP(3)R signaling contributing to disease.
Collapse
Affiliation(s)
- Damodaran Narayanan
- Department of Physiology, University of Tennessee Health Science Center, Memphis, 38163, USA
| | | | | |
Collapse
|
17
|
Sanchez AP, Zhao J, You Y, Declèves AE, Diamond-Stanic M, Sharma K. Role of the USF1 transcription factor in diabetic kidney disease. Am J Physiol Renal Physiol 2011; 301:F271-9. [PMID: 21543418 PMCID: PMC3154594 DOI: 10.1152/ajprenal.00221.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 04/28/2011] [Indexed: 01/07/2023] Open
Abstract
The predominant transcription factors regulating key genes in diabetic kidney disease have not been established. The transcription factor upstream stimulatory factor 1 (USF1) is an important regulator of glucose-mediated transforming growth factor (TGF)-β1 expression in mesangial cells; however, its role in the development of diabetic kidney disease has not been evaluated. In the present study, wild-type (WT; USF1 +/+), heterozygous (USF1 +/-), and homozygous (USF1 -/-) knockout mice were intercrossed with Akita mice (Ins2/Akita) to induce type 1 diabetes. Mice were studied up to 36 wk of age. The degree of hyperglycemia and kidney hypertrophy were similar in all groups of diabetic mice; however, the USF1 -/- diabetic mice had significantly less albuminuria and mesangial matrix expansion than the WT diabetic mice. TGF-β1 and renin gene expression and protein were substantially increased in the WT diabetic mice but not in USF1 -/- diabetic mice. The underlying pathway by which USF1 is regulated by high glucose was investigated in mesangial cell culture. High glucose inhibited AMP-activated protein kinase (AMPK) activity and increased USF1 nuclear translocation. Activation of AMPK with AICAR stimulated AMPK activity and reduced nuclear accumulation of USF1. We thus conclude that USF1 is a critical transcription factor regulating diabetic kidney disease and plays a critical role in albuminuria, mesangial matrix accumulation, and TGF-β1 and renin stimulation in diabetic kidney disease. AMPK activity may play a key role in high glucose-induced regulation of USF1.
Collapse
Affiliation(s)
- Amber P Sanchez
- Center for Renal Translational Medicine, Division of Nephrology-Hypertension, Department of Medicine, University of California, Veterans Administration San Diego HealthCare System, La Jolla, 92093, USA
| | | | | | | | | | | |
Collapse
|
18
|
Yang HC, Kim JM, Chum E, van Breemen C, Chung AW. Effectiveness of combination of losartan potassium and doxycycline versus single-drug treatments in the secondary prevention of thoracic aortic aneurysm in Marfan syndrome. J Thorac Cardiovasc Surg 2010; 140:305-312.e2. [DOI: 10.1016/j.jtcvs.2009.10.039] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Revised: 05/31/2009] [Accepted: 10/25/2009] [Indexed: 01/15/2023]
|
19
|
Declèves AE, Sharma K. New pharmacological treatments for improving renal outcomes in diabetes. Nat Rev Nephrol 2010; 6:371-80. [PMID: 20440278 DOI: 10.1038/nrneph.2010.57] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diabetic nephropathy is the most common and most rapidly growing cause of end-stage renal failure in developed countries. Diabetic nephropathy results from complex interactions between genetic, metabolic and hemodynamic factors. Improvements in our understanding of the pathogenesis of fibrosis associated with diabetic kidney disease have led to the identification of several novel targets for the treatment of diabetic nephropathy. Albuminuria is a useful clinical marker of diabetic nephropathy, as it can be used to predict a decline in renal function. A reduction in albuminuria might not, however, be reflective of a protective effect of therapies focused on ameliorating renal fibrosis. Although new strategies for slowing down the progression of several types of renal disease have emerged, the challenge of arresting the relentless progression of diabetic nephropathy remains. In this Review, we discuss novel pharmacological approaches that aim to improve the renal outcomes of diabetic nephropathy, including the use of direct renin inhibitors and statins. We also discuss the promise of using antifibrotic agents to treat diabetic nephropathy. The need for novel biomarkers of diabetic nephropathy is also highlighted.
Collapse
|
20
|
Searls YM, Loganathan R, Smirnova IV, Stehno-Bittel L. Intracellular Ca2+ regulating proteins in vascular smooth muscle cells are altered with type 1 diabetes due to the direct effects of hyperglycemia. Cardiovasc Diabetol 2010; 9:8. [PMID: 20122173 PMCID: PMC2829469 DOI: 10.1186/1475-2840-9-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2009] [Accepted: 02/01/2010] [Indexed: 02/01/2023] Open
Abstract
Background Diminished calcium (Ca2+) transients in response to physiological agonists have been reported in vascular smooth muscle cells (VSMCs) from diabetic animals. However, the mechanism responsible was unclear. Methodology/Principal Findings VSMCs from autoimmune type 1 Diabetes Resistant Bio-Breeding (DR-BB) rats and streptozotocin-induced rats were examined for levels and distribution of inositol trisphosphate receptors (IP3R) and the SR Ca2+ pumps (SERCA 2 and 3). Generally, a decrease in IP3R levels and dramatic increase in ryanodine receptor (RyR) levels were noted in the aortic samples from diabetic animals. Redistribution of the specific IP3R subtypes was dependent on the rat model. SERCA 2 was redistributed to a peri-nuclear pattern that was more prominent in the DR-BB diabetic rat aorta than the STZ diabetic rat. The free intracellular Ca2+ in freshly dispersed VSMCs from control and diabetic animals was monitored using ratiometric Ca2+ sensitive fluorophores viewed by confocal microscopy. In control VSMCs, basal fluorescence levels were significantly higher in the nucleus relative to the cytoplasm, while in diabetic VSMCs they were essentially the same. Vasopressin induced a predictable increase in free intracellular Ca2+ in the VSMCs from control rats with a prolonged and significantly blunted response in the diabetic VSMCs. A slow rise in free intracellular Ca2+ in response to thapsigargin, a specific blocker of SERCA was seen in the control VSMCs but was significantly delayed and prolonged in cells from diabetic rats. To determine whether the changes were due to the direct effects of hyperglycemica, experiments were repeated using cultured rat aortic smooth muscle cells (A7r5) grown in hyperglycemic and control conditions. In general, they demonstrated the same changes in protein levels and distribution as well as the blunted Ca2+ responses to vasopressin and thapsigargin as noted in the cells from diabetic animals. Conclusions/Significance This work demonstrates that the previously-reported reduced Ca2+ signaling in VSMCs from diabetic animals is related to decreases and/or redistribution in the IP3R Ca2+ channels and SERCA proteins. These changes can be duplicated in culture with high glucose levels.
Collapse
Affiliation(s)
- Yvonne M Searls
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
21
|
Effects of genistein on secretion of extracellular matrix components and transforming growth factor beta in high-glucose-cultured rat mesangial cells. J Artif Organs 2009; 12:242-6. [DOI: 10.1007/s10047-009-0479-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 10/14/2009] [Indexed: 01/08/2023]
|
22
|
Yang HHC, Kim JM, Chum E, van Breemen C, Chung AWY. Long-term effects of losartan on structure and function of the thoracic aorta in a mouse model of Marfan syndrome. Br J Pharmacol 2009; 158:1503-12. [PMID: 19814725 DOI: 10.1111/j.1476-5381.2009.00443.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE During development of thoracic aortic aneurysms in a mouse model of Marfan syndrome, upregulation of matrix metalloproteinase (MMP)-2 and -9 was accompanied by compromised aortic constriction and endothelium-dependent relaxation. Losartan has been proposed for the prevention of thoracic aortic aneurysm. We hypothesized that losartan would suppress MMP-2/-9 activation and improve aortic vasomotor function in this model. EXPERIMENTAL APPROACH A well-characterized mouse model of Marfan syndrome (Fbn1(C1039G/+)) was used. Starting at 6 weeks old, Marfan mice were untreated or given losartan (0.6 g.L(-1) in drinking water, n= 30). The littermate Fbn1(+/+) mice served as control. Thoracic aortas were studied at 3, 6 and 9 months by histology and by contractility assays in isolated segments in vitro. KEY RESULTS Losartan improved elastic fibre organization and increased aortic breaking stress. Losartan reduced the activity and protein expression of MMP-2 and MMP-9 at all ages. Aortic constriction in response to membrane depolarization or phenylephrine was increased by losartan at 3 and 9 months by 100-200%. Active force of aortic smooth muscle was also increased at 6 and 9 months. Acetylcholine-induced endothelium-dependent relaxation was improved by 30% after 3 months of losartan treatment, but such improvement disappeared with longer duration of treatment, accompanied by reduced phosphorylation of endothelial nitric oxide (NO) synthase(Ser1177), Akt(Thr308) and Akt(Ser473), compared with the control. CONCLUSIONS AND IMPLICATIONS Losartan improved the contractile function of aorta and reduced MMP activation. However, the endothelial NO pathway remained suppressed in the thoracic aorta during losartan treatment, which might limit its long-term benefits in Marfan syndrome.
Collapse
Affiliation(s)
- H H Clarice Yang
- Department of Cardiovascular Science, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
23
|
Dharmani M, Mustafa MR, Achike FI, Sim MK. Involvement of AT(1) angiotensin receptors in the vasomodulatory effect of des-aspartate-angiotensin I in the rat renal vasculature. Peptides 2008; 29:1773-80. [PMID: 18603328 DOI: 10.1016/j.peptides.2008.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 05/13/2008] [Accepted: 05/20/2008] [Indexed: 10/22/2022]
Abstract
Angiotensin II is known to act primarily on the angiotensin AT(1) receptors to mediate its physiological and pathological actions. Des-aspartate-angiotensin I (DAA-I) is a bioactive angiotensin peptide and have been shown to have contrasting vascular actions to angiotensin II. Previous work in this laboratory has demonstrated an overwhelming vasodepressor modulation on angiotensin II-induced vasoconstriction by DAA-I. The present study investigated the involvement of the AT(1) receptor in the actions of DAA-I on angiotensin II-induced vascular actions in the renal vasculature of normotensive Wistar-Kyoto rats (WKY), spontaneously hypertensive rats (SHR) and streptozotocin (STZ)-induced diabetic rats. The findings revealed that the angiotensin receptor in rat kidney homogenate was mainly of the AT(1) subtype. The AT(1) receptor density was significantly higher in the kidney of the SHR. The increase in AT(1) receptor density was also confirmed by RT-PCR and Western blot analysis. In contrast, AT(1) receptor density was significantly reduced in the kidney of the streptozotocin-induced diabetic rat. Perfusion with 10(-9)M DAA-I reduced the AT(1) receptor density in the kidneys of WKY and SHR rats suggesting that the previously observed vasodepressor modulation of the nonapeptide could be due to down-regulation or internalization of AT(1) receptors. RT-PCR and Western blot analysis showed no significant changes in the content of AT(1) receptor mRNA and protein. This supports the suggestion that DAA-I causes internalization of AT(1) receptors. In the streptozotocin-induced diabetic rat, no significant changes in renal AT(1) receptor density and expression were seen when its kidneys were similarly perfused with DAA-I.
Collapse
Affiliation(s)
- M Dharmani
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | | | | |
Collapse
|
24
|
Pacher P, Sharma K, Csordás G, Zhu Y, Hajnóczky G. Uncoupling of ER-mitochondrial calcium communication by transforming growth factor-beta. Am J Physiol Renal Physiol 2008; 295:F1303-12. [PMID: 18653477 DOI: 10.1152/ajprenal.90343.2008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Transforming growth factor-beta (TGF-beta) has been implicated as a key factor in mediating many cellular processes germane to disease pathogenesis, including diabetic vascular complications. TGF-beta alters cytosolic [Ca2+] ([Ca2+]c) signals, which in some cases may result from the downregulation of the IP3 receptor Ca2+ channels (IP3R). Ca2+ released by IP3Rs is effectively transferred from endoplasmic reticulum (ER) to the mitochondria to stimulate ATP production and to allow feedback control of the Ca2+ mobilization. To assess the effect of TGF-beta on the ER-mitochondrial Ca2+ transfer, we first studied the [Ca2+]c and mitochondrial matrix Ca2+ ([Ca2+]m) signals in single preglomerular afferent arteriolar smooth muscle cells (PGASMC). TGF-beta pretreatment (24 h) decreased both the [Ca2+]c and [Ca2+]m responses evoked by angiotensin II or endothelin. Strikingly, the [Ca2+]m signal was more depressed than the [Ca2+]c signal and was delayed. In permeabilized cells, TGF-beta pretreatment attenuated the rate but not the magnitude of the IP(3)-induced [Ca2+]c rise, yet caused massive depression of the [Ca2+]m responses. ER Ca2+ storage and mitochondrial uptake of added Ca2+ were not affected by TGF-beta. Also, TGF-beta had no effect on mitochondrial distribution and on the ER-mitochondrial contacts assessed by two-photon NAD(P)H imaging and electron microscopy. Downregulation of both IP3R1 and IP3R3 was found in TGF-beta-treated PGASMC. Thus, TGF-beta causes uncoupling of mitochondria from the ER Ca2+ release. The sole source of this would be suppression of the IP3R-mediated Ca2+ efflux, indicating that the ER-mitochondrial Ca2+ transfer depends on the maximal rate of Ca2+ release. The impaired ER-mitochondrial coupling may contribute to the vascular pathophysiology associated with TGF-beta production.
Collapse
Affiliation(s)
- Pál Pacher
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
25
|
Sharma K, RamachandraRao S, Qiu G, Usui HK, Zhu Y, Dunn SR, Ouedraogo R, Hough K, McCue P, Chan L, Falkner B, Goldstein BJ. Adiponectin regulates albuminuria and podocyte function in mice. J Clin Invest 2008; 118:1645-56. [PMID: 18431508 PMCID: PMC2323186 DOI: 10.1172/jci32691] [Citation(s) in RCA: 290] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 02/20/2008] [Indexed: 12/13/2022] Open
Abstract
Increased albuminuria is associated with obesity and diabetes and is a risk factor for cardiovascular and renal disease. However, the link between early albuminuria and adiposity remains unclear. To determine whether adiponectin, an adipocyte-derived hormone, is a communication signal between adipocytes and the kidney, we performed studies in a cohort of patients at high risk for diabetes and kidney disease as well as in adiponectin-knockout (Ad(-/-)) mice. Albuminuria had a negative correlation with plasma adiponectin in obese patients, and Ad(-/-) mice exhibited increased albuminuria and fusion of podocyte foot processes. In cultured podocytes, adiponectin administration was associated with increased activity of AMPK, and both adiponectin and AMPK activation reduced podocyte permeability to albumin and podocyte dysfunction, as evidenced by zona occludens-1 translocation to the membrane. These effects seemed to be caused by reduction of oxidative stress, as adiponectin and AMPK activation both reduced protein levels of the NADPH oxidase Nox4 in podocytes. Ad(-/-) mice treated with adiponectin exhibited normalization of albuminuria, improvement of podocyte foot process effacement, increased glomerular AMPK activation, and reduced urinary and glomerular markers of oxidant stress. These results suggest that adiponectin is a key regulator of albuminuria, likely acting through the AMPK pathway to modulate oxidant stress in podocytes.
Collapse
Affiliation(s)
- Kumar Sharma
- Translational Research in Kidney Disease, Division of Nephrology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Veterans Administration San Diego Healthcare System, La Jolla, California, USA.
Center for Novel Therapies in Kidney Disease, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Baylor College of Medicine, Houston, Texas, USA.
Center for Hypertension, Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Satish RamachandraRao
- Translational Research in Kidney Disease, Division of Nephrology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Veterans Administration San Diego Healthcare System, La Jolla, California, USA.
Center for Novel Therapies in Kidney Disease, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Baylor College of Medicine, Houston, Texas, USA.
Center for Hypertension, Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Gang Qiu
- Translational Research in Kidney Disease, Division of Nephrology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Veterans Administration San Diego Healthcare System, La Jolla, California, USA.
Center for Novel Therapies in Kidney Disease, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Baylor College of Medicine, Houston, Texas, USA.
Center for Hypertension, Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Hitomi Kataoka Usui
- Translational Research in Kidney Disease, Division of Nephrology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Veterans Administration San Diego Healthcare System, La Jolla, California, USA.
Center for Novel Therapies in Kidney Disease, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Baylor College of Medicine, Houston, Texas, USA.
Center for Hypertension, Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Yanqing Zhu
- Translational Research in Kidney Disease, Division of Nephrology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Veterans Administration San Diego Healthcare System, La Jolla, California, USA.
Center for Novel Therapies in Kidney Disease, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Baylor College of Medicine, Houston, Texas, USA.
Center for Hypertension, Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Stephen R. Dunn
- Translational Research in Kidney Disease, Division of Nephrology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Veterans Administration San Diego Healthcare System, La Jolla, California, USA.
Center for Novel Therapies in Kidney Disease, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Baylor College of Medicine, Houston, Texas, USA.
Center for Hypertension, Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Raogo Ouedraogo
- Translational Research in Kidney Disease, Division of Nephrology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Veterans Administration San Diego Healthcare System, La Jolla, California, USA.
Center for Novel Therapies in Kidney Disease, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Baylor College of Medicine, Houston, Texas, USA.
Center for Hypertension, Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Kelly Hough
- Translational Research in Kidney Disease, Division of Nephrology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Veterans Administration San Diego Healthcare System, La Jolla, California, USA.
Center for Novel Therapies in Kidney Disease, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Baylor College of Medicine, Houston, Texas, USA.
Center for Hypertension, Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Peter McCue
- Translational Research in Kidney Disease, Division of Nephrology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Veterans Administration San Diego Healthcare System, La Jolla, California, USA.
Center for Novel Therapies in Kidney Disease, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Baylor College of Medicine, Houston, Texas, USA.
Center for Hypertension, Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Lawrence Chan
- Translational Research in Kidney Disease, Division of Nephrology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Veterans Administration San Diego Healthcare System, La Jolla, California, USA.
Center for Novel Therapies in Kidney Disease, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Baylor College of Medicine, Houston, Texas, USA.
Center for Hypertension, Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Bonita Falkner
- Translational Research in Kidney Disease, Division of Nephrology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Veterans Administration San Diego Healthcare System, La Jolla, California, USA.
Center for Novel Therapies in Kidney Disease, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Baylor College of Medicine, Houston, Texas, USA.
Center for Hypertension, Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Barry J. Goldstein
- Translational Research in Kidney Disease, Division of Nephrology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Veterans Administration San Diego Healthcare System, La Jolla, California, USA.
Center for Novel Therapies in Kidney Disease, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Baylor College of Medicine, Houston, Texas, USA.
Center for Hypertension, Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
26
|
Ma L, Zhu B, Chen X, Liu J, Guan Y, Ren J. Abnormalities of sarcoplasmic reticulum Ca2+ mobilization in aortic smooth muscle cells from streptozotocin-induced diabetic rats. Clin Exp Pharmacol Physiol 2007; 35:568-73. [PMID: 18067595 DOI: 10.1111/j.1440-1681.2007.04832.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. Previously, we found that contractions in response to receptor-dependent (i.e. a(1)-adrenoceptor agonist phenylephrine) and -independent (i.e. cyclopiazonic acid) stimuli are decreased in rat aorta during late diabetes. The aim of the present study was to further investigate the changes of intracellular Ca(2+) homeostasis in diabetic aortic smooth muscle cells. Functional changes of inositol 1,4,5-trisphosphate (IP(3))- and ryanodine-sensitive Ca(2+) stores of the sarcoplasmic reticulum (SR) were evaluated using Fluo-3 acetoxymethyl ester fluorescence, western blot and organ bath techniques. 2. In aortic smooth muscle cells from diabetic rats, the Ca(2+) release and Ca(2+) influx caused by both 10 mmol/L phenylephrine (depletion of IP(3)-sensitive Ca(2+) stores) and 1 mmol/L ryanodine (depletion of ryanodine-sensitive Ca(2+) stores) were both significantly decreased compared with control. Moreover, protein expression levels of IP(3) (260 kDa) and ryanodine receptors (500 kDa) were reduced by 31.8 +/- 7.7 and 69.2 +/- 8.4%, respectively, in aortas from diabetic rats compared with those from control rats. 3. In diabetic rat aorta, phenylephrine-induced contractility was decreased to approximately two-thirds of that in controls, whereas ryanodine alone did not cause obvious contraction in aortas from either control or diabetic rats. 4. The present results suggest that the hyporeactivity of aortic smooth muscle to vasoconstrictors in diabetes results mainly from changes to the IP(3)-sensitive Ca(2+) release pathway. The SR Ca(2+) signalling pathway plays a crucial role in the development of diabetic vascular complications.
Collapse
Affiliation(s)
- Li Ma
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan Medical College, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
27
|
Ramachandra Rao SP, Wassell R, Shaw MA, Sharma K. Profiling of human mesangial cell subproteomes reveals a role for calmodulin in glucose uptake. Am J Physiol Renal Physiol 2007; 292:F1182-9. [PMID: 17200159 DOI: 10.1152/ajprenal.00268.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Proteomics combined with cell fractionation was used to identify proteins regulated by high glucose (HG) in human mesangial cells (HMC). Total membrane and cytosolic fraction proteins derived from HMC after 7 days of HG exposure were resolved by a two-dimensional gel electrophoresis approach. DeCyder software was used to analyze the HG-induced protein spot dysregulation. In the membrane subproteome, of the 92 spots that were matched across all gels, HG induced significant downregulation of only 4 protein spots. The dysregulated spots from the membrane subproteome included binding protein (BiP), calreticulin precursor protein, a 63-kDa transmembrane protein from a ER/Golgi intermediate, and beta-subunit of collagen proline 4-hydroxylase. In the cytosolic subproteome, of the 122 spots that were matched across all gels, HG induced downregulation of 3 protein spots and upregulation of 2 protein spots significantly. Enolase 1, annexin VI, and gamma(2)-actin were decreased, whereas heat shock protein-70 kDa and calmodulin (CaM) were increased. Further confocal microscopy and Western immunoblotting of mesangial cells validated the increase in CaM. Immunoblotting of diabetic mouse and rat kidneys exhibited a marked increase in CaM at both early and late stages of diabetes, reflecting the potential physiological relevance of CaM upregulation. CaM-specific inhibitors blocked glucose transport stimulated by transforming growth factor-beta and insulin in mesangial cells. In conclusion, using a combination of cell fractionation and protein expression profiling, we identified a cohort of HG-dysregulated proteins in the HMC and identified a critical and as yet unrecognized role for CaM in glucose transport in mesangial cells.
Collapse
Affiliation(s)
- Satish P Ramachandra Rao
- Dept. of Medicine, Center for Novel Therapies for Kidney Disease, Suite 365 Jefferson Alumni Hall, 1020 Locust St., Philadelphia, PA 19107, USA.
| | | | | | | |
Collapse
|
28
|
Hu T, Ramachandrarao SP, Siva S, Valancius C, Zhu Y, Mahadev K, Toh I, Goldstein BJ, Woolkalis M, Sharma K. Reactive oxygen species production via NADPH oxidase mediates TGF-beta-induced cytoskeletal alterations in endothelial cells. Am J Physiol Renal Physiol 2005; 289:F816-25. [PMID: 16159901 PMCID: PMC1460011 DOI: 10.1152/ajprenal.00024.2005] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cytoskeletal alterations in endothelial cells have been linked to nitric oxide generation and cell-cell interactions. Transforming growth factor (TGF)-beta has been described to affect cytoskeletal rearrangement in numerous cell types; however, the underlying pathway is unclear. In the present study, we found that human umbilical vein endothelial cells (HUVEC) have marked cytoskeletal alterations with short-term TGF-beta treatment resulting in filipodia formation and F-actin assembly. The cytoskeletal alterations were blocked by the novel TGF-beta type I receptor/ALK5 kinase inhibitor (SB-505124) but not by the p38 kinase inhibitor (SB-203580). TGF-beta also induced marked stimulation of reactive oxygen species (ROS) within 5 min of TGF-beta exposure. TGF-beta stimulation of ROS was mediated by the NAPDH oxidase homolog Nox4 as DPI, an inhibitor of NADPH oxidase, and dominant-negative Nox4 adenovirus blocked ROS production. Finally, inhibition of ROS with ROS scavengers or dominant-negative Nox4 blocked the TGF-beta effect on cytoskeleton changes in endothelial cells. In conclusion, our studies show for the first time that TGF-beta-induced ROS production in human endothelial cells is via Nox4 and that TGF-beta alteration of cytoskeleton in HUVEC is mediated via a Nox4-dependent pathway.
Collapse
Affiliation(s)
- Taishan Hu
- The Dorrance Hamilton Research Laboratories, Thomas Jefferson Univ., Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhu Y, Casado M, Vaulont S, Sharma K. Role of upstream stimulatory factors in regulation of renal transforming growth factor-beta1. Diabetes 2005; 54:1976-84. [PMID: 15983197 DOI: 10.2337/diabetes.54.7.1976] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We previously identified an E-box to be implicated in high-glucose-induced transforming growth factor-beta1 (TGF-beta1) gene stimulation in murine mesangial cells. In the present study, we evaluated the role of upstream stimulatory factors (USFs) in mediating glucose-induced stimulation of TGF-beta1. Mesangial cells cultured in glucose concentrations exceeding 2.7 mmol/l D-glucose exhibited increased levels of USF1 and USF2 protein by Western analysis and electrophoretic mobility shift assay (EMSA). An E-box element from the murine TGF-beta1 promoter revealed USF1 and USF2 binding by EMSA. Chromatin immunoprecipitation assay revealed in vivo binding of USF1 to a glucose-responsive region of the TGF-beta1 promoter. Transient cotransfection studies of 293 cells with USF1 led to a twofold increase in TGF-beta1 promoter activity and a 46% increase in secreted TGF-beta1 protein levels. Wild-type and USF2 knockout mice exhibited a 2.5-fold stimulation of renal TGF-beta1 expression upon fasting and refeeding with a carbohydrate-rich diet, whereas USF1 knockout mice exhibited only a minimal increase of renal TGF-beta1 upon refeeding. USF1 mRNA levels were increased in mouse kidneys with carbohydrate refeeding, and USF1 protein was increased in diabetic rat kidneys compared with controls. We conclude that USF1 is stimulated by modest increases in glucose concentration in murine mesangial cells, bind to the murine TGF-beta1 promoter, contribute to carbohydrate-induced renal TGF-beta1 expression, and may play a role in diabetes-related gene regulation in the kidney.
Collapse
Affiliation(s)
- Yanqing Zhu
- Department of Medicine, Division of Nephrology, Dorrance Hamilton Research Laboratories, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
30
|
Williams KJ, Liu ML, Zhu Y, Xu X, Davidson WR, McCue P, Sharma K. Loss of heparan N-sulfotransferase in diabetic liver: role of angiotensin II. Diabetes 2005; 54:1116-22. [PMID: 15793251 DOI: 10.2337/diabetes.54.4.1116] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The basis for accelerated atherosclerosis in diabetes is unclear. Diabetes is associated with loss of heparan sulfate (HS) from the liver, which may impede lipoprotein clearance and thereby worsen atherosclerosis. To study hepatic HS loss in diabetes, we examined regulation of HS N-deacetylase/N-sulfotransferase-1 (NDST), a key enzyme in hepatic HS biosynthesis. Hepatic NDST mRNA, protein, and enzymatic activity were suppressed by >50% 2 weeks after induction of type 1 diabetes in rats. Treatment of diabetic rats with enalapril, an ACE inhibitor, had no effect on hyperglycemia or hepatic NDST mRNA levels, yet increased hepatic NDST protein and enzymatic activity. Similar results were obtained in diabetic animals treated with losartan, which blocks the type 1 receptor for angiotensin II (AngII). Consistent with these findings, diabetic livers exhibited increased ACE expression, and addition of AngII to cultured hepatoma cells reduced NDST activity and protein. We conclude that diabetes substantially suppresses hepatic NDST mRNA, protein, and enzymatic activity. AngII contributes to suppression of NDST protein and enzymatic activity, whereas mRNA suppression occurs independently. Suppression of hepatic NDST may contribute to diabetic dyslipidemia, and stimulation of NDST activity by AngII inhibitors may provide cardiovascular protection.
Collapse
Affiliation(s)
- Kevin Jon Williams
- Division of Endocrinology, Diabetes and Metabolic Diseases, Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Sharma K, Cook A, Smith M, Valancius C, Inscho EW. TGF-beta impairs renal autoregulation via generation of ROS. Am J Physiol Renal Physiol 2005; 288:F1069-77. [PMID: 15644487 DOI: 10.1152/ajprenal.00345.2004] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Impaired autoregulation in chronic kidney disease can result in elevation of glomerular capillary pressure and progressive glomerular damage; however, the factors linking chronic glomerular disorders to impaired autoregulation have not been identified. We tested the hypothesis that the cytokine most closely associated with progressive glomerular disease, transforming growth factor (TGF)-beta, may also attenuate autoregulation. Kidneys from normal rats were prepared for videomicroscopy, using the blood-perfused juxtamedullary nephron technique. Autoregulatory responses were measured under control conditions and during superfusion with TGF-beta1 (10 ng/ml). Control afferent arteriolar diameter averaged 18.4 +/- 1 microm and significantly decreased to 16.3 +/- 0.9 and 13.2 +/- 0.8 microm at perfusion pressures of 130 and 160 mmHg, respectively. In the presence of TGF-beta1, autoregulatory responses were completely blocked. In similar experiments performed using PDGF-BB (10 ng/ml) and HGF (25 ng/ml), the normal autoregulatory response was not affected. In vitro studies, using isolated preglomerular vascular smooth muscle cells, revealed that exposure to TGF-beta1 stimulated a rapid increase in reactive oxygen species (ROS) that was inhibited by NADPH oxidase inhibitors. In situ studies, with dihydroethidium staining, revealed a marked increase in renal vessel ROS production on exposure to TGF-beta1. Pretreatment of the juxtamedullary afferent arterioles with tempol, a ROS scavenger, or with apocynin, a NADPH oxidase inhibitor, prevented the impaired autoregulation induced by TGF-beta1. These data reveal a novel hemodynamic pathway by which TGF-beta could lead to progressive glomerular injury by impairing normal renal microvascular function.
Collapse
Affiliation(s)
- Kumar Sharma
- Dorrance Hamilton Research Laboratories, Division of Nephrology, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | | | |
Collapse
|
32
|
Abstract
Although debated for many years whether haemodynamic or structural changes are more important in the development of diabetic nephropathy, it is now clear that these processes are interwoven and present two sides of one coin. On a molecular level, hyperglycaemia and proteins altered by high blood glucose such as Amadori products and advanced glycation end-products (AGEs) are key players in the development of diabetic nephropathy. Recent evidence suggests that an increase in reactive oxygen species (ROS) formation induced by high glucose-mediated activation of the mitochondrial electron-transport chain is an early event in the development of diabetic complications. A variety of growth factors and cytokines are then induced through complex signal transduction pathways involving protein kinase C, mitogen-activated protein kinases, and the transcription factor NF-kappaB. High glucose, AGEs, and ROS act in concert to induce growth factors and cytokines. Particularly, TGF-beta is important in the development of renal hypertrophy and accumulation of extracellular matrix components. Activation of the renin-angiotensin system by high glucose, mechanical stress, and proteinuria with an increase in local formation of angiotensin II (ANG II) causes many of the pathophysiological changes associated with diabetic nephropathy. In fact, it has been shown that angiotensin II is involved in almost every pathophysiological process implicated in the development of diabetic nephropathy (haemodynamic changes, hypertrophy, extracellular matrix accumulation, growth factor/cytokine induction, ROS formation, podocyte damage, proteinuria, interstitial inflammation). Consequently, blocking these deleterious effects of ANG II is an essential part of every therapeutic regiment to prevent and treat diabetic nephropathy. Recent evidence suggests that regression of diabetic nephropathy could be achieved under certain circumstances.
Collapse
Affiliation(s)
- G Wolf
- Department of Medicine, Division of Nephrology, Osteology and Rheumatology, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
33
|
McGowan TA, Zhu Y, Sharma K. Transforming growth factor-beta: a clinical target for the treatment of diabetic nephropathy. Curr Diab Rep 2004; 4:447-54. [PMID: 15539010 DOI: 10.1007/s11892-004-0055-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Diabetic nephropathy is continuing to rise in incidence, despite awareness of tight glycemic control and blood pressure. The identification that matrix accumulation is driven by transforming growth factor-beta (TGF-beta) has led to a concerted effort to apply antifibrotic strategies for this disorder. Recent studies have not only demonstrated the beneficial effects of blocking TGF-beta on matrix accumulation but have also found that blocking TGF-beta may have important hemodynamic effects that are relevant to diabetic complications. In this article, we review the latest knowledge regarding the role of TGF-beta in diabetic kidney disease and discuss available and novel therapeutic approaches. The role of a novel antifibrotic drug, pirfenidone, may have important clinical relevance to diabetic nephropathy.
Collapse
Affiliation(s)
- Tracy A McGowan
- Dorrance Hamilton Research Laboratories, Division of Nephrology, Center for Diabetic Kidney Disease, Thomas Jefferson University Hospital, 1020 Locust Street, Suite 353, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
34
|
Lee S, Lee S, Sharma K. The pathogenesis of fibrosis and renal disease in scleroderma: Recent insights from glomerulosclerosis. Curr Rheumatol Rep 2004; 6:141-8. [PMID: 15016345 DOI: 10.1007/s11926-004-0059-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Acute and chronic renal diseases remain common complications of systemic sclerosis. Although treatment for acute scleroderma renal crisis may arrest the rapid progression of renal disease, many patients develop persistent renal dysfunction. Based on recent insights gained from progressive renal diseases of diverse etiologies, novel approaches to understanding the pathobiology of scleroderma renal disease may be applicable. Key factors involved in progression of renal disease include accumulation of extracellular matrix in the glomerular and tubulointerstitial compartments, epithelial to mesenchymal transformation, and vascular changes. The relevant factors mediating these events include the renin-angiotensin system, the profibrotic growth factors, transforming growth factor-beta and connective tissue growth factor, and reactive oxygen species. Much of the molecular details of the role of these factors have been revealed and promise to alter the practice of therapy of progressive renal disease.
Collapse
Affiliation(s)
- Sungchun Lee
- Dorrance Hamilton Research Laboratories, Division of Nephrology, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|