1
|
Brunkhorst M, Brunkhorst L, Martens H, Papizh S, Besouw M, Grasemann C, Turan S, Sikora P, Chromek M, Cornelissen E, Fila M, Lilien M, Allgrove J, Neuhaus TJ, Eltan M, Espinosa L, Schnabel D, Gokce I, González-Rodríguez JD, Khandelwal P, Keijzer-Veen MG, Lechner F, Szczepańska M, Zaniew M, Bacchetta J, Emma F, Haffner D. Presentation and outcome in carriers of pathogenic variants in SLC34A1 and SLC34A3 encoding sodium-phosphate transporter NPT 2a and 2c. Kidney Int 2025; 107:116-129. [PMID: 39461557 DOI: 10.1016/j.kint.2024.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/15/2024] [Accepted: 08/30/2024] [Indexed: 10/29/2024]
Abstract
Pathogenic variants in SLC34A1 and SLC34A3 encoding sodium-phosphate transporter 2a and 2c are rare causes of phosphate wasting. Since data on presentation and outcomes are scarce, we collected clinical, biochemical and genetic data via an online questionnaire and the support of European professional organizations. One hundred thirteen patients (86% children) from 90 families and 17 countries with pathogenic or likely pathogenic variants in SLC34A1 or SLC34A3 and a median follow-up of three years were analyzed. Biallelic SLC34A1 variant carriers showed polyuria, failure to thrive, vomiting, constipation, hypercalcemia and nephrocalcinosis in infancy, while biallelic SLC34A3 carriers presented in childhood or even adulthood with rickets/osteomalacia and/or osteopenia/osteoporosis, hypophosphatemia and, less frequently, nephrocalcinosis, while the prevalences of kidney stones were comparable. Adult biallelic SLC34A3 carriers had a six-fold increase chronic kidney disease (CKD) prevalence compared to the general population. All biallelic variant carriers shared a common biochemical pattern including elevated 1,25(OH)2D and alkaline phosphatase levels, suppressed parathyroid hormone (PTH), and hypercalciuria. Heterozygous carriers showed similar but less pronounced phenotypes. In biallelic SLC34A1 carriers, an attenuation of clinical features was observed after infancy, independent of treatment. Phosphate treatment was given in 55% of patients, median duration two years, and resulted in significant reduction, although not normalization, of alkaline phosphatase and of hypercalciuria but an increase in PTH levels, while 1,25(OH)2D levels remained elevated. Thus, our study indicates that biallelic SLC34A1 and SLC34A3 carriers show distinct, albeit overlapping phenotypes, with the latter having an increased risk of CKD in adulthood. Phosphate treatment may promote kidney phosphate loss and enhance 1,25(OH)2D synthesis via increased PTH production.
Collapse
Affiliation(s)
- Max Brunkhorst
- Department of Pediatric Kidney, Liver, Metabolic and Neurological Diseases, Hannover Medical School, Hannover, Germany
| | - Lena Brunkhorst
- Department of Pediatric Kidney, Liver, Metabolic and Neurological Diseases, Hannover Medical School, Hannover, Germany
| | - Helge Martens
- Department of Human Genetics, Division of Inherited & Acquired Kidney Diseases, Hannover Medical School, Hannover, Germany
| | - Svetlana Papizh
- Department of Hereditary and Acquired Kidney Diseases, Veltishev Research and Clinical Institute for Pediatrics and Children Surgery of Pirogov Russian National Research Medical University, Moscow, Russia
| | - Martine Besouw
- Department of Pediatric Nephrology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Serap Turan
- Department of Pediatric Endocrinology, Marmara University School of Medicine, Istanbul, Turkey
| | - Przemyslaw Sikora
- Department of Pediatric Nephrology, Medical University of Lublin, Lublin, Poland
| | - Milan Chromek
- Division of Pediatrics, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden; Division of Pediatrics, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska University Hospital, Stockholm, Sweden
| | - Elisabeth Cornelissen
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marc Fila
- Pediatric Nephrology Department, Hôpital Arnaud de Villeneuve, Centre Hospitalier Universitaire (CHU) of Montpellier, Montpellier, France
| | - Marc Lilien
- Department of Pediatric Nephrology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jeremy Allgrove
- Endocrinology Department, Great Ormond Street Hospital, London, UK
| | - Thomas J Neuhaus
- Department of Pediatrics, Children's Hospital Lucerne, Lucerne, Switzerland
| | - Mehmet Eltan
- Department of Pediatric Endocrinology, Marmara University School of Medicine, Istanbul, Turkey
| | | | - Dirk Schnabel
- Division of Pediatric Endocrinology, Center for Chronically Sick Children, Pediatric Endocrinology, University Medicine, Charitè Berlin, Germany
| | - Ibrahim Gokce
- Department of Pediatric Nephrology, Marmara University School of Medicine, Istanbul, Turkey
| | | | - Priyanka Khandelwal
- Department of Pediatrics, Division of Pediatric Nephrology, All India Institute of Medical Sciences, New Delhi, India
| | - Mandy G Keijzer-Veen
- Division of Pediatric Nephrology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Felix Lechner
- Department of Pediatrics, Children's Hospital Memmingen, Memmingen, Germany
| | - Maria Szczepańska
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, SUM in Katowice, Poland
| | - Marcin Zaniew
- Department of Pediatrics, University of Zielona Góra, Zielona Góra, Poland
| | - Justine Bacchetta
- Department of Pediatric Nephrology, Hospices Civils de Lyon, INSERM 1033 Research Unit, Lyon, France
| | - Francesco Emma
- Division of Nephrology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver, Metabolic and Neurological Diseases, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
2
|
Poulsen SB, Murali SK, Thomas L, Assmus A, Rosenbæk LL, Nielsen R, Dimke H, Rieg T, Fenton RA. Genetic deletion of the kidney sodium/proton exchanger-3 (NHE3) does not alter calcium and phosphate balance due to compensatory responses. Kidney Int 2024:S0085-2538(24)00533-7. [PMID: 39089578 DOI: 10.1016/j.kint.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 06/10/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024]
Abstract
The sodium/proton exchanger-3 (NHE3) plays a major role in acid-base and extracellular volume regulation and is also implicated in calcium homeostasis. As calcium and phosphate balances are closely linked, we hypothesized that there was a functional link between kidney NHE3 activity, calcium, and phosphate balance. Therefore, we examined calcium and phosphate homeostasis in kidney tubule-specific NHE3 knockout mice (NHE3loxloxPax8 mice). Compared to controls, these knockout mice were normocalcemic with no significant difference in urinary calcium excretion or parathyroid hormone levels. Thiazide-induced hypocalciuria was less pronounced in the knockout mice, in line with impaired proximal tubule calcium transport. Knockout mice had greater furosemide-induced calciuresis and distal tubule calcium transport pathways were enhanced. Despite lower levels of the sodium/phosphate cotransporters (NaPi)-2a and -2c, knockout mice had normal plasma phosphate, sodium-dependent 32Phosphate uptake in proximal tubule membrane vesicles and urinary phosphate excretion. Intestinal phosphate uptake was unchanged. Low dietary phosphate reduced parathyroid hormone levels and increased NaPi-2a and -2c abundances in both genotypes, but NaPi-2c levels remained lower in the knockout mice. Gene expression profiling suggested proximal tubule remodeling in the knockout mice. Acutely, indirect NHE3 inhibition using the SGLT2 inhibitor empagliflozin did not affect urinary calcium and phosphate excretion. No differences in femoral bone density or architecture were detectable in the knockout mice. Thus, a role for kidney NHE3 in calcium homeostasis can be unraveled by diuretics, but NHE3 deletion in the kidneys has no major effects on overall calcium and phosphate homeostasis due, at least in part, to compensating mechanisms.
Collapse
Affiliation(s)
- Søren B Poulsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sathish K Murali
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Linto Thomas
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA
| | - Adrienne Assmus
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Lena L Rosenbæk
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Rikke Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA; James A. Haley Veterans' Hospital, Tampa, Florida, USA.
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
3
|
Thomas L, Dissanayake LV, Tahmasbi M, Staruschenko A, Al-Masri S, Dominguez Rieg JA, Rieg T. Vitamin D 3 suppresses Npt2c abundance and differentially modulates phosphate and calcium homeostasis in Npt2a knockout mice. Sci Rep 2024; 14:16997. [PMID: 39043847 PMCID: PMC11266651 DOI: 10.1038/s41598-024-67839-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
Vitamin D3 is clinically used for the treatment of vitamin D3 deficiency or osteoporosis, partially because of its role in regulating phosphate (Pi) and calcium (Ca2+) homeostasis. The renal sodium-phosphate cotransporter 2a (Npt2a) plays an important role in Pi homeostasis; however, the role of vitamin D3 in hypophosphatemia has never been investigated. We administered vehicle or vitamin D3 to wild-type (WT) mice or hypophosphatemic Npt2a-/- mice. In contrast to WT mice, vitamin D3 treatment increased plasma Pi levels in Npt2a-/- mice, despite similar levels of reduced parathyroid hormone and increased fibroblast growth factor 23. Plasma Ca2+ was increased ~ twofold in both genotypes. Whereas WT mice were able to increase urinary Pi and Ca2+/creatinine ratios, in Npt2a-/- mice, Pi/creatinine was unchanged and Ca2+/creatinine drastically decreased, coinciding with the highest kidney Ca2+ content, highest plasma creatinine, and greatest amount of nephrocalcinosis. In Npt2a-/- mice, vitamin D3 treatment completely diminished Npt2c abundance, so that mice resembled Npt2a/c double knockout mice. Abundance of intestinal Npt2b and claudin-3 (tight junctions protein) were reduced in Npt2a-/- only, the latter might facilitate the increase in plasma Pi in Npt2a-/- mice. Npt2a might function as regulator between renal Ca2+ excretion and reabsorption in response to vitamin D3.
Collapse
Affiliation(s)
- Linto Thomas
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- James A. Haley Veterans' Hospital, Tampa, FL, USA
| | - Lashodya V Dissanayake
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Maryam Tahmasbi
- Department of Pathology and Cell Biology, University of South Florida, Tampa, FL, USA
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- James A. Haley Veterans' Hospital, Tampa, FL, USA
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL, USA
| | - Sima Al-Masri
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jessica A Dominguez Rieg
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- James A. Haley Veterans' Hospital, Tampa, FL, USA
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL, USA
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
- James A. Haley Veterans' Hospital, Tampa, FL, USA.
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
4
|
Zhu Z, Bo-Ran Ho B, Chen A, Amrhein J, Apetrei A, Carpenter TO, Lazaretti-Castro M, Colazo JM, McCrystal Dahir K, Geßner M, Gurevich E, Heier CA, Simmons JH, Hunley TE, Hoppe B, Jacobsen C, Kouri A, Ma N, Majumdar S, Molin A, Nokoff N, Ott SM, Peña HG, Santos F, Tebben P, Topor LS, Deng Y, Bergwitz C. An update on clinical presentation and responses to therapy of patients with hereditary hypophosphatemic rickets with hypercalciuria (HHRH). Kidney Int 2024; 105:1058-1076. [PMID: 38364990 PMCID: PMC11106756 DOI: 10.1016/j.kint.2024.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/23/2023] [Accepted: 01/08/2024] [Indexed: 02/18/2024]
Abstract
Pathogenic variants in solute carrier family 34, member 3 (SLC34A3), the gene encoding the sodium-dependent phosphate cotransporter 2c (NPT2c), cause hereditary hypophosphatemic rickets with hypercalciuria (HHRH). Here, we report a pooled analysis of clinical and laboratory records of 304 individuals from 145 kindreds, including 20 previously unreported HHRH kindreds, in which two novel SLC34A3 pathogenic variants were identified. Compound heterozygous/homozygous carriers show above 90% penetrance for kidney and bone phenotypes. The biochemical phenotype for heterozygous carriers is intermediate with decreased serum phosphate, tubular reabsorption of phosphate (TRP (%)), fibroblast growth factor 23, and intact parathyroid hormone, but increased serum 1,25-dihydroxy vitamin D, and urine calcium excretion causing idiopathic hypercalciuria in 38%, with bone phenotypes still observed in 23% of patients. Oral phosphate supplementation is the current standard of care, which typically normalizes serum phosphate. However, although in more than half of individuals this therapy achieves correction of hypophosphatemia it fails to resolve the other outcomes. The American College of Medical Genetics and Genomics score correlated with functional analysis of frequent SLC34A3 pathogenic variants in vitro and baseline disease severity. The number of mutant alleles and baseline TRP (%) were identified as predictors for kidney and bone phenotypes, baseline TRP (%) furthermore predicted response to therapy. Certain SLC34A3/NPT2c pathogenic variants can be identified with partial responses to therapy, whereas with some overlap, others present only with kidney phenotypes and a third group present only with bone phenotypes. Thus, our report highlights important novel clinical aspects of HHRH and heterozygous carriers, raises awareness to this rare group of disorders and can be a foundation for future studies urgently needed to guide therapy of HHRH.
Collapse
Affiliation(s)
- Zewu Zhu
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bryan Bo-Ran Ho
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Alyssa Chen
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, USA
| | - James Amrhein
- Pediatric Endocrinology and Diabetes, School of Medicine Greenville Campus, University of South Carolina, Greenville, South Carolina, USA
| | - Andreea Apetrei
- Caen University Hospital, Department of Genetics, UR7450 Biotargen, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, OSCAR Network, Caen, France
| | - Thomas Oliver Carpenter
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Marise Lazaretti-Castro
- Division of Endocrinology, Escola Paulista de Medicina-Universidade Federal de Sao Paulo (EPM-UNIFESP), Sao Paulo, Brazil
| | - Juan Manuel Colazo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Kathryn McCrystal Dahir
- Division of Endocrinology, Program for Metabolic Bone Disorders, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michaela Geßner
- Pediatric Nephrology, Children's and Adolescents' Hospital, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Evgenia Gurevich
- Schneider Children's Medical Center of Israel, Pediatric Nephrology Institute, Petach Tikva, Israel; Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | - Jill Hickman Simmons
- Department of Pediatrics, Division of Endocrinology and Diabetes, Vanderbilt University School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Tracy Earl Hunley
- Division of Pediatric Nephrology, Vanderbilt University Medical Center, Monroe Carell Jr Children's Hospital at Vanderbilt, Nashville, Tennessee, USA
| | - Bernd Hoppe
- Division of Pediatric Nephrology, Department of Pediatrics, University of Bonn, Bonn, Germany
| | - Christina Jacobsen
- Division of Endocrinology, Harvard Medical School, Boston, Massachusetts, USA
| | - Anne Kouri
- Pediatric Nephrology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Nina Ma
- Section of Pediatric Endocrinology, Children's Hospital Colorado, Aurora, Colorado, USA; Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Sachin Majumdar
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Arnaud Molin
- Caen University Hospital, Department of Genetics, UR7450 Biotargen, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, OSCAR Network, Caen, France
| | - Natalie Nokoff
- Department of Pediatrics, Section of Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Susan M Ott
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Helena Gil Peña
- Department of Pediatrics, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Fernando Santos
- Department of Pediatrics, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Peter Tebben
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, USA; Division of Pediatric Endocrinology, Mayo Clinic, Rochester, Minnesota, USA
| | - Lisa Swartz Topor
- Division of Pediatric Endocrinology, Hasbro Children's Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Yanhong Deng
- Yale School of Public Health, New Haven, Connecticut, USA
| | - Clemens Bergwitz
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
5
|
Walker V. The Intricacies of Renal Phosphate Reabsorption-An Overview. Int J Mol Sci 2024; 25:4684. [PMID: 38731904 PMCID: PMC11083860 DOI: 10.3390/ijms25094684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
To maintain an optimal body content of phosphorus throughout postnatal life, variable phosphate absorption from food must be finely matched with urinary excretion. This amazing feat is accomplished through synchronised phosphate transport by myriads of ciliated cells lining the renal proximal tubules. These respond in real time to changes in phosphate and composition of the renal filtrate and to hormonal instructions. How they do this has stimulated decades of research. New analytical techniques, coupled with incredible advances in computer technology, have opened new avenues for investigation at a sub-cellular level. There has been a surge of research into different aspects of the process. These have verified long-held beliefs and are also dramatically extending our vision of the intense, integrated, intracellular activity which mediates phosphate absorption. Already, some have indicated new approaches for pharmacological intervention to regulate phosphate in common conditions, including chronic renal failure and osteoporosis, as well as rare inherited biochemical disorders. It is a rapidly evolving field. The aim here is to provide an overview of our current knowledge, to show where it is leading, and where there are uncertainties. Hopefully, this will raise questions and stimulate new ideas for further research.
Collapse
Affiliation(s)
- Valerie Walker
- Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton S016 6YD, UK
| |
Collapse
|
6
|
Benjamin JI, Pollock DM. Current perspective on circadian function of the kidney. Am J Physiol Renal Physiol 2024; 326:F438-F459. [PMID: 38134232 PMCID: PMC11207578 DOI: 10.1152/ajprenal.00247.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/28/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023] Open
Abstract
Behavior and function of living systems are synchronized by the 24-h rotation of the Earth that guides physiology according to time of day. However, when behavior becomes misaligned from the light-dark cycle, such as in rotating shift work, jet lag, and even unusual eating patterns, adverse health consequences such as cardiovascular or cardiometabolic disease can arise. The discovery of cell-autonomous molecular clocks expanded interest in regulatory systems that control circadian physiology including within the kidney, where function varies along a 24-h cycle. Our understanding of the mechanisms for circadian control of physiology is in the early stages, and so the present review provides an overview of what is known and the many gaps in our current understanding. We include a particular focus on the impact of eating behaviors, especially meal timing. A better understanding of the mechanisms guiding circadian function of the kidney is expected to reveal new insights into causes and consequences of a wide range of disorders involving the kidney, including hypertension, obesity, and chronic kidney disease.
Collapse
Affiliation(s)
- Jazmine I Benjamin
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - David M Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
7
|
Abstract
Inorganic phosphate (Pi) is an essential component of many biologically important molecules such as DNA, RNA, ATP, phospholipids, or apatite. It is required for intracellular phosphorylation signaling events and acts as pH buffer in intra- and extracellular compartments. Intestinal absorption, uptake into cells, and renal reabsorption depend on a set of different phosphate transporters from the SLC20 (PiT transporters) and SLC34 (NaPi transporters) gene families. The physiological relevance of these transporters is evident from rare monogenic disorders in humans affecting SLC20A2 (Fahr's disease, basal ganglia calcification), SLC34A1 (idiopathic infantile hypercalcemia), SLC34A2 (pulmonary alveolar microlithiasis), and SLC34A3 (hereditary hypophosphatemic rickets with hypercalciuria). SLC34 transporters are inhibited by millimolar concentrations of phosphonoformic acid or arsenate while SLC20 are relatively resistant to these compounds. More recently, a series of more specific and potent drugs have been developed to target SLC34A2 to reduce intestinal Pi absorption and to inhibit SLC34A1 and/or SLC34A3 to increase renal Pi excretion in patients with renal disease and incipient hyperphosphatemia. Also, SLC20 inhibitors have been developed with the same intention. Some of these substances are currently undergoing preclinical and clinical testing. Tenapanor, a non-absorbable Na+/H+-exchanger isoform 3 inhibitor, reduces intestinal Pi absorption likely by indirectly acting on the paracellular pathway for Pi and has been tested in several phase III trials for reducing Pi overload in patients with renal insufficiency and dialysis.
Collapse
Affiliation(s)
- Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
8
|
Clinkenbeard E. Fibroblast Growth Factor 23 Bone Regulation and Downstream Hormonal Activity. Calcif Tissue Int 2023; 113:4-20. [PMID: 37306735 DOI: 10.1007/s00223-023-01092-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/01/2023] [Indexed: 06/13/2023]
Abstract
Mineral homeostasis of calcium and phosphate levels is one critical component to the maintenance of bone mineral density (BMD) and strength. Diseases that disrupt calcium and phosphate balanced have highlighted not only the role these minerals play in overall bone homeostasis, but also the factors, hormones and downstream transporters, responsible for mineral metabolism. The key phosphaturic hormone elucidated from studying rare heritable disorders of hypophosphatemia is Fibroblast Growth Factor 23 (FGF23). FGF23 is predominantly secreted from bone cells in an effort to maintain phosphate balance by directly controlling renal reabsorption and indirectly affecting intestinal uptake of this mineral. Multiple factors have been shown to enhance bone mRNA expression; however, FGF23 can also undergo proteolytic cleavage to control secretion of the biologically active form of the hormone. The review focuses specifically on the regulation of FGF23 and its secretion from bone as well as its hormonal actions under physiological and disease conditions.
Collapse
Affiliation(s)
- Erica Clinkenbeard
- Department of Medical and Molecular Genetics, School of Medicine, Indiana University, 635 Barnhill Drive MS 5023, Indianapolis, IN, 46202, USA.
| |
Collapse
|
9
|
Portales-Castillo I, Rieg T, Khalid SB, Nigwekar SU, Neyra JA. Physiopathology of Phosphate Disorders. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:177-188. [PMID: 36868732 PMCID: PMC10565570 DOI: 10.1053/j.akdh.2022.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 03/05/2023]
Abstract
Intracellular phosphate is critical for cellular processes such as signaling, nucleic acid synthesis, and membrane function. Extracellular phosphate (Pi) is an important component of the skeleton. Normal levels of serum phosphate are maintained by the coordinated actions of 1,25-dihydroxyvitamin D3, parathyroid hormone and fibroblast growth factor-23, which intersect in the proximal tubule to control the reabsorption of phosphate via the sodium-phosphate cotransporters Npt2a and Npt2c. Furthermore, 1,25-dihydroxyvitamin D3 participates in the regulation of dietary phosphate absorption in the small intestine. Clinical manifestations associated with abnormal serum phosphate levels are common and occur as a result of genetic or acquired conditions affecting phosphate homeostasis. For example, chronic hypophosphatemia leads to osteomalacia in adults and rickets in children. Acute severe hypophosphatemia can affect multiple organs leading to rhabdomyolysis, respiratory dysfunction, and hemolysis. Patients with impaired kidney function, such as those with advanced CKD, have high prevalence of hyperphosphatemia, with approximately two-thirds of patients on chronic hemodialysis in the United States having serum phosphate levels above the recommended goal of 5.5 mg/dL, a cutoff associated with excess risk of cardiovascular complications. Furthermore, patients with advanced kidney disease and hyperphosphatemia (>6.5 mg/dL) have almost one-third excess risk of death than those with phosphate levels between 2.4 and 6.5 mg/dL. Given the complex mechanisms that regulate phosphate levels, the interventions to treat the various diseases associated with hypophosphatemia or hyperphosphatemia rely on the understanding of the underlying pathobiological mechanisms governing each patient condition.
Collapse
Affiliation(s)
- Ignacio Portales-Castillo
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, and Harvard Medical School, Boston, MA; Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL; James A. Haley Veterans' Hospital, Tampa, FL; Center for Hypertension and Kidney Research, University of South Florida, Tampa, FL
| | - Sheikh B Khalid
- Department of Internal Medicine, The Indus Hospital, Lahore Pakistan
| | - Sagar U Nigwekar
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, and Harvard Medical School, Boston, MA
| | - Javier A Neyra
- Department of Internal Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL.
| |
Collapse
|
10
|
Sodium phosphate cotransporter 2a inhibitors: potential therapeutic uses. Curr Opin Nephrol Hypertens 2022; 31:486-492. [PMID: 35894284 PMCID: PMC9387751 DOI: 10.1097/mnh.0000000000000828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW Targeting sodium phosphate cotransporter 2a (Npt2a) offers a novel strategy for treating hyperphosphatemia in chronic kidney disease (CKD). Here we review recent studies on the efficacy of Npt2a inhibition, its plasma phosphate (Pi)-lowering effects, as well as potential "off-target" beneficial effects on cardiovascular consequences. RECENT FINDINGS Two novel Npt2a-selective inhibitors (PF-06869206 and BAY-767) have been developed. Pharmacological Npt2a inhibition shows a significant phosphaturic effect and consequently lowers plasma Pi and parathyroid hormone (PTH) levels regardless of CKD. However, plasma fibroblast growth factor 23 (FGF23), a master regulator of Pi homeostasis, shows inconsistent responses between these two inhibitors (no effect by PF-06869206 vs. reduction by BAY-767). In addition to the effects on Pi homeostasis, Npt2a inhibition also enhances urinary excretions of Na+, Cl-, and Ca2+, which is recapitulated in animal models with reduced kidney function. The effect of Npt2a inhibition by BAY-767 on vascular calcification has been studied, with positive results showing that oral treatment with BAY-767 (10 mg kg-1) attenuated the increases in plasma Pi and Ca2+ content in the aorta under the setting of vascular calcification induced by a pan-FGF receptor inhibitor. Together, Npt2a inhibition offers a promising therapeutic approach for treating hyperphosphatemia and reducing cardiovascular complications in CKD. SUMMARY Npt2a inhibition significantly increases urinary Pi excretion and lowers plasma Pi and PTH levels; moreover, it exerts pleiotropic "off-target" effects, providing a novel treatment for hyperphosphatemia and exhibiting beneficial potential for cardiovascular complications in CKD.
Collapse
|
11
|
Abstract
Inorganic phosphate (Pi) in the mammalian body is balanced by its influx and efflux through the intestines, kidneys, bones, and soft tissues, at which several sodium/Pi co-transporters mediate its active transport. Pi homeostasis is achieved through the complex counter-regulatory feedback balance between fibroblast growth factor 23 (FGF23), 1,25-dihydroxyvitamin D (1,25(OH)2D), and parathyroid hormone. FGF23, which is mainly produced by osteocytes in bone, plays a central role in Pi homeostasis and exerts its effects by binding to the FGF receptor (FGFR) and αKlotho in distant target organs. In the kidneys, the main target, FGF23 promotes the excretion of Pi and suppresses the production of 1,25(OH)2D. Deficient and excess FGF23 result in hyperphosphatemia and hypophosphatemia, respectively. FGF23-related hypophosphatemic rickets/osteomalacia include tumor-induced osteomalacia and various genetic diseases, such as X-linked hypophosphatemic rickets. Coverage by the national health insurance system in Japan for the measurement of FGF23 and the approval of burosumab, an FGF23-neutralizing antibody, have had a significant impact on the diagnosis and treatment of FGF23-related hypophosphatemic rickets/osteomalacia. Some of the molecules responsible for genetic hypophosphatemic rickets/osteomalacia are highly expressed in osteocytes and function as local regulators of FGF23 production. A number of systemic factors also regulate FGF23 levels. Although the mechanisms responsible for Pi sensing in mammals have not yet been elucidated in detail, recent studies have suggested the involvement of FGFR1. The further clarification of the mechanisms by which osteocytes detect Pi levels and regulate FGF23 production will lead to the development of better strategies to treat hyperphosphatemic and hypophosphatemic conditions.
Collapse
Affiliation(s)
- Toshimi Michigami
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka 594-1101, Japan
| |
Collapse
|
12
|
Sasaki S, Shiozaki Y, Hanazaki A, Koike M, Tanifuji K, Uga M, Kawahara K, Kaneko I, Kawamoto Y, Wiriyasermkul P, Hasegawa T, Amizuka N, Miyamoto KI, Nagamori S, Kanai Y, Segawa H. Tmem174, a regulator of phosphate transporter prevents hyperphosphatemia. Sci Rep 2022; 12:6353. [PMID: 35428804 PMCID: PMC9012787 DOI: 10.1038/s41598-022-10409-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/05/2022] [Indexed: 11/23/2022] Open
Abstract
Renal type II sodium-dependent inorganic phosphate (Pi) transporters NaPi2a and NaPi2c cooperate with other organs to strictly regulate the plasma Pi concentration. A high Pi load induces expression and secretion of the phosphaturic hormones parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23) that enhance urinary Pi excretion and prevent the onset of hyperphosphatemia. How FGF23 secretion from bone is increased by a high Pi load and the setpoint of the plasma Pi concentration, however, are unclear. Here, we investigated the role of Transmembrane protein 174 (Tmem174) and observed evidence for gene co-expression networks in NaPi2a and NaPi2c function. Tmem174 is localized in the renal proximal tubules and interacts with NaPi2a, but not NaPi2c. In Tmem174-knockout (KO) mice, the serum FGF23 concentration was markedly increased but increased Pi excretion and hypophosphatemia were not observed. In addition, Tmem174-KO mice exhibit reduced NaPi2a responsiveness to FGF23 and PTH administration. Furthermore, a dietary Pi load causes marked hyperphosphatemia and abnormal NaPi2a regulation in Tmem174-KO mice. Thus, Tmem174 is thought to be associated with FGF23 induction in bones and the regulation of NaPi2a to prevent an increase in the plasma Pi concentration due to a high Pi load and kidney injury.
Collapse
Affiliation(s)
- Sumire Sasaki
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yuji Shiozaki
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Ai Hanazaki
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Megumi Koike
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kazuya Tanifuji
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Minori Uga
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kota Kawahara
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Ichiro Kaneko
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yasuharu Kawamoto
- Department of Bio-System Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Pattama Wiriyasermkul
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Tomoka Hasegawa
- Developmental Biology of Hard Tissue, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Norio Amizuka
- Developmental Biology of Hard Tissue, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Ken-Ichi Miyamoto
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.,Graduate School of Agriculture, Ryukoku University, Ohtsu, Japan
| | - Shushi Nagamori
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo, Japan.
| | - Yoshikatsu Kanai
- Department of Bio-System Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Hiroko Segawa
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| |
Collapse
|
13
|
Nguyen NT, Nguyen TT, Park KS. Oxidative Stress Related to Plasmalemmal and Mitochondrial Phosphate Transporters in Vascular Calcification. Antioxidants (Basel) 2022; 11:antiox11030494. [PMID: 35326144 PMCID: PMC8944874 DOI: 10.3390/antiox11030494] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 12/04/2022] Open
Abstract
Inorganic phosphate (Pi) is essential for maintaining cellular function but excess of Pi leads to serious complications, including vascular calcification. Accumulating evidence suggests that oxidative stress contributes to the pathogenic progression of calcific changes. However, the molecular mechanism underlying Pi-induced reactive oxygen species (ROS) generation and its detrimental consequences remain unclear. Type III Na+-dependent Pi cotransporter, PiT-1/-2, play a significant role in Pi uptake of vascular smooth muscle cells. Pi influx via PiT-1/-2 increases the abundance of PiT-1/-2 and depolarization-activated Ca2+ entry due to its electrogenic properties, which may lead to Ca2+ and Pi overload and oxidative stress. At least four mitochondrial Pi transporters are suggested, among which the phosphate carrier (PiC) is known to be mainly involved in mitochondrial Pi uptake. Pi transport via PiC may induce hyperpolarization and superoxide generation, which may lead to mitochondrial dysfunction and endoplasmic reticulum stress, together with generation of cytosolic ROS. Increase in net influx of Ca2+ and Pi and their accumulation in the cytosol and mitochondrial matrix synergistically increases oxidative stress and osteogenic differentiation, which could be prevented by suppressing either Ca2+ or Pi overload. Therapeutic strategies targeting plasmalemmal and mitochondrial Pi transports can protect against Pi-induced oxidative stress and vascular calcification.
Collapse
Affiliation(s)
- Nhung Thi Nguyen
- Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
- Mitohormesis Research Center, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
- Medical Doctor Program, College of Health Sciences, VinUniversity, Hanoi 12406, Vietnam
| | - Tuyet Thi Nguyen
- Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
- Internal Medicine Residency Program, College of Health Sciences, VinUniversity, Hanoi 12406, Vietnam
- Correspondence: (T.T.N.); (K.-S.P.); Tel.: +84-247-108-9779 (T.T.N.); +82-33-741-0294 (K.-S.P.)
| | - Kyu-Sang Park
- Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
- Mitohormesis Research Center, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
- Correspondence: (T.T.N.); (K.-S.P.); Tel.: +84-247-108-9779 (T.T.N.); +82-33-741-0294 (K.-S.P.)
| |
Collapse
|
14
|
Npt2a as a target for treating hyperphosphatemia. Biochem Soc Trans 2022; 50:439-446. [PMID: 34994388 PMCID: PMC9022968 DOI: 10.1042/bst20211005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 12/04/2022]
Abstract
Hyperphosphatemia results from an imbalance in phosphate (Pi) homeostasis. In patients with and without reduced kidney function, hyperphosphatemia is associated with cardiovascular complications. The current mainstays in the management of hyperphosphatemia are oral Pi binder and dietary Pi restriction. Although these options are employed in patients with chronic kidney disease (CKD), they seem inadequate to correct elevated plasma Pi levels. In addition, a paradoxical increase in expression of intestinal Pi transporter and uptake may occur. Recently, studies in rodents targeting the renal Na+/Pi cotransporter 2a (Npt2a), responsible for ∼70% of Pi reabsorption, have been proposed as a potential treatment option. Two compounds (PF-06869206 and BAY-767) have been developed which are selective for Npt2a. These Npt2a inhibitors significantly increased urinary Pi excretion consequently lowering plasma Pi and PTH levels. Additionally, increases in urinary excretions of Na+, Cl− and Ca2+ have been observed. Some of these results are also seen in models of reduced kidney function. Responses of FGF23, a phosphaturic hormone that has been linked to the development of left ventricular hypertrophy in CKD, are ambiguous. In this review, we discuss the recent advances on the role of Npt2a inhibition on Pi homeostasis as well as other pleiotropic effects observed with Npt2a inhibition.
Collapse
|
15
|
Sasaki S, Koike M, Tanifuji K, Uga M, Kawahara K, Komiya A, Miura M, Harada Y, Hamaguchi Y, Sasaki S, Shiozaki Y, Kaneko I, Miyamoto KI, Segawa H. Dietary polyphosphate has a greater effect on renal damage and FGF23 secretion than dietary monophosphate. THE JOURNAL OF MEDICAL INVESTIGATION 2022; 69:173-179. [DOI: 10.2152/jmi.69.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sumire Sasaki
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Megumi Koike
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kazuya Tanifuji
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Minori Uga
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kota Kawahara
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Aoi Komiya
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Mizuki Miura
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yamato Harada
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yuki Hamaguchi
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Shohei Sasaki
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yuji Shiozaki
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Ichiro Kaneko
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Ken-ichi Miyamoto
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hiroko Segawa
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
16
|
Clerin V, Saito H, Filipski KJ, Nguyen AH, Garren J, Kisucka J, Reyes M, Jüppner H. Selective pharmacological inhibition of the sodium-dependent phosphate cotransporter NPT2a promotes phosphate excretion. J Clin Invest 2020; 130:6510-6522. [PMID: 32853180 PMCID: PMC7685737 DOI: 10.1172/jci135665] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 08/20/2020] [Indexed: 12/16/2022] Open
Abstract
The sodium-phosphate cotransporter NPT2a plays a key role in the reabsorption of filtered phosphate in proximal renal tubules, thereby critically contributing to phosphate homeostasis. Inadequate urinary phosphate excretion can lead to severe hyperphosphatemia as in tumoral calcinosis and chronic kidney disease (CKD). Pharmacological inhibition of NPT2a may therefore represent an attractive approach for treating hyperphosphatemic conditions. The NPT2a-selective small-molecule inhibitor PF-06869206 was previously shown to reduce phosphate uptake in human proximal tubular cells in vitro. Here, we investigated the acute and chronic effects of the inhibitor in rodents and report that administration of PF-06869206 was well tolerated and elicited a dose-dependent increase in fractional phosphate excretion. This phosphaturic effect lowered plasma phosphate levels in WT mice and in rats with CKD due to subtotal nephrectomy. PF-06869206 had no effect on Npt2a-null mice, but promoted phosphate excretion and reduced phosphate levels in normophophatemic mice lacking Npt2c and in hyperphosphatemic mice lacking Fgf23 or Galnt3. In CKD rats, once-daily administration of PF-06869206 for 8 weeks induced an unabated acute phosphaturic and hypophosphatemic effect, but had no statistically significant effect on FGF23 or PTH levels. Selective pharmacological inhibition of NPT2a thus holds promise as a therapeutic option for genetic and acquired hyperphosphatemic disorders.
Collapse
Affiliation(s)
- Valerie Clerin
- Pfizer Inc., Worldwide Research, Development and Medical, Cambridge, Massachusetts, USA
| | | | - Kevin J. Filipski
- Pfizer Inc., Worldwide Research, Development and Medical, Cambridge, Massachusetts, USA
| | - An Hai Nguyen
- Pfizer Inc., Worldwide Research, Development and Medical, Cambridge, Massachusetts, USA
| | - Jeonifer Garren
- Pfizer Inc., Worldwide Research, Development and Medical, Cambridge, Massachusetts, USA
| | - Janka Kisucka
- Pfizer Inc., Worldwide Research, Development and Medical, Cambridge, Massachusetts, USA
| | | | - Harald Jüppner
- Endocrine Unit and
- Pediatric Nephrology Unit, Massachusetts General Hospital (MGH) and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Thomas L, Xue J, Tomilin VN, Pochynyuk OM, Dominguez Rieg JA, Rieg T. PF-06869206 is a selective inhibitor of renal P i transport: evidence from in vitro and in vivo studies. Am J Physiol Renal Physiol 2020; 319:F541-F551. [PMID: 32744087 DOI: 10.1152/ajprenal.00146.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Plasma phosphate (Pi) levels are tightly controlled, and elevated plasma Pi levels are associated with an increased risk of cardiovascular complications and death. Two renal transport proteins mediate the majority of Pi reabsorption: Na+-phosphate cotransporters Npt2a and Npt2c, with Npt2a accounting for 70-80% of Pi reabsorption. The aim of the present study was to determine the in vitro effects of a novel Npt2a inhibitor (PF-06869206) in opossum kidney (OK) cells as well as determine its selectivity in vivo in Npt2a knockout (Npt2a-/-) mice. In OK cells, Npt2a inhibitor caused dose-dependent reductions of Na+-dependent Pi uptake (IC50: ~1.4 μmol/L), whereas the unselective Npt2 inhibitor phosphonoformic acid (PFA) resulted in an ~20% stronger inhibition of Pi uptake. The dose-dependent inhibitory effects were present after 24 h of incubation with both low- and high-Pi media. Michaelis-Menten kinetics in OK cells identified an ~2.4-fold higher Km for Pi in response to Npt2a inhibition with no significant change in apparent Vmax. Higher parathyroid hormone concentrations decreased Pi uptake equivalent to the maximal inhibitory effect of Npt2a inhibitor. In vivo, the Npt2a inhibitor induced a dose-dependent increase in urinary Pi excretion in wild-type mice (ED50: ~23 mg/kg), which was completely absent in Npt2a-/- mice, alongside a lack of decrease in plasma Pi. Of note, the Npt2a inhibitor-induced dose-dependent increase in urinary Na+ excretion was still present in Npt2a-/- mice, a response possibly mediated by an off-target acute inhibitory effect of the Npt2a inhibitor on open probability of the epithelial Na+ channel in the cortical collecting duct.
Collapse
Affiliation(s)
- Linto Thomas
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Jianxiang Xue
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Viktor N Tomilin
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Oleh M Pochynyuk
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Jessica A Dominguez Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| |
Collapse
|
18
|
Gordon RJ, Li D, Doyle D, Zaritsky J, Levine MA. Digenic Heterozygous Mutations in SLC34A3 and SLC34A1 Cause Dominant Hypophosphatemic Rickets with Hypercalciuria. J Clin Endocrinol Metab 2020; 105:dgaa217. [PMID: 32311027 PMCID: PMC7448300 DOI: 10.1210/clinem/dgaa217] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022]
Abstract
CONTEXT Hypophosphatemia and metabolic bone disease are associated with hereditary hypophosphatemic rickets with hypercalciuria (HHRH) due to biallelic mutations of SLC34A3 encoding the NPT2C sodium-phosphate cotransporter and nephrolithiasis/osteoporosis, hypophosphatemic 1 (NPHLOP1) due to monoallelic mutations in SLC34A1 encoding the NPT2A sodium-phosphate cotransporter. OBJECTIVE To identify a genetic cause of apparent dominant transmission of HHRH. DESIGN AND SETTING Retrospective and prospective analysis of clinical and molecular characteristics of patients studied in 2 academic medical centers. METHODS We recruited 4 affected and 3 unaffected members of a 4-generation family in which the proband presented with apparent HHRH. We performed clinical examinations, biochemical and radiological analyses, and molecular studies of genomic DNA. RESULTS The proband and her affected sister and mother carried pathogenic heterozygous mutations in 2 related genes, SLC34A1 (exon 13, c.1535G>A; p.R512H) and SLC34A3 (exon 13, c.1561dupC; L521Pfs*72). The proband and her affected sister inherited both gene mutations from their mother, while their clinically less affected brother, father, and paternal grandmother carried only the SLC34A3 mutation. Renal phosphate-wasting exhibited both a gene dosage-effect and an age-dependent attenuation of severity. CONCLUSIONS We describe a kindred with autosomal dominant hypophosphatemic rickets in which whole exome analysis identified digenic heterozygous mutations in SLC34A1 and SLC34A3. Subjects with both mutations were more severely affected than subjects carrying only one mutation. These findings highlight the challenges of assigning causality to plausible genetic variants in the next generation sequencing era.
Collapse
Affiliation(s)
- Rebecca J Gordon
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
- Division of Endocrinology and Diabetes and the Center for Bone Health, The Children’s Hospital of Philadelphia, and the Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Dong Li
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Daniel Doyle
- Division of Pediatric Endocrinology, Sidney Kimmel Medical College of Thomas Jefferson University and Nemours Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Joshua Zaritsky
- Division of Pediatric Nephrology, Sidney Kimmel Medical College of Thomas Jefferson University and Nemours Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Michael A Levine
- Division of Endocrinology and Diabetes and the Center for Bone Health, The Children’s Hospital of Philadelphia, and the Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
19
|
Cozzolino M, Ketteler M, Wagner CA. An expert update on novel therapeutic targets for hyperphosphatemia in chronic kidney disease: preclinical and clinical innovations. Expert Opin Ther Targets 2020; 24:477-488. [PMID: 32191548 DOI: 10.1080/14728222.2020.1743680] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: The management of hyperphosphatemia in patients with chronic kidney disease (CKD) is complicated, requiring a multidisciplinary approach that includes dietary phosphate restriction, dialysis, and phosphate binders.Areas covered: We describe key players involved in regulating inorganic phosphate homeostasis and their differential role in healthy people and different stages of CKD. The contribution of paracellular and transcellular intestinal absorptive mechanisms are also examined. Finally, we illuminate recent therapeutic approaches for hyperphosphatemia in CKD. We searched PubMed/Medline (up to November 2019) using the following terms: chronic kidney disease, dialysis, diet, hyperphosphatemia, NaPi2b, nicotinamide, phosphate binder, secondary hyperparathyroidism, tenapanor and vascular calcification.Expert opinion: The precise mechanisms regulating intestinal phosphate absorption in humans is not completely understood. However, it is now established that this process involves two independent pathways: a) active transport (i.e. transcellular route, via specific ion transporters) and inactive transport (i.e. paracellular route across tight junctions). Dietary phosphate restriction and phosphate-binder use can lead to an undesirable maladaptive increase in phosphate uptake and promote active phosphate transport by increased expression of the gastrointestinal sodium-dependent phosphate transporter, NaPi2b. Nicotinamide may overcome these limitations through the inhibition of NaPi2b, by improved efficacy and reduced phosphate binder use and better compliance.
Collapse
Affiliation(s)
- Mario Cozzolino
- Renal Division, ASST Santi Paolo E Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Markus Ketteler
- Department of General Internal Medicine and Nephrology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Carsten Alexander Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Center of Competence in Research, NCCR Kidney. CH, Zurich, Switzerland
| |
Collapse
|
20
|
Abstract
Over the past 25 years, successive cloning of SLC34A1, SLC34A2 and SLC34A3, which encode the sodium-dependent inorganic phosphate (Pi) cotransport proteins 2a-2c, has facilitated the identification of molecular mechanisms that underlie the regulation of renal and intestinal Pi transport. Pi and various hormones, including parathyroid hormone and phosphatonins, such as fibroblast growth factor 23, regulate the activity of these Pi transporters through transcriptional, translational and post-translational mechanisms involving interactions with PDZ domain-containing proteins, lipid microdomains and acute trafficking of the transporters via endocytosis and exocytosis. In humans and rodents, mutations in any of the three transporters lead to dysregulation of epithelial Pi transport with effects on serum Pi levels and can cause cardiovascular and musculoskeletal damage, illustrating the importance of these transporters in the maintenance of local and systemic Pi homeostasis. Functional and structural studies have provided insights into the mechanism by which these proteins transport Pi, whereas in vivo and ex vivo cell culture studies have identified several small molecules that can modify their transport function. These small molecules represent potential new drugs to help maintain Pi homeostasis in patients with chronic kidney disease - a condition that is associated with hyperphosphataemia and severe cardiovascular and skeletal consequences.
Collapse
|
21
|
Hanazaki A, Ikuta K, Sasaki S, Sasaki S, Koike M, Tanifuji K, Arima Y, Kaneko I, Shiozaki Y, Tatsumi S, Hasegawa T, Amizuka N, Miyamoto K, Segawa H. Role of sodium-dependent Pi transporter/Npt2c on Pi homeostasis in klotho knockout mice different properties between juvenile and adult stages. Physiol Rep 2020; 8:e14324. [PMID: 32026654 PMCID: PMC7002534 DOI: 10.14814/phy2.14324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
SLC34A3/NPT2c/NaPi-2c/Npt2c is a growth-related NaPi cotransporter that mediates the uptake of renal sodium-dependent phosphate (Pi). Mutation of human NPT2c causes hereditary hypophosphatemic rickets with hypercalciuria. Mice with Npt2c knockout, however, exhibit normal Pi metabolism. To investigate the role of Npt2c in Pi homeostasis, we generated α-klotho-/- /Npt2c-/- (KL2cDKO) mice and analyzed Pi homeostasis. α-Klotho-/- (KLKO) mice exhibit hyperphosphatemia and markedly increased kidney Npt2c protein levels. Genetic disruption of Npt2c extended the lifespan of KLKO mice similar to that of α-Klotho-/- /Npt2a-/- mice. Adult KL2cDKO mice had hyperphosphatemia, but analysis of Pi metabolism revealed significantly decreased intestinal and renal Pi (re)absorption compared with KLKO mice. The 1,25-dihydroxy vitamin D3 concentration was not reduced in KL2cDKO mice compared with that in KLKO mice. The KL2cDKO mice had less severe soft tissue and vascular calcification compared with KLKO mice. Juvenile KL2cDKO mice had significantly reduced plasma Pi levels, but Pi metabolism was not changed. In Npt2cKO mice, plasma Pi levels began to decrease around the age of 15 days and significant hypophosphatemia developed within 21 days. The findings of the present study suggest that Npt2c contributes to regulating plasma Pi levels in the juvenile stage and affects Pi retention in the soft and vascular tissues in KLKO mice.
Collapse
Affiliation(s)
- Ai Hanazaki
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Kayo Ikuta
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Shohei Sasaki
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Sumire Sasaki
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Megumi Koike
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Kazuya Tanifuji
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Yuki Arima
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Ichiro Kaneko
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Yuji Shiozaki
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Sawako Tatsumi
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Tomoka Hasegawa
- Developmental Biology of Hard TissueHokkaido University Graduate School of Dental MedicineSapporoJapan
| | - Norio Amizuka
- Developmental Biology of Hard TissueHokkaido University Graduate School of Dental MedicineSapporoJapan
| | - Ken‐ichi Miyamoto
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Hiroko Segawa
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| |
Collapse
|
22
|
|
23
|
Thomas L, Xue J, Murali SK, Fenton RA, Dominguez Rieg JA, Rieg T. Pharmacological Npt2a Inhibition Causes Phosphaturia and Reduces Plasma Phosphate in Mice with Normal and Reduced Kidney Function. J Am Soc Nephrol 2019; 30:2128-2139. [PMID: 31409727 DOI: 10.1681/asn.2018121250] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/14/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The kidneys play an important role in phosphate homeostasis. Patients with CKD develop hyperphosphatemia in the later stages of the disease. Currently, treatment options are limited to dietary phosphate restriction and oral phosphate binders. The sodium-phosphate cotransporter Npt2a, which mediates a large proportion of phosphate reabsorption in the kidney, might be a good therapeutic target for new medications for hyperphosphatemia. METHODS The authors assessed the effects of the first orally bioavailable Npt2a inhibitor (Npt2a-I) PF-06869206 in normal mice and mice that had undergone subtotal nephrectomy (5/6 Nx), a mouse model of CKD. Dose-response relationships of sodium, chloride, potassium, phosphate, and calcium excretion were assessed in response to the Npt2a inhibitor in both groups of mice. Expression and localization of Npt2a/c and levels of plasma phosphate, calcium, parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF-23) were studied up to 24-hours after Npt2a-I treatment. RESULTS In normal mice, Npt2a inhibition caused a dose-dependent increase in urinary phosphate (ED50 approximately 21 mg/kg), calcium, sodium and chloride excretion. In contrast, urinary potassium excretion, flow rate and urinary pH were not affected dose dependently. Plasma phosphate and PTH significantly decreased after 3 hours, with both returning to near baseline levels after 24 hours. Similar effects were observed in the mouse model of CKD but were reduced in magnitude. CONCLUSIONS Npt2a inhibition causes a dose-dependent increase in phosphate, sodium and chloride excretion associated with reductions in plasma phosphate and PTH levels in normal mice and in a CKD mouse model.
Collapse
Affiliation(s)
- Linto Thomas
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida; and
| | - Jianxiang Xue
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida; and
| | | | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jessica A Dominguez Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida; and
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida; and
| |
Collapse
|
24
|
Role of the putative PKC phosphorylation sites of the type IIc sodium-dependent phosphate transporter in parathyroid hormone regulation. Clin Exp Nephrol 2019; 23:898-907. [DOI: 10.1007/s10157-019-01725-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/01/2019] [Indexed: 11/26/2022]
|
25
|
Beck-Nielsen SS, Mughal Z, Haffner D, Nilsson O, Levtchenko E, Ariceta G, de Lucas Collantes C, Schnabel D, Jandhyala R, Mäkitie O. FGF23 and its role in X-linked hypophosphatemia-related morbidity. Orphanet J Rare Dis 2019; 14:58. [PMID: 30808384 PMCID: PMC6390548 DOI: 10.1186/s13023-019-1014-8] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/30/2019] [Indexed: 12/29/2022] Open
Abstract
Background X-linked hypophosphatemia (XLH) is an inherited disease of phosphate metabolism in which inactivating mutations of the Phosphate Regulating Endopeptidase Homolog, X-Linked (PHEX) gene lead to local and systemic effects including impaired growth, rickets, osteomalacia, bone abnormalities, bone pain, spontaneous dental abscesses, hearing difficulties, enthesopathy, osteoarthritis, and muscular dysfunction. Patients with XLH present with elevated levels of fibroblast growth factor 23 (FGF23), which is thought to mediate many of the aforementioned manifestations of the disease. Elevated FGF23 has also been observed in many other diseases of hypophosphatemia, and a range of animal models have been developed to study these diseases, yet the role of FGF23 in the pathophysiology of XLH is incompletely understood. Methods The role of FGF23 in the pathophysiology of XLH is here reviewed by describing what is known about phenotypes associated with various PHEX mutations, animal models of XLH, and non-nutritional diseases of hypophosphatemia, and by presenting molecular pathways that have been proposed to contribute to manifestations of XLH. Results The pathophysiology of XLH is complex, involving a range of molecular pathways that variously contribute to different manifestations of the disease. Hypophosphatemia due to elevated FGF23 is the most obvious contributor, however localised fluctuations in tissue non-specific alkaline phosphatase (TNAP), pyrophosphate, calcitriol and direct effects of FGF23 have been observed to be associated with certain manifestations. Conclusions By describing what is known about these pathways, this review highlights key areas for future research that would contribute to the understanding and clinical treatment of non-nutritional diseases of hypophosphatemia, particularly XLH.
Collapse
Affiliation(s)
| | - Zulf Mughal
- Royal Manchester Children's Hospital, Manchester, UK
| | | | - Ola Nilsson
- Karolinska Institutet, Stockholm, Sweden and Örebro University, Örebro, Sweden
| | | | - Gema Ariceta
- Hospital Universitario Materno-Infantil Vall d'Hebron, Universitat Autonoma de Barcelona, Barcelona, Spain
| | | | - Dirk Schnabel
- University Children's Hospital of Berlin, Berlin, Germany
| | | | - Outi Mäkitie
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
26
|
Abstract
Calcium kidney stones are common worldwide. Most are idiopathic and composed of calcium oxalate. Calcium phosphate is present in around 80% and may initiate stone formation. Stone production is multifactorial with a polygenic genetic contribution. Phosphaturia is found frequently among stone formers but until recently received scant attention. This review examines possible mechanisms for the phosphaturia and its relevance to stone formation from a wide angle. There is a striking lack of clinical data. Phosphaturia is associated, but not correlated, with hypercalciuria, increased 1,25 dihydroxy-vitamin D [1,25 (OH)2D], and sometimes evidence of disturbances in proximal renal tubular function. Phosphate reabsorption in the proximal renal tubules requires tightly regulated interaction of many proteins. Paracellular flow through intercellular tight junctions is the major route of phosphate absorption from the intestine and can be reduced therapeutically in hyperphosphatemic patients. In monogenic defects stones develop when phosphaturia is associated with hypercalciuria, generally explained by increased 1,25 (OH)2D production in response to hypophosphatemia. Calcification does not occur in disorders with increased FGF23 when phosphaturia occurs in isolation and 1,25 (OH)2D is suppressed. Candidate gene studies have identified mutations in the phosphate transporters, but in few individuals. One genome-wide study identified a polymorphism of the phosphate transporter gene SLC34A4 associated with stones. Others did not find mutations obviously linked to phosphate reabsorption. Future genetic studies should have a wide trawl and should focus initially on groups of patients with clearly defined phenotypes. The global data should be pooled.
Collapse
Affiliation(s)
- Valerie Walker
- Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.
| |
Collapse
|
27
|
Jacquillet G, Unwin RJ. Physiological regulation of phosphate by vitamin D, parathyroid hormone (PTH) and phosphate (Pi). Pflugers Arch 2019; 471:83-98. [PMID: 30393837 PMCID: PMC6326012 DOI: 10.1007/s00424-018-2231-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/20/2018] [Accepted: 10/25/2018] [Indexed: 01/05/2023]
Abstract
Inorganic phosphate (Pi) is an abundant element in the body and is essential for a wide variety of key biological processes. It plays an essential role in cellular energy metabolism and cell signalling, e.g. adenosine and guanosine triphosphates (ATP, GTP), and in the composition of phospholipid membranes and bone, and is an integral part of DNA and RNA. It is an important buffer in blood and urine and contributes to normal acid-base balance. Given its widespread role in almost every molecular and cellular function, changes in serum Pi levels and balance can have important and untoward effects. Pi homoeostasis is maintained by a counterbalance between dietary Pi absorption by the gut, mobilisation from bone and renal excretion. Approximately 85% of total body Pi is present in bone and only 1% is present as free Pi in extracellular fluids. In humans, extracellular concentrations of inorganic Pi vary between 0.8 and 1.2 mM, and in plasma or serum Pi exists in both its monovalent and divalent forms (H2PO4- and HPO42-). In the intestine, approximately 30% of Pi absorption is vitamin D regulated and dependent. To help maintain Pi balance, reabsorption of filtered Pi along the renal proximal tubule (PT) is via the NaPi-IIa and NaPi-IIc Na+-coupled Pi cotransporters, with a smaller contribution from the PiT-2 transporters. Endocrine factors, including, vitamin D and parathyroid hormone (PTH), as well as newer factors such as fibroblast growth factor (FGF)-23 and its coreceptor α-klotho, are intimately involved in the control of Pi homeostasis. A tight regulation of Pi is critical, since hyperphosphataemia is associated with increased cardiovascular morbidity in chronic kidney disease (CKD) and hypophosphataemia with rickets and growth retardation. This short review considers the control of Pi balance by vitamin D, PTH and Pi itself, with an emphasis on the insights gained from human genetic disorders and genetically modified mouse models.
Collapse
Affiliation(s)
- Grégory Jacquillet
- Centre for Nephrology, University College London (UCL), Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK
| | - Robert J Unwin
- Centre for Nephrology, University College London (UCL), Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK.
- AstraZeneca IMED ECD CVRM R&D, Gothenburg, Sweden.
| |
Collapse
|
28
|
Beck L. Expression and function of Slc34 sodium-phosphate co-transporters in skeleton and teeth. Pflugers Arch 2018; 471:175-184. [PMID: 30511265 DOI: 10.1007/s00424-018-2240-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 12/20/2022]
Abstract
Under normal physiological condition, the biomineralization process is limited to skeletal tissues and teeth and occurs throughout the individual's life. Biomineralization is an actively regulated process involving the progressive mineralization of the extracellular matrix secreted by osteoblasts in bone or odontoblasts and ameloblasts in tooth. Although the detailed molecular mechanisms underlying the formation of calcium-phosphate apatite crystals are still debated, it is suggested that calcium and phosphate may need to be transported across the membrane of the mineralizing cell, suggesting a pivotal role of phosphate transporters in bone and tooth mineralization. In this context, this short review describes the current knowledge on the role of Slc34 Na+-phosphate transporters in skeletal and tooth mineralization.
Collapse
Affiliation(s)
- Laurent Beck
- INSERM, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Faculté de Chirurgie Dentaire, Université de Nantes, ONIRIS, 1 place Alexis Ricordeau, 44042, Nantes, France. .,Université de Nantes, UFR Odontologie, 44042, Nantes, France.
| |
Collapse
|
29
|
Fujii T, Shiozaki Y, Segawa H, Nishiguchi S, Hanazaki A, Noguchi M, Kirino R, Sasaki S, Tanifuji K, Koike M, Yokoyama M, Arima Y, Kaneko I, Tatsumi S, Ito M, Miyamoto KI. Analysis of opossum kidney NaPi-IIc sodium-dependent phosphate transporter to understand Pi handling in human kidney. Clin Exp Nephrol 2018; 23:313-324. [PMID: 30317447 DOI: 10.1007/s10157-018-1653-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/24/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND The role of Na+-dependent inorganic phosphate (Pi) transporters in the human kidney is not fully clarified. Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is caused by loss-of-function mutations in the IIc Na+-dependent Pi transporter (NPT2c/Npt2c/NaPi-IIc) gene. Another Na+-dependent type II transporter, (NPT2A/Npt2a/NaPi-IIa), is also important for renal Pi reabsorption in humans. In mice, Npt2c deletion does not lead to hypophosphatemia and rickets because Npt2a compensates for the impaired Pi reabsorption. To clarify the differences between mouse and human, we investigated the relation between NaPi-IIa and NaPi-IIc functions in opossum kidney (OK) cells. METHODS We cloned NaPi-IIc from OK cells and created opossum NaPi-IIc (oNaPi-IIc) antibodies. We used oNaPi-IIc small interference (si)RNA and investigated the role of NaPi-IIc in Pi transport in OK cells. RESULTS We cloned opossum kidney NaPi-IIc cDNAs encoding 622 amino acid proteins (variant1) and examined their pH- and sodium-dependency. The antibodies reacted specifically with 75-kDa and 150-kDa protein bands, and the siRNA of NaPi-IIc markedly suppressed endogenous oNaPi-IIc in OK cells. Treatment with siRNA significantly suppressed the expression of NaPi-4 (NaPi-IIa) protein and mRNA. oNaPi-IIc siRNA also suppressed Na+/H+ exchanger regulatory factor 1 expression in OK cells. CONCLUSION These findings suggest that NaPi-IIc is important for the expression of NaPi-IIa (NaPi-4) protein in OK cells. Suppression of Npt2c may downregulate Npt2a function in HHRH patients.
Collapse
Affiliation(s)
- Toru Fujii
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yuji Shiozaki
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Hiroko Segawa
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Shiori Nishiguchi
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Ai Hanazaki
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Miwa Noguchi
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Ruri Kirino
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Sumire Sasaki
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Kazuya Tanifuji
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Megumi Koike
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Mizuki Yokoyama
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yuki Arima
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Ichiro Kaneko
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Sawako Tatsumi
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Mikiko Ito
- Human Science and Environment, University of Hyogo Graduate School, Hyogo, Japan
| | - Ken-Ichi Miyamoto
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan.
| |
Collapse
|
30
|
Michigami T, Kawai M, Yamazaki M, Ozono K. Phosphate as a Signaling Molecule and Its Sensing Mechanism. Physiol Rev 2018; 98:2317-2348. [DOI: 10.1152/physrev.00022.2017] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In mammals, phosphate balance is maintained by influx and efflux via the intestines, kidneys, bone, and soft tissue, which involves multiple sodium/phosphate (Na+/Pi) cotransporters, as well as regulation by several hormones. Alterations in the levels of extracellular phosphate exert effects on both skeletal and extra-skeletal tissues, and accumulating evidence has suggested that phosphate itself evokes signal transduction to regulate gene expression and cell behavior. Several in vitro studies have demonstrated that an elevation in extracellular Piactivates fibroblast growth factor receptor, Raf/MEK (mitogen-activated protein kinase/ERK kinase)/ERK (extracellular signal-regulated kinase) pathway and Akt pathway, which might involve the type III Na+/Picotransporter PiT-1. Excessive phosphate loading can lead to various harmful effects by accelerating ectopic calcification, enhancing oxidative stress, and dysregulating signal transduction. The responsiveness of mammalian cells to altered extracellular phosphate levels suggests that they may sense and adapt to phosphate availability, although the precise mechanism for phosphate sensing in mammals remains unclear. Unicellular organisms, such as bacteria and yeast, use some types of Pitransporters and other molecules, such as kinases, to sense the environmental Piavailability. Multicellular animals may need to integrate signals from various organs to sense the phosphate levels as a whole organism, similarly to higher plants. Clarification of the phosphate-sensing mechanism in humans may lead to the development of new therapeutic strategies to prevent and treat diseases caused by phosphate imbalance.
Collapse
Affiliation(s)
- Toshimi Michigami
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masanobu Kawai
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Miwa Yamazaki
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Keiichi Ozono
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
31
|
Tatsumi S, Katai K, Kaneko I, Segawa H, Miyamoto KI. NAD metabolism and the SLC34 family: evidence for a liver-kidney axis regulating inorganic phosphate. Pflugers Arch 2018; 471:109-122. [PMID: 30218374 DOI: 10.1007/s00424-018-2204-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/29/2018] [Accepted: 09/06/2018] [Indexed: 12/18/2022]
Abstract
The solute carrier 34 (SLC34) family of membrane transporters is a major contributor to Pi homeostasis. Many factors are involved in regulating the SLC34 family. The roles of the bone mineral metabolism factors parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23) in Pi homeostasis are well studied. Intracellular Pi is thought to be involved in energy metabolism, such as ATP production. Under certain conditions of altered energy metabolism, plasma Pi concentrations are affected by the regulation of a Pi shift into cells or release from the tissues. We recently investigated the mechanism of hepatectomy-related hypophosphatemia, which is thought to involve an unknown phosphaturic factor. Hepatectomy-related hypophosphatemia is due to impaired nicotinamide adenine dinucleotide (NAD) metabolism through its effects on the SLC34 family in the liver-kidney axis. The oxidized form of NAD, NAD+, is an essential cofactor in various cellular biochemical reactions. Levels of NAD+ and its reduced form NADH vary with the availability of dietary energy and nutrients. Nicotinamide phosphoribosyltransferase (Nampt) generates a key NAD+ intermediate, nicotinamide mononucleotide, from nicotinamide and 5-phosphoribosyl 1-pyrophosphate. The liver, an important organ of NAD metabolism, is thought to release metabolic products such as nicotinamide and may control NAD metabolism in other organs. Moreover, NAD is an important regulator of the circadian rhythm. Liver-specific Nampt-deficient mice and heterozygous Nampt mice have abnormal daily plasma Pi concentration oscillations. These data indicate that NAD metabolism in the intestine, liver, and kidney is closely related to Pi metabolism through the SLC34 family. Here, we review the relationship between the SLC34 family and NAD metabolism based on our recent studies.
Collapse
Affiliation(s)
- Sawako Tatsumi
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan.,Department of Food Science and Nutrition, School of Human Cultures, The University of Shiga Prefecture, Hikone, Japan
| | - Kanako Katai
- Faculty of Human Life and Science, Department of Food Science and Nutrition, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Ichiro Kaneko
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - Hiroko Segawa
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - Ken-Ichi Miyamoto
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan.
| |
Collapse
|
32
|
Bergwitz C, Miyamoto KI. Hereditary hypophosphatemic rickets with hypercalciuria: pathophysiology, clinical presentation, diagnosis and therapy. Pflugers Arch 2018; 471:149-163. [PMID: 30109410 DOI: 10.1007/s00424-018-2184-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 12/24/2022]
Abstract
Hereditary hypophosphatemic rickets with hypercalciuria (HHRH; OMIM: 241530) is a rare autosomal recessive disorder with an estimated prevalence of 1:250,000 that was originally described by Tieder et al. Individuals with HHRH carry compound-heterozygous or homozygous (comp/hom) loss-of-function mutations in the sodium-phosphate co-transporter NPT2c. These mutations result in the development of urinary phosphate (Pi) wasting and hypophosphatemic rickets, bowing, and short stature, as well as appropriately elevated 1,25(OH)2D levels, which sets this fibroblast growth factor 23 (FGF23)-independent disorder apart from the more common X-linked hypophosphatemia. The elevated 1,25(OH)2D levels in turn result in hypercalciuria due to enhanced intestinal calcium absorption and reduced parathyroid hormone (PTH)-dependent calcium-reabsorption in the distal renal tubules, leading to the development of kidney stones and/or nephrocalcinosis in approximately half of the individuals with HHRH. Even heterozygous NPT2c mutations are frequently associated with isolated hypercalciuria (IH), which increases the risk of kidney stones or nephrocalcinosis threefold in affected individuals compared with the general population. Bone disease is generally absent in individuals with IH, in contrast to those with HHRH. Treatment of HHRH and IH consists of monotherapy with oral Pi supplements, while active vitamin D analogs are contraindicated, mainly because the endogenous 1,25(OH)2D levels are already elevated but also to prevent further worsening of the hypercalciuria. Long-term studies to determine whether oral Pi supplementation alone is sufficient to prevent renal calcifications and bone loss, however, are lacking. It is also unknown how therapy should be monitored, whether secondary hyperparathyroidism can develop, and whether Pi requirements decrease with age, as observed in some FGF23-dependent hypophosphatemic disorders, or whether this can lead to osteoporosis.
Collapse
Affiliation(s)
- Clemens Bergwitz
- Section Endocrinology and Metabolism, Yale University School of Medicine, Anlyan Center, Office S117, Lab S110, 1 Gilbert Street, New Haven, CT 06519, USA.
| | - Ken-Ichi Miyamoto
- Department of Molecular Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
33
|
Boisvert NC, Holterman CE, Gutsol A, Coulombe J, Pan W, Alexander RT, Gray DA, Kennedy CR. Ubiquitin COOH-terminal hydrolase L1 deletion is associated with urinary α-klotho deficiency and perturbed phosphate homeostasis. Am J Physiol Renal Physiol 2018; 315:F353-F363. [DOI: 10.1152/ajprenal.00411.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Loss of ubiquitin COOH-terminal hydrolase L1 (UCHL1), a deubiquitinating enzyme required for neuronal function, led to hyperphosphatemia accompanied by phosphaturia in mice, while calcium homeostasis remained intact. We therefore investigated the mechanisms underlying the phosphate imbalance in Uchl1−/− mice. Interestingly, phosphaturia was not a result of lower renal brush border membrane sodium-phosphate cotransporter expression as sodium-phosphate cotransporter 2a and 2c expression levels was similar to wild-type levels. Plasma parathyroid hormone and fibroblast growth factor 23 levels were not different; however, fibroblast growth factor 23 mRNA levels were significantly increased in femur homogenates from Uchl1−/− mice. Full-length and soluble α-klotho levels were comparable in kidneys from wild-type and Uchl1−/− mice; however, soluble α-klotho was reduced in Uchl1−/− mice urine. Consistent with unchanged components of 1,25(OH)2D3 metabolism (i.e., CYP27B1 and CYP24A1), sodium-phosphate cotransporter 2b protein levels were not different in ileum brush borders from Uchl1−/− mice, suggesting that the intestine is not the source of hyperphosphatemia. Nonetheless, when Uchl1−/− mice were fed a low-phosphate diet, plasma phosphate, urinary phosphate, and fractional excretion of phosphate were significantly attenuated and comparable to levels of low-phosphate diet-fed wild-type mice. Our findings demonstrate that Uchl1-deleted mice exhibit perturbed phosphate homeostasis, likely consequent to decreased urinary soluble α-klotho, which can be rescued with a low-phosphate diet. Uchl1−/− mice may provide a useful mouse model to study mild perturbations in phosphate homeostasis.
Collapse
Affiliation(s)
- Naomi C. Boisvert
- Kidney Research Centre, The Ottawa Hospital, Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, Ontario, Canada
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Chet E. Holterman
- Kidney Research Centre, The Ottawa Hospital, Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Alexey Gutsol
- Kidney Research Centre, The Ottawa Hospital, Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Josée Coulombe
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Wanling Pan
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - R. Todd Alexander
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Douglas A. Gray
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, Ontario, Canada
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Chris R. Kennedy
- Kidney Research Centre, The Ottawa Hospital, Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, Ontario, Canada
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
34
|
Pawlak D, Znorko B, Kalaska B, Domaniewski T, Zawadzki R, Lipowicz P, Doroszko M, Łebkowska U, Grabowski P, Pawlak K. LP533401 restores bone health in 5/6 nephrectomized rats by a decrease of gut-derived serotonin and regulation of serum phosphate through the inhibition of phosphate co-transporters expression in the kidneys. Bone 2018; 113:124-136. [PMID: 29792935 DOI: 10.1016/j.bone.2018.05.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/28/2018] [Accepted: 05/20/2018] [Indexed: 11/17/2022]
Abstract
LP533401 is an orally bioavailable small molecule that inhibits tryptophan hydroxylase-1, an enzyme responsible for the synthesis of gut-derived serotonin (GDS). Recently, we showed that increased GDS in rats with chronic kidney disease (CKD) affected bone strength and metabolism. We tested the hypothesis that treatment with LP533401 could reverse CKD-induced bone loss in uremia. Sixteen weeks after 5/6 nephrectomy, rats were randomized into untreated (CKD), treated with vehicle (VEH) and LP533401 at a dose of 30 or 100 mg/kg daily for 8 weeks. Treatment with LP533401 decreased serotonin turnover and restored bone mineral status, microarchitecture, and strength in CKD rats to the values observed in the controls. In parallel with the reduction of serotonin, serum phosphate levels also decreased, particularly in the LP533401, 100 mg/kg group. The mechanism underlying this phenomenon resulted from decreased expression of the renal VDR/FGF1R/Klotho/Npt2a/Npt2c axis, leading to elevated phosphate excretion in the kidneys. The elevated urinary phosphate excretion resulted in improved bone mineral status and strength in LP533401-treated rats. Unexpectedly, the standard VEH used in this model was able to reduce renal VDR/FGF1R/Klotho/Npt2a expression, leading to a compensatory increase in Npt2c mRNA levels, secondary disturbances in phosphate-regulated hormones and partial improvement in the mineral status of the trabecular bone. The decrease of serotonin synthesis together with the simultaneous reduction of renal Npt2a and Npt2c expression in rats treated with LP533401, 100 mg/kg led to an increase in 1,25(OH)2D3 levels; this mechanism seems to be particularly beneficial in relation to the mineral status of cortical bone.
Collapse
Affiliation(s)
- Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| | - Beata Znorko
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Bialystok, Poland
| | - Bartlomiej Kalaska
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| | - Tomasz Domaniewski
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Bialystok, Poland
| | - Radosław Zawadzki
- Department of Radiology, Medical University of Bialystok, Bialystok, Poland
| | - Paweł Lipowicz
- Institute of Biocybernetics and Biomedical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, Bialystok, Poland
| | - Michał Doroszko
- Department of Mechanics and Applied Computer Science, Faculty of Mechanical Engineering, Bialystok University of Technology, Bialystok, Poland
| | - Urszula Łebkowska
- Department of Radiology, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Grabowski
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Bialystok, Poland
| | - Krystyna Pawlak
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
35
|
Edwards A, Bonny O. A model of calcium transport and regulation in the proximal tubule. Am J Physiol Renal Physiol 2018; 315:F942-F953. [PMID: 29846115 PMCID: PMC6230728 DOI: 10.1152/ajprenal.00129.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The objective of this study was to examine theoretically how Ca2+ reabsorption in the proximal tubule (PT) is modulated by Na+ and water fluxes, parathyroid hormone (PTH), Na+-glucose cotransporter (SGLT2) inhibitors, and acetazolamide. We expanded a previously published mathematical model of water and solute transport in the rat PT (Layton AT, Vallon V, Edwards A. Am J Physiol Renal Physiol 308: F1343–F1357, 2015) that did not include Ca2+. Our results indicate that Ca2+ reabsorption in the PT is primarily driven by the transepithelial Ca2+ concentration gradient that stems from water reabsorption, which is itself coupled to Na+ reabsorption. Simulated variations in permeability or transporter activity elicit opposite changes in paracellular and transcellular Ca2+ fluxes, whereas a simulated decrease in filtration rate lowers both fluxes. The model predicts that PTH-mediated inhibition of the apical Na+/H+ exchanger NHE3 reduces Na+ and Ca2+ transport to a similar extent. It also suggests that acetazolamide- and SGLT2 inhibitor-induced calciuria at least partly stems from reduced Ca2+ reabsorption in the PT. In addition, backleak of phosphate (PO4) across tight junctions is predicted to reduce net PO4 reabsorption by ~20% under normal conditions. When transcellular PO4 transport is substantially reduced by PTH, paracellular PO4 flux is reversed and contributes significantly to PO4 reabsorption. Furthermore, PTH is predicted to exert an indirect impact on PO4 reabsorption via its inhibitory action on NHE3. This model thus provides greater insight into the mechanisms that modulate Ca2+ and PO4 reabsorption in the PT.
Collapse
Affiliation(s)
- Aurélie Edwards
- Department of Biomedical Engineering, Boston University , Boston, Massachusetts
| | - Olivier Bonny
- Department of Pharmacology and Toxicology, University of Lausanne, and Service of Nephrology, Lausanne University Hospital , Lausanne , Switzerland
| |
Collapse
|
36
|
Long J, Chen Y, Lin H, Liao M, Li T, Tong L, Wei S, Xian X, Zhu J, Chen J, Tian J, Wang Q, Mo Z. Significant association between RGS14 rs12654812 and nephrolithiasis risk among Guangxi population in China. J Clin Lab Anal 2018; 32:e22435. [PMID: 29577426 DOI: 10.1002/jcla.22435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 02/27/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Nephrolithiasis is a worldwide health problem that affects almost all populations. This study aimed to evaluate the association between rs12654812 of regulator of G protein signaling 14 (RGS14) gene and nephrolithiasis in the Chinese population. METHODS A total of 1541 participators including 830 cases and 711 controls were included from Guangxi area in China. Age, sex, BMI, smoking status, drinking status, creatinine, uric acid, and urea nitrogen were analyzed between the case group and control group. RESULTS We found that the G/A+A/A genotypes of rs12654812 had a significantly increased nephrolithiasis risk after adjusting age, sex, BMI, smoking, drinking, and hypertension, compared with G/G genotype (OR = 1.361, 95% CI = 1.033-1.794, P = .029). This hazardous effect was more pronounced in subgroup of age < 50, ever smoking, ever drinking, creatinine normal, and high uric acid. The G/A genotype of rs12654812 also had a significantly increased nephrolithiasis risk compared with G/G genotype. The A allele of rs12654812 significantly increased the risk of nephrolithiasis compared with the G allele after adjusting for age, sex, BMI, smoking, drinking and hypertension (OR = 1.277, 95% CI = 1.013-1.609, P = .038). CONCLUSIONS Our results suggest that the RGS14 polymorphism is involved in the etiology of nephrolithiasis and thus may be a genetic marker for nephrolithiasis.
Collapse
Affiliation(s)
- Jun Long
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Department of Urology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Yang Chen
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Haisong Lin
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ming Liao
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tianyu Li
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lei Tong
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Suchun Wei
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Xiaoying Xian
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Jia Zhu
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jianxin Chen
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Department of Urology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Jiarong Tian
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Qiuyan Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
37
|
Miyagawa A, Tatsumi S, Takahama W, Fujii O, Nagamoto K, Kinoshita E, Nomura K, Ikuta K, Fujii T, Hanazaki A, Kaneko I, Segawa H, Miyamoto KI. The sodium phosphate cotransporter family and nicotinamide phosphoribosyltransferase contribute to the daily oscillation of plasma inorganic phosphate concentration. Kidney Int 2018; 93:1073-1085. [PMID: 29398136 DOI: 10.1016/j.kint.2017.11.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/07/2017] [Accepted: 11/16/2017] [Indexed: 12/31/2022]
Abstract
Circulating inorganic phosphate exhibits a remarkable daily oscillation based on food intake. In humans and rodents, the daily oscillation in response to food intake may be coordinated to control the intestinal absorption, renal excretion, cellular shifts, and extracellular concentration of inorganic phosphate. However, mechanisms regulating the resulting oscillation are unknown. Here we investigated the roles of the sodium phosphate cotransporter SLC34 (Npt2) family and nicotinamide phosphoribosyltransferase (Nampt) in the daily oscillation of plasma inorganic phosphate levels. First, it is roughly linked to urinary inorganic phosphate excretion. Second, expression of renal Npt2a and Npt2c, and intestinal Npt2b proteins also exhibit a dynamic daily oscillation. Analyses of Npt2a, Npt2b, and Npt2c knockout mice revealed the importance of renal inorganic phosphate reabsorption and cellular inorganic phosphate shifts in the daily oscillation. Third, experiments in which nicotinamide and a specific Nampt inhibitor (FK866) were administered in the active and rest phases revealed that the Nampt/NAD+ system is involved in renal inorganic phosphate excretion. Additionally, for cellular shifts, liver-specific Nampt deletion disturbed the daily oscillation of plasma phosphate during the rest but not the active phase. In systemic Nampt+/- mice, NAD levels were significantly reduced in the liver, kidney, and intestine, and the daily oscillation (active and rest phases) of the plasma phosphate concentration was attenuated. Thus, the Nampt/NAD+ system for Npt2 regulation and cellular shifts to tissues such as the liver play an important role in generating daily oscillation of plasma inorganic phosphate levels.
Collapse
Affiliation(s)
- Atsumi Miyagawa
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Sawako Tatsumi
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan.
| | - Wako Takahama
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Osamu Fujii
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Kenta Nagamoto
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Emi Kinoshita
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Kengo Nomura
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Kayo Ikuta
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Toru Fujii
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Ai Hanazaki
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Ichiro Kaneko
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Hiroko Segawa
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Ken-Ichi Miyamoto
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan.
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW This review examines the role of fibroblast growth factor-23 (FGF-23) in mineral metabolism, innate immunity and adverse cardiovascular outcomes. RECENT FINDINGS FGF-23, produced by osteocytes in bone, activates FGFR/α-Klotho (α-Kl) complexes in the kidney. The resulting bone-kidney axis coordinates renal phosphate reabsorption with bone mineralization, and creates a counter-regulatory feedback loop to prevent vitamin D toxicity. FGF-23 acts to counter-regulate the effects of vitamin D on innate immunity and cardiovascular responses. FGF-23 is ectopically expressed along with α-Kl in activated macrophages, creating a proinflammatory paracrine signaling pathway that counters the antiinflammatory actions of vitamin D. FGF-23 also inhibits angiotensin-converting enzyme 2 expression and increases sodium reabsorption in the kidney, leading to hypertension and left ventricular hypertrophy. Finally, FGF-23 is purported to cause adverse cardiac and impair neutrophil responses through activation of FGFRs in the absence of α-Kl. Although secreted forms of α-Kl have FGF-23 independent effects, the possibility of α-Kl independent effects of FGF-23 is controversial and requires additional experimental validation. SUMMARY FGF-23 participates in a bone-kidney axis regulating mineral homeostasis, proinflammatory paracrine macrophage signaling pathways, and in a bone-cardio-renal axis regulating hemodynamics that counteract the effects of vitamin D.
Collapse
|
39
|
van der Wijst J, Tutakhel OAZ, Bos C, Danser AHJ, Hoorn EJ, Hoenderop JGJ, Bindels RJM. Effects of a high-sodium/low-potassium diet on renal calcium, magnesium, and phosphate handling. Am J Physiol Renal Physiol 2018; 315:F110-F122. [PMID: 29357414 DOI: 10.1152/ajprenal.00379.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The distal convoluted tubule (DCT) of the kidney plays an important role in blood pressure regulation by modulating Na+ reabsorption via the Na+-Cl- cotransporter (NCC). A diet containing high salt (NaCl) and low K+ activates NCC, thereby causing Na+ retention and a rise in blood pressure. Since high blood pressure, hypertension, is associated with changes in serum calcium (Ca2+) and magnesium (Mg2+) levels, we hypothesized that dietary Na+ and K+ intake affects Ca2+ and Mg2+ transport in the DCT. Therefore, the present study aimed to investigate the effect of a high-Na+/low-K+ diet on renal Ca2+ and Mg2+ handling. Mice were divided in four groups and fed a normal-Na+/normal-K+, normal-Na+/low-K+, high-Na+/normal-K+, or high-Na+/low-K+ diet for 4 days. Serum and urine were collected for electrolyte and hormone analysis. Gene and protein expression of electrolyte transporters were assessed in kidney and intestine by qPCR and immunoblotting. Whereas Mg2+ homeostasis was not affected, the mice had elevated urinary Ca2+ and phosphate (Pi) excretion upon high Na+ intake, as well as significantly lower serum Ca2+ levels in the high-Na+/low-K+ group. Alterations in the gene and protein expression of players involved in Ca2+ and Pi transport indicate that reabsorption in the proximal tubular and TAL is affected, while inducing a compensatory response in the DCT. These effects may contribute to the negative health impact of a high-salt diet, including kidney stone formation, chronic kidney disease, and loss of bone mineral density.
Collapse
Affiliation(s)
- Jenny van der Wijst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Omar A Z Tutakhel
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Caro Bos
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Alexander H J Danser
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam , The Netherlands
| | - Ewout J Hoorn
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands
| |
Collapse
|
40
|
Uwai Y, Kawasaki T, Nabekura T. Nonlinear disposition of lithium in rats and saturation of its tubular reabsorption by the sodium-phosphate cotransporter as a cause. Biopharm Drug Dispos 2017; 39:83-87. [PMID: 29214648 DOI: 10.1002/bdd.2116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/16/2017] [Accepted: 11/26/2017] [Indexed: 12/26/2022]
Abstract
We previously reported the contribution of sodium-phosphate cotransporter to the tubular reabsorption of lithium in rats. In the present study, the dose dependency of the renal handling of lithium was examined in rats. When lithium chloride at 1.25 mg/kg, 2.5 mg/kg and 25 mg/kg was intravenously injected as a bolus, the areas under the plasma concentration-time curve of lithium until 60 minutes were calculated to be 6.23 mEq·min/l, 8.77 mEq·min/l and 64.6 mEq·min/l, respectively. The renal clearance of lithium and its fractional excretion increased with increments in the dose administered. The renal clearance of lithium strongly correlated with the urinary excretion rate of phosphate in the 1.25 mg/kg group (r = 0.840) and 2.5 mg/kg group (r = 0.773), whereas this correlation was weak in the 25 mg/kg group (r = 0.306). The infusion of foscarnet, a typical inhibitor of sodium-phosphate cotransporter, decreased the fractional reabsorption of lithium in rats administered lithium chloride at 2.5 mg/kg, but did not affect it in rats administered 25 mg/kg. These results demonstrate the nonlinearity of the renal excretion of lithium in rats, with the saturation of lithium reabsorption by the sodium-phosphate cotransporter potentially being involved.
Collapse
Affiliation(s)
- Yuichi Uwai
- Department of Pharmaceutics, School of Pharmacy, Aichi Gakuin University, Nagoya, Japan
| | - Tatsuya Kawasaki
- Department of Pharmaceutics, School of Pharmacy, Aichi Gakuin University, Nagoya, Japan
| | - Tomohiro Nabekura
- Department of Pharmaceutics, School of Pharmacy, Aichi Gakuin University, Nagoya, Japan
| |
Collapse
|
41
|
Lee JJ, Plain A, Beggs MR, Dimke H, Alexander RT. Effects of phospho- and calciotropic hormones on electrolyte transport in the proximal tubule. F1000Res 2017; 6:1797. [PMID: 29043081 PMCID: PMC5627579 DOI: 10.12688/f1000research.12097.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/04/2017] [Indexed: 12/17/2022] Open
Abstract
Calcium and phosphate are critical for a myriad of physiological and cellular processes within the organism. Consequently, plasma levels of calcium and phosphate are tightly regulated. This occurs through the combined effects of the phospho- and calciotropic hormones, parathyroid hormone (PTH), active vitamin D
3, and fibroblast growth factor 23 (FGF23). The organs central to this are the kidneys, intestine, and bone. In the kidney, the proximal tubule reabsorbs the majority of filtered calcium and phosphate, which amounts to more than 60% and 90%, respectively. The basic molecular mechanisms responsible for phosphate reclamation are well described, and emerging work is delineating the molecular identity of the paracellular shunt wherein calcium permeates the proximal tubular epithelium. Significant experimental work has delineated the molecular effects of PTH and FGF23 on these processes as well as their regulation of active vitamin D
3 synthesis in this nephron segment. The integrative effects of both phospho- and calciotropic hormones on proximal tubular solute transport and subsequently whole body calcium-phosphate balance thus have been further complicated. Here, we first review the molecular mechanisms of calcium and phosphate reabsorption from the proximal tubule and how they are influenced by the phospho- and calciotropic hormones acting on this segment and then consider the implications on both renal calcium and phosphate handling as well as whole body mineral balance.
Collapse
Affiliation(s)
- Justin J Lee
- Department of Physiology, University of Alberta, Edmonton, Canada.,The Women and Children's Health Research Institute, Edmonton, Canada
| | - Allein Plain
- Department of Physiology, University of Alberta, Edmonton, Canada.,The Women and Children's Health Research Institute, Edmonton, Canada
| | - Megan R Beggs
- Department of Physiology, University of Alberta, Edmonton, Canada.,The Women and Children's Health Research Institute, Edmonton, Canada
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - R Todd Alexander
- Department of Physiology, University of Alberta, Edmonton, Canada.,The Women and Children's Health Research Institute, Edmonton, Canada.,Department of Pediatrics, Edmonton Clinic Health Academy, University of Alberta, Edmonton, Canada
| |
Collapse
|
42
|
Caballero D, Li Y, Fetene J, Ponsetto J, Chen A, Zhu C, Braddock DT, Bergwitz C. Intraperitoneal pyrophosphate treatment reduces renal calcifications in Npt2a null mice. PLoS One 2017; 12:e0180098. [PMID: 28704395 PMCID: PMC5509111 DOI: 10.1371/journal.pone.0180098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 06/09/2017] [Indexed: 12/12/2022] Open
Abstract
Mutations in the proximal tubular sodium-dependent phosphate co-transporters NPT2a and NPT2c have been reported in patients with renal stone disease and nephrocalcinosis, however the relative contribution of genotype, dietary calcium and phosphate, and modifiers of mineralization such as pyrophosphate (PPi) to the formation of renal mineral deposits is unclear. In the present study, we used Npt2a-/- mice to model the renal calcifications observed in these disorders. We observed elevated urinary excretion of PPi in Npt2a-/- mice when compared to WT mice. Presence of two hypomorphic Extracellular nucleotide pyrophosphatase phosphodiesterase 1 (Enpp1asj/asj) alleles decreased urine PPi and worsened renal calcifications in Npt2a-/- mice. These studies suggest that PPi is a thus far unrecognized factor protecting Npt2a-/- mice from the development of renal mineral deposits. Consistent with this conclusion, we next showed that renal calcifications in these mice can be reduced by intraperitoneal administration of sodium pyrophosphate. If confirmed in humans, urine PPi could therefore be of interest for developing new strategies to prevent the nephrocalcinosis and nephrolithiasis seen in phosphaturic disorders.
Collapse
Affiliation(s)
- Daniel Caballero
- Department of Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, CT, United States of America
| | - Yuwen Li
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, United States of America
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jonathan Fetene
- Department of Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, CT, United States of America
| | - Julian Ponsetto
- Department of Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, CT, United States of America
| | - Alyssa Chen
- Department of Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, CT, United States of America
| | - Chuanlong Zhu
- Gastroenterology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, United States of America
- Department of Infectious Diseases, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Demetrios T. Braddock
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States of America
| | - Clemens Bergwitz
- Department of Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, CT, United States of America
- * E-mail:
| |
Collapse
|
43
|
Li Y, Caballero D, Ponsetto J, Chen A, Zhu C, Guo J, Demay M, Jüppner H, Bergwitz C. Response of Npt2a knockout mice to dietary calcium and phosphorus. PLoS One 2017; 12:e0176232. [PMID: 28448530 PMCID: PMC5407772 DOI: 10.1371/journal.pone.0176232] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/08/2017] [Indexed: 01/08/2023] Open
Abstract
Mutations in the renal sodium-dependent phosphate co-transporters NPT2a and NPT2c have been reported in patients with renal stone disease and nephrocalcinosis, but the relative contribution of genotype, dietary calcium and phosphate to the formation of renal mineral deposits is unclear. We previously reported that renal calcium phosphate deposits persist and/or reappear in older Npt2a-/- mice supplemented with phosphate despite resolution of hypercalciuria while no deposits are seen in wild-type (WT) mice on the same diet. Addition of calcium to their diets further increased calcium phosphate deposits in Npt2a-/-, but not WT mice. The response of PTH to dietary phosphate of Npt2a-/- was blunted when compared to WT mice and the response of the urinary calcium x phosphorus product to the addition of calcium and phosphate to the diet of Npt2a-/- was increased. These finding suggests that Npt2a-/- mice respond differently to dietary phosphate when compared to WT mice. Further evaluation in the Npt2a-/- cohort on different diets suggests that urinary calcium excretion, plasma phosphate and FGF23 levels appear to be positively correlated to renal mineral deposit formation while urine phosphate levels and the urine anion gap, an indirect measure of ammonia excretion, appear to be inversely correlated. Our observations in Npt2a-/- mice, if confirmed in humans, may be relevant for the optimization of existing and the development of novel therapies to prevent nephrolithiasis and nephrocalcinosis in human carriers of NPT2a and NPT2c mutations.
Collapse
Affiliation(s)
- Yuwen Li
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Daniel Caballero
- Section Endocrinology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Julian Ponsetto
- Section Endocrinology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Alyssa Chen
- Section Endocrinology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Chuanlong Zhu
- Gastroenterology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Infectious Diseases, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jun Guo
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marie Demay
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Harald Jüppner
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Clemens Bergwitz
- Section Endocrinology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
44
|
Shiozaki Y, Segawa H, Ohnishi S, Ohi A, Ito M, Kaneko I, Kido S, Tatsumi S, Miyamoto KI. Relationship between sodium-dependent phosphate transporter (NaPi-IIc) function and cellular vacuole formation in opossum kidney cells. THE JOURNAL OF MEDICAL INVESTIGATION 2017; 62:209-18. [PMID: 26399350 DOI: 10.2152/jmi.62.209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
NaPi-IIc/SLC34A3 is a sodium-dependent inorganic phosphate (Pi) transporter in the renal proximal tubules and its mutations cause hereditary hypophosphatemic rickets with hypercalciuria (HHRH). In the present study, we created a specific antibody for opossum SLC34A3, NaPi-IIc (oNaPi-IIc), and analyzed its localization and regulation in opossum kidney cells (a tissue culture model of proximal tubular cells). Immunoreactive oNaPi-IIc protein levels increased during the proliferative phase and decreased during differentiation. Moreover, stimulating cell growth upregulated oNaPi-IIc protein levels, whereas suppressing cell proliferation downregulated oNaPi-IIc protein levels. Immunocytochemistry revealed that endogenous and exogenous oNaPi-IIc proteins localized at the protrusion of the plasma membrane, which is a phosphatidylinositol 4,5-bisphosphate (PIP2) rich-membrane, and at the intracellular vacuolar membrane. Exogenous NaPi-IIc also induced cellular vacuoles and localized in the plasma membrane. The ability to form vacuoles is specific to electroneutral NaPi-IIc, and not electrogenic NaPi-IIa or NaPi-IIb. In addition, mutations of NaPi-IIc (S138F and R468W) in HHRH did not cause cellular PIP2-rich vacuoles. In conclusion, our data anticipate that NaPi-IIc may regulate PIP2 production at the plasma membrane and cellular vesicle formation.
Collapse
Affiliation(s)
- Yuji Shiozaki
- Department of Molecular Nutrition, University of Tokushima Graduate School
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Caballero D, Li Y, Ponsetto J, Zhu C, Bergwitz C. Impaired urinary osteopontin excretion in Npt2a-/- mice. Am J Physiol Renal Physiol 2016; 312:F77-F83. [PMID: 27784695 PMCID: PMC5283892 DOI: 10.1152/ajprenal.00367.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/17/2016] [Accepted: 10/23/2016] [Indexed: 01/04/2023] Open
Abstract
Mutations in the renal sodium-dependent phosphate cotransporters NPT2a and NPT2c have been reported in patients with renal stone disease and nephrocalcinosis. Oral phosphate supplementation is currently thought to reduce risk by reversing the hypercalciuria, but the exact mechanism remains unclear and the relative contribution of modifiers of mineralization such as osteopontin (Opn) to the formation of renal mineral deposits in renal phosphate wasting disorders has not been studied. We observed a marked decrease of renal gene expression and urinary excretion of Opn in Npt2a-/- mice, a mouse model of these disorders, at baseline. Following supplementation with phosphate Opn gene expression was restored to wild-type levels in Npt2a-/- mice; however, urine excretion of the protein remained low. To further investigate the role of Opn, we used a double-knockout strategy, which provides evidence that loss of Opn worsens the nephrocalcinosis and nephrolithiasis observed in these mice on a high-phosphate diet. These studies suggest that impaired Opn gene expression and urinary excretion in Npt2a-/- mice may be an additional risk factor for nephrolithiasis, and normalizing urine Opn levels may improve the therapy of phosphaturic disorders.
Collapse
Affiliation(s)
- Daniel Caballero
- Section of Endocrinology and Metabolism, Yale University School of Medicine, New Haven, Connecticut
| | - Yuwen Li
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.,Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Julian Ponsetto
- Section of Endocrinology and Metabolism, Yale University School of Medicine, New Haven, Connecticut
| | - Chuanlong Zhu
- Department of Infectious Diseases, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China; and
| | - Clemens Bergwitz
- Section of Endocrinology and Metabolism, Yale University School of Medicine, New Haven, Connecticut;
| |
Collapse
|
46
|
Soleimani M, Barone S, Xu J, Alshahrani S, Brooks M, McCormack FX, Smith RD, Zahedi K. Prostaglandin-E2 Mediated Increase in Calcium and Phosphate Excretion in a Mouse Model of Distal Nephron Salt Wasting. PLoS One 2016; 11:e0159804. [PMID: 27442254 PMCID: PMC4956050 DOI: 10.1371/journal.pone.0159804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/10/2016] [Indexed: 01/29/2023] Open
Abstract
Contribution of salt wasting and volume depletion to the pathogenesis of hypercalciuria and hyperphosphaturia is poorly understood. Pendrin/NCC double KO (pendrin/NCC-dKO) mice display severe salt wasting under basal conditions and develop profound volume depletion, prerenal renal failure, and metabolic alkalosis and are growth retarded. Microscopic examination of the kidneys of pendrin/NCC-dKO mice revealed the presence of calcium phosphate deposits in the medullary collecting ducts, along with increased urinary calcium and phosphate excretion. Confirmatory studies revealed decreases in the expression levels of sodium phosphate transporter-2 isoforms a and c, increases in the expression of cytochrome p450 family 4a isotypes 12 a and b, as well as prostaglandin E synthase 1, and cyclooxygenases 1 and 2. Pendrin/NCC-dKO animals also had a significant increase in urinary prostaglandin E2 (PGE-2) and renal content of 20-hydroxyeicosatetraenoic acid (20-HETE) levels. Pendrin/NCC-dKO animals exhibit reduced expression levels of the sodium/potassium/2chloride co-transporter 2 (NKCC2) in their medullary thick ascending limb. Further assessment of the renal expression of NKCC2 isoforms by quantitative real time PCR (qRT-PCR) reveled that compared to WT mice, the expression of NKCC2 isotype F was significantly reduced in pendrin/NCC-dKO mice. Provision of a high salt diet to rectify volume depletion or inhibition of PGE-2 synthesis by indomethacin, but not inhibition of 20-HETE generation by HET0016, significantly improved hypercalciuria and salt wasting in pendrin/NCC dKO mice. Both high salt diet and indomethacin treatment also corrected the alterations in NKCC2 isotype expression in pendrin/NCC-dKO mice. We propose that severe salt wasting and volume depletion, irrespective of the primary originating nephron segment, can secondarily impair the reabsorption of salt and calcium in the thick ascending limb of Henle and/or proximal tubule, and reabsorption of sodium and phosphate in the proximal tubule via processes that are mediated by PGE-2.
Collapse
Affiliation(s)
- Manoocher Soleimani
- Center on Genetics of Transport, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
- Departments of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
- Research Services, Veterans Affairs Medical Center, Cincinnati, OH, United States of America
- * E-mail:
| | - Sharon Barone
- Center on Genetics of Transport, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
- Departments of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
- Research Services, Veterans Affairs Medical Center, Cincinnati, OH, United States of America
| | - Jie Xu
- Center on Genetics of Transport, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
- Departments of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Saeed Alshahrani
- Department of Pharmacology and Cell Biophysics and, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Marybeth Brooks
- Center on Genetics of Transport, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
- Departments of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Francis X. McCormack
- Departments of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Roger D. Smith
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Kamyar Zahedi
- Center on Genetics of Transport, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
- Departments of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
- Research Services, Veterans Affairs Medical Center, Cincinnati, OH, United States of America
| |
Collapse
|
47
|
Komaba H, Fukagawa M. Phosphate-a poison for humans? Kidney Int 2016; 90:753-63. [PMID: 27282935 DOI: 10.1016/j.kint.2016.03.039] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/03/2016] [Accepted: 03/24/2016] [Indexed: 02/07/2023]
Abstract
Maintenance of phosphate balance is essential for life, and mammals have developed a sophisticated system to regulate phosphate homeostasis over the course of evolution. However, due to the dependence of phosphate elimination on the kidney, humans with decreased kidney function are likely to be in a positive phosphate balance. Phosphate excess has been well recognized as a critical factor in the pathogenesis of mineral and bone disorders associated with chronic kidney disease, but recent investigations have also uncovered toxic effects of phosphate on the cardiovascular system and the aging process. Compelling evidence also suggests that increased fibroblastic growth factor 23 and parathyroid hormone levels in response to a positive phosphate balance contribute to adverse clinical outcomes. These insights support the current practice of managing serum phosphate in patients with advanced chronic kidney disease, although definitive evidence of these effects is lacking. Given the potential toxicity of excess phosphate, the general population may also be viewed as a target for phosphate management. However, the widespread implementation of dietary phosphate intervention in the general population may not be warranted due to the limited impact of increased phosphate intake on mineral metabolism and clinical outcomes. Nonetheless, the increasing incidence of kidney disease or injury in our aging society emphasizes the potential importance of this issue. Further work is needed to more completely characterize phosphate toxicity and to establish the optimal therapeutic strategy for managing phosphate in patients with chronic kidney disease and in the general population.
Collapse
Affiliation(s)
- Hirotaka Komaba
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan; Interactive Translational Research Center for Kidney Diseases, Tokai University School of Medicine, Isehara, Japan; The Institute of Medical Sciences, Tokai University, Isehara, Japan
| | - Masafumi Fukagawa
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan.
| |
Collapse
|
48
|
Tatsumi S, Miyagawa A, Kaneko I, Shiozaki Y, Segawa H, Miyamoto KI. Regulation of renal phosphate handling: inter-organ communication in health and disease. J Bone Miner Metab 2016; 34:1-10. [PMID: 26296817 DOI: 10.1007/s00774-015-0705-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/16/2015] [Indexed: 01/18/2023]
Abstract
In this review, we focus on the interconnection of inorganic phosphate (Pi) homeostasis in the network of the bone-kidney, parathyroid-kidney, intestine-kidney, and liver-kidney axes. Such a network of organ communication is important for body Pi homeostasis. Normalization of serum Pi levels is a clinical target in patients with chronic kidney disease (CKD). Particularly, disorders of the fibroblast growth factor 23/klotho system are observed in early CKD. Identification of phosphaturic factors from the intestine and liver may enhance our understanding of body Pi homeostasis and Pi metabolism disturbances in CKD patients.
Collapse
Affiliation(s)
- Sawako Tatsumi
- Department of Molecular Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Atsumi Miyagawa
- Department of Molecular Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Ichiro Kaneko
- Department of Molecular Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yuji Shiozaki
- Department of Molecular Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Hiroko Segawa
- Department of Molecular Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Ken-Ichi Miyamoto
- Department of Molecular Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan.
| |
Collapse
|
49
|
Gattineni J, Baum M. Developmental changes in renal tubular transport-an overview. Pediatr Nephrol 2015; 30:2085-98. [PMID: 24253590 PMCID: PMC4028442 DOI: 10.1007/s00467-013-2666-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/01/2013] [Accepted: 10/11/2013] [Indexed: 10/26/2022]
Abstract
The adult kidney maintains a constant volume and composition of extracellular fluid despite changes in water and salt intake. The neonate is born with a kidney that has a small fraction of the glomerular filtration rate of the adult and immature tubules that function at a lower capacity than that of the mature animal. Nonetheless, the neonate is also able to maintain a constant extracellular fluid volume and composition. Postnatal renal tubular development was once thought to be due to an increase in the transporter abundance to meet the developmental increase in glomerular filtration rate. However, postnatal renal development of each nephron segment is quite complex. There are isoform changes of several transporters as well as developmental changes in signal transduction that affect the capacity of renal tubules to reabsorb solutes and water. This review will discuss neonatal tubular function with an emphasis on the differences that have been found between the neonate and adult. We will also discuss some of the factors that are responsible for the maturational changes in tubular transport that occur during postnatal renal development.
Collapse
Affiliation(s)
- Jyothsna Gattineni
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9061, USA
| | - Michel Baum
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9061, USA.
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
50
|
Oddsson A, Sulem P, Helgason H, Edvardsson VO, Thorleifsson G, Sveinbjörnsson G, Haraldsdottir E, Eyjolfsson GI, Sigurdardottir O, Olafsson I, Masson G, Holm H, Gudbjartsson DF, Thorsteinsdottir U, Indridason OS, Palsson R, Stefansson K. Common and rare variants associated with kidney stones and biochemical traits. Nat Commun 2015; 6:7975. [PMID: 26272126 PMCID: PMC4557269 DOI: 10.1038/ncomms8975] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 07/02/2015] [Indexed: 01/07/2023] Open
Abstract
Kidney stone disease is a complex disorder with a strong genetic component. We conducted a genome-wide association study of 28.3 million sequence variants detected through whole-genome sequencing of 2,636 Icelanders that were imputed into 5,419 kidney stone cases, including 2,172 cases with a history of recurrent kidney stones, and 279,870 controls. We identify sequence variants associating with kidney stones at ALPL (rs1256328[T], odds ratio (OR)=1.21, P=5.8 × 10−10) and a suggestive association at CASR (rs7627468[A], OR=1.16, P=2.0 × 10−8). Focusing our analysis on coding sequence variants in 63 genes with preferential kidney expression we identify two rare missense variants SLC34A1 p.Tyr489Cys (OR=2.38, P=2.8 × 10−5) and TRPV5 p.Leu530Arg (OR=3.62, P=4.1 × 10−5) associating with recurrent kidney stones. We also observe associations of the identified kidney stone variants with biochemical traits in a large population set, indicating potential biological mechanism. Kidney stone formation is influenced by genetic factors and recurrent stone formation places a significant burden on health care systems. Here Oddsson et al. perform a large-scale genome-wide association study and uncover new genetic variants associated with kidney stone susceptibility and associated biochemical traits.
Collapse
Affiliation(s)
| | | | - Hannes Helgason
- 1] deCODE genetics/Amgen, Inc., Reykjavik 101, Iceland [2] School of Engineering and Natural Sciences, University of Iceland, Reykjavik 101, Iceland
| | - Vidar O Edvardsson
- 1] Children's Medical Center, Landspitali-The National University Hospital of Iceland, Reykjavik 101, Iceland [2] Faculty of Medicine, University of Iceland, Reykjavik 101, Iceland [3] The Rare Kidney Stone Consortium, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | - Gudmundur I Eyjolfsson
- Icelandic Medical Center (Laeknasetrid), Laboratory in Mjodd (RAM), Reykjavik 109, Iceland
| | - Olof Sigurdardottir
- Department of Clinical Biochemistry, Akureyri Hospital, Akureyri, 600, Iceland
| | - Isleifur Olafsson
- Department of Clinical Biochemistry, Landspitali University Hospital, Reykjavik 101, Iceland
| | - Gisli Masson
- deCODE genetics/Amgen, Inc., Reykjavik 101, Iceland
| | - Hilma Holm
- deCODE genetics/Amgen, Inc., Reykjavik 101, Iceland
| | - Daniel F Gudbjartsson
- 1] deCODE genetics/Amgen, Inc., Reykjavik 101, Iceland [2] School of Engineering and Natural Sciences, University of Iceland, Reykjavik 101, Iceland
| | - Unnur Thorsteinsdottir
- 1] deCODE genetics/Amgen, Inc., Reykjavik 101, Iceland [2] Faculty of Medicine, University of Iceland, Reykjavik 101, Iceland
| | - Olafur S Indridason
- Division of Nephrology, Internal Medicine Services, Landspitali-The National University Hospital of Iceland, Reykjavik Iceland
| | - Runolfur Palsson
- 1] Faculty of Medicine, University of Iceland, Reykjavik 101, Iceland [2] The Rare Kidney Stone Consortium, Mayo Clinic, Rochester, Minnesota, USA [3] Division of Nephrology, Internal Medicine Services, Landspitali-The National University Hospital of Iceland, Reykjavik Iceland
| | - Kari Stefansson
- 1] deCODE genetics/Amgen, Inc., Reykjavik 101, Iceland [2] Faculty of Medicine, University of Iceland, Reykjavik 101, Iceland
| |
Collapse
|