1
|
Lateef OM, Foote C, Power G, Manrique-Acevedo C, Padilla J, Martinez-Lemus LA. LIM kinases in cardiovascular health and disease. Front Physiol 2024; 15:1506356. [PMID: 39744707 PMCID: PMC11688343 DOI: 10.3389/fphys.2024.1506356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/28/2024] [Indexed: 01/14/2025] Open
Abstract
The Lim Kinase (LIMK) family of serine/threonine kinases is comprised of LIMK1 and LIMK2, which are central regulators of cytoskeletal dynamics via their well-characterized roles in promoting actin polymerization and destabilizing the cellular microtubular network. The LIMKs have been demonstrated to modulate several fundamental physiological processes, including cell cycle progression, cell motility and migration, and cell differentiation. These processes play important roles in maintaining cardiovascular health. However, LIMK activity in healthy and pathological states of the cardiovascular system is poorly characterized. This review highlights the cellular and molecular mechanisms involved in LIMK activation and inactivation, examining its roles in the pathophysiology of vascular and cardiac diseases such as hypertension, aneurysm, atrial fibrillation, and valvular heart disease. It addresses the LIMKs' involvement in processes that support cardiovascular health, including vasculogenesis, angiogenesis, and endothelial mechanotransduction. The review also features how LIMK activity participates in endothelial cell, vascular smooth muscle cell, and cardiomyocyte physiology and its implications in pathological states. A few recent preclinical studies demonstrate the therapeutic potential of LIMK inhibition. We conclude by proposing that future research should focus on the potential clinical relevance of LIMK inhibitors as therapeutic agents to reduce the burden of cardiovascular disease and improve patient outcomes.
Collapse
Affiliation(s)
- Olubodun M. Lateef
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, University of Missouri Columbia, Columbia, MO, United States
| | - Christopher Foote
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| | - Gavin Power
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Camila Manrique-Acevedo
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, United States
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Columbia, MO, United States
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, MO, United States
| | - Jaume Padilla
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, United States
| | - Luis A. Martinez-Lemus
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, University of Missouri Columbia, Columbia, MO, United States
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
2
|
Xia Y, Chen J, Dong P, Zhang L, Ding Y, Ding W, Han X, Wang X, Li D. Embryonic 6:2 Fluorotelomer Alcohol Exposure Disrupts the Blood‒Brain Barrier by Causing Endothelial‒to‒Mesenchymal Transition in the Male Mice. Mol Neurobiol 2024:10.1007/s12035-024-04540-7. [PMID: 39417922 DOI: 10.1007/s12035-024-04540-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
6:2 Fluorotelomer alcohol (6:2 FTOH) is a raw material used in the manufacture of short-chain poly- and perfluoroalkyl substances. Our previous study revealed that gestational exposure to 6:2 FTOH can impair blood‒brain barrier (BBB) function in offspring, accompanied by anxiety-like behavior and learning memory deficits. The aim of this study was to further investigate the specific mechanism by which maternal exposure to 6:2 FTOH resulted in impaired BBB function in offspring mice. Pregnant mice were orally administered different doses of 6:2 FTOH (0, 5, 25, and 125 mg/kg/day) from gestation day 8.5 until delivery. These results confirmed that maternal 6:2 FTOH exposure impaired BBB function and disrupted the brain immune microenvironment. Subsequent investigations revealed that endothelial-to-mesenchymal transition (EndMT) in the cerebral microvascular endothelium of offspring may be the mechanism mediating functional disruption of the BBB. Mechanistic studies revealed that exposure to 6:2 FTOH upregulated ETS proto-oncogene 1 (ETS1) expression via the tumor necrosis factor-α/extracellular signal-regulated kinase 1/2 signaling pathway, which mediated disturbances in energy metabolism, leading to impaired actin dynamics and subsequently triggering the EndMT phenotype. This is the first finding indicating that gestational 6:2 FTOH exposure caused functional impairment of the BBB through ETS1-mediated EndMT in cerebral microvascular endothelial cells, potentially providing novel insight into the environmental origins of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yunhui Xia
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Junhan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Ping Dong
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Luqing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Yibing Ding
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
- Translational Medicine Core Facilities, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Weidong Ding
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Xiaodong Han
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Xiaojian Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China.
| | - Dongmei Li
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China.
| |
Collapse
|
3
|
Li J, Wang B, Dai F, Kou X, Wu G, Wu B, Xu J, Pan L, Liu J, He S, Gao F. The predictive value of serum F-actin on the severity and early neurological deterioration of acute ischemic stroke: Predictive value of F-actin in stroke. J Stroke Cerebrovasc Dis 2024; 33:107727. [PMID: 38641218 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/10/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND F-actin is involved in the progression of ischemic stroke and is associated with the disruption of the blood-brain barrier. In this article, we evaluated serum F-actin as a biomarker in stroke severity and early neurological deterioration (END) in acute ischemic stroke. METHODS In this study, serum F-actin was measured in consecutively collected 140 AIS patients and 144 healthy controls matched in gender and age by ELISA. Early neurological deterioration (END) was defined as the deterioration of neurological dysfunction within 72 hours of admission, with an increase of ≥ 4 points in the NIHSS score. Severe stroke was defined as a NIHSS score>8 at admission. RESULTS The serum F-actin level in AIS was significantly higher than healthy controls (p = 0.041). In large-artery atherosclerosis stroke and cardioembolic stroke, serum F-actin were significantly higher than that in small artery occlusion stroke (padjust = 0.019, padjust < 0.001, respectively).F-actin level above the critical value (>1.37 µg/L) was significantly associated with severe stroke (OR, 3.015; 95 %CI, 1.014-8.963; p = 0.047) . In addition, elevated level of F-actin was significantly associated with END (OR, 1.323; 95 % CI, 1.001-1.747, p = 0.049). When the level of F-actin was above the critical value (>2.17 µg/L), its association with END remained significant (OR, 6.303; 95 %CI, 2.160-18.394; p < 0.001) . CONCLUSION F-actin is an important blood biomarker in the early stage of AIS, and high levels of F-actin are valuable in determining the severity of stroke and predicting early neurological deterioration.
Collapse
Affiliation(s)
- Jiaqian Li
- Department of Neurology, Zhoushan Hospital, Zhejiang University, School of Medicine, Zhoushan, 316000, Zhejiang Province, China
| | - Binda Wang
- Department of Neurology, Zhoushan Hospital, Zhejiang University, School of Medicine, Zhoushan, 316000, Zhejiang Province, China
| | - Fangyu Dai
- Department of Neurology, Zhoushan Hospital, Zhejiang University, School of Medicine, Zhoushan, 316000, Zhejiang Province, China
| | - Xuelian Kou
- Department of Neurology, Zhoushan Hospital, Zhejiang University, School of Medicine, Zhoushan, 316000, Zhejiang Province, China
| | - Guangyong Wu
- Department of Neurology, Zhoushan Hospital, Zhejiang University, School of Medicine, Zhoushan, 316000, Zhejiang Province, China
| | - Bin Wu
- Department of Neurology, Zhoushan Hospital, Zhejiang University, School of Medicine, Zhoushan, 316000, Zhejiang Province, China
| | - Jie Xu
- Department of Neurology, Zhoushan Hospital, Zhejiang University, School of Medicine, Zhoushan, 316000, Zhejiang Province, China
| | - Lulan Pan
- Department of Neurology, Zhoushan Hospital, Zhejiang University, School of Medicine, Zhoushan, 316000, Zhejiang Province, China
| | - Jingjing Liu
- Department of Neurology, Zhoushan Hospital, Zhejiang University, School of Medicine, Zhoushan, 316000, Zhejiang Province, China
| | - Songbin He
- Department of Neurology, Zhoushan Hospital, Zhejiang University, School of Medicine, Zhoushan, 316000, Zhejiang Province, China
| | - Feng Gao
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
4
|
Du Y, Zhu P, Li Y, Yu J, Xia T, Chang X, Zhu H, Li R, He Q. DNA-PKcs Phosphorylates Cofilin2 to Induce Endothelial Dysfunction and Microcirculatory Disorder in Endotoxemic Cardiomyopathy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0331. [PMID: 38550779 PMCID: PMC10976589 DOI: 10.34133/research.0331] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/09/2024] [Indexed: 11/12/2024]
Abstract
The presence of endotoxemia is strongly linked to the development of endothelial dysfunction and disruption of myocardial microvascular reactivity. These factors play a crucial role in the progression of endotoxemic cardiomyopathy. Sepsis-related multiorgan damage involves the participation of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs). However, whether DNA-PKcs contributes to endothelial dysfunction and myocardial microvascular dysfunction during endotoxemia remains unclear. Hence, we conducted experiments in mice subjected to lipopolysaccharide (LPS)-induced endotoxemic cardiomyopathy, as well as assays in primary mouse cardiac microvascular endothelial cells. Results showed that endothelial-cell-specific DNA-PKcs ablation markedly attenuated DNA damage, sustained microvessel perfusion, improved endothelial barrier function, inhibited capillary inflammation, restored endothelium-dependent vasodilation, and improved heart function under endotoxemic conditions. Furthermore, we show that upon LPS stress, DNA-PKcs recognizes a TQ motif in cofilin2 and consequently induces its phosphorylation at Thr25. Phosphorylated cofilin2 shows increased affinity for F-actin and promotes F-actin depolymerization, resulting into disruption of the endothelial barrier integrity, microvascular inflammation, and defective eNOS-dependent vasodilation. Accordingly, cofilin2-knockin mice expressing a phospho-defective (T25A) cofilin2 mutant protein showed improved endothelial integrity and myocardial microvascular function upon induction of endotoxemic cardiomyopathy. These findings highlight a novel mechanism whereby DNA-PKcs mediates cofilin2Thr25 phosphorylation and subsequent F-actin depolymerization to contribute to endotoxemia-related cardiac microvascular dysfunction.
Collapse
Affiliation(s)
- Yingzhen Du
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital,
Medical School of Chinese PLA, Beijing 100853, China
| | - Pingjun Zhu
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital,
Medical School of Chinese PLA, Beijing 100853, China
| | - Yukun Li
- Department of Cardiology, Beijing Anzhen Hospital,
Capital Medical University, Beijing 100029, China
| | - Jiachi Yu
- The First Medical Centre,
Medical School of Chinese People’s Liberation Army, Beijing, China
| | - Tian Xia
- The First Medical Centre,
Medical School of Chinese People’s Liberation Army, Beijing, China
| | - Xing Chang
- Guang’anmen Hospital,
China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Hang Zhu
- The First Medical Centre,
Medical School of Chinese People’s Liberation Army, Beijing, China
| | - Ruibing Li
- The First Medical Centre,
Medical School of Chinese People’s Liberation Army, Beijing, China
| | - Qingyong He
- Guang’anmen Hospital,
China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
5
|
Shehjar F, Almarghalani DA, Mahajan R, Hasan SAM, Shah ZA. The Multifaceted Role of Cofilin in Neurodegeneration and Stroke: Insights into Pathogenesis and Targeting as a Therapy. Cells 2024; 13:188. [PMID: 38247879 PMCID: PMC10814918 DOI: 10.3390/cells13020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
This comprehensive review explores the complex role of cofilin, an actin-binding protein, across various neurodegenerative diseases (Alzheimer's, Parkinson's, schizophrenia, amyotrophic lateral sclerosis (ALS), Huntington's) and stroke. Cofilin is an essential protein in cytoskeletal dynamics, and any dysregulation could lead to potentially serious complications. Cofilin's involvement is underscored by its impact on pathological hallmarks like Aβ plaques and α-synuclein aggregates, triggering synaptic dysfunction, dendritic spine loss, and impaired neuronal plasticity, leading to cognitive decline. In Parkinson's disease, cofilin collaborates with α-synuclein, exacerbating neurotoxicity and impairing mitochondrial and axonal function. ALS and frontotemporal dementia showcase cofilin's association with genetic factors like C9ORF72, affecting actin dynamics and contributing to neurotoxicity. Huntington's disease brings cofilin into focus by impairing microglial migration and influencing synaptic plasticity through AMPA receptor regulation. Alzheimer's, Parkinson's, and schizophrenia exhibit 14-3-3 proteins in cofilin dysregulation as a shared pathological mechanism. In the case of stroke, cofilin takes center stage, mediating neurotoxicity and neuronal cell death. Notably, there is a potential overlap in the pathologies and involvement of cofilin in various diseases. In this context, referencing cofilin dysfunction could provide valuable insights into the common pathologies associated with the aforementioned conditions. Moreover, this review explores promising therapeutic interventions, including cofilin inhibitors and gene therapy, demonstrating efficacy in preclinical models. Challenges in inhibitor development, brain delivery, tissue/cell specificity, and long-term safety are acknowledged, emphasizing the need for precision drug therapy. The call to action involves collaborative research, biomarker identification, and advancing translational efforts. Cofilin emerges as a pivotal player, offering potential as a therapeutic target. However, unraveling its complexities requires concerted multidisciplinary efforts for nuanced and effective interventions across the intricate landscape of neurodegenerative diseases and stroke, presenting a hopeful avenue for improved patient care.
Collapse
Affiliation(s)
- Faheem Shehjar
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA; (F.S.); (R.M.)
| | - Daniyah A. Almarghalani
- Stroke Research Unit, Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Reetika Mahajan
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA; (F.S.); (R.M.)
| | - Syed A.-M. Hasan
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA;
| | - Zahoor A. Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA; (F.S.); (R.M.)
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA;
| |
Collapse
|
6
|
Al Yacoub ON, Tarantini S, Zhang Y, Csiszar A, Standifer KM. The Nociceptin/Orphanin FQ peptide receptor antagonist, SB-612111, improves cerebral blood flow in a rat model of traumatic brain injury. Front Pharmacol 2023; 14:1272969. [PMID: 37920208 PMCID: PMC10618424 DOI: 10.3389/fphar.2023.1272969] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023] Open
Abstract
Traumatic brain injury (TBI) affects more than 2.5 million people in the U.S. each year and is the leading cause of death and disability in children and adults ages 1 to 44. Approximately 90% of TBI cases are classified as mild but may still lead to acute detrimental effects such as impaired cerebral blood flow (CBF) that result in prolonged impacts on brain function and quality of life in up to 15% of patients. We previously reported that nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptor antagonism reversed mild blast TBI-induced vestibulomotor deficits and prevented hypoxia. To explore mechanisms by which the NOP receptor-N/OFQ pathway modulates hypoxia and other TBI sequelae, the ability of the NOP antagonist, SB-612111 (SB), to reverse TBI-induced CBF and associated injury marker changes were tested in this study. Male Wistar rats randomly received sham craniotomy or craniotomy + TBI via controlled cortical impact. Injury severity was assessed after 1 h (modified neurological severity score (mNSS). Changes in CBF were assessed 2 h post-injury above the exposed cortex using laser speckle contrast imaging in response to the direct application of increasing concentrations of vehicle or SB (1, 10, and 100 µM) to the brain surface. TBI increased mNSS scores compared to baseline and confirmed mild TBI (mTBI) severity. CBF was significantly impaired on the ipsilateral side of the brain following mTBI, compared to contralateral side and to sham rats. SB dose-dependently improved CBF on the ipsilateral side after mTBI compared to SB effects on the respective ipsilateral side of sham rats but had no effect on contralateral CBF or in uninjured rats. N/OFQ levels increased in the cerebral spinal fluid (CSF) following mTBI, which correlated with the percent decrease in ipsilateral CBF. TBI also activated ERK and cofilin within 3 h post-TBI; ERK activation correlated with increased CSF N/OFQ. In conclusion, this study reveals a significant contribution of the N/OFQ-NOP receptor system to TBI-induced dysregulation of cerebral vasculature and suggests that the NOP receptor should be considered as a potential therapeutic target for TBI.
Collapse
Affiliation(s)
- Omar N. Al Yacoub
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Stefano Tarantini
- Department of Neurosurgery, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Stephenson Cancer Center, Oklahoma City, OK, United States
| | - Yong Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Anna Csiszar
- Department of Neurosurgery, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Kelly M. Standifer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
7
|
Yang ZH, Liu YJ, Ban WK, Liu HB, Lv LJ, Zhang BY, Liu AL, Hou ZY, Lu J, Chen X, You YY. Pterostilbene alleviated cerebral ischemia/reperfusion-induced blood-brain barrier dysfunction via inhibiting early endothelial cytoskeleton reorganization and late basement membrane degradation. Food Funct 2023; 14:8291-8308. [PMID: 37602757 DOI: 10.1039/d3fo02639f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Pterostilbene, an important analogue of the star molecule resveratrol and a novel compound naturally occurring in blueberries and grapes, exerts a significant neuroprotective effect on cerebral ischemia/reperfusion (I/R), but its mechanism is still unclear. This study aimed to follow the molecular mechanisms behind the potential protective effect of pterostilbene against I/R induced injury. For fulfilment of our aim, we investigated the protective effects of pterostilbene on I/R injury caused by middle cerebral artery occlusion (MCAO) in vivo and oxygen-glucose deprivation (OGD) in vitro. Machine learning models and molecular docking were used for target exploration and validated by western blotting. Pterostilbene significantly reduced the cerebral infarction volume, improved neurological deficits, increased cerebral microcirculation and improved blood-brain barrier (BBB) leakage. Machine learning models confirmed that the stroke target MMP-9 bound to pterostilbene, and molecular docking demonstrated the strong binding activity. We further found that pterostilbene could depolymerize stress fibers and maintain the cytoskeleton by effectively increasing the expression of the non-phosphorylated actin depolymerizing factor (ADF) in the early stage of I/R. In the late stage of I/R, pterostilbene could activate the Wnt pathway and inhibit the expression of MMP-9 to decrease the degradation of the extracellular basement membrane (BM) and increase the expression of junction proteins. In this study, we explored the protective mechanisms of pterostilbene in terms of both endothelial cytoskeleton and extracellular matrix. The early and late protective effects jointly maintain BBB stability and attenuate I/R injury, showing its potential to be a promising drug candidate for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Zhi-Hong Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Ye-Ju Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Wei-Kang Ban
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Hai-Bo Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Ling-Juan Lv
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Bao-Yue Zhang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ai-Lin Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zi-Yu Hou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Juan Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Xi Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Yu-Yang You
- Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
8
|
Akhter MS, Kubra KT, Barabutis N. Protective effects of GHRH antagonists against hydrogen peroxide-induced lung endothelial barrier disruption. Endocrine 2023; 79:587-592. [PMID: 36261700 PMCID: PMC9581763 DOI: 10.1007/s12020-022-03226-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/04/2022] [Indexed: 12/02/2022]
Abstract
PURPOSE Growth hormone-releasing hormone (GHRH) is a hypothalamic hormone, which regulates growth hormone release from the anterior pituitary gland. GHRH antagonists (GHRHAnt) are anticancer agents, which also exert robust anti-inflammatory activities in malignancies. GHRHAnt exhibit anti-oxidative and anti-inflammatory effects in vascular endothelial cells, indicating their potential use against disorders related to barrier dysfunction (e.g. sepsis). Herein, we aim to investigate the effects of GHRHAnt against lung endothelial hyperpermeability. METHODS The in vitro effects of GHRHAnt in H2O2-induced endothelial barrier dysfunction were investigated in bovine pulmonary artery endothelial cells (BPAEC). Electric cell-substrate impedance sensing (ECIS) was utilized to measure transendothelial resistance, an indicator of barrier function. RESULTS Our results demonstrate that GHRHAnt protect against H2O2-induced endothelial barrier disruption via P53 and cofilin modulation. Both proteins are crucial modulators of vascular integrity. Moreover, GHRHAnt prevent H2O2 - induced decrease in transendothelial resistance. CONCLUSIONS GHRHAnt represent a promising therapeutic intervention towards diseases related to lung endothelial hyperpermeability, such as acute respiratory distress syndrome - related or not to COVID-19 - and sepsis. Targeted medicine for those potentially lethal disorders does not exist.
Collapse
Affiliation(s)
- Mohammad S Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| | - Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA.
| |
Collapse
|
9
|
Saydakova S, Morozova K, Snytnikova O, Morozova M, Boldyreva L, Kiseleva E, Tsentalovich Y, Kozhevnikova E. The Effect of Dietary Phospholipids on the Ultrastructure and Function of Intestinal Epithelial Cells. Int J Mol Sci 2023; 24:ijms24021788. [PMID: 36675301 PMCID: PMC9866517 DOI: 10.3390/ijms24021788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Dietary composition substantially determines human health and affects complex diseases, including obesity, inflammation and cancer. Thus, food supplements have been widely used to accommodate dietary composition to the needs of individuals. Among the promising supplements are dietary phospholipids (PLs) that are commonly found as natural food ingredients and as emulsifier additives. The aim of the present study was to evaluate the effect of major PLs found as food supplements on the morphology of intestinal epithelial cells upon short-term and long-term high-dose feeding in mice. In the present report, the effect of short-term and long-term high dietary PL content was studied in terms of intestinal health and leaky gut syndrome in male mice. We used transmission electron microscopy to evaluate endothelial morphology at the ultrastructural level. We found mitochondrial damage and lipid droplet accumulation in the intracristal space, which rendered mitochondria more sensitive to respiratory uncoupling as shown by a mitochondrial respiration assessment in the intestinal crypts. However, this mitochondrial damage was insufficient to induce intestinal permeability. We propose that high-dose PL treatment impairs mitochondrial morphology and acts through extensive membrane utilization via the mitochondria. The data suggest that PL supplementation should be used with precaution in individuals with mitochondrial disorders.
Collapse
Affiliation(s)
- Snezhanna Saydakova
- Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia
| | - Ksenia Morozova
- The Federal Research Center Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Olga Snytnikova
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia
| | - Maryana Morozova
- Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia
| | - Lidiya Boldyreva
- Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia
| | - Elena Kiseleva
- The Federal Research Center Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
| | | | - Elena Kozhevnikova
- Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia
- Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
- Novosibirsk State Agrarian University, 630039 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
10
|
Zieliński T, Pabijan J, Zapotoczny B, Zemła J, Wesołowska J, Pera J, Lekka M. Changes in nanomechanical properties of single neuroblastoma cells as a model for oxygen and glucose deprivation (OGD). Sci Rep 2022; 12:16276. [PMID: 36175469 PMCID: PMC9523022 DOI: 10.1038/s41598-022-20623-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022] Open
Abstract
Although complex, the biological processes underlying ischemic stroke are better known than those related to biomechanical alterations of single cells. Mechanisms of biomechanical changes and their relations to the molecular processes are crucial for understanding the function and dysfunction of the brain. In our study, we applied atomic force microscopy (AFM) to quantify the alterations in biomechanical properties in neuroblastoma SH-SY5Y cells subjected to oxygen and glucose deprivation (OGD) and reoxygenation (RO). Obtained results reveal several characteristics. Cell viability remained at the same level, regardless of the OGD and RO conditions, but, in parallel, the metabolic activity of cells decreased with OGD duration. 24 h RO did not recover the metabolic activity fully. Cells subjected to OGD appeared softer than control cells. Cell softening was strongly present in cells after 1 h of OGD and with longer OGD duration, and in RO conditions, cells recovered their mechanical properties. Changes in the nanomechanical properties of cells were attributed to the remodelling of actin filaments, which was related to cofilin-based regulation and impaired metabolic activity of cells. The presented study shows the importance of nanomechanics in research on ischemic-related pathological processes such as stroke.
Collapse
Affiliation(s)
- Tomasz Zieliński
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342, Kraków, Poland
| | - Joanna Pabijan
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342, Kraków, Poland
| | - Bartłomiej Zapotoczny
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342, Kraków, Poland
| | - Joanna Zemła
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342, Kraków, Poland
| | - Julita Wesołowska
- Laboratory of in Vivo and in Vitro Imaging, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31343, Kraków, Poland
| | - Joanna Pera
- Department of Neurology, Faculty of Medicine, Jagiellonian University Medical College, Botaniczna 3, 31503, Kraków, Poland
| | - Małgorzata Lekka
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342, Kraków, Poland.
| |
Collapse
|
11
|
Kubra KT, Uddin MA, Akhter MS, Leo AJ, Siejka A, Barabutis N. P53 mediates the protective effects of metformin in inflamed lung endothelial cells. Int Immunopharmacol 2021; 101:108367. [PMID: 34794886 DOI: 10.1016/j.intimp.2021.108367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/26/2021] [Accepted: 11/09/2021] [Indexed: 02/08/2023]
Abstract
The endothelial barrier regulates interstitial fluid homeostasis by transcellular and paracellular means. Dysregulation of this semipermeable barrier may lead to vascular leakage, edema, and accumulation of pro-inflammatory cytokines, inducing microvascular hyperpermeability. Investigating the molecular pathways involved in those events will most probably provide novel therapeutic possibilities in pathologies related to endothelial barrier dysfunction. Metformin (MET) is an anti-diabetic drug, opposes malignancies, inhibits cellular transformation, and promotes cardiovascular protection. In the current study, we assess the protective effects of MET in LPS-induced lung endothelial barrier dysfunction and evaluate the role of P53 in mediating the beneficial effects of MET in the vasculature. We revealed that this biguanide (MET) opposes the LPS-induced dysregulation of the lung microvasculature, since it suppressed the formation of filamentous actin stress fibers, and deactivated cofilin. To investigate whether P53 is involved in those phenomena, we employed the fluorescein isothiocyanate (FITC) - dextran permeability assay, to measure paracellular permeability. Our observations suggest that P53 inhibition increases paracellular permeability, and MET prevents those effects. Our results contribute towards the understanding of the lung endothelium and reveal the significant role of P53 in the MET-induced barrier enhancement.
Collapse
Affiliation(s)
- Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Mohammad A Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Mohammad S Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Antoinette J Leo
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Agnieszka Siejka
- Department of Clinical Endocrinology, Medical University of Lodz, Lodz, Poland
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.
| |
Collapse
|
12
|
Wu F, Chipman A, Dong JF, Kozar RA. Fibrinogen Activates PAK1/Cofilin Signaling Pathway to Protect Endothelial Barrier Integrity. Shock 2021; 55:660-665. [PMID: 32433215 PMCID: PMC8211399 DOI: 10.1097/shk.0000000000001564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION We recently demonstrated that fibrinogen stabilizes syndecan-1 on the endothelial cell (EC) surface and contributes to EC barrier protection, though the intracellular signaling pathway remains unclear. P21 (Rac1) activated kinase 1 (PAK1) is a protein kinase involved in intracellular signaling leading to actin cytoskeleton rearrangement and plays an important role in maintaining endothelial barrier integrity. We therefore hypothesized that fibrinogen binding to syndecan-1 activated the PAK1 pathway. METHODS Primary human lung microvascular endothelial cells were incubated in 10% lactated Ringers (LR) solution or 10% fibrinogen saline solution (5 mg/mL). Protein phosphorylation was determined by Western blot analysis and endothelial permeability measured by fluorescein isothiocyanate (FITC)-dextran. Cells were silenced by siRNA transfection. Protein concentration was measured in the lung lavages of mice. RESULTS Fibrinogen treatment resulted in increased syndecan-1, PAK1 activation (phosphorylation), cofilin activation (dephosphorylation), as well as decreased stress fibers and permeability when compared with LR treatment. Cofilin is an actin-binding protein that depolymerizes F-actin to decrease stress fiber formation. Notably, fibrinogen did not influence myosin light chain activation (phosphorylation), a mediator of EC tension. Silencing of PAK1 prevented fibrinogen-induced dephosphorylation of cofilin and barrier integrity. Moreover, to confirm the in vitro findings, mice underwent hemorrhagic shock and were resuscitated with either LR or fibrinogen. Hemorrhage shock decreased lung p-PAK1 levels and caused significant lung vascular leakage. However, fibrinogen administration increased p-PAK1 expression to near sham levels and remarkably prevented the lung leakage. CONCLUSION We have identified a novel pathway by which fibrinogen activates PAK1 signaling to stimulate/dephosphorylate cofilin, leading to disassembly of stress fibers and reduction of endothelial permeability.
Collapse
Affiliation(s)
- Feng Wu
- Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD
| | - Amanda Chipman
- Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD
| | - Jing-Fei Dong
- Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Rosemary Ann Kozar
- Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
13
|
Mucin-2 knockout is a model of intercellular junction defects, mitochondrial damage and ATP depletion in the intestinal epithelium. Sci Rep 2020; 10:21135. [PMID: 33273633 PMCID: PMC7713437 DOI: 10.1038/s41598-020-78141-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
The disruption of the protective intestinal barrier—the ‘leaky gut’—is a common complication of the inflammatory bowel disease. There is limited data on the mechanisms of the intestinal barrier disruption upon low-grade inflammation characteristic of patients with inflammatory bowel disease in clinical remission. Thus, animal models that recapitulate the complexity of chronic intestinal inflammation in vivo are of particular interest. In this study, we used Mucin-2 (Muc2) knockout mice predisposed to colitis to study intestinal barrier upon chronic inflammation. We used 4-kDa FITC-Dextran assay and transmission electron microscopy to demonstrate the increased intestinal permeability and morphological defects in intercellular junctions in Muc2 knockout mice. Confocal microscopy revealed the disruption of the apical F-actin cytoskeleton and delocalization of tight junction protein Claudin-3 from the membrane. We further demonstrate mitochondrial damage, impaired oxygen consumption and the reduction of the intestinal ATP content in Muc2 knockout mice. Finally, we show that chemically induced mitochondrial uncoupling in the wild type mice mimics the intestinal barrier disruption in vivo and causes partial loss of F-actin and membrane localization of Claudin-3. We propose that mitochondrial damage and metabolic shifts during chronic inflammation contribute to the leaky gut syndrome in Muc2 knockout animal model of colitis.
Collapse
|
14
|
Lee MJ, Jang Y, Han J, Kim SJ, Ju X, Lee YL, Cui J, Zhu J, Ryu MJ, Choi SY, Chung W, Heo C, Yi HS, Kim HJ, Huh YH, Chung SK, Shong M, Kweon GR, Heo JY. Endothelial-specific Crif1 deletion induces BBB maturation and disruption via the alteration of actin dynamics by impaired mitochondrial respiration. J Cereb Blood Flow Metab 2020; 40:1546-1561. [PMID: 31987007 PMCID: PMC7308523 DOI: 10.1177/0271678x19900030] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cerebral endothelial cells (ECs) require junctional proteins to maintain blood-brain barrier (BBB) integrity, restricting toxic substances and controlling peripheral immune cells with a higher concentration of mitochondria than ECs of peripheral capillaries. The mechanism underlying BBB disruption by defective mitochondrial oxidative phosphorylation (OxPhos) is unclear in a mitochondria-related gene-targeted animal model. To assess the role of EC mitochondrial OxPhos function in the maintenance of the BBB, we developed an EC-specific CR6-interactin factor1 (Crif1) deletion mouse. We clearly observed defects in motor behavior, uncompacted myelin and leukocyte infiltration caused by BBB maturation and disruption in this mice. Furthermore, we investigated the alteration in the actin cytoskeleton, which interacts with junctional proteins to support BBB integrity. Loss of Crif1 led to reorganization of the actin cytoskeleton and a decrease in tight junction-associated protein expression through an ATP production defect in vitro and in vivo. Based on these results, we suggest that mitochondrial OxPhos is important for the maturation and maintenance of BBB integrity by supplying ATP to cerebral ECs.
Collapse
Affiliation(s)
- Min Joung Lee
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea.,Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Yunseon Jang
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea.,Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jeongsu Han
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Soo J Kim
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea.,Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Xianshu Ju
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Yu Lim Lee
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jianchen Cui
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jiebo Zhu
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea.,Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Min Jeong Ryu
- Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Song-Yi Choi
- Department of Pathology, Chungnam National University, Daejeon, Republic of Korea
| | - Woosuk Chung
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Anesthesiology and Pain Medicine, School of Medicine, Chungnam National University, Daejeon, Republic of Korea.,Department of Anesthesiology and Pain medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Chaejeong Heo
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon, South Korea.,Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, South Korea
| | - Hyon-Seung Yi
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Hyun Jin Kim
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Yang H Huh
- Electron Microscopy Research Center, Korea Basic Science Institute, Cheongju, Chungcheongbukdo, Republic of Korea
| | - Sookja K Chung
- Medical Faculty at Macau University of Science and Technology, Taipa, Macau
| | - Minho Shong
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea.,Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Gi-Ryang Kweon
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Jun Young Heo
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea.,Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
15
|
Zhang Y, Hu Y, Li M, Wang J, Guo G, Li F, Yu B, Kou J. The Traditional Chinese Medicine Compound, GRS, Alleviates Blood-Brain Barrier Dysfunction. Drug Des Devel Ther 2020; 14:933-947. [PMID: 32184562 PMCID: PMC7053822 DOI: 10.2147/dddt.s229302] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/10/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction Traditional Chinese medicine (TCM) provides unique advantages for treatment of ischemic stroke, an aging-related vascular disease. Shengmai powder (GRS) is composed of three active components, specifically, ginsenoside Rb1, ruscogenin and schisandrin A, at a ratio of 6:0.75:6. The main objective of this study was to evaluate the effects of GRS on blood–brain barrier (BBB) dysfunction under conditions of middle cerebral artery occlusion/reperfusion (MCAO/R). Methods C57BL/6J mice subjected to MCAO/R were used as a model to assess the protective effects of varying doses of GRS (6.4, 12.8, and 19.2 mg/kg) on BBB dysfunction. Results GRS reduced cerebral infarct volume and degree of brain tissue damage, improved behavioral scores, decreased water content and BBB permeability, and restored cerebral blood flow. Moreover, GRS promoted expression of zona occludens-1 (ZO-1) and claudin-5 while inhibiting matrix metalloproteinase 2/9 (MMP-2/9) expression and myosin light chain (MLC) phosphorylation. In vitro, GRS (1, 10, and 100 ng/mL) enhanced the viability of bEnd.3 cells subjected to oxygen glucose deprivation/reoxygenation (OGD/R) and decreased sodium fluorescein permeability. Conclusion Consistent with in vivo findings, ZO-1 and claudin-5 were significantly upregulated by GRS in bEnd.3 cells under OGD/R and MMP-2/9 levels and MLC phosphorylation reduced through the Rho-associated coil-forming protein kinase (ROCK)/cofilin signaling pathway. Based on the collective findings, we propose that the TCM compound, GRS, plays a protective role against I/R-induced BBB dysfunction.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yang Hu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Min Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jieman Wang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Gengshuo Guo
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Fang Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Junping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
16
|
Guo C, Goodwin A, Buie JNJ, Cook J, Halushka P, Argraves K, Zingarelli B, Zhang X, Wang L, Fan H. A Stromal Cell-Derived Factor 1α Analogue Improves Endothelial Cell Function in Lipopolysaccharide-Induced Acute Respiratory Distress Syndrome. Mol Med 2016; 22:115-123. [PMID: 27031787 DOI: 10.2119/molmed.2015.00240] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/02/2016] [Indexed: 12/19/2022] Open
Abstract
Endothelial cell (EC) dysfunction is a critical mediator of the acute respiratory distress syndrome (ARDS). Recent studies have demonstrated that stromal cell-derived factor 1α (SDF-1α) promotes EC barrier integrity. Our previous studies used a SDF-1α analogue CTCE-0214 (CTCE) in experimental sepsis and demonstrated that it attenuated vascular leak and modulated microRNA (miR) levels. We examined the hypothesis that CTCE improves EC function in lipopolysaccharide (LPS)-induced ARDS through increasing miR-126 expression. Human microvascular endothelial cells (HMVECs) were treated with thrombin to disrupt the EC integrity followed by incubation with CTCE or SDF-1α. Barrier function was determined by trans-endothelial electrical resistance assay. CTCE-induced alterations in miRNA expression and signaling pathways involved in barrier function were determined. Thrombin-induced vascular leak was abrogated by both CTCE and SDF-1α. CTCE also prevented thrombin-induced decreases of vascular endothelial (VE)-cadherin cell surface expression and expansion of the intercellular space. CTCE increased miR-126 levels and induced activation of AKT/Rac 1 signaling. Cotreatment with a miR-126 inhibitor blocked the protective effects of CTCE on AKT activation and endothelial permeability. In subsequent in vivo studies, ARDS was induced by intratracheal instillation of LPS. Intravenous injection of CTCE diminished the injury severity as evidenced by significant reductions in protein, immune cells, inflammatory cytokines and chemokines in the bronchoalveolar lavage fluid, increased miR-126 expression and decreased pulmonary vascular leak and alveolar edema. Taken together, our data show that CTCE improves endothelial barrier integrity through increased expression of miR-126 and activation of Rac 1 signaling and represents an important potential therapeutic strategy in ARDS.
Collapse
Affiliation(s)
- Changrun Guo
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, United States of America.,College of Life Science, Jilin University, Changchun, China
| | - Andrew Goodwin
- Pulmonary, Critical Care, Allergy, and Sleep Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Joy N Jones Buie
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - James Cook
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Perry Halushka
- Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America.,Pharmacology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Kelley Argraves
- Regenerative Medicine and Cell Biology; Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Basilia Zingarelli
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Xian Zhang
- Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Liping Wang
- College of Life Science, Jilin University, Changchun, China
| | - Hongkuan Fan
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, United States of America.,Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| |
Collapse
|
17
|
Shi Y, Zhang L, Pu H, Mao L, Hu X, Jiang X, Xu N, Stetler RA, Zhang F, Liu X, Leak RK, Keep RF, Ji X, Chen J. Rapid endothelial cytoskeletal reorganization enables early blood-brain barrier disruption and long-term ischaemic reperfusion brain injury. Nat Commun 2016; 7:10523. [PMID: 26813496 PMCID: PMC4737895 DOI: 10.1038/ncomms10523] [Citation(s) in RCA: 303] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 12/22/2015] [Indexed: 12/26/2022] Open
Abstract
The mechanism and long-term consequences of early blood–brain barrier (BBB) disruption after cerebral ischaemic/reperfusion (I/R) injury are poorly understood. Here we discover that I/R induces subtle BBB leakage within 30–60 min, likely independent of gelatinase B/MMP-9 activities. The early BBB disruption is caused by the activation of ROCK/MLC signalling, persistent actin polymerization and the disassembly of junctional proteins within microvascular endothelial cells (ECs). Furthermore, the EC alterations facilitate subsequent infiltration of peripheral immune cells, including MMP-9-producing neutrophils/macrophages, resulting in late-onset, irreversible BBB damage. Inactivation of actin depolymerizing factor (ADF) causes sustained actin polymerization in ECs, whereas EC-targeted overexpression of constitutively active mutant ADF reduces actin polymerization and junctional protein disassembly, attenuates both early- and late-onset BBB impairment, and improves long-term histological and neurological outcomes. Thus, we identify a previously unexplored role for early BBB disruption in stroke outcomes, whereby BBB rupture may be a cause rather than a consequence of parenchymal cell injury. Matrix metalloproteinases (MMPs) released from infiltrating immune cells are a major contributor to blood-brain barrier (BBB) breakdown following stroke. Here, the authors identify an early, MMP-independent BBB breakdown mechanism caused by rapid cytoskeletal rearrangements in endothelial cells, which could be inhibited by ADF.
Collapse
Affiliation(s)
- Yejie Shi
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.,China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Lili Zhang
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.,State Key Laboratory of Medical Neurobiology, Institute of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.,Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania 15261, USA
| | - Hongjian Pu
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.,State Key Laboratory of Medical Neurobiology, Institute of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Leilei Mao
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.,State Key Laboratory of Medical Neurobiology, Institute of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Xiaoming Hu
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.,State Key Laboratory of Medical Neurobiology, Institute of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.,Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania 15261, USA
| | - Xiaoyan Jiang
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.,State Key Laboratory of Medical Neurobiology, Institute of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Na Xu
- State Key Laboratory of Medical Neurobiology, Institute of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - R Anne Stetler
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.,State Key Laboratory of Medical Neurobiology, Institute of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.,Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania 15261, USA
| | - Feng Zhang
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.,State Key Laboratory of Medical Neurobiology, Institute of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.,Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania 15261, USA
| | - Xiangrong Liu
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.,China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Xunming Ji
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Jun Chen
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.,State Key Laboratory of Medical Neurobiology, Institute of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.,Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania 15261, USA
| |
Collapse
|
18
|
Cofilin as a Promising Therapeutic Target for Ischemic and Hemorrhagic Stroke. Transl Stroke Res 2015; 7:33-41. [PMID: 26670926 DOI: 10.1007/s12975-015-0438-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/01/2015] [Accepted: 12/03/2015] [Indexed: 01/22/2023]
Abstract
Neurovascular unit (NVU) is considered as a conceptual framework for investigating the mechanisms as well as developing therapeutic targets for ischemic and hemorrhagic stroke. From a molecular perspective, oxidative stress, excitotoxicity, inflammation, and disruption of the blood brain barrier are broad pathophysiological frameworks on the basis on which potential therapeutic candidates for ischemic and hemorrhagic stroke could be discussed. Cofilin is a potent actin-binding protein that severs and depolymerizes actin filaments in order to generate the dynamics of the actin cytoskeleton. Although studies of the molecular mechanisms of cofilin-induced reorganization of the actin cytoskeleton have been ongoing for decades, the multicellular functions of cofilin and its regulation in different molecular pathways are expanding beyond its primary role in actin cytoskeleton. This review focuses on the role of cofilin in oxidative stress, excitotoxicity, inflammation, and disruption of the blood brain barrier in the context of NVU as well as how and why cofilin could be studied further as a potential target for ischemic and hemorrhagic stroke.
Collapse
|
19
|
Jodoin JN, Coravos JS, Chanet S, Vasquez CG, Tworoger M, Kingston ER, Perkins LA, Perrimon N, Martin AC. Stable Force Balance between Epithelial Cells Arises from F-Actin Turnover. Dev Cell 2015; 35:685-97. [PMID: 26688336 DOI: 10.1016/j.devcel.2015.11.018] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/08/2015] [Accepted: 11/17/2015] [Indexed: 01/06/2023]
Abstract
The propagation of force in epithelial tissues requires that the contractile cytoskeletal machinery be stably connected between cells through E-cadherin-containing adherens junctions. In many epithelial tissues, the cells' contractile network is positioned at a distance from the junction. However, the mechanism or mechanisms that connect the contractile networks to the adherens junctions, and thus mechanically connect neighboring cells, are poorly understood. Here, we identified the role for F-actin turnover in regulating the contractile cytoskeletal network's attachment to adherens junctions. Perturbing F-actin turnover via gene depletion or acute drug treatments that slow F-actin turnover destabilized the attachment between the contractile actomyosin network and adherens junctions. Our work identifies a critical role for F-actin turnover in connecting actomyosin to intercellular junctions, defining a dynamic process required for the stability of force balance across intercellular contacts in tissues.
Collapse
Affiliation(s)
- Jeanne N Jodoin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jonathan S Coravos
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Soline Chanet
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Claudia G Vasquez
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Michael Tworoger
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Elena R Kingston
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
20
|
Dengue Virus-Induced Inflammation of the Endothelium and the Potential Roles of Sphingosine Kinase-1 and MicroRNAs. Mediators Inflamm 2015; 2015:509306. [PMID: 26609198 PMCID: PMC4644833 DOI: 10.1155/2015/509306] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/02/2015] [Accepted: 10/08/2015] [Indexed: 01/24/2023] Open
Abstract
One of the main pathogenic effects of severe dengue virus (DENV) infection is a vascular leak syndrome. There are no available antivirals or specific DENV treatments and without hospital support severe DENV infection can be life-threatening. The cause of the vascular leakage is permeability changes in the endothelial cells lining the vasculature that are brought about by elevated vasoactive cytokine and chemokines induced following DENV infection. The source of these altered cytokine and chemokines is traditionally believed to be from DENV-infected cells such as monocyte/macrophages and dendritic cells. Herein we discuss the evidence for the endothelium as an additional contributor to inflammatory and innate responses during DENV infection which may affect endothelial cell function, in particular the ability to maintain vascular integrity. Furthermore, we hypothesise roles for two factors, sphingosine kinase-1 and microRNAs (miRNAs), with a focus on several candidate miRNAs, which are known to control normal vascular function and inflammatory responses. Both of these factors may be potential therapeutic targets to regulate inflammation of the endothelium during DENV infection.
Collapse
|
21
|
Proteomics approaches shed new light on hibernation physiology. J Comp Physiol B 2015; 185:607-27. [PMID: 25976608 DOI: 10.1007/s00360-015-0905-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/11/2015] [Accepted: 04/19/2015] [Indexed: 10/23/2022]
Abstract
The broad phylogenetic distribution and rapid phenotypic transitions of mammalian hibernators imply that hibernation is accomplished by differential expression of common genes. Traditional candidate gene approaches have thus far explained little of the molecular mechanisms underlying hibernation, likely due to (1) incomplete and imprecise sampling of a complex phenotype, and (2) the forming of hypotheses about which genes might be important based on studies of model organisms incapable of such dynamic physiology. Unbiased screening approaches, such as proteomics, offer an alternative means to discover the cellular underpinnings that permit successful hibernation and may reveal previously overlooked, important pathways. Here, we review the findings that have emerged from proteomics studies of hibernation. One striking feature is the stability of the proteome, especially across the extreme physiological shifts of torpor-arousal cycles during hibernation. This has led to subsequent investigations of the role of post-translational protein modifications in altering protein activity without energetically wasteful removal and rebuilding of protein pools. Another unexpected finding is the paucity of universal proteomic adjustments across organ systems in response to the extreme metabolic fluctuations despite the universality of their physiological challenges; rather each organ appears to respond in a unique, tissue-specific manner. Additional research is needed to extend and synthesize these results before it will be possible to address the whole body physiology of hibernation.
Collapse
|
22
|
Kohno T, Ninomiya T, Kikuchi S, Konno T, Kojima T. Staurosporine induces formation of two types of extra-long cell protrusions: actin-based filaments and microtubule-based shafts. Mol Pharmacol 2015; 87:815-24. [PMID: 25680752 DOI: 10.1124/mol.114.096982] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Staurosporine (STS) has been known as a classic protein kinase C inhibitor and is a broad-spectrum inhibitor targeting over 250 protein kinases. In this study, we observed that STS treatment induced drastic morphologic changes, such as elongation of a very large number of nonbranched, actin-based long cell protrusions that reached up to 30 µm in an hour without caspase activation or PARP cleavage in fibroblasts and epithelial cells. These cell protrusions were elongated not only from the free cell edge but also from the cell-cell junctions. The elongation of STS-dependent protrusions was required for ATP hydrolysis and was dependent on myosin-X and fascin but independent of Cdc42 and VASP. Interestingly, in the presence of an actin polymerization inhibitor, namely, cytochalasin D, latrunculin A, or jasplakinolide, STS treatment induced excess tubulin polymerization, which resulted in the formation of many extra-long microtubule (MT)-based protrusions toward the outside of the cell. The unique MT-based protrusions were thick and linear compared with the STS-induced filaments or stationary filopodia. These protrusions, which were composed of microtubules, have been scarcely observed in cultured non-neuronal cells. Taken together, our findings revealed that STS-sensitive kinases are essential for the maintenance of normal cell morphology, and a common unidentified molecular mechanism is involved in the formation of the following two different types of protrusions: actin-based filaments and MT-based shafts.
Collapse
Affiliation(s)
- Takayuki Kohno
- Department of Cell Science, Research Institute for Frontier Medicine (T.Koh., T.Kon., T.Koj.), and Department of Anatomy, Sapporo Medical University, Sapporo, Japan (T.N., S.K.)
| | - Takafumi Ninomiya
- Department of Cell Science, Research Institute for Frontier Medicine (T.Koh., T.Kon., T.Koj.), and Department of Anatomy, Sapporo Medical University, Sapporo, Japan (T.N., S.K.)
| | - Shin Kikuchi
- Department of Cell Science, Research Institute for Frontier Medicine (T.Koh., T.Kon., T.Koj.), and Department of Anatomy, Sapporo Medical University, Sapporo, Japan (T.N., S.K.)
| | - Takumi Konno
- Department of Cell Science, Research Institute for Frontier Medicine (T.Koh., T.Kon., T.Koj.), and Department of Anatomy, Sapporo Medical University, Sapporo, Japan (T.N., S.K.)
| | - Takashi Kojima
- Department of Cell Science, Research Institute for Frontier Medicine (T.Koh., T.Kon., T.Koj.), and Department of Anatomy, Sapporo Medical University, Sapporo, Japan (T.N., S.K.)
| |
Collapse
|
23
|
Madineni A, Alhadidi Q, Shah ZA. Cofilin Inhibition Restores Neuronal Cell Death in Oxygen-Glucose Deprivation Model of Ischemia. Mol Neurobiol 2014; 53:867-878. [PMID: 25526862 DOI: 10.1007/s12035-014-9056-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/08/2014] [Indexed: 11/25/2022]
Abstract
Ischemia is a condition associated with decreased blood supply to the brain, eventually leading to death of neurons. It is associated with a diverse cascade of responses involving both degenerative and regenerative mechanisms. At the cellular level, the changes are initiated prominently in the neuronal cytoskeleton. Cofilin, a cytoskeletal actin severing protein, is known to be involved in the early stages of apoptotic cell death. Evidence supports its intervention in the progression of disease states like Alzheimer's and ischemic kidney disease. In the present study, we have hypothesized the possible involvement of cofilin in ischemia. Using PC12 cells and mouse primary cultures of cortical neurons, we investigated the potential role of cofilin in ischemia in two different in vitro ischemic models: chemical induced oxidative stress and oxygen-glucose deprivation/reperfusion (OGD/R). The expression profile studies demonstrated a decrease in phosphocofilin levels in all models of ischemia, implying stress-induced cofilin activation. Furthermore, calcineurin and slingshot 1L (SSH) phosphatases were found to be the signaling mediators of the cofilin activation. In primary cultures of cortical neurons, cofilin was found to be significantly activated after 1 h of OGD. To delineate the role of activated cofilin in ischemia, we knocked down cofilin by small interfering RNA (siRNA) technique and tested the impact of cofilin silencing on neuronal viability. Cofilin siRNA-treated neurons showed a significant reduction of cofilin levels in all treatment groups (control, OGD, and OGD/R). Additionally, cofilin siRNA-reduced cofilin mitochondrial translocation and caspase 3 cleavage, with a concomitant increase in neuronal viability. These results strongly support the active role of cofilin in ischemia-induced neuronal degeneration and apoptosis. We believe that targeting this protein mediator has a potential for therapeutic intervention in ischemic brain injury and stroke.
Collapse
Affiliation(s)
- Anusha Madineni
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Qasim Alhadidi
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, 3000 Arlington Avenue, Toledo, OH, 43614, USA.,Ministry of Health, Diyala Health Directorate, Baqubah, Iraq
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, 3000 Arlington Avenue, Toledo, OH, 43614, USA.
| |
Collapse
|
24
|
da Costa MR, Pizzatti L, Lindoso RS, Sant'Anna JF, DuRocher B, Abdelhay E, Vieyra A. Mechanisms of kidney repair by human mesenchymal stromal cells after ischemia: a comprehensive view using label-free MS(E). Proteomics 2014; 14:1480-93. [PMID: 24723500 DOI: 10.1002/pmic.201300084] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 02/24/2014] [Accepted: 03/27/2014] [Indexed: 01/08/2023]
Abstract
Acute kidney injury (AKI) is one of the more frequent and lethal pathological conditions seen in intensive care units. Currently available treatments are not totally effective but stem cell-based therapies are emerging as promising alternatives, especially the use of mesenchymal stromal cells (MSC), although the signaling pathways involved in their beneficial actions are not fully understood. The objective of this study was to identify signaling networks and key proteins involved in the repair of ischemia by MSC. Using an in vitro model of AKI to investigate paracrine interactions and label-free high definition 2D-NanoESI-MS(E) , differentially expressed proteins were identified in a human renal proximal tubule cell lineage (HK-2) exposed to human MSC (hMSC) after an ischemic insult. In silico analysis showed that hMSC stimulated antiapoptotic activity, normal ROS handling, energy production, cytoskeleton organization, protein synthesis, and cell proliferation. The proteomic data were validated by parallel experiments demonstrating reduced apoptosis in HK-2 cells and recovery of intracellular ATP levels. qRT-PCR for proteins implicated in the above processes revealed that hMSC exerted their effects by stimulating translation, not transcription. Western blotting of proteins associated with ROS and energy metabolism confirmed their higher abundance in HK-2 cells exposed to hMSC.
Collapse
Affiliation(s)
- Milene R da Costa
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
25
|
Slee JB, Lowe-Krentz LJ. Actin realignment and cofilin regulation are essential for barrier integrity during shear stress. J Cell Biochem 2013; 114:782-95. [PMID: 23060131 DOI: 10.1002/jcb.24416] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 10/01/2012] [Indexed: 12/12/2022]
Abstract
Vascular endothelial cells and their actin microfilaments align in the direction of fluid shear stress (FSS) in vitro and in vivo. To determine whether cofilin, an actin severing protein, is required in this process, the levels of phospho-cofilin (serine-3) were evaluated in cells exposed to FSS. Phospho-cofilin levels decreased in the cytoplasm and increased in the nucleus during FSS exposure. This was accompanied by increased nuclear staining for activated LIMK, a cofilin kinase. Blocking stress kinases JNK and p38, known to play roles in actin realignment during FSS, decreased cofilin phosphorylation under static conditions, and JNK inhibition also resulted in decreased phospho-cofilin during FSS exposure. Inhibition of dynamic changes in cofilin phosphorylation through cofilin mutants decreased correct actin realignment. The mutants also decreased barrier integrity as did inhibition of the stress kinases. These results identify the importance of cofilin in the process of actin alignment and the requirement for actin realignment in endothelial barrier integrity during FSS.
Collapse
Affiliation(s)
- Joshua B Slee
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | | |
Collapse
|
26
|
Grabek KR, Karimpour-Fard A, Epperson LE, Hindle A, Hunter LE, Martin SL. Multistate proteomics analysis reveals novel strategies used by a hibernator to precondition the heart and conserve ATP for winter heterothermy. Physiol Genomics 2011; 43:1263-75. [PMID: 21914784 PMCID: PMC3217319 DOI: 10.1152/physiolgenomics.00125.2011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 09/02/2011] [Indexed: 11/22/2022] Open
Abstract
The hibernator's heart functions continuously and avoids damage across the wide temperature range of winter heterothermy. To define the molecular basis of this phenotype, we quantified proteomic changes in the 13-lined ground squirrel heart among eight distinct physiological states encompassing the hibernator's year. Unsupervised clustering revealed a prominent seasonal separation between the summer homeotherms and winter heterotherms, whereas within-season state separation was limited. Further, animals torpid in the fall were intermediate to summer and winter, consistent with the transitional nature of this phase. A seasonal analysis revealed that the relative abundances of protein spots were mainly winter-increased. The winter-elevated proteins were involved in fatty acid catabolism and protein folding, whereas the winter-depleted proteins included those that degrade branched-chain amino acids. To identify further state-dependent changes, protein spots were re-evaluated with respect to specific physiological state, confirming the predominance of seasonal differences. Additionally, chaperone and heat shock proteins increased in winter, including HSPA4, HSPB6, and HSP90AB1, which have known roles in protecting against ischemia-reperfusion injury and apoptosis. The most significant and greatest fold change observed was a disappearance of phospho-cofilin 2 at low body temperature, likely a strategy to preserve ATP. The robust summer-to-winter seasonal proteomic shift implies that a winter-protected state is orchestrated before prolonged torpor ensues. Additionally, the general preservation of the proteome during winter hibernation and an increase of stress response proteins, together with dephosphorylation of cofilin 2, highlight the importance of ATP-conserving mechanisms for winter cardioprotection.
Collapse
Affiliation(s)
- Katharine R Grabek
- Human Medical Genetics Program, Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Extensive animal work has established mesenteric lymph as the mechanistic link between gut ischemia/reperfusion and distant organ injury. Our trauma and transplant services provide a unique opportunity to assess the relevance of our animal data to human mesenteric lymph under conditions that simulate those used in the laboratory. Mesenteric lymph was collected from 11 patients with lymphatic injuries, during semielective spine reconstruction or immediately before organ donation. The lymph was tested for its ability to activate human neutrophils in vitro and was analyzed by label-free proteomic analysis. Human mesenteric lymph primed human polymorphonuclear neutrophils in a pattern similar to that observed in previous rodent, swine, and primate studies. A total of 477 proteins were identified from the 11 subjects' lymph samples with greater than 99% confidence. In addition to classic serum proteins, markers of hemolysis, extracellular matrix components, and general tissue damage were identified. Both tissue injury and shock correlate strongly with production of bioactive lymph. Products of red blood cell hemolysis correlate strongly with human lymph bioactivity, and immunoglobulins have a negative correlation with the proinflammatory lymph. These human data corroborate the current body of research implicating postshock mesenteric lymph in the development of systemic inflammation and multiple organ failure. Further studies will be required to determine if the proteins identified participate in the pathogenesis of multiple organ failure and if they can be used as diagnostic markers.
Collapse
|
28
|
Andes virus regulation of cellular microRNAs contributes to hantavirus-induced endothelial cell permeability. J Virol 2010; 84:11929-36. [PMID: 20844033 DOI: 10.1128/jvi.01658-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hantaviruses infect human endothelial cells (ECs) and cause two diseases marked by vascular permeability defects, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). Vascular permeability occurs in the absence of EC lysis, suggesting that hantaviruses alter normal EC fluid barrier functions. ECs infected by pathogenic hantaviruses are hyperresponsive to vascular endothelial growth factor (VEGF), and this alters the fluid barrier function of EC adherens junctions, resulting in enhanced paracellular permeability. Vascular permeability and VEGF-directed responses are determined by EC-specific microRNAs (miRNAs), which regulate cellular mRNA transcriptional responses. miRNAs mature within cytoplasmic processing bodies (P bodies), and the hantavirus nucleocapsid (N) protein binds RNA and localizes to P bodies, suggesting that hantaviruses may modify miRNA functions within infected ECs. Here we assessed changes in EC miRNAs following infection by the HPS-causing Andes hantavirus (ANDV). We analyzed 352 human miRNAs within ANDV-infected ECs using quantitative real-time (RT)-PCR arrays. Fourteen miRNAs, including six miRNAs that are associated with regulating vascular integrity, were upregulated >4-fold following infection by ANDV. Nine miRNAs were downregulated 3- to 3,400-fold following ANDV infection; these included miR-410, involved in regulating secretion, and miR-218, which is linked to the regulation of EC migration and vascular permeability. We further analyzed changes in miR-126, an EC-specific miRNA that regulates vascular integrity by suppressing SPRED1 and PIK3R2 mRNAs. While miR-126 levels were only slightly altered, we found that SPRED1 and PIK3R2 mRNA levels were increased 10- and 7-fold, respectively, in ANDV-infected ECs but were unaltered in ECs infected by the nonpathogenic Tula hantavirus (TULV). Consistent with increased SPRED1 expression, we found that the level of phospho-cofilin was decreased within ANDV-infected ECs. Moreover, small interfering RNA (siRNA) knockdown of SPRED1 dramatically decreased the permeability of ANDV-infected ECs in response to VEGF, suggesting that increased SPRED1 contributes to EC permeability following ANDV infection. These findings suggest that interference with normal miRNA functions contributes to the enhanced paracellular permeability of ANDV-infected ECs and that hantavirus regulation of miRNA functions is an additional determinant of hantavirus pathogenesis.
Collapse
|
29
|
Huang TY, Minamide LS, Bamburg JR, Bokoch GM. Chronophin mediates an ATP-sensing mechanism for cofilin dephosphorylation and neuronal cofilin-actin rod formation. Dev Cell 2009; 15:691-703. [PMID: 19000834 DOI: 10.1016/j.devcel.2008.09.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 08/11/2008] [Accepted: 09/30/2008] [Indexed: 01/25/2023]
Abstract
Actin and its key regulatory component, cofilin, are found together in large rod-shaped assemblies in neurons subjected to energy stress. Such inclusions are also enriched in Alzheimer's disease brain, and appear in transgenic models of neurodegeneration. Neuronal insults, such as energy loss and/or oxidative stress, result in rapid dephosphorylation of the cellular cofilin pool prior to its assembly into rod-shaped inclusions. Although these events implicate a role for phosphatases in cofilin rod formation, a mechanism linking energy stress, phosphocofilin turnover, and subsequent rod assembly has been elusive. We demonstrate the ATP-sensitive interaction of the cofilin phosphatase chronophin (CIN) with the chaperone hsp90 to form a biosensor that mediates cofilin/actin rod formation. Our results suggest a model whereby attenuated interactions between CIN and hsp90 during ATP depletion enhance CIN-dependent cofilin dephosphorylation and consequent rod assembly, thereby providing a mechanism for the formation of pathological actin/cofilin aggregates during neurodegenerative energy flux.
Collapse
Affiliation(s)
- Timothy Y Huang
- Departments of Immunology and Microbial Science, and of Cell Biology, The Scripps Research Institute, IMM14, 10550 N. Torrey Pines Rd., La Jolla, CA 92122, USA
| | | | | | | |
Collapse
|
30
|
Campos SB, Ashworth SL, Wean S, Hosford M, Sandoval RM, Hallett MA, Atkinson SJ, Molitoris BA. Cytokine-induced F-actin reorganization in endothelial cells involves RhoA activation. Am J Physiol Renal Physiol 2009; 296:F487-95. [PMID: 19144696 DOI: 10.1152/ajprenal.00112.2008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acute ischemic kidney injury results in marked increases in local and systemic cytokine levels. IL-1alpha, IL-6, and TNF-alpha orchestrate various inflammatory reactions influencing endothelial permeability by altering cell-to-cell and cell-to-extracellular matrix attachments. To explore the role of actin and the regulatory proteins RhoA and cofilin in this process, microvascular endothelial cells (MS1) were exposed to individual cytokines or a cytokine cocktail. Within minutes, a marked, time-dependent redistribution of the actin cytoskeleton occurred with the formation of long, dense F-actin basal stress fibers. The concentration of F-actin, normalized to nuclear staining, significantly increased compared with untreated cells (up 20%, P < or = 0.05). Western blot analysis of MS1 lysates incubated with the cytokine cocktail for 4 h showed an increase in phosphorylated/inactive cofilin (up 25 +/- 15%, P < or = 0.05) and RhoA activation (up to 227 +/- 26% increase, P < or = 0.05) compared with untreated cells. Decreasing RhoA levels using small interfering RNA blocked the effect of cytokines on stress fiber organization. Treatment with Y-27632, an inhibitor of the RhoA effector p160-ROCK, decreased levels of phosphorylated cofilin and reduced stress fiber fluorescence by 22%. In cells treated with Y-27632 followed by treatment with the cytokine cocktail, stress fiber levels were similar to control cells and cofilin phosphorylation was 55% of control levels. Taken together, these studies demonstrate cytokine stimulation of RhoA, which in turn leads to cofilin phosphorylation and formation of numerous basal actin stress fibers. These results suggest cytokines signal through the Rho-ROCK pathway, but also through another pathway to affect actin dynamics.
Collapse
Affiliation(s)
- Silvia B Campos
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Mendelsohn BA, Malone JP, Townsend RR, Gitlin JD. Proteomic analysis of anoxia tolerance in the developing zebrafish embryo. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2008; 4:21-31. [PMID: 20403745 DOI: 10.1016/j.cbd.2008.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2008] [Revised: 09/25/2008] [Accepted: 09/26/2008] [Indexed: 12/26/2022]
Abstract
While some species and tissue types are injured by oxygen deprivation, anoxia tolerant organisms display a protective response that has not been fully elucidated and is well-suited to genomic and proteomic analysis. However, such methodologies have focused on transcriptional responses, prolonged anoxia, or have used cultured cells or isolated tissues. In this study of intact zebrafish embryos, a species capable of >24 h survival in anoxia, we have utilized 2D difference in gel electrophoresis to identify changes in the proteomic profile caused by near-lethal anoxic durations as well as acute anoxia (1 h), a timeframe relevant to ischemic events in human disease when response mechanisms are largely limited to post-transcriptional and post-translational processes. We observed a general stabilization of the proteome in anoxia. Proteins involved in oxidative phosphorylation, antioxidant defense, transcription, and translation changed over this time period. Among the largest proteomic alterations was that of muscle cofilin 2, implicating the regulation of the cytoskeleton and actin assembly in the adaptation to acute anoxia. These studies in an intact embryo highlight proteomic components of an adaptive response to anoxia in a model organism amenable to genetic analysis to permit further mechanistic insight into the phenomenon of anoxia tolerance.
Collapse
Affiliation(s)
- Bryce A Mendelsohn
- Departments of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
32
|
Chang HC, Chen TL, Chen RM. Cytoskeleton interruption in human hepatoma HepG2 cells induced by ketamine occurs possibly through suppression of calcium mobilization and mitochondrial function. Drug Metab Dispos 2008; 37:24-31. [PMID: 18845661 DOI: 10.1124/dmd.108.023325] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ketamine is an intravenous anesthetic agent often used for inducing and maintaining anesthesia. Cytoskeletons contribute to the regulation of hepatocyte activity of drug biotransformation. In this study, we attempted to evaluate the effects of ketamine on F-actin and microtubular cytoskeletons in human hepatoma HepG2 cells and its possible molecular mechanisms. Exposure of HepG2 cells to ketamine at <or=100 microM, which corresponds to clinically relevant concentrations for 1, 6, and 24 h, did not affect cell viability. Meanwhile, administration of therapeutic concentrations of ketamine obviously interrupted F-actin and microtubular cytoskeletons. In parallel, levels of intracellular calcium concentration- and time-dependently decreased after ketamine administration. Analysis by confocal microscopy further revealed that ketamine suppressed calcium mobilization from an extracellular buffer into HepG2 cells. Exposure to ketamine decreased cellular ATP levels. The mitochondrial membrane potential and complex I NADH dehydrogenase activity were both reduced after ketamine administration. Ketamine did not change the production of actin or microtubulin mRNA in HepG2 cells. Consequently, ketamine-caused cytoskeletal interruption led to suppression of CYP3A4 expression and its metabolizing activity. Therefore, this study shows that therapeutic concentrations of ketamine can disrupt F-actin and microtubular cytoskeletons possibly through suppression of intracellular calcium mobilization and cellular ATP synthesis due to down-regulation of the mitochondrial membrane potential and complex I enzyme activity. Such disruption of the cytoskeleton may lead to reductions in CYP3A4 activity in HepG2 cells.
Collapse
Affiliation(s)
- Huai-Chia Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Xing St., Taipei 110, Taiwan
| | | | | |
Collapse
|
33
|
Ivanov AI, Hopkins AM, Brown GT, Gerner-Smidt K, Babbin BA, Parkos CA, Nusrat A. Myosin II regulates the shape of three-dimensional intestinal epithelial cysts. J Cell Sci 2008; 121:1803-14. [PMID: 18460584 DOI: 10.1242/jcs.015842] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The development of luminal organs begins with the formation of spherical cysts composed of a single layer of epithelial cells. Using a model three-dimensional cell culture, this study examines the role of a cytoskeletal motor, myosin II, in cyst formation. Caco-2 and SK-CO15 intestinal epithelial cells were embedded into Matrigel, and myosin II was inhibited by blebbistatin or siRNA-mediated knockdown. Whereas control cells formed spherical cysts with a smooth surface, inhibition of myosin II induced the outgrowth of F-actin-rich surface protrusions. The development of these protrusions was abrogated after inhibition of F-actin polymerization or of phospholipase C (PLC) activity, as well as after overexpression of a dominant-negative ADF/cofilin. Surface protrusions were enriched in microtubules and their formation was prevented by microtubule depolymerization. Myosin II inhibition caused a loss of peripheral F-actin bundles and a submembranous extension of cortical microtubules. Our findings suggest that inhibition of myosin II eliminates the cortical F-actin barrier, allowing microtubules to reach and activate PLC at the plasma membrane. PLC-dependent stimulation of ADF/cofilin creates actin-filament barbed ends and promotes the outgrowth of F-actin-rich protrusions. We conclude that myosin II regulates the spherical shape of epithelial cysts by controlling actin polymerization at the cyst surface.
Collapse
Affiliation(s)
- Andrei I Ivanov
- Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Homma K, Niino Y, Hotta K, Oka K. Ca(2+) influx through P2X receptors induces actin cytoskeleton reorganization by the formation of cofilin rods in neurites. Mol Cell Neurosci 2007; 37:261-70. [PMID: 17993279 DOI: 10.1016/j.mcn.2007.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Revised: 09/12/2007] [Accepted: 10/01/2007] [Indexed: 01/15/2023] Open
Abstract
In physiological and pathological events, extracellular ATP plays an important role by controlling several types of purinergic receptors and changing cytoskeleton dynamics. To know the process of ATP-dependent cytoskeleton remodeling, we focused on cofilin, a key regulator of actin cytoskeleton, and investigated the dynamics of cofilin in PC12 cells through fluorescent protein-labeled cofilin and actin, Ca(2+) imaging, and fluorescence resonance energy transfer (FRET) techniques. As a result, ATP induced intracellular Ca(2+) increase, following cofilin rods' formation. ATP-induced cofilin rods' formation was not observed in cells expressing unphosphorylatable variant of cofilin. A P2X receptor agonist, but not P2Y, induced the formation of cofilin rods, whereas calmodulin and calcineurin inhibitors suppressed it. These results indicate that Ca(2+) influx through P2X receptors induces the formation of cofilin rods via calcineurin-dependent dephosphorylation of cofilin. This pathway might be one candidate to explain the effects of ATP on neuronal development and injury.
Collapse
Affiliation(s)
- Kohei Homma
- Center for Biosciences and Informatics, School of Fundamental Science and Technology, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan.
| | | | | | | |
Collapse
|
35
|
Bernstein BW, Chen H, Boyle JA, Bamburg JR. Formation of actin-ADF/cofilin rods transiently retards decline of mitochondrial potential and ATP in stressed neurons. Am J Physiol Cell Physiol 2006; 291:C828-39. [PMID: 16738008 DOI: 10.1152/ajpcell.00066.2006] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
When neurons in culture are transiently stressed by inhibition of ATP synthesis, they rapidly form within their neurites rodlike actin inclusions that disappear when the insult is removed. Oxidative stress, excitotoxic insults, and amyloid beta-peptide oligomers also induce rods. Immunostaining of neurites indicates that these rods also contain the majority of the actin filament dynamizing proteins, actin-depolymerizing factor (ADF) and cofilin (AC). If the rods reappear within 24 h after the stress is removed, the neurite degenerates distal to the rod but with no increase in neuronal death. Here, rods were generated in cultured rat E18 hippocampal cells by overexpression of a green fluorescent protein chimera of AC. Surprisingly, we have found that, for a short period (approximately 60 min) immediately after initial rod formation, the loss of mitochondrial membrane potential (Delta Psi(m)) and ATP in neurites with rods is slower than in neurites without them. The Delta Psi(m) was monitored with the fluorescent dye tetramethylrhodamine methyl ester, and ATP was monitored with the fluorescent ion indicator mag-fura 2. Actin in rods is less dynamic than is filamentous actin in other cytoskeletal structures. Because Delta Psi(m) depends on cellular ATP and because ATP hydrolysis associated with actin filament turnover is responsible for a large fraction of neuronal energy consumption (approximately 50%), the formation of rods transiently protects neurites by slowing filament turnover and its associated ATP hydrolysis.
Collapse
Affiliation(s)
- Barbara W Bernstein
- Dept. of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA.
| | | | | | | |
Collapse
|