1
|
Stefanenko M, Fedoriuk M, Mamenko M, Semenikhina M, Nowling TK, Lipschutz JH, Maximyuk O, Staruschenko A, Palygin O. PAR1-mediated Non-periodical Synchronized Calcium Oscillations in Human Mesangial Cells. FUNCTION 2024; 5:zqae030. [PMID: 38984988 PMCID: PMC11384906 DOI: 10.1093/function/zqae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 07/11/2024] Open
Abstract
Mesangial cells offer structural support to the glomerular tuft and regulate glomerular capillary flow through their contractile capabilities. These cells undergo phenotypic changes, such as proliferation and mesangial expansion, resulting in abnormal glomerular tuft formation and reduced capillary loops. Such adaptation to the changing environment is commonly associated with various glomerular diseases, including diabetic nephropathy and glomerulonephritis. Thrombin-induced mesangial remodeling was found in diabetic patients, and expression of the corresponding protease-activated receptors (PARs) in the renal mesangium was reported. However, the functional PAR-mediated signaling in mesangial cells was not examined. This study investigated protease-activated mechanisms regulating mesangial cell calcium waves that may play an essential role in the mesangial proliferation or constriction of the arteriolar cells. Our results indicate that coagulation proteases such as thrombin induce synchronized oscillations in cytoplasmic Ca2+ concentration of mesangial cells. The oscillations required PAR1 G-protein coupled receptors-related activation, but not a PAR4, and were further mediated presumably through store-operated calcium entry and transient receptor potential canonical 3 (TRPC3) channel activity. Understanding thrombin signaling pathways and their relation to mesangial cells, contractile or synthetic (proliferative) phenotype may play a role in the development of chronic kidney disease and requires further investigation.
Collapse
Affiliation(s)
- Mariia Stefanenko
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kyiv 01024, Ukraine
| | - Mykhailo Fedoriuk
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Mykola Mamenko
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Marharyta Semenikhina
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Tamara K Nowling
- Department of Medicine, Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Joshua H Lipschutz
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Medicine, Ralph H. Johnson VAMC, Charleston, SC 29401, USA
| | - Oleksandr Maximyuk
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kyiv 01024, Ukraine
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33602, USA
- James A. Haley Veterans’ Hospital, Tampa, FL 33612, USA
| | - Oleg Palygin
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
2
|
Hansen TS, Karimi Galougahi K, Tang O, Tsang M, Scherrer-Crosbie M, Arystarkhova E, Sweadner K, Bursill C, Bubb KJ, Figtree GA. The FXYD1 protein plays a protective role against pulmonary hypertension and arterial remodeling via redox and inflammatory mechanisms. Am J Physiol Heart Circ Physiol 2024; 326:H623-H635. [PMID: 38133617 DOI: 10.1152/ajpheart.00090.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023]
Abstract
Pulmonary hypertension (PH) consists of a heterogenous group of diseases that culminate in increased pulmonary arterial pressure and right ventricular (RV) dysfunction. We sought to investigate the role of FXYD1, a small membrane protein that modulates Na+-K+-ATPase function, in the pathophysiology of PH. We mined online transcriptome databases to assess FXYD1 expression in PH. We characterized the effects of FXYD1 knockout (KO) in mice on right and left ventricular (RV and LV) function using echocardiography and measured invasive hemodynamic measurements under normal conditions and after treatment with bleomycin sulfate or chronic hypoxia to induce PH. Using immunohistochemistry, immunoblotting, and functional assays, we examined the effects of FXYD1 KO on pulmonary microvasculature and RV and LV structure and assessed signaling via endothelial nitric oxide synthase (eNOS) and inflammatory pathways. FXYD1 lung expression tended to be lower in samples from patients with idiopathic pulmonary arterial hypertension (IPAH) compared with controls, supporting a potential pathophysiological role. FXYD1 KO mice displayed characteristics of PH including significant increases in pulmonary arterial pressure, increased muscularization of small pulmonary arterioles, and impaired RV systolic function, in addition to LV systolic dysfunction. However, when PH was stimulated with standard models of lung injury-induced PH, there was no exacerbation of disease in FXYD1 KO mice. Both the lungs and left ventricles exhibited elevated nitrosative stress and inflammatory milieu. The absence of FXYD1 in mice results in LV inflammation and cardiopulmonary redox signaling changes that predispose to pathophysiological features of PH, suggesting FXYD1 may be protective.NEW & NOTEWORTHY This is the first study to show that deficiency of the FXYD1 protein is associated with pulmonary hypertension. FXYD1 expression is lower in the lungs of people with idiopathic pulmonary artery hypertension. FXYD1 deficiency results in both left and right ventricular functional impairment. Finally, FXYD1 may endogenously protect the heart from oxidative and inflammatory injury.
Collapse
Affiliation(s)
- Thomas S Hansen
- Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | | | - Owen Tang
- Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Michael Tsang
- Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Marielle Scherrer-Crosbie
- Perelman School of Medicine, The Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Elena Arystarkhova
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Kathleen Sweadner
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Christina Bursill
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Vascular Research Centre, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Kristen J Bubb
- Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Biomedicine Discovery Institute and Victorian Heart Institute, Monash University Faculty of Medicine, Nursing and Health Sciences, Clayton, Victoria, Australia
| | - Gemma A Figtree
- Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Wakisaka M, Nakamura K, Nakano T, Kitazono T. Roles of Sodium-Glucose Cotransporter 2 of Mesangial Cells in Diabetic Kidney Disease. J Endocr Soc 2021; 5:bvab083. [PMID: 34195526 PMCID: PMC8237847 DOI: 10.1210/jendso/bvab083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Indexed: 12/14/2022] Open
Abstract
We have been studying the presence of sodium-glucose cotransporter 2 (SGLT2) in mesangial cells and pericytes since 1992. Recent large placebo-controlled studies of SGLT2 inhibitors in patients with type 2 diabetes mellitus have reported desirable effects of the inhibitors on the diabetic kidney and the diabetic heart. Most studies have indicated that these effects of SGLT2 inhibitors could be mediated by the tubuloglomerular feedback system. However, a recent study about urine sodium excretion in the presence of an SGLT2 inhibitor did not show any increases in urine sodium excretion. A very small dose of an SGLT2 inhibitor did not inhibit SGLT2 at the S1 segment of proximal tubules. Moreover, SGLT2 inhibition protects against progression in chronic kidney disease with and without type 2 diabetes. In these circumstances, the tubuloglomerular feedback hypothesis involves several theoretical concerns that must be clarified. The presence of SGLT2 in mesangial cells seems to be very important for diabetic nephropathy. We now propose a novel mechanism by which the desirable effects of SGLT2 inhibitors on diabetic nephropathy are derived from the direct effect on SGLT2 expressed in mesangial cells.
Collapse
Affiliation(s)
| | - Kuniyuki Nakamura
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 8128582, Japan
| | - Toshiaki Nakano
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 8128582, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 8128582, Japan
| |
Collapse
|
4
|
Single-cell RNA sequencing reveals the mesangial identity and species diversity of glomerular cell transcriptomes. Nat Commun 2021; 12:2141. [PMID: 33837218 PMCID: PMC8035407 DOI: 10.1038/s41467-021-22331-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/04/2021] [Indexed: 01/06/2023] Open
Abstract
Molecular characterization of the individual cell types in human kidney as well as model organisms are critical in defining organ function and understanding translational aspects of biomedical research. Previous studies have uncovered gene expression profiles of several kidney glomerular cell types, however, important cells, including mesangial (MCs) and glomerular parietal epithelial cells (PECs), are missing or incompletely described, and a systematic comparison between mouse and human kidney is lacking. To this end, we use Smart-seq2 to profile 4332 individual glomerulus-associated cells isolated from human living donor renal biopsies and mouse kidney. The analysis reveals genetic programs for all four glomerular cell types (podocytes, glomerular endothelial cells, MCs and PECs) as well as rare glomerulus-associated macula densa cells. Importantly, we detect heterogeneity in glomerulus-associated Pdgfrb-expressing cells, including bona fide intraglomerular MCs with the functionally active phagocytic molecular machinery, as well as a unique mural cell type located in the central stalk region of the glomerulus tuft. Furthermore, we observe remarkable species differences in the individual gene expression profiles of defined glomerular cell types that highlight translational challenges in the field and provide a guide to design translational studies. The molecular identity of renal glomerular cells is poorly characterized and rodent glomerulopathy models translate poorly to humans. Here, the authors show molecular signatures of glomerulus-associated cells using single cell RNA sequencing and highlight differences between mouse and human cells.
Collapse
|
5
|
Bastug-Özel Z, Wright PT, Kraft AE, Pavlovic D, Howie J, Froese A, Fuller W, Gorelik J, Shattock MJ, Nikolaev VO. Heart failure leads to altered β2-adrenoceptor/cyclic adenosine monophosphate dynamics in the sarcolemmal phospholemman/Na,K ATPase microdomain. Cardiovasc Res 2020; 115:546-555. [PMID: 30165515 DOI: 10.1093/cvr/cvy221] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 11/22/2017] [Accepted: 08/23/2018] [Indexed: 01/09/2023] Open
Abstract
AIMS Cyclic adenosine monophosphate (cAMP) regulates cardiac excitation-contraction coupling by acting in microdomains associated with sarcolemmal ion channels. However, local real time cAMP dynamics in such microdomains has not been visualized before. We sought to directly monitor cAMP in a microdomain formed around sodium-potassium ATPase (NKA) in healthy and failing cardiomyocytes and to better understand alterations of cAMP compartmentation in heart failure. METHODS AND RESULTS A novel Förster resonance energy transfer (FRET)-based biosensor termed phospholemman (PLM)-Epac1 was developed by fusing a highly sensitive cAMP sensor Epac1-camps to the C-terminus of PLM. Live cell imaging in PLM-Epac1 and Epac1-camps expressing adult rat ventricular myocytes revealed extensive regulation of NKA/PLM microdomain-associated cAMP levels by β2-adrenoceptors (β2-ARs). Local cAMP pools stimulated by these receptors were tightly controlled by phosphodiesterase (PDE) type 3. In chronic heart failure following myocardial infarction, dramatic reduction of the microdomain-specific β2-AR/cAMP signals and β2-AR dependent PLM phosphorylation was accompanied by a pronounced loss of local PDE3 and an increase in PDE2 effects. CONCLUSIONS NKA/PLM complex forms a distinct cAMP microdomain which is directly regulated by β2-ARs and is under predominant control by PDE3. In heart failure, local changes in PDE repertoire result in blunted β2-AR signalling to cAMP in the vicinity of PLM.
Collapse
Affiliation(s)
- Zeynep Bastug-Özel
- Clinic of Cardiology and Heart Research Center, University Medical Center Göttingen, Göttingen, Germany.,Cardiovascular Division, King's College London, London, UK
| | - Peter T Wright
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Axel E Kraft
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Kiel/Lübeck, Martinistr. 52, D-20246 Hamburg, Germany
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Jacqueline Howie
- Division of Cardiovascular and Diabetes Medicine, University of Dundee, Dundee, UK
| | - Alexander Froese
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Kiel/Lübeck, Martinistr. 52, D-20246 Hamburg, Germany
| | - William Fuller
- Division of Cardiovascular and Diabetes Medicine, University of Dundee, Dundee, UK
| | - Julia Gorelik
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Kiel/Lübeck, Martinistr. 52, D-20246 Hamburg, Germany
| |
Collapse
|
6
|
Arystarkhova E, Bouley R, Liu YB, Sweadner KJ. Impaired AQP2 trafficking in Fxyd1 knockout mice: A role for FXYD1 in regulated vesicular transport. PLoS One 2017; 12:e0188006. [PMID: 29155857 PMCID: PMC5695786 DOI: 10.1371/journal.pone.0188006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/30/2017] [Indexed: 01/08/2023] Open
Abstract
The final adjustment of urine volume occurs in the inner medullary collecting duct (IMCD), chiefly mediated by the water channel aquaporin 2 (AQP2). With vasopressin stimulation, AQP2 accumulation in the apical plasma membrane of principal cells allows water reabsorption from the lumen. We report that FXYD1 (phospholemman), better known as a regulator of Na,K-ATPase, has a role in AQP2 trafficking. Daytime urine of Fxyd1 knockout mice was more dilute than WT despite similar serum vasopressin, but both genotypes could concentrate urine during water deprivation. FXYD1 was found in IMCD. In WT mice, phosphorylated FXYD1 was detected intracellularly, and vasopressin induced its dephosphorylation. We tested the hypothesis that the dilute urine in knockouts was caused by alteration of AQP2 trafficking. In WT mice at baseline, FXYD1 and AQP2 were not strongly co-localized, but elevation of vasopressin produced translocation of both FXYD1 and AQP2 to the apical plasma membrane. In kidney slices, baseline AQP2 distribution was more scattered in the Fxyd1 knockout than in WT. Apical recruitment of AQP2 occurred in vasopressin-treated Fxyd1 knockout slices, but upon vasopressin washout, there was more rapid reversal of apical AQP2 localization and more heterogeneous cytoplasmic distribution of AQP2. Notably, in sucrose gradients, AQP2 was present in a detergent-resistant membrane domain that had lower sedimentation density in the knockout than in WT, and vasopressin treatment normalized its density. We propose that FXYD1 plays a role in regulating AQP2 retention in apical membrane, and that this involves transfers between raft-like membrane domains in endosomes and plasma membranes.
Collapse
Affiliation(s)
- Elena Arystarkhova
- Laboratory of Membrane Biology, Dept. of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, Unites States of America
- * E-mail: (EA); (KJS)
| | - Richard Bouley
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yi Bessie Liu
- Laboratory of Membrane Biology, Dept. of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, Unites States of America
| | - Kathleen J. Sweadner
- Laboratory of Membrane Biology, Dept. of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, Unites States of America
- * E-mail: (EA); (KJS)
| |
Collapse
|
7
|
Arystarkhova E, Ralph DL, Liu YB, Bouley R, McDonough AA, Sweadner KJ. Paradoxical activation of the sodium chloride cotransporter (NCC) without hypertension in kidney deficient in a regulatory subunit of Na,K-ATPase, FXYD2. Physiol Rep 2014; 2:2/12/e12226. [PMID: 25472608 PMCID: PMC4332208 DOI: 10.14814/phy2.12226] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Na,K‐ATPase generates the driving force for sodium reabsorption in the kidney.
Na,K‐ATPase functional properties are regulated by small proteins belonging to the FXYD
family. In kidney FXYD2 is the most abundant: it is an inhibitory subunit expressed in almost every
nephron segment. Its absence should increase sodium pump activity and promote Na+
retention, however, no obvious renal phenotype was detected in mice with global deletion of FXYD2
(Arystarkhova et al. 2013). Here, increased total cortical Na,K‐ATPase activity was
documented in the Fxyd2−/− mouse, without increased
α1β1 subunit expression. We tested the hypothesis
that adaptations occur in distal convoluted tubule (DCT), a major site of sodium adjustments.
Na,K‐ATPase immunoreactivity in DCT was unchanged, and there was no DCT hypoplasia. There was
a marked activation of thiazide‐sensitive sodium chloride cotransporter (NCC; Slc12a3) in
DCT, predicted to increase Na+ reabsorption in this segment. Specifically, NCC
total increased 30% and NCC phosphorylated at T53 and S71, associated with activation,
increased 4‐6 fold. The phosphorylation of the closely related thick ascending limb (TAL)
apical NKCC2 (Slc12a1) increased at least twofold. Abundance of the total and cleaved (activated)
forms of ENaC α‐subunit was not different between genotypes.
Nonetheless, no elevation of blood pressure was evident despite the fact that NCC and NKCC2 are in
states permissive for Na+ retention. Activation of NCC and NKCC2 may reflect an
intracellular linkage to elevated Na,K‐ATPase activity or a compensatory response to
Na+ loss proximal to the TAL and DCT. We discovered a substantial activation of renal NCC cotransporter in mice genetically depleted
for the regulatory inhibitory subunit of Na,K‐ATPase, FXYD2. Surprisingly, no significant
changes in urine output as well as elevation of blood pressure were detected suggesting compensatory
adaptation elsewhere in nephron
Collapse
Affiliation(s)
- Elena Arystarkhova
- Laboratory of Membrane Biology, Massachusetts General Hospital, Boston, Massachusetts
| | - Donna L Ralph
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Yi Bessie Liu
- Laboratory of Membrane Biology, Massachusetts General Hospital, Boston, Massachusetts
| | - Richard Bouley
- MGH Center for Systems Biology, Program in Membrane Biology, Massachusetts General Hospital, Boston, Massachusetts
| | - Alicia A McDonough
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Kathleen J Sweadner
- Laboratory of Membrane Biology, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
8
|
Pavlovic D, Fuller W, Shattock MJ. Novel regulation of cardiac Na pump via phospholemman. J Mol Cell Cardiol 2013; 61:83-93. [PMID: 23672825 DOI: 10.1016/j.yjmcc.2013.05.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 04/30/2013] [Accepted: 05/03/2013] [Indexed: 12/19/2022]
Abstract
As the only quantitatively significant Na efflux pathway from cardiac cells, the Na/K ATPase (Na pump) is the primary regulator of intracellular Na. The transmembrane Na gradient it establishes is essential for normal electrical excitability, numerous coupled-transport processes and, as the driving force for Na/Ca exchange, thus setting cardiac Ca load and contractility. As Na influx varies with electrical excitation, heart rate and pathology, the dynamic regulation of Na efflux is essential. It is now widely recognized that phospholemman, a 72 amino acid accessory protein which forms part of the Na pump complex, is the key nexus linking cellular signaling to pump regulation. Phospholemman is the target of a variety of post-translational modifications (including phosphorylation, palmitoylation and glutathionation) and these can dynamically alter the activity of the Na pump. This review summarizes our current understanding of the multiple regulatory mechanisms that converge on phospholemman and govern NA pump activity in the heart. The corrected Fig. 4 is reproduced below. The publisher would like to apologize for any inconvenience caused. [corrected].
Collapse
Affiliation(s)
- Davor Pavlovic
- Cardiovascular Division, King's College London, The Rayne Institute, St Thomas' Hospital, London, UK.
| | | | | |
Collapse
|
9
|
Cirri E, Katz A, Mishra NK, Belogus T, Lifshitz Y, Garty H, Karlish SJD, Apell HJ. Phospholemman (FXYD1) raises the affinity of the human α1β1 isoform of Na,K-ATPase for Na ions. Biochemistry 2011; 50:3736-48. [PMID: 21449573 DOI: 10.1021/bi2001714] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The human α(1)/His(10)-β(1) isoform of the Na,K-ATPase has been expressed in Pichia pastoris, solubilized in n-dodecyl-β-maltoside, and purified by metal chelate chromatography. The α(1)β(1) complex spontaneously associates in vitro with the detergent-solubilized purified human FXYD1 (phospholemman) expressed in Escherichia coli. It has been confirmed that FXYD1 spontaneously associates in vitro with the α(1)/His(10)-β(1) complex and stabilizes it in an active mode. The functional properties of the α(1)/His(10)-β(1) and α(1)/His(10)-β(1)/FXYD1 complexes have been investigated by fluorescence methods. The electrochromic dye RH421 which monitors binding to and release of ions from the binding sites has been applied in equilibrium titration experiments to determine ion binding affinities and revealed that FXYD1 induces an ∼30% increase of the Na(+)-binding affinity in both the E(1) and P-E(2) conformations. By contrast, it does not affect the affinities for K(+) and Rb(+) ions. Phosphorylation induced partial reactions of the enzyme have been studied as backdoor phosphorylation by inorganic phosphate and in kinetic experiments with caged ATP in order to evaluate the ATP-binding affinity and the time constant of the conformational transition, Na(3)E(1)-P → P-E(2)Na(3). No significant differences with or without FXYD1 could be detected. Rate constants of the conformational transitions Rb(2)E(1) → E(2)(Rb(2)) and E(2)(Rb(2)) → Na(3)E(1), investigated with fluorescein-labeled Na,K-ATPase, showed only minor or no effects of FXYD1, respectively. The conclusion from all these experiments is that FXYD1 raises the binding affinity of α(1)β(1) for Na ions, presumably at the third Na-selective binding site. In whole cell expression studies FXYD1 reduces the apparent affinity for Na ions. Possible reasons for the difference from this study using the purified recombinant Na,K-ATPase are discussed.
Collapse
Affiliation(s)
- Erica Cirri
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Floyd RV, Wray S, Martín-Vasallo P, Mobasheri A. Differential cellular expression of FXYD1 (phospholemman) and FXYD2 (gamma subunit of Na, K-ATPase) in normal human tissues: a study using high density human tissue microarrays. Ann Anat 2009; 192:7-16. [PMID: 19879113 DOI: 10.1016/j.aanat.2009.09.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 08/03/2009] [Accepted: 09/15/2009] [Indexed: 01/02/2023]
Abstract
FXYD proteins have been proposed to function as regulators of Na, K-ATPase function by lowering affinities of the system for potassium and sodium. However, their distribution in normal human tissues has not been studied. We have therefore used immunohistochemistry and semi-quantitative histomorphometric analysis to determine the relative expression at the protein level and distribution of FXYD1 (phospholemman) and FXYD2 (gamma subunit of Na, K-ATPase) in human Tissue MicroArrays (TMAs). Expression of FXYD1 was abundant in heart, kidney, placenta, skeletal muscle, gastric and anal mucosa, small intestine and colon. Lower FXYD1 expression was detected in uterine, intestinal and bladder smooth muscle, choroid plexus, liver, gallbladder, spleen, breast, prostate and epididymis. The tissue distribution of FXYD2 was less extensive compared to that of FXYD1. There was an abundant expression in kidney and choroid plexus and moderate expression in placenta, amniotic membranes, breast epithelium, salivary glands, pancreas and uterine endometrium. Weaker FXYD2 expression was detected in the adrenal medulla, liver, gallbladder, bladder and pancreas. The common denominator in the distribution of FXYD1 and FXYD2 was expression in highly active transport epithelia of the kidney, choroid plexus, placenta and salivary glands. This study reveals, in human tissues, the specific expression of FXYD proteins, which may associate with Na, K-ATPase in selected cell types and modulate its catalytic properties.
Collapse
Affiliation(s)
- Rachel V Floyd
- Physiological Laboratory, Department of Physiology, School of Biomedical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | | | | | | |
Collapse
|
11
|
Kallapur SG, Moss TJM, Auten RL, Nitsos I, Pillow JJ, Kramer BW, Maeda DY, Newnham JP, Ikegami M, Jobe AH. IL-8 signaling does not mediate intra-amniotic LPS-induced inflammation and maturation in preterm fetal lamb lung. Am J Physiol Lung Cell Mol Physiol 2009; 297:L512-9. [PMID: 19574422 DOI: 10.1152/ajplung.00105.2009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Preterm infants exposed to chorioamnionitis and preterm sheep fetuses exposed to intra-amniotic (IA) LPS have lung inflammation, increased IL-8 levels, and lung maturation. We tested the hypothesis that IL-8 signaling mediates IA LPS-induced lung inflammation and lung maturation. Two strategies were used: 1) we tested if IA injection of recombinant sheep IL-8 (rsIL-8) induced fetal inflammation and 2) if IL-8 signaling was blocked by a novel CXCR2 receptor blocker, nicotinanilide thioglycolate methyl ester (NTME). To test effects of IL-8 in the fetus, rsIL-8 was given intravascularly (50 microg) at 124 +/- 1 day of gestation (term = 150 days). A separate group of sheep was given IA rsIL-8 (100 microg) and delivered 5 h to 7 days later at 124 +/- 1 day of gestation. After confirming efficacy of the CXCR2 inhibitor, effects of IL-8 blockade were tested by injecting fetal sheep intramuscularly with NTME (10 mg) before IA injection of Escherichia coli LPS (10 mg). Sheep fetuses were delivered 1 or 7 days after injections at 124 +/- 1 day of gestation. IA rsIL-8 induced a modest fivefold increase in bronchoalveolar lavage (BAL) monocytes and neutrophils and increased lung monocyte hydrogen peroxide generation. However, rsIL-8 did not induce lung maturation. Intravascular rsIL-8 did not change fetal cardiovascular variables, blood pH, or blood leukocyte counts. Inhibition of CXCR2 decreased IA LPS-induced increases in BAL proteins at 1 day but not at 7 days. NTME did not significantly decrease IA LPS-induced BAL leukocyte influx and lung cytokine mRNA expression. Inhibition of CXCR2 did not change IA LPS-induced lung maturation. IL-8 signaling does not mediate LPS-induced lung inflammation and lung maturation.
Collapse
Affiliation(s)
- Suhas G Kallapur
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Division of Pulmonary Biology, 3333 Burnet Ave., Cincinnati, OH 45229-3039, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wang PJ, Lin CH, Hwang HH, Lee TH. Branchial FXYD protein expression in response to salinity change and its interaction with Na+/K+-ATPase of the euryhaline teleost Tetraodon nigroviridis. ACTA ACUST UNITED AC 2009; 211:3750-8. [PMID: 19011216 DOI: 10.1242/jeb.018440] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Na+/K+-ATPase (NKA) is a ubiquitous membrane-bound protein crucial for teleost osmoregulation. The enzyme is composed of two essential subunits, a catalytic alpha subunit and a glycosylated beta subunit which is responsible for membrane targeting of the enzyme. In mammals, seven FXYD members have been found. FXYD proteins have been identified as the regulatory protein of NKA in mammals and elasmobranchs, it is thus interesting to examine the expression and functions of FXYD protein in the euryhaline teleosts with salinity-dependent changes of gill NKA activity. The present study investigated the expression and distribution of the FXYD protein in gills of seawater (SW)- or freshwater (FW)-acclimated euryhaline pufferfish (Tetraodon nigroviridis). The full-length pufferfish FXYD gene (pFXYD) was confirmed by RT-PCR. pFXYD was found to be expressed in many organs including gills of both SW and FW pufferfish. pFXYD mRNA abundance in gills, determined by real-time PCR, was significantly higher in FW fish than in SW fish. An antiserum raised against a partial amino acid sequence of pFXYD was used for the immunoblots of gill homogenates and a major band at 13 kDa was detected. The relative amounts of pFXYD protein and mRNA in gills of SW and FW pufferfish were identical, but opposite to the expression levels of NKA. Immunofluorescent staining of frozen sections demonstrated that pFXYD was colocalized to NKA-immunoreactive cells in the gill filaments. In addition, interaction between pFXYD and NKA was demonstrated by co-immunoprecipitation. Taken together, salinity-dependent expression of pFXYD protein and NKA, as well as the evidence for their colocalization and interaction in pufferfish gills suggested that pFXYD regulates NKA activity in gills of euryhaline teleosts upon salinity challenge.
Collapse
Affiliation(s)
- Pei-Jen Wang
- Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan
| | | | | | | |
Collapse
|
13
|
Schnermann J, Briggs JP. Tubuloglomerular feedback: mechanistic insights from gene-manipulated mice. Kidney Int 2008; 74:418-26. [PMID: 18418352 DOI: 10.1038/ki.2008.145] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tubuloglomerular feedback (TGF) describes a causal and direct relationship between tubular NaCl concentration at the end of the ascending limb of the loop of Henle and afferent arteriolar tone. The use of genetically altered mice has led to an expansion of our understanding of the mechanisms underlying the functional coupling of epithelial, mesangial, and vascular cells in TGF. Studies in mice with deletions of the A or B isoform of NKCC2 (Na,K,2Cl cotransporter) and of ROMK indicate that NaCl uptake is required for response initiation. A role for transcellular salt transport is suggested by the inhibitory effect of ouabain in mutant mice with an ouabain-sensitive alpha1 Na,K-ATPase. No effect on TGF was observed in NHE2- and H/K-ATPase-deficient mice. TGF responses are abolished in A1 adenosine receptor-deficient mice, and studies in mice with null mutations in NTPDase1 or ecto-5'-nucleotidase indicate that adenosine involved in TGF is mainly derived from dephosphorylation of released ATP. Angiotensin II is a required cofactor for the elicitation of TGF responses, as AT1 receptor or angiotensin-converting enzyme deficiencies reduce TGF responses, mostly by reducing adenosine effectiveness. Overall, the evidence from these studies in genetically altered mice indicates that transcellular NaCl transport induces the generation of adenosine that, in conjunction with angiotensin II, elicits afferent arteriolar constriction.
Collapse
Affiliation(s)
- Jurgen Schnermann
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
14
|
Kramer BW, Joshi SN, Moss TJM, Newnham JP, Sindelar R, Jobe AH, Kallapur SG. Endotoxin-induced maturation of monocytes in preterm fetal sheep lung. Am J Physiol Lung Cell Mol Physiol 2007; 293:L345-53. [PMID: 17513458 DOI: 10.1152/ajplung.00003.2007] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The fetal lung normally contains immature monocytes and very few mature macrophages. The chorioamnionitis frequently associated with preterm birth induces monocyte influx into the fetal lung. Previous studies demonstrated that monocytes in the developing lung can mediate lung injury responses that resemble BPD in humans. We hypothesized that chorioamnionitis would induce maturation of immature monocytes in the fetal lung. Groups of three to seven time-mated ewes received saline or 10 mg of endotoxin (Escherichia coli 055:B5) in saline by intra-amniotic injection for intervals from 1 to 14 days before operative delivery at 124 days of gestational age. Monocytic cells from lung tissue were recovered using Percoll gradients. Monocytic cells consistent with macrophages were identified morphologically and by myosin heavy chain class II expression. An increase in macrophages was preceded by induction of granulocyte-macrophage colony-stimulating factor in the lung and subsequent activation of the transcription factor PU.1. The production of IL-6 by monocytes/macrophages in response to endotoxin challenge in vitro increased 7 and 14 days after exposure to intra-amniotic endotoxin. Recombinant TNF-alpha induced IL-6 production by lung monocytic cells exposed to intra-amniotic endotoxin but not in control cells. Monocytic phagocytosis of apoptotic neutrophils also increased 7 and 14 days after exposure to intra-amniotic endotoxin. Intra-amniotic endotoxin induced lung monocytes to develop into functionally mature cells consistent with macrophages. These findings have implications for lung immune responses after exposure to chorioamnionitis.
Collapse
Affiliation(s)
- Boris W Kramer
- University Hospital Maastricht, Maastricht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
15
|
Arystarkhova E, Donnet C, Muñoz-Matta A, Specht SC, Sweadner KJ. Multiplicity of expression of FXYD proteins in mammalian cells: dynamic exchange of phospholemman and gamma-subunit in response to stress. Am J Physiol Cell Physiol 2006; 292:C1179-91. [PMID: 17050615 DOI: 10.1152/ajpcell.00328.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Functional properties of Na-K-ATPase can be modified by association with FXYD proteins, expressed in a tissue-specific manner. Here we show that expression of FXYDs in cell lines does not necessarily parallel the expression pattern of FXYDs in the tissue(s) from which the cells originate. While being expressed only in lacis cells in the juxtaglomerular apparatus and in blood vessels in kidney, FXYD1 was abundant in renal cell lines of proximal tubule origin (NRK-52E, LLC-PK1, and OK cells). Authenticity of FXYD1 as a part of Na-K-ATPase in NRK-52E cells was demonstrated by co-purification, co-immunoprecipitation, and co-localization. Induction of FXYD2 by hypertonicity (500 mosmol/kgH(2)O with NaCl for 48 h or adaptation to 700 mosmol/kgH(2)O) correlated with downregulation of FXYD1 at mRNA and protein levels. The response to hypertonicity was influenced by serum factors and entailed, first, dephosphorylation of FXYD1 at Ser(68) (1-5 h) and, second, induction of FXYD2a and a decrease in FXYD1 with longer exposure. FXYD1 was completely replaced with FXYD2a in cells adapted to 700 mosmol/kgH(2)O and showed a significantly decreased sodium affinity. Thus dephosphorylation of FXYD1 followed by exchange of regulatory subunits is utilized to make a smooth transition of properties of Na-K-ATPase. We also observed expression of mRNA for multiple FXYDs in various cell lines. The expression was dynamic and responsive to physiological stimuli. Moreover, we demonstrated expression of FXYD5 protein in HEK-293 and HeLa cells. The data imply that FXYDs are obligatory rather than auxiliary components of Na-K-ATPase, and their interchangeability underlies responses of Na-K-ATPase to cellular stress.
Collapse
Affiliation(s)
- Elena Arystarkhova
- Laboratory of Membrane Biology, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | | | |
Collapse
|
16
|
Kunzmann S, Speer CP, Jobe AH, Kramer BW. Antenatal inflammation induced TGF-beta1 but suppressed CTGF in preterm lungs. Am J Physiol Lung Cell Mol Physiol 2006; 292:L223-31. [PMID: 16936247 DOI: 10.1152/ajplung.00159.2006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chorioamnionitis is frequently associated with preterm birth and increases the risk of adverse outcomes such as bronchopulmonary dysplasia (BPD). Transforming growth factor (TGF)-beta1 is a key regulator of lung development, airway remodeling, lung fibrosis, and regulation of inflammation, and all these processes contribute to the development of BPD. Connective tissue growth factor (CTGF) is a downstream mediator of some of the profibrotic effects of TGF-beta1, vascular remodeling, and angiogenesis. TGF-beta1-induced CTGF expression can be blocked by TNF-alpha. We asked whether chorioamnionitis-associated antenatal inflammation would regulate TGF-beta1, the TGF-beta1 signaling pathway, and CTGF in preterm lamb lungs. Fetal sheep were exposed to 4 mg of intra-amniotic endotoxin or saline for 5 h, 24 h, 72 h, or 7 days before preterm delivery at 125 days gestation (full term = 150 days). Intra-amniotic endotoxin increased lung TGF-beta1 mRNA and protein expression. Elevated TGF-beta1 levels were associated with TGF-beta1-induced phosphorylation of Smad2. CTGF was selectively expressed in lung endothelial cells in control lungs, and intra-amniotic endotoxin caused CTGF expression to decrease to 30% of control values and TNF-alpha protein to increase. The antenatal inflammation-induced TGF-beta1 expression and Smad signaling in the fetal lamb lung may contribute to impaired lung alveolarization and reduced lung inflammation. Decreased CTGF expression may inhibit vascular development or remodeling and limit lung fibrosis during remodeling. These effects may contribute to the impaired alveolar and pulmonary vascular development that is the hallmark of the new form of BPD.
Collapse
Affiliation(s)
- Steffen Kunzmann
- Department of Pediatrics, Academisch ziekenhuis Maastricht, Postbus 5800, 6202 AZ Maastricht, The Netherlands
| | | | | | | |
Collapse
|
17
|
Abstract
The FXYD proteins are a family of seven homologous single transmembrane segment proteins (FXYD1-7), expressed in a tissue-specific fashion. The FXYD proteins modulate the function of Na,K-ATPase, thus adapting kinetic properties of active Na+ and K+ transport to the specific needs of different cells. Six FXYD proteins are known to interact with Na,K-ATPase and affect its kinetic properties in specific ways. Although effects of FXYD proteins on parameters such as K(1/2)Na+, K(1/2)K+, K(m)ATP, and V(max) are modest, usually twofold, these effects may have important long-term consequences for homeostasis of cation balance. In this review we summarize basic features of FXYD proteins and present recent evidence for functional effects, structure-function relations and structural interactions with Na,K-ATPase. We then discuss possible physiological roles, based on in vitro observations and newly available knockout mice models. Finally, we also consider evidence that FXYD proteins affect functioning of other ion transport systems.
Collapse
Affiliation(s)
- Haim Garty
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | |
Collapse
|
18
|
Lifshitz Y, Lindzen M, Garty H, Karlish SJD. Functional interactions of phospholemman (PLM) (FXYD1) with Na+,K+-ATPase. Purification of alpha1/beta1/PLM complexes expressed in Pichia pastoris. J Biol Chem 2006; 281:15790-9. [PMID: 16608841 DOI: 10.1074/jbc.m601993200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human FXYD1 (phospholemman, PLM) has been expressed in Pichia pastoris with porcine alpha1/His10-beta1 subunits of Na+,K+-ATPase or alone. Dodecyl-beta-maltoside-soluble complexes of alpha1/beta1/PLM have been purified by metal chelate chromatography, either from membranes co-expressing alpha1,His10-beta1, and PLM or by in vitro reconstitution of PLM with alpha1/His10-beta1 subunits. Comparison of functional properties of purified alpha1/His10-beta1 and alpha1/His10-beta1/PLM complexes show that PLM lowered K0.5 for Na+ ions moderately (approximately 30%) but did not affect the turnover rate or Km of ATP for activating Na+,K+-ATPase activity. PLM also stabilized the alpha1/His10-beta1 complex. In addition, PLM markedly (>3-fold) reduced the K0.5 of Na+ ions for activating Na+-ATPase activity. In membranes co-expressing alpha1/His10-beta1 with PLM the K0.5 of Na+ ions was also reduced, compared with the control, excluding the possibility that detergent or lipid in purified complexes compromise functional interactions. When expressed in HeLa cells with rat alpha1, rat PLM significantly raised the K0.5 of Na+ ions, whereas for a chimeric molecule consisting of transmembranes segments of PLM and extramembrane segments of FXYD4, the K0.5 of Na+ ions was significantly reduced, compared with the control. The opposite functional effects in P. pastoris and HeLa cells are correlated with endogenous phosphorylation of PLM at Ser68 or unphosphorylated PLM, respectively, as detected with antibodies, which recognize PLM phosphorylated at Ser68 (protein kinase A site) or unphosphorylated PLM. We hypothesize that PLM interacts with alpha1/His10-beta1 subunits at multiple locations, the different functional effects depending on the degree of phosphorylation at Ser68. We discuss the role of PLM in regulation of Na+,K+-ATPase in cardiac or skeletal muscle cells.
Collapse
Affiliation(s)
- Yael Lifshitz
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
19
|
Sato TA, Mitchell MD. Molecular inhibition of histone deacetylation results in major enhancement of the production of IL-1beta in response to LPS. Am J Physiol Endocrinol Metab 2006; 290:E490-3. [PMID: 16234266 DOI: 10.1152/ajpendo.00406.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
It has been postulated that the progression of human pregnancy to term is, in part, the result of a relative maternal Th(2) immunological state. This can be activated in some cell types by modifying DNA methylation and histone acetylation status. We demonstrate that the molecular inhibition of histone deacetylation, using trichostatin A (TSA), in human choriodecidual explants leads to a massive increase in lipopolysaccharide (LPS)-stimulated IL-1beta. The inhibition of histone deacetylation had no effect on LPS-stimulated TNF-alpha production or production of the other cytokines studied (IL-10, IL-1 receptor antagonist). The molecular inhibition of DNA methylation and histone deacetylation, using 5-aza-2'-deoxycytidine and TSA, respectively, in human choriodecidual explants also results in an increase in the basal production of TNF-alpha but not that of IL-1beta. The differential response is unique, and the relative uncoupling of IL-1beta and TNF-alpha responsiveness may have importance in other biological systems and provide new therapeutic targets for pathologies where upregulation of IL-1beta is known to be a causative factor.
Collapse
Affiliation(s)
- Timothy A Sato
- Liggins Institute, Faculty of Medical and Health Sciences, Univ. of Auckland, Private Bag 92019, Auckland, New Zealand. )
| | | |
Collapse
|
20
|
Abstract
FXYD proteins belong to a family of small-membrane proteins. Recent experimental evidence suggests that at least five of the seven members of this family, FXYD1 (phospholemman), FXYD2 (gamma-subunit of Na-K-ATPase), FXYD3 (Mat-8), FXYD4 (CHIF), and FXYD7, are auxiliary subunits of Na-K-ATPase and regulate Na-K-ATPase activity in a tissue- and isoform-specific way. These results highlight the complexity of the regulation of Na+ and K+ handling by Na-K-ATPase, which is necessary to ensure appropriate tissue functions such as renal Na+ reabsorption, muscle contractility, and neuronal excitability. Moreover, a mutation in FXYD2 has been linked to cases of human hypomagnesemia, indicating that perturbations in the regulation of Na-K-ATPase by FXYD proteins may be critically involved in pathophysiological states. A better understanding of this novel regulatory mechanism of Na-K-ATPase should help in learning more about its role in pathophysiological states. This review summarizes the present knowledge of the role of FXYD proteins in the modulation of Na-K-ATPase as well as of other proteins, their regulation, and their structure-function relationship.
Collapse
Affiliation(s)
- Käthi Geering
- Dept. of Pharmacology and Toxicology, Univ. of Lausanne, Rue du Bugnon 27, 1005 Lausanne, Switzerland.
| |
Collapse
|
21
|
Dostanic I, Paul RJ, Lorenz JN, Theriault S, Van Huysse JW, Lingrel JB. The alpha2-isoform of Na-K-ATPase mediates ouabain-induced hypertension in mice and increased vascular contractility in vitro. Am J Physiol Heart Circ Physiol 2004; 288:H477-85. [PMID: 15458945 DOI: 10.1152/ajpheart.00083.2004] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Although ouabain is known to induce hypertension, the mechanism of how this cardiac glycoside affects blood pressure is uncertain. The present study demonstrates that the alpha2-isoform of the Na-K-ATPase mediates the pressor effects of ouabain in mice. To accomplish this, we analyzed the effect of ouabain on blood pressure in wild-type mice, where the alpha2-isoform is sensitive to ouabain, and genetically engineered mice expressing a ouabain-insensitive alpha2-isoform of the Na-K-ATPase. Thus differences in the response to ouabain between these two genotypes can only be attributed to the alpha2-isoform of Na-K-ATPase. As the alpha1-isoform is naturally resistant to ouabain in rodents, it will not be inhibited by ouabain in either genotype. Whereas prolonged administration of ouabain increased levels of ouabain in serum from both wild-type and targeted animals, hypertension developed only in wild-type mice. In addition, bolus intravenous infusion of ouabain increased the systolic, mean arterial, and left ventricular blood pressure in only wild-type anesthetized mice. In vitro, ouabain increased vascular tone and thereby phenylephrine-induced contraction of the aorta in intact and endothelium-denuded wild-type mice but in alpha2-resistant mice. Ouabain also increased the magnitude of the spontaneous contractions of portal vein and the basal tone of the intact aorta from only wild-type mice. The increase in aortic basal tone was dependent on the presence of endothelium. Our studies also demonstrate that the alpha2-isoform of Na-K-ATPase mediates the ouabain-induced increase in vascular contractility. This could play a role in the development and maintenance of ouabain-induced hypertension.
Collapse
Affiliation(s)
- Iva Dostanic
- Department of Molecular Genetics, Biochemistry and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | | | | | | | | | | |
Collapse
|
22
|
Ikegami M, Kallapur SG, Jobe AH. Initial responses to ventilation of premature lambs exposed to intra-amniotic endotoxin 4 days before delivery. Am J Physiol Lung Cell Mol Physiol 2004; 286:L573-9. [PMID: 14617517 DOI: 10.1152/ajplung.00211.2003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Preterm delivery is frequently preceded by chorioamnionitis, resulting in exposure of the fetal lung to inflammation. We hypothesized that ventilation of the antenatally inflamed lung would result in amplification of the lung injury. Therefore, we induced fetal lung inflammation with intra-amniotic endotoxin (10 mg of Escherichia coli 055:B5) 4 days before premature delivery at 130 days of gestation. Lung function and lung inflammation after surfactant treatment and 4 h of mechanical ventilation were evaluated. Inflammatory cell numbers in amniotic fluid were increased >10-fold by antenatal endotoxin exposure. Antenatal endotoxin exposure had minimal effects on blood pressure, heart rate, lung compliance, and blood gas values. The endotoxin-exposed lungs required higher ventilation pressures. Ventilation did not increase the number of inflammatory cells or the protein in bronchoalveolar lavage fluid of the endotoxin-exposed animals above that measured in endotoxin-exposed fetuses that were not ventilated. IL-1β, IL-6, and IL-8 mRNA in cells from bronchoalveolar lavage fluid were increased by antenatal endotoxin exposure but not changed by ventilation. IL-1β and IL-8 protein was increased in lung tissue by 4 h of ventilation. Very little inflammation was induced by ventilation in this premature lamb model of surfactant treatment and gentle ventilation. After lung inflammation was induced by intra-amniotic endotoxin injection, ventilation did not increase lung injury.
Collapse
Affiliation(s)
- Machiko Ikegami
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA.
| | | | | |
Collapse
|