1
|
Nagasaki T, Maeda H, Yanagisawa H, Nishida K, Kobayashi K, Wada N, Noguchi I, Iwakiri R, Taguchi K, Sakai H, Saruwatari J, Watanabe H, Otagiri M, Maruyama T. Carbon Monoxide-Loaded Red Blood Cell Prevents the Onset of Cisplatin-Induced Acute Kidney Injury. Antioxidants (Basel) 2023; 12:1705. [PMID: 37760008 PMCID: PMC10526101 DOI: 10.3390/antiox12091705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Cisplatin-induced acute kidney injury (AKI) is an important factor that limits the clinical use of this drug for the treatment of malignancies. Oxidative stress and inflammation are considered to be the main causes of not only cisplatin-induced death of cancer cells but also cisplatin-induced AKI. Therefore, developing agents that exert antioxidant and anti-inflammatory effects without weakening the anti-tumor effects of cisplatin is highly desirable. Carbon monoxide (CO) has recently attracted interest due to its antioxidant, anti-inflammatory, and anti-tumor properties. Herein, we report that CO-loaded red blood cell (CO-RBC) exerts renoprotective effects on cisplatin-induced AKI. Cisplatin treatment was found to reduce cell viability in proximal tubular cells via oxidative stress and inflammation. Cisplatin-induced cytotoxicity, however, was suppressed by the CO-RBC treatment. The intraperitoneal administration of cisplatin caused an elevation in the blood urea nitrogen and serum creatinine levels. The administration of CO-RBC significantly suppressed these elevations. Furthermore, the administration of CO-RBC also reduced the deterioration of renal histology and tubular cell injury through its antioxidant and anti-inflammatory effects in cisplatin-induced AKI mice. Thus, our data suggest that CO-RBC has the potential to substantially prevent the onset of cisplatin-induced AKI, which, in turn, may improve the usefulness of cisplatin-based chemotherapy.
Collapse
Affiliation(s)
- Taisei Nagasaki
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| | - Hitoshi Maeda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| | - Hiroki Yanagisawa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| | - Kento Nishida
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| | - Kazuki Kobayashi
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| | - Naoki Wada
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| | - Isamu Noguchi
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| | - Ryotaro Iwakiri
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| | - Kazuaki Taguchi
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan;
| | - Hiromi Sakai
- Department of Chemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan;
| | - Junji Saruwatari
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan;
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| |
Collapse
|
2
|
Oza PP, Kashfi K. The Triple Crown: NO, CO, and H 2S in cancer cell biology. Pharmacol Ther 2023; 249:108502. [PMID: 37517510 PMCID: PMC10529678 DOI: 10.1016/j.pharmthera.2023.108502] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) are three endogenously produced gases with important functions in the vasculature, immune defense, and inflammation. It is increasingly apparent that, far from working in isolation, these three exert many effects by modulating each other's activity. Each gas is produced by three enzymes, which have some tissue specificities and can also be non-enzymatically produced by redox reactions of various substrates. Both NO and CO share similar properties, such as activating soluble guanylate cyclase (sGC) to increase cyclic guanosine monophosphate (cGMP) levels. At the same time, H2S both inhibits phosphodiesterase 5A (PDE5A), an enzyme that metabolizes sGC and exerts redox regulation on sGC. The role of NO, CO, and H2S in the setting of cancer has been quite perplexing, as there is evidence for both tumor-promoting and pro-inflammatory effects and anti-tumor and anti-inflammatory activities. Each gasotransmitter has been found to have dual effects on different aspects of cancer biology, including cancer cell proliferation and apoptosis, invasion and metastasis, angiogenesis, and immunomodulation. These seemingly contradictory actions may relate to each gas having a dual effect dependent on its local flux. In this review, we discuss the major roles of NO, CO, and H2S in the context of cancer, with an effort to highlight the dual nature of each gas in different events occurring during cancer progression.
Collapse
Affiliation(s)
- Palak P Oza
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York 10091, USA.
| |
Collapse
|
3
|
Guo W, Huang S, An J, Zhang J, Dong F, Dang J, Zhang J. Ultrasound-Mediated Antitumor Therapy via Targeted Acoustic Release Carrier of Carbon Monoxide (TARC-CO). ACS APPLIED MATERIALS & INTERFACES 2022; 14:50664-50676. [PMID: 36322480 DOI: 10.1021/acsami.2c16821] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As one of the most valuable endogenous gas signaling molecules, carbon monoxide (CO) has been demonstrated in numerous studies to show excellent promise in the treatment of diseases, such as cancer. However, for many years, the inherent high affinity of CO for hemoglobin severely impeded the clinical transformation of CO-based treatments. Therefore, the controlled delivery of CO to target tissues has become a common challenge. Herein, an efficient ultrasonic-triggered and targeted CO release strategy was constructed based on a novel targeted acoustic release carrier of carbon monoxide (TARC-CO) that we synthesized in this study. The designed TARC-COs could afford a safe, stable, and ultrasound-guided delivery of CO in vivo by loading a specified dose of CO inside microbubbles, resulting in breast tumor suppression. Taking advantage of the high loading capacity of microbubbles, the unit volume of TARC-CO suspension could encapsulate up to 337.1 ± 8.0 (×103 ppm) of CO. In addition, the satisfactory ultrasound contrast-enhanced ability of TARC-COs achieved real-time interactive guidance and visual policing of CO delivery. For the in vitro antitumor study, TARC-COs with ultrasonic irradiation were demonstrated to effectively induce mitochondrial dysfunction by reducing mitochondrial membrane potential, leading to the apoptosis of 4T1 cells. In addition, we realized that TARC-CO-based treatment could significantly slow the growth rate of tumors by inducing apoptosis, inhibiting the proliferation of cancer cells, and limiting tumor angiogenesis. In summary, this proof-of-concept study demonstrates the feasibility and tremendous potential of TARC-COs for controlled release of CO, which can be expected to provide new inspirations and a promising perspective for therapy based on active gases.
Collapse
Affiliation(s)
- Wenyu Guo
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shuo Huang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jian An
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jiabin Zhang
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Feihong Dong
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Jie Dang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jue Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- College of Engineering, Peking University, Beijing 100871, China
- National Biomedical Imaging Center, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Huh H, Kim E, Yoon UA, Choi MJ, Lee H, Kwon S, Kim CT, Kim DK, Kim YS, Lim CS, Lee JP, Kim H, Kim YC. Ambient carbon monoxide correlates with mortality risk of hemodialysis patients: comparing results of control selection in the case-crossover designs. Kidney Res Clin Pract 2022; 41:601-610. [PMID: 35545219 PMCID: PMC9576453 DOI: 10.23876/j.krcp.21.228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/14/2022] [Indexed: 11/04/2022] Open
Abstract
Background Growing evidence suggests that environmental air pollution adversely affects kidney health. To date, the association between carbon monoxide (CO) and mortality in patients with end-stage renal disease (ESRD) has not been examined. Methods Among 134,478 dialysis patients in the Korean ESRD cohort between 2001 and 2014, 8,130 deceased hemodialysis patients were enrolled, and data were analyzed using bidirectional, unidirectional, and time-stratified case-crossover design. We examined the association between short-term CO concentration and mortality in patients with ESRD. We used a two-pollutant model, adjusted for temperature as a climate factor and for nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3), and particulate matter less than 10 μm in diameter as air pollution variables other than CO. Results Characteristics of the study population included age (66.2 ± 12.1 years), sex (male, 59.1%; female, 40.9%), and comorbidities (diabetes, 55.6%; hypertension, 14.4%). Concentration of CO was significantly associated with all-cause mortality in the three case-crossover designs using the two-pollutant model adjusted for SO2. Patients with diabetes or age older than 75 years had a higher risk of mortality than patients without diabetes or those younger than 75 years. Conclusion Findings presented here suggest that higher CO concentration is correlated with increased all-cause mortality in hemodialysis patients, especially in older high-risk patients.
Collapse
Affiliation(s)
- Hyuk Huh
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ejin Kim
- Institute of Health and Environment, Graduate School of Public Health Seoul National University, Seoul, Republic of Korea
| | - Una Amelia Yoon
- Department of Biostatistics and Epidemiology, Graduate School of Public Health, Seoul National University
| | - Mun Jeong Choi
- Department of Biostatistics and Epidemiology, Graduate School of Public Health, Seoul National University
| | - Hyewon Lee
- Department of Health Administration and Management, College of Medical Sciences, Soonchunhyang University, Asan, Republic of Korea
| | - Soie Kwon
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Clara Tammy Kim
- Institute of Life and Death Studies, Hallym University, Chuncheon, Republic of Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yon Su Kim
- Kidney Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea
- Department of Medical Science, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Chun Soo Lim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Jung Pyo Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Ho Kim
- Institute of Health and Environment, Graduate School of Public Health Seoul National University, Seoul, Republic of Korea
- Department of Biostatistics and Epidemiology, Graduate School of Public Health, Seoul National University
- Correspondence: Ho Kim Institute of Health and Environment, Graduate School of Public Health, Seoul National University, Room 708, Building 220, 1 Gwanak-ro Gwanak-gu, Seoul 08826, Republic of Korea. E-mail:
| | - Yong Chul Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Yong Chul Kim Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea. E-mail:
| |
Collapse
|
5
|
Mansour AM, Khaled RM, Khaled E, Ahmed SK, Ismael OS, Zeinhom A, Magdy H, Ibrahim SS, Abdelfatah M. Ruthenium(II) carbon monoxide releasing molecules: Structural perspective, antimicrobial and anti-inflammatory properties. Biochem Pharmacol 2022; 199:114991. [DOI: 10.1016/j.bcp.2022.114991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 01/12/2023]
|
6
|
Taguchi K, Suzuki Y, Tsutsuura M, Hiraoka K, Watabe Y, Enoki Y, Otagiri M, Sakai H, Matsumoto K. Liposomal Artificial Red Blood Cell-Based Carbon Monoxide Donor Is a Potent Renoprotectant against Cisplatin-Induced Acute Kidney Injury. Pharmaceutics 2021; 14:pharmaceutics14010057. [PMID: 35056952 PMCID: PMC8780666 DOI: 10.3390/pharmaceutics14010057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/04/2022] Open
Abstract
Cisplatin (CDDP) is an essential anti-tumor agent for chemotherapeutic regimens against various types of cancer. However, the progression of nephrotoxicity, which is the main adverse effect of CDDP, leads to discontinuation of CDDP chemotherapy. Therefore, development of a renoprotectant against CDDP-induced nephrotoxicity is crucial. Here, the potential of a carbon monoxide (CO)-loaded hemoglobin-vesicle (CO-HbV) as a renoprotectant for CDDP-induced nephrotoxicity was evaluated for its renoprotective effects against CDDP-induced nephrotoxicity, inhibitory effects on the anti-tumor activity of CDDP, and anti-tumor activity. In healthy mice, after pretreatment with either saline, HbV, or CO-HbV prior to CDDP administration, only the CO-HbV pretreatment group ameliorated the progression of CDDP-induced nephrotoxicity by suppressing apoptosis via caspase-3. In experiments using B16-F10 melanoma cells, the half-maximal inhibitory concentration of CDDP decreased with co-incubation with CO-HbV, owing to the anti-tumor activity of CO. CO-HbV pretreatment had no impact on the anti-tumor activity of CDDP in B16-F10 melanoma cell-bearing mice, which was consistent with the results of the cell experiment. Furthermore, CO-HbV pretreatment improved body growth and survival rates. In conclusion, CO-HbV pretreatment is a potent renoprotectant for CDDP-induced nephrotoxicity, allowing treatment with CDDP to be conducted without failure of cancer treatment.
Collapse
Affiliation(s)
- Kazuaki Taguchi
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan; (Y.S.); (M.T.); (K.H.); (Y.W.); (Y.E.); (K.M.)
- Correspondence:
| | - Yuto Suzuki
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan; (Y.S.); (M.T.); (K.H.); (Y.W.); (Y.E.); (K.M.)
| | - Moeko Tsutsuura
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan; (Y.S.); (M.T.); (K.H.); (Y.W.); (Y.E.); (K.M.)
| | - Kana Hiraoka
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan; (Y.S.); (M.T.); (K.H.); (Y.W.); (Y.E.); (K.M.)
| | - Yuki Watabe
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan; (Y.S.); (M.T.); (K.H.); (Y.W.); (Y.E.); (K.M.)
| | - Yuki Enoki
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan; (Y.S.); (M.T.); (K.H.); (Y.W.); (Y.E.); (K.M.)
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan;
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Hiromi Sakai
- Department of Chemistry, Nara Medical University, Shijo-cho 840, Kashihara 634-8521, Japan;
| | - Kazuaki Matsumoto
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan; (Y.S.); (M.T.); (K.H.); (Y.W.); (Y.E.); (K.M.)
| |
Collapse
|
7
|
Liu Q, Cheng A, Wang Y, Lv Y, Chen Z. Carbon Monoxide in Renal Physiology, Pathogenesis and Treatment of Renal Disease. Curr Pharm Des 2021; 27:4253-4260. [PMID: 34779366 DOI: 10.2174/1381612827666210706161207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/10/2021] [Indexed: 11/22/2022]
Abstract
Carbon monoxide (CO) is one of the endogenous gaseous messengers or gasotransmitters, and is a paramount mediator in physiological and disease conditions. In this review, we focus on the functions of CO in normal and pathological renal physiology. We discuss endogenous renal CO production and signaling in the normal kidney, the characteristic of CO-releasing molecules (CORMs) modalities, and outline its regulatory functions in renal physiology. This article summarizes the mechanisms as well as the effect of CO in the evolving field of renal diseases. We predict numerous innovative CO applications forevolvingcutting-edge scholarly work in the future.
Collapse
Affiliation(s)
- Qingquan Liu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anying Cheng
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiru Wang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongman Lv
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Chen
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
8
|
Yuan Z, Yang X, Wang B. Redox and catalase-like activities of four widely used carbon monoxide releasing molecules (CO-RMs). Chem Sci 2021; 12:13013-13020. [PMID: 34745532 PMCID: PMC8513939 DOI: 10.1039/d1sc03832j] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/05/2021] [Indexed: 12/30/2022] Open
Abstract
The pathophysiological roles of the endogenous signaling molecule, carbon monoxide (CO), have been extensively studied and validated in cell culture and animal models. Further, evidence supporting the therapeutic effects of CO in various human diseases has been mounting over the last two decades. Along this line, there has been intensive interest in developing various delivery forms including CO gas, CO in solution, metal–carbonyl complexes widely known as CO-releasing molecules (CO-RMs), and organic CO prodrugs. Among them, two ruthenium-based carbonyl complexes, CORM-2 and -3, occupy a very special place because they have been used in over 500 published studies. One of the mechanisms for CO's actions is known to be through attenuation of oxidative stress and regulation of production of reactive oxygen species (ROS). For this reason, it is important that CO delivery forms do not have intrinsic chemical redox properties. Herein, we describe our findings of catalase-like activities of CORM-2 and -3 in a CO-independent fashion, leading to the rapid degradation of hydrogen peroxide (H2O2) in PBS buffer (pH = 7.4) and in cell culture media. Further, we have found that CORM-2 and CORM-3 possess potent radical scavenging abilities. We have also studied two other widely used CO donors: CORM-401 and CORM-A1. Both showed chemical reactivity with ROS, but to a lesser degree than CORM-2 and -3. Because of the central role of ROS in some of the proposed mechanisms of actions for CO biology, the discovery of intrinsic chemical redox properties for these CO-RMs means that additional attention in designing proper controls is needed in future biological experiments using these CO-RMs for their CO-donating functions. Further, much more work is needed to understand the true implications of the chemical reactivity of these CO-RMs in cell-culture and animal-model studies of CO biology. Four CO-releasing molecules are found to degrade H2O2 and free radicals either catalytically (CORM-2 and -3) or through direct reactions (CORM-401 and -A1) in solution under near-physiological conditions.![]()
Collapse
Affiliation(s)
- Zhengnan Yuan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University Atlanta Georgia 30303 USA
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University Atlanta Georgia 30303 USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University Atlanta Georgia 30303 USA
| |
Collapse
|
9
|
Hwang DB, Cha MH, Won DH, Shin YS, Kim SY, Kim C, Lee EJ, Kim YY, Yun JW. Transcriptomic analysis of rat kidney reveals a potential mechanism of sex differences in susceptibility to cisplatin-induced nephrotoxicity. Free Radic Biol Med 2021; 174:100-109. [PMID: 34384867 DOI: 10.1016/j.freeradbiomed.2021.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/29/2021] [Accepted: 08/07/2021] [Indexed: 12/11/2022]
Abstract
Although cisplatin is an effective platinum-based anticancer drug against solid cancer, its availability is limited owing to its adverse side effects. Our study aimed to identify the potential relationship within cisplatin-induced multi-organ physiological changes and genetic factors associated with sex differences in nephrotoxicity susceptibility. To investigate this, mice received a single intraperitoneal injection of cisplatin. Cisplatin administration resulted in renal dysfunction, as evidenced by the elevation in serum biomarkers of renal damage (blood urea nitrogen and creatinine) and the degree of histopathological alterations. In particular, along with testicular damage and low testosterone levels, we also observed a decrease in male-specific (CYP3A2) or male-dominant (CYP2B1 and CYP3A1) CYP isoforms in the livers of rats with hepatotoxicity following cisplatin treatment, which may be associated with an imbalance in male hormone regulation caused by renal and testicular injury. Notably, we found that male rats were more susceptible to cisplatin-induced nephrotoxicity, as characterized by histopathological and biochemical analyses. Therefore, RNA sequencing was performed at baseline (pre-treatment) and at 48 h following cisplatin administration (post-treatment) to identify the genes associated with sex differences in nephrotoxicity susceptibility. Gap junctions, which play a role in replenishing damaged cells to maintain tissue homeostasis, and mismatch repair associated with a pathological apoptotic mechanism against cisplatin nephrotoxicity were significantly enriched only in males following cisplatin treatment. Moreover, among the 322 DEGs showing different basal expression patterns between males and females before cisplatin treatment, the male expressed high levels of genes, which are responsible for transmembrane transport and regulation of apoptotic process, pre-cisplatin treatment; additionally, genes involved in the PI3K-Akt signaling pathway and the oxidation-reduction process were significantly lower in males before cisplatin treatment. Collectively, our comprehensive findings provided valuable insight into the potential mechanisms of sex differences in cisplatin-induced nephrotoxicity susceptibility.
Collapse
Affiliation(s)
- Da-Bin Hwang
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - Min Ho Cha
- KM Application Center, Korea Institute of Oriental Medicine, Daegu, 41062, South Korea
| | - Dong-Hoon Won
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - Yoo-Sub Shin
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - Shin-Young Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - Changuk Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - Eun-Ji Lee
- KM Application Center, Korea Institute of Oriental Medicine, Daegu, 41062, South Korea
| | - Yoon Young Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, 03080, South Korea
| | - Jun-Won Yun
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea; Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, 14662, South Korea.
| |
Collapse
|
10
|
Li Y, Ma K, Han Z, Chi M, Sai X, Zhu P, Ding Z, Song L, Liu C. Immunomodulatory Effects of Heme Oxygenase-1 in Kidney Disease. Front Med (Lausanne) 2021; 8:708453. [PMID: 34504854 PMCID: PMC8421649 DOI: 10.3389/fmed.2021.708453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/31/2021] [Indexed: 01/23/2023] Open
Abstract
Kidney disease is a general term for heterogeneous damage that affects the function and the structure of the kidneys. The rising incidence of kidney diseases represents a considerable burden on the healthcare system, so the development of new drugs and the identification of novel therapeutic targets are urgently needed. The pathophysiology of kidney diseases is complex and involves multiple processes, including inflammation, autophagy, cell-cycle progression, and oxidative stress. Heme oxygenase-1 (HO-1), an enzyme involved in the process of heme degradation, has attracted widespread attention in recent years due to its cytoprotective properties. As an enzyme with known anti-oxidative functions, HO-1 plays an indispensable role in the regulation of oxidative stress and is involved in the pathogenesis of several kidney diseases. Moreover, current studies have revealed that HO-1 can affect cell proliferation, cell maturation, and other metabolic processes, thereby altering the function of immune cells. Many strategies, such as the administration of HO-1-overexpressing macrophages, use of phytochemicals, and carbon monoxide-based therapies, have been developed to target HO-1 in a variety of nephropathological animal models, indicating that HO-1 is a promising protein for the treatment of kidney diseases. Here, we briefly review the effects of HO-1 induction on specific immune cell populations with the aim of exploring the potential therapeutic roles of HO-1 and designing HO-1-based therapeutic strategies for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Yunlong Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,School of Medical and Life Sciences, Reproductive and Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Zhongyu Han
- School of Medical and Life Sciences, Reproductive and Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingxuan Chi
- School of Medical and Life Sciences, Reproductive and Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiyalatu Sai
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhaolun Ding
- Department of Emergency Surgery, Shannxi Provincial People's Hospital, Xi'an, China
| | - Linjiang Song
- School of Medical and Life Sciences, Reproductive and Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chi Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
11
|
CO-Releasing Molecule-2 Prevents Acute Kidney Injury through Suppression of ROS-Fyn-ER Stress Signaling in Mouse Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9947772. [PMID: 34326922 PMCID: PMC8277502 DOI: 10.1155/2021/9947772] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/11/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022]
Abstract
Acute kidney injury (AKI) most commonly appears in critically ill patients in hospitals. AKI is characterized as a quick deterioration of kidney function and has recently been identified to be tightly interlinked with chronic kidney diseases. The emerging major mediators of AKI include oxidative stress and endoplasmic reticulum (ER) stress. Carbon monoxide (CO) attenuates oxidative stress and ER stress in various cells, while Fyn, a member of the Src kinase family, is activated by oxidative stress and contributes to ER stress in skeletal muscle. Considering these, the objective of the current research was to determine (i) the involvement of Fyn in ER stress-mediated AKI and (ii) the effect of CO-releasing molecule-2 (CORM2) on reactive oxygen species- (ROS-) Fyn-ER stress-mediated AKI. Pretreatment with CORM2 (30 mg/kg) efficiently inhibited LPS (30 mg/kg)-induced oxidative stress, inflammation, and cellular apoptosis during AKI in C57BL/6J mice. Also, CORM2 efficiently suppressed the activation of Fyn and ER stress in AKI mice. Consistently, pretreatment with CORM2 inhibited oxidative stress, Fyn activation, ER stress, inflammation, and apoptosis in LPS- or H2O2-stimulated proximal epithelial tubular cells. Fyn inhibition using siRNA or an inhibitor (PP2) significantly attenuated ER stress responses in the cells. These data suggest that CORM2 may become a potential treatment option against ROS-Fyn-ER stress-mediated AKI.
Collapse
|
12
|
Yang X, Lu W, Hopper CP, Ke B, Wang B. Nature's marvels endowed in gaseous molecules I: Carbon monoxide and its physiological and therapeutic roles. Acta Pharm Sin B 2021; 11:1434-1445. [PMID: 34221861 PMCID: PMC8245769 DOI: 10.1016/j.apsb.2020.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/03/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023] Open
Abstract
Nature has endowed gaseous molecules such as O2, CO2, CO, NO, H2S, and N2 with critical and diverse roles in sustaining life, from supplying energy needed to power life and building blocks for life's physical structure to mediating and coordinating cellular functions. In this article, we give a brief introduction of the complex functions of the various gaseous molecules in life and then focus on carbon monoxide as a specific example of an endogenously produced signaling molecule to highlight the importance of this class of molecules. The past twenty years have seen much progress in understanding CO's mechanism(s) of action and pharmacological effects as well as in developing delivery methods for easy administration. One remarkable trait of CO is its pleiotropic effects that have few parallels, except perhaps its sister gaseous signaling molecules such as nitric oxide and hydrogen sulfide. This review will delve into the sophistication of CO-mediated signaling as well as its validated pharmacological functions and possible therapeutic applications.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Wen Lu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Christopher P. Hopper
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
- Institut für Experimentelle Biomedizin, Universitätsklinikum Würzburg, Würzburg, Bavaria 97080, Germany
| | - Bowen Ke
- Department of Anesthesiology, West China Hospital, Chengdu 610041, China
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
13
|
Yuan Z, Yang X, Ye Y, Tripathi R, Wang B. Chemical Reactivities of Two Widely Used Ruthenium-Based CO-Releasing Molecules with a Range of Biologically Important Reagents and Molecules. Anal Chem 2021; 93:5317-5326. [PMID: 33745269 DOI: 10.1021/acs.analchem.1c00533] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ruthenium-based CO-releasing molecules (CO-RMs), CORM-2 and CORM-3, have been widely used as surrogates of CO for studying its biological effects in vitro and in vivo with much success. However, several previous solution-phase and in vitro studies have revealed the ability of such CO-RMs to chemically modify proteins and reduce aromatic nitro groups due to their intrinsic chemical reactivity under certain conditions. In our own work of studying the cytoprotective effects of CO donors, we were in need of assessing chemical factors that could impact the interpretation of results from CO donors including CORM-2,3 in various in vitro assays. For this, we examined the effects of CORM-2,3 toward representative reagents commonly used in various bioassays including resazurin, tetrazolium salts, nitrites, and azide-based H2S probes. We have also examined the effect of CORM-2,3 on glutathione disulfide (GSSG), which is a very important redox regulator. Our studies show the ability of these CO-RMs to induce a number of chemical and/or spectroscopic changes for several commonly used biological reagents under near-physiological conditions. These reactions/spectroscopic changes cannot be duplicated with CO-deleted CO-RMs (iCORMs), which are often used as negative controls. Furthermore, both CORM-2 and -3 are capable of consuming and reducing GSSG in solution. We hope that the results described will help in the future design of control experiments using Ru-based CO-RMs.
Collapse
Affiliation(s)
- Zhengnan Yuan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Yuqian Ye
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Ravi Tripathi
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
14
|
Casanova AG, Hernández-Sánchez MT, Martínez-Salgado C, Morales AI, Vicente-Vicente L, López-Hernández FJ. A meta-analysis of preclinical studies using antioxidants for the prevention of cisplatin nephrotoxicity: implications for clinical application. Crit Rev Toxicol 2020; 50:780-800. [PMID: 33170047 DOI: 10.1080/10408444.2020.1837070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cisplatin is an effective chemotherapeutic drug whose clinical use and efficacy are limited by its nephrotoxicity, which affects mainly the renal tubules and vasculature. It accumulates in proximal and distal epithelial tubule cells and causes oxidative stress-mediated cell death and malfunction. Consequently, many antioxidants have been tested for their capacity to prevent cisplatin nephrotoxicity. In this study, we made a systematic review of the literature and meta-analyzed 152 articles, which tested the nephroprotective effect of isolated compounds or mixtures of natural origin on cisplatin nephrotoxicity in preclinical models. This meta-analysis identified the most effective candidates and examined the efficacy obtained by antioxidants administered by the oral and intraperitoneal routes. By comparing with a recent, similar meta-analysis performed on clinical studies, this article identifies a disconnection between preclinical and clinical research, and contextualizes, discusses, and integrates the existing preclinical information toward the optimized selection of candidates to be further explored (clinical level). Despite proved efficacy, this article discusses the barriers limiting the clinical development of natural mixtures, such as those in extracts from Calendula officinalis flowers and Heliotropium eichwaldii roots. On the contrary, isolated compounds are more straightforward candidates, among which arjunolic acid and quercetin stand out in this meta-analysis.
Collapse
Affiliation(s)
- Alfredo G Casanova
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca (USAL), Salamanca, Spain.,Fundación Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Soria, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,National Network for Kidney Research REDINREN, Instituto de Salud Carlos III, Madrid, Spain
| | - M Teresa Hernández-Sánchez
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca (USAL), Salamanca, Spain.,Fundación Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Soria, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,National Network for Kidney Research REDINREN, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Martínez-Salgado
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca (USAL), Salamanca, Spain.,Fundación Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Soria, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,National Network for Kidney Research REDINREN, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana I Morales
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca (USAL), Salamanca, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,National Network for Kidney Research REDINREN, Instituto de Salud Carlos III, Madrid, Spain.,Group of Biomedical Research on Critical Care (BioCritic), Valladolid, Spain
| | - Laura Vicente-Vicente
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca (USAL), Salamanca, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,National Network for Kidney Research REDINREN, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco J López-Hernández
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca (USAL), Salamanca, Spain.,Fundación Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Soria, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,National Network for Kidney Research REDINREN, Instituto de Salud Carlos III, Madrid, Spain.,Group of Biomedical Research on Critical Care (BioCritic), Valladolid, Spain
| |
Collapse
|
15
|
Carbon Monoxide-Releasing Molecule-3 Ameliorates Acute Lung Injury in a Model of Hemorrhagic Shock and Resuscitation: Roles of p38MAPK Signaling Pathway. Shock 2020; 55:816-826. [PMID: 33105439 DOI: 10.1097/shk.0000000000001684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE It was reported that carbon monoxide-releasing molecule-3 (CORM-3) administration immediately after hemorrhagic shock and resuscitation (HSR) ameliorates the HSR-induced acute lung injury (ALI); however, the specific mechanism of the protective effects against HSR-induced ALI remains unclear. METHODS To induce hemorrhagic shock, rats were bled to a mean arterial blood pressure of 30 mm Hg for 45 min and then resuscitated with shed blood via the left vein. CORM-3 (4 mg/kg or 8 mg/kg) was respectively administrated after HSR. Twelve hours post-HSR, lung injury was assessed by wet/dry (W/D) ratio, hematoxylin-eosin staining staining, and lung ultrasound; the apoptotic and pyroptotic macrophages were measured by immunofluorescence staining; and the expression of phosphorylated p38 mitogen activated protein kinase (p-p38MAPK) and total p38MAPK was measured by western blotting. SB203580 (5 mg/kg), a special inhibitor of p-p38MAPK, was administrated by abdominal cavity to assess the roles of p38MAPK in HSR-induced ALI. RESULTS Increased B-line score, lung injury score, and W/D ratio indicated the fact of ALI after HSR. Twelve hours post-HSR, CORM-3 administration significantly decreased the B-line score, lung injury score, W/D ratio, apoptotic and pyroptotic macrophages, and the expressions of p-p38MAPK. Further, SB203580 not only reduced HSR-induced ALI, but also enhanced the protective effects of CORM-3 against ALI. CONCLUSION We identified the protective effects of CORM-3 against HSR-induced ALI. The mechanism might be related to the inhibition of p38MAPK signaling pathway in lung macrophages.
Collapse
|
16
|
Harnessing carbon monoxide-releasing platforms for cancer therapy. Biomaterials 2020; 255:120193. [DOI: 10.1016/j.biomaterials.2020.120193] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/19/2020] [Accepted: 06/09/2020] [Indexed: 12/21/2022]
|
17
|
Yuan Z, Yang X, De La Cruz LK, Wang B. Nitro reduction-based fluorescent probes for carbon monoxide require reactivity involving a ruthenium carbonyl moiety. Chem Commun (Camb) 2020; 56:2190-2193. [PMID: 31971171 DOI: 10.1039/c9cc08296d] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recently, several arylnitro-based fluorescent CO probes have been reported. The design was based on CO's ability to reduce an arylnitro group for fluorescence turn-on. In this work, we assessed the response of three published arylnitro-based fluorescent CO probes, namely COFP, LysoFP-NO2, and NIR-CO toward CO from various sources. We found that only ruthenium-based CO releasing molecules (CO-RMs) were able to turn on the fluorescence while pure CO gas and CO from other sources did not turn-on the probe in the absence of ruthenium. Further experiments with different ruthenium complexes indicate that the reduction of arylnitro group requires the ruthenium carbonyl complex as an essential ingredient. As further confirmation, we also conducted the reduction of the nitro group in a p-nitrobenzamide compound and came to the same conclusion. As such, COFP and related arynitro-based probes are able to sense CORM-2 and CORM-3, but not CO in general. Our findings also indicate the need to use CO from various sources in future assessment of new CO probes.
Collapse
Affiliation(s)
- Zhengnan Yuan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, USA.
| | | | | | | |
Collapse
|
18
|
Yang X, de Caestecker M, Otterbein LE, Wang B. Carbon monoxide: An emerging therapy for acute kidney injury. Med Res Rev 2019; 40:1147-1177. [PMID: 31820474 DOI: 10.1002/med.21650] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/31/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022]
Abstract
Treating acute kidney injury (AKI) represents an important unmet medical need both in terms of the seriousness of this medical problem and the number of patients. There is also a large untapped market opportunity in treating AKI. Over the years, there has been much effort in search of therapeutics with minimal success. However, over the same time period, new understanding of the underlying pathobiology and molecular mechanisms of kidney injury have undoubtedly helped the search for new therapeutics. Along this line, carbon monoxide (CO) has emerged as a promising therapeutic agent because of its demonstrated cytoprotective, and immunomodulatory effects. CO has also been shown to sensitize cancer, but not normal cells, to chemotherapy. This is particularly important in treating cisplatin-induced AKI, a common clinical problem that develops in patients receiving cisplatin therapies for a number of different solid organ malignancies. This review will examine and make the case that CO be developed into a therapeutic agent against AKI.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Mark de Caestecker
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Leo E Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| |
Collapse
|
19
|
Yan H, Du J, Zhu S, Nie G, Zhang H, Gu Z, Zhao Y. Emerging Delivery Strategies of Carbon Monoxide for Therapeutic Applications: from CO Gas to CO Releasing Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1904382. [PMID: 31663244 DOI: 10.1002/smll.201904382] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Carbon monoxide (CO) therapy has emerged as a hot topic under exploration in the field of gas therapy as it shows the promise of treating various diseases. Due to the gaseous property and the high affinity for human hemoglobin, the main challenges of administrating medicinal CO are the lack of target selectivity as well as the toxic profile at relatively high concentrations. Although abundant CO releasing molecules (CORMs) with the capacity to deliver CO in biological systems have been developed, several disadvantages related to CORMs, including random diffusion, poor solubility, potential toxicity, and lack of on-demand CO release in deep tissue, still confine their practical use. Recently, the advent of versatile nanomedicine has provided a promising chance for improving the properties of naked CORMs and simultaneously realizing the therapeutic applications of CO. This review presents a brief summarization of the emerging delivery strategies of CO based on nanomaterials for therapeutic application. First, an introduction covering the therapeutic roles of CO and several frequently used CORMs is provided. Then, recent advancements in the synthesis and application of versatile CO releasing nanomaterials are elaborated. Finally, the current challenges and future directions of these important delivery strategies are proposed.
Collapse
Affiliation(s)
- Haili Yan
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Jiangfeng Du
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guangjun Nie
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hui Zhang
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuliang Zhao
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
20
|
Wu B, Wu Y, Tang W. Heme Catabolic Pathway in Inflammation and Immune Disorders. Front Pharmacol 2019; 10:825. [PMID: 31396090 PMCID: PMC6667928 DOI: 10.3389/fphar.2019.00825] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 06/26/2019] [Indexed: 12/22/2022] Open
Abstract
In recent years, the heme catabolic pathway is considered to play an important regulatory role in cell protection, apoptosis, inflammation, and other physiological and pathological processes. An appropriate amount of heme forms the basic elements of various life activities, while when released in large quantities, it can induce toxicity by mediating oxidative stress and inflammation. Heme oxygenase (HO) -1 can catabolize free heme into carbon monoxide (CO), ferrous iron, and biliverdin (BV)/bilirubin (BR). The diverse functions of these metabolites in immune systems are fascinating. Decades work shows that administration of degradation products of heme such as CO and BV/BR exerts protective activities in systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), multiple sclerosis (MS) and other immune disorders. This review elaborates the molecular and biochemical characterization of heme catabolic pathway, discusses the signal transduction and immunomodulatory mechanism in inflammation and summarizes the promising therapeutic strategies based on this pathway in inflammatory and immune disorders.
Collapse
Affiliation(s)
- Bing Wu
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Yanwei Wu
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Tang
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Drummond HA, Mitchell ZL, Abraham NG, Stec DE. Targeting Heme Oxygenase-1 in Cardiovascular and Kidney Disease. Antioxidants (Basel) 2019; 8:antiox8060181. [PMID: 31216709 PMCID: PMC6617021 DOI: 10.3390/antiox8060181] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/13/2019] [Accepted: 06/15/2019] [Indexed: 12/13/2022] Open
Abstract
Heme oxygenase (HO) plays an important role in the cardiovascular system. It is involved in many physiological and pathophysiological processes in all organs of the cardiovascular system. From the regulation of blood pressure and blood flow to the adaptive response to end-organ injury, HO plays a critical role in the ability of the cardiovascular system to respond and adapt to changes in homeostasis. There have been great advances in our understanding of the role of HO in the regulation of blood pressure and target organ injury in the last decade. Results from these studies demonstrate that targeting of the HO system could provide novel therapeutic opportunities for the treatment of several cardiovascular and renal diseases. The goal of this review is to highlight the important role of HO in the regulation of cardiovascular and renal function and protection from disease and to highlight areas in which targeting of the HO system needs to be translated to help benefit patient populations.
Collapse
Affiliation(s)
- Heather A Drummond
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MI 39216, USA.
| | - Zachary L Mitchell
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MI 39216, USA.
| | - Nader G Abraham
- Departments of Medicine and Pharmacology, New York Medical College, Vahalla, NY 10595, USA.
- Joan C. Edwards School of Medicine, Marshall University, Huntington, VA 25701, USA.
| | - David E Stec
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MI 39216, USA.
| |
Collapse
|
22
|
Michel HE, Menze ET. Tetramethylpyrazine guards against cisplatin-induced nephrotoxicity in rats through inhibiting HMGB1/TLR4/NF-κB and activating Nrf2 and PPAR-γ signaling pathways. Eur J Pharmacol 2019; 857:172422. [PMID: 31152701 DOI: 10.1016/j.ejphar.2019.172422] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022]
Abstract
Cisplatin-induced acute renal injury is the most common and serious side effect, sometimes requiring discontinuation of the treatment. Thus, the development of new protective strategies is essential. The present study aimed to investigate the potential nephroprotective effect of tetramethylpyrazine (TMP) against acute renal damage induced by cisplatin in rats. Rats were administered 50 and 100 mg/kg TMP intraperitoneally before cisplatin (7 mg/kg). Acute nephrotoxicity was evident in cisplatin-treated rats where relative kidney weight, BUN and serum creatinine were markedly elevated. Cisplatin administration resulted in enhanced oxidative stress, evidenced by depleted GSH level as well as catalase and superoxide dismutase activities. Also, lipid peroxidation was boosted in comparison to the control. This was associated with inhibition of Nrf2 defense pathway. Moreover, cisplatin increased the expression of pro-inflammatory mediators in the kidney tissues. Cisplatin-induced apoptosis was depicted by elevated Bax mRNA expression and caspase-3 activity, as well as decreased Bcl2 mRNA expression. In addition, high mobility group box 1/toll-like receptor 4/nuclear factor-kappa B (HMGB1/TLR4/NF-κB) signaling pathway was significantly upregulated, while peroxisome proliferator-activated receptor-gamma (PPAR-γ) expression was significantly diminished in cisplatin-treated rats. Cisplatin-induced nephrotoxicity, oxidative stress, inflammation, apoptosis and the effect on Nrf2 defense pathway and HMGB1/TLR4/NF-κB as well as PPAR-γ expression were markedly ameliorated by TMP administration. Given the major nephrotoxicity of cisplatin cancer chemotherapy, TMP might be a potential candidate for neoadjuvant chemotherapy due to its antioxidant, anti-inflammatory and anti-apoptotic effects, in addition to its effect on Nrf2, HMGB1/TLR4/NF-κB signaling pathway and PPAR-γ expression.
Collapse
Affiliation(s)
- Haidy E Michel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Esther T Menze
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
23
|
Kumada Y, Takahashi T, Shimizu H, Nakamura R, Omori E, Inoue K, Morimatsu H. Therapeutic effect of carbon monoxide-releasing molecule-3 on acute lung injury after hemorrhagic shock and resuscitation. Exp Ther Med 2019; 17:3429-3440. [PMID: 30988722 PMCID: PMC6447800 DOI: 10.3892/etm.2019.7390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/11/2019] [Indexed: 01/14/2023] Open
Abstract
Hemorrhagic shock and resuscitation (HSR) induces a pulmonary inflammatory response and frequently causes acute lung injury. Carbon monoxide-releasing molecule-3 (CORM-3) has been reported to liberate and deliver CO under physiological conditions, which exerts organ-protective effects during systemic insults. The present study aimed to determine whether the administration of CORM-3 following HSR exerts a therapeutic effect against HSR-induced lung injury without any detrimental effects on oxygenation and hemodynamics. To induce hemorrhagic shock, rats were bled to a mean arterial blood pressure of 30 mmHg for 45 min and then resuscitated with the shed blood. CORM-3 or a vehicle was intravenously administered immediately following the completion of resuscitation. The rats were divided into four groups, including sham, HSR, HSR/CORM-3 and HSR/inactive CORM-3 groups. Arterial blood gas parameters and vital signs were recorded during HSR. The histopathological changes to the lungs were evaluated using a lung injury score, while pulmonary edema was evaluated on the basis of the protein concentration in bronchoalveolar lavage fluid and the lung wet/dry ratio. We also investigated the pulmonary expression levels of inflammatory mediators and apoptotic markers such as cleaved caspase-3 and transferase-mediated dUTP-fluorescein isothiocyanate nick-end labeling (TUNEL) staining. Although HSR caused significant lung histopathological damage and pulmonary edema, CORM-3 significantly ameliorated this damage. CORM-3 also attenuated the HSR-induced upregulation of tumor necrosis factor-α, inducible nitric oxide synthase and interleukin-1β genes, and the expression of interleukin-1β and macrophage inflammatory protein-2. In addition, the expression of interleukin-10, an anti-inflammatory cytokine, was inversely enhanced by CORM-3, which also reduced the number of TUNEL-positive cells and the expression of cleaved caspase-3 following HSR. Although CORM-3 was administered during the acute phase of HSR, it did not exert any influence on arterial blood gas analysis data and vital signs during HSR. Therefore, treatment with CORM-3 ameliorated HSR-induced lung injury, at least partially, through anti-inflammatory and anti-apoptotic effects, without any detrimental effects on oxygenation and hemodynamics.
Collapse
Affiliation(s)
- Yuta Kumada
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Toru Takahashi
- Faculty of Health and Welfare Science, Okayama Prefectural University, Soja, Okayama 719-1197, Japan
| | - Hiroko Shimizu
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Ryu Nakamura
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Emiko Omori
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Kazuyoshi Inoue
- Department of Anesthesiology, Kagawa Prefectural Central Hospital, Takamatsu, Kagawa 760-8557, Japan
| | - Hiroshi Morimatsu
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
24
|
Rahman FU, Park DR, Joe Y, Jang KY, Chung HT, Kim UH. Critical Roles of Carbon Monoxide and Nitric Oxide in Ca 2+ Signaling for Insulin Secretion in Pancreatic Islets. Antioxid Redox Signal 2019; 30:560-576. [PMID: 29486595 DOI: 10.1089/ars.2017.7380] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AIMS Glucagon-like peptide-1 (GLP-1) increases intracellular Ca2+ concentrations, resulting in insulin secretion from pancreatic β-cells through the sequential production of Ca2+ mobilizing messengers nicotinic acid adenine dinucleotide phosphate (NAADP) and cyclic ADP-ribose (cADPR). We previously found that NAADP activates the neuronal type of nitric oxide (NO) synthase (nNOS), the product of which, NO, activates guanylyl cyclase to produce cyclic guanosine monophosphate (cGMP), which, in turn, induces cADPR formation. Our aim was to explore the relationship between Ca2+ signals and gasotransmitters formation in insulin secretion in β-cells upon GLP-1 stimulation. RESULTS We show that NAADP-induced cGMP production by nNOS activation is dependent on carbon monoxide (CO) formation by heme oxygenase-2 (HO-2). Treatment with exogenous NO and CO amplifies cGMP formation, Ca2+ signal strength, and insulin secretion, whereas this signal is impeded when exposed to combined treatment with NO and CO. Furthermore, CO potentiates cGMP formation in a dose-dependent manner, but higher doses of CO inhibited cGMP formation. Our data with regard to zinc protoporphyrin, a HO inhibitor, and HO-2 knockdown, revealed that NO-induced cADPR formation and insulin secretion are dependent on HO-2. Consistent with this observation, the administration of NO or CO donors to type 2 diabetic mice improved glucose tolerance, but the same did not hold true when both were administered concurrently. INNOVATION Our research reveals the role of two gas transmitters, CO and NO, for Ca2+ second messengers formation in pancreatic β-cells. CONCLUSION These results demonstrate that CO, the downstream regulator of NO, plays a role in bridging the gap between the Ca2+ signaling messengers during insulin secretion in pancreatic β-cells.
Collapse
Affiliation(s)
- Faiz Ur Rahman
- 1 Department of Biochemistry, Jeonju, Republic of Korea.,2 National Creative Research Laboratory for Ca2+ Signaling Network, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Dae-Ryoung Park
- 1 Department of Biochemistry, Jeonju, Republic of Korea.,2 National Creative Research Laboratory for Ca2+ Signaling Network, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Yeonsoo Joe
- 2 National Creative Research Laboratory for Ca2+ Signaling Network, Chonbuk National University Medical School, Jeonju, Republic of Korea.,3 Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Kyu Yun Jang
- 4 Department of Pathology Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Hun Taeg Chung
- 3 Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Uh-Hyun Kim
- 1 Department of Biochemistry, Jeonju, Republic of Korea.,2 National Creative Research Laboratory for Ca2+ Signaling Network, Chonbuk National University Medical School, Jeonju, Republic of Korea.,5 Institute of Cardiovascular Research, Chonbuk National University Medical School, Jeonju, Republic of Korea
| |
Collapse
|
25
|
Uddin MJ, Pak ES, Ha H. Carbon monoxide releasing molecule-2 protects mice against acute kidney injury through inhibition of ER stress. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:567-575. [PMID: 30181703 PMCID: PMC6115348 DOI: 10.4196/kjpp.2018.22.5.567] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/28/2018] [Accepted: 07/12/2018] [Indexed: 12/21/2022]
Abstract
Acute kidney injury (AKI), which is defined as a rapid decline of renal function, becomes common and recently recognized to be closely intertwined with chronic kidney diseases. Current treatment for AKI is largely supportive, and endoplasmic reticulum (ER) stress has emerged as a novel mediator of AKI. Since carbon monoxide attenuates ER stress, the objective of the present study aimed to determine the protective effect of carbon monoxide releasing molecule-2 (CORM2) on AKI associated with ER stress. Kidney injury was induced after LPS (15 mg/kg) treatment at 12 to 24 h in C57BL/6J mice. Pretreatment of CORM2 (30 mg/kg) effectively prevented LPS-induced oxidative stress and inflammation during AKI in mice. CORM2 treatment also effectively inhibited LPS-induced ER stress in AKI mice. In order to confirm effect of CO on the pathophysiological role of tubular epithelial cells in AKI, we used mProx24 cells. Pretreatment of CORM2 attenuated LPS-induced ER stress, oxidative stress, and inflammation in mProx24 cells. These data suggest that CO therapy may prevent ER stress-mediated AKI.
Collapse
Affiliation(s)
- Md Jamal Uddin
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Eun Seon Pak
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
26
|
An Overview of the Potential Therapeutic Applications of CO-Releasing Molecules. Bioinorg Chem Appl 2018; 2018:8547364. [PMID: 30158958 PMCID: PMC6109489 DOI: 10.1155/2018/8547364] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/19/2018] [Accepted: 07/18/2018] [Indexed: 02/08/2023] Open
Abstract
Carbon monoxide (CO) has long been known as the “silent killer” owing to its ability to form carboxyhemoglobin—the main cause of CO poisoning in humans. Its role as an endogenous neurotransmitter, however, was suggested in the early 1990s. Since then, the biological activity of CO has been widely examined via both the direct administration of CO and in the form of so-called “carbon monoxide releasing molecules (CORMs).” This overview will explore the general physiological effects and potential therapeutic applications of CO when delivered in the form of CORMs.
Collapse
|
27
|
Southam HM, Smith TW, Lyon RL, Liao C, Trevitt CR, Middlemiss LA, Cox FL, Chapman JA, El-Khamisy SF, Hippler M, Williamson MP, Henderson PJF, Poole RK. A thiol-reactive Ru(II) ion, not CO release, underlies the potent antimicrobial and cytotoxic properties of CO-releasing molecule-3. Redox Biol 2018; 18:114-123. [PMID: 30007887 PMCID: PMC6067063 DOI: 10.1016/j.redox.2018.06.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/23/2018] [Indexed: 12/25/2022] Open
Abstract
Carbon monoxide (CO)-releasing molecules (CORMs), mostly metal carbonyl compounds, are extensively used as experimental tools to deliver CO, a biological ‘gasotransmitter’, in mammalian systems. CORMs are also explored as potential novel antimicrobial drugs, effectively and rapidly killing bacteria in vitro and in animal models, but are reportedly benign towards mammalian cells. Ru-carbonyl CORMs, exemplified by CORM-3 (Ru(CO)3Cl(glycinate)), exhibit the most potent antimicrobial effects against Escherichia coli. We demonstrate that CORM-3 releases little CO in buffers and cell culture media and that the active antimicrobial agent is Ru(II), which binds tightly to thiols. Thus, thiols and amino acids in complex growth media – such as histidine, methionine and oxidised glutathione, but most pertinently cysteine and reduced glutathione (GSH) – protect both bacterial and mammalian cells against CORM-3 by binding and sequestering Ru(II). No other amino acids exert significant protective effects. NMR reveals that CORM-3 binds cysteine and GSH in a 1:1 stoichiometry with dissociation constants, Kd, of about 5 μM, while histidine, GSSG and methionine are bound less tightly, with Kd values ranging between 800 and 9000 μM. There is a direct positive correlation between protection and amino acid affinity for CORM-3. Intracellular targets of CORM-3 in both bacterial and mammalian cells are therefore expected to include GSH, free Cys, His and Met residues and any molecules that contain these surface-exposed amino acids. These results necessitate a major reappraisal of the biological effects of CORM-3 and related CORMs. Carbon monoxide-releasing molecules (CORMs) are used for experimental CO delivery. CORM-3 is a potent antimicrobial, but is reportedly beneficial to mammalian cells. We demonstrate CORM-3 releases little CO in buffers and cell culture media. Redox-active Ru2+ is the biological agent, binding tightly to metabolites e.g. thiol. These results necessitate a major reappraisal of the biological effects of CORMs.
Collapse
Affiliation(s)
- Hannah M Southam
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Thomas W Smith
- Department of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, UK
| | - Rhiannon L Lyon
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Chunyan Liao
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Clare R Trevitt
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Laurence A Middlemiss
- Department of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, UK
| | - Francesca L Cox
- Department of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, UK
| | - Jonathan A Chapman
- Department of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, UK
| | - Sherif F El-Khamisy
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Michael Hippler
- Department of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, UK
| | - Michael P Williamson
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| | - Peter J F Henderson
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Robert K Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
28
|
Yoon YE, Lee KS, Lee YJ, Lee HH, Han WK. Renoprotective Effects of Carbon Monoxide-Releasing Molecule 3 in Ischemia-Reperfusion Injury and Cisplatin-Induced Toxicity. Transplant Proc 2018; 49:1175-1182. [PMID: 28583551 DOI: 10.1016/j.transproceed.2017.03.067] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND We investigated the effects of a soluble carbon monoxide-releasing molecule (CORM) in cisplatin-induced cytotoxicity and ischemia-reperfusion injury (IRI) in vitro. METHODS The effects of CORM-3 (12.5-200 μM) were assessed in normal kidney epithelial cells (HK-2, LLC-PK1) and renal cancer cells (Caki-1, Caki-2) subjected to cisplatin (50-200 μM) or IRI. To induce IRI, cells were placed in an anaerobic chamber (37°C, 95% nitrogen, 5% carbon dioxide) for 48 hours. Cells were transferred to complete medium and incubated at 37°C, 5% carbon dioxide for 6 hours. Cell viability (CCK assays), tumor necrosis factor (TNF)-α messenger RNA (mRNA) levels (quantitative reverse-transcriptase polymerase chain reaction), and protein expression of cleaved-caspase 3 and oxidative stress markers (including Erk1/2, JNK, and P38; Western blot) were assessed. RESULTS Viability after IRI was approximately 40% of control. Protective effects of CORM-3 in the IRI model were dose-dependent. Cell viability was 40% recovered in 200-μM CORM-3-pretreated cells compared with control. The protective effects of CORM-3 in cells exposed to cisplatin for 24 hours were weaker than in the IRI model. TNF-α mRNA was induced by stimulated IRI or cisplatin exposure; CORM-3 pretreatment attenuated the rise in TNF-α mRNA. IRI or cisplatin-induced activated oxidative stress markers decreased in CORM-3-pretreated cells. CORM-3 reduced expression of the apoptotic marker cleaved-caspase 3. CONCLUSION Our data demonstrate the protective effects of CORM-3 in cisplatin cytotoxicity and IRI in both normal kidney cells and renal cancer cells in vitro. CORM-3 exerts these effects by ameliorating inflammatory and oxidative stress pathways.
Collapse
Affiliation(s)
- Y E Yoon
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - K S Lee
- Department of Urology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Y J Lee
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - H H Lee
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - W K Han
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
29
|
Ma ZN, Liu Z, Wang Z, Ren S, Tang S, Wang YP, Xiao SY, Chen C, Li W. Supplementation of American ginseng berry extract mitigated cisplatin-evoked nephrotoxicity by suppressing ROS-mediated activation of MAPK and NF-κB signaling pathways. Food Chem Toxicol 2017; 110:62-73. [DOI: 10.1016/j.fct.2017.10.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/21/2017] [Accepted: 10/07/2017] [Indexed: 01/04/2023]
|
30
|
Hassan SM, Khalaf MM, Sadek SA, Abo-Youssef AM. Protective effects of apigenin and myricetin against cisplatin-induced nephrotoxicity in mice. PHARMACEUTICAL BIOLOGY 2017; 55:766-774. [PMID: 28064632 PMCID: PMC6130592 DOI: 10.1080/13880209.2016.1275704] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/07/2016] [Accepted: 11/04/2016] [Indexed: 05/05/2023]
Abstract
CONTEXT Currently, the outcomes of the use of cisplatin in cancer therapy is limited by nephrotoxicity. OBJECTIVE This study aims to investigate the nephroprotective role of apigenin and myricetin against cisplatin-induced nephrotoxicity in mice. MATERIALS AND METHODS Adult female Wistar Albino mice were divided into eight groups (n = 8). Group I served as normal control. Groups II, III and IV received apigenin (3 mg/kg, i.p.), myricetin (3 mg/kg, i.p.) or their combination respectively, for seven days. Group V served as positive control group, received vehicles for seven days and cisplatin (7.5 mg/kg, i.p.) for three days starting at day five. Groups VI, VII and VIII received apigenin, myricetin or their combination, respectively for seven days as well as cisplatin injection for three days starting at day five. by the end of the experimental period, a biochemical study involving, nephrotoxicity markers [serum creatinine (Cr) and blood urea nitrogen (BUN)], apoptotic marker [caspase 3], inflammatory mediators [tumour necrosis factor alpha (TNF-α), interleukin 6 (IL-6), cyclooxygenase I and II (COXI, COXII)] and oxidative stress biomarkers [malondialdehyde (MDA), reduced glutathione (GSH) and catalase] was conducted. In addition, renal histopathological alterations were evaluated. RESULTS Apigenin, myricetin and their combination significantly reduced blood BUN, serum Cr, caspase-3TNF-α, IL-6, COXI and COXII, MDA levels and significantly increased GSH level and catalase activity parallel to, histopathological improvement in kidney tissues. DISCUSSION AND CONCLUSION Apigenin and myricetin exhibited a protective and promising preventive strategy against cisplatin-induced nephrotoxicity due to their antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Samar M. Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | - Marwa M. Khalaf
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Sawsan A. Sadek
- Department of Pharmacology and Toxicology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Amira M. Abo-Youssef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
31
|
Patricia Moreno-Londoño A, Bello-Alvarez C, Pedraza-Chaverri J. Isoliquiritigenin pretreatment attenuates cisplatin induced proximal tubular cells (LLC-PK1) death and enhances the toxicity induced by this drug in bladder cancer T24 cell line. Food Chem Toxicol 2017; 109:143-154. [DOI: 10.1016/j.fct.2017.08.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/22/2017] [Accepted: 08/30/2017] [Indexed: 12/17/2022]
|
32
|
Tomar A, Vasisth S, Khan SI, Malik S, Nag TC, Arya DS, Bhatia J. Galangin ameliorates cisplatin induced nephrotoxicity in vivo by modulation of oxidative stress, apoptosis and inflammation through interplay of MAPK signaling cascade. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 34:154-161. [PMID: 28899498 DOI: 10.1016/j.phymed.2017.05.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/10/2017] [Accepted: 05/21/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND AND PURPOSE Cisplatin is a widely used chemotherapeutic agent but now-a-days its usage is limited in clinical chemotherapy because of its severe nephrotoxic effect on renal tissues. Galangin, a flavonoid obtained from ginger family has been demonstrated to have antioxidant, anti-apoptotic and anti-inflammatory properties. This study is aimed to investigate the possible ameliorative effect of galangin in a rodent model of cisplatin-induced nephrotoxicity. MATERIAL AND METHODS Adult male albino wistar rats were divided into six groups (n=6) viz normal, cisplatin-control, galangin (25, 50 and 100mg/kg p.o.) and per se (100mg/kg galangin, p.o.). Galangin was administrated orally to the rats for a period of 10 days. On the 7th day of the treatment, nephrotoxicity was induced in all the groups by a single dose of cisplatin (8mg/kg, i.p.) (except normal and per se group). On the 11th day, the rats were anaesthetized and blood was withdrawn via direct heart puncture for biochemical estimation. Rats were sacrificed and kidneys were isolated and preserved for evaluation of histopathological, ultra structural immunohistochemical studies and western blot analysis. RESULTS Cisplatin significantly impaired renal function and increased oxidative stress and inflammation. It also increased expression of pro-apoptotic proteins Bax and caspase-3 and decreased the expression of the anti-apoptotic protein Bcl-2. Histological and ultrastructural findings were also supportive of renal tubular damage. Pretreatment with galangin (100mg/kg p.o.) preserved renal function, morphology, suppressed oxidative stress, inflammation and the activation of apoptotic pathways. TUNEL assay showed decreased DNA fragmentation on galangin pre-treatment. Furthermore, galangin (100mg/kg) pre-treatment also reduced the expression of NFκB along with proteins MAPK pathway i.e. p38, JNK and ERK1/2. CONCLUSION In conclusion, Galangin (100mg/kg, p.o.) significantly ameliorated cisplatin induced nephrotoxicity by suppressing MAPK induced inflammation and apoptosis.
Collapse
Affiliation(s)
- Ameesha Tomar
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Swati Vasisth
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sana Irfan Khan
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Salma Malik
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Tapas Chandra Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Dharamveer Singh Arya
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Jagriti Bhatia
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
33
|
Carmona FJ, Jiménez-Amezcua I, Rojas S, Romão CC, Navarro JAR, Maldonado CR, Barea E. Aluminum Doped MCM-41 Nanoparticles as Platforms for the Dual Encapsulation of a CO-Releasing Molecule and Cisplatin. Inorg Chem 2017; 56:10474-10480. [DOI: 10.1021/acs.inorgchem.7b01475] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Francisco J. Carmona
- Department of Inorganic
Chemistry, University of Granada, Av. Fuentenueva S/N, 18071 Granada, Spain
| | - Ignacio Jiménez-Amezcua
- Department of Inorganic
Chemistry, University of Granada, Av. Fuentenueva S/N, 18071 Granada, Spain
| | - Sara Rojas
- Department of Inorganic
Chemistry, University of Granada, Av. Fuentenueva S/N, 18071 Granada, Spain
| | - Carlos C. Romão
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Av. da República, 2780-157 Oeiras, Portugal
- Alfama Ltd., Instituto de Biologia Experimental e Tecnológica, IBET, Av. da República, 2780-157 Oeiras, Portugal
| | - Jorge A. R. Navarro
- Department of Inorganic
Chemistry, University of Granada, Av. Fuentenueva S/N, 18071 Granada, Spain
| | - Carmen R. Maldonado
- Department of Inorganic
Chemistry, University of Granada, Av. Fuentenueva S/N, 18071 Granada, Spain
| | - Elisa Barea
- Department of Inorganic
Chemistry, University of Granada, Av. Fuentenueva S/N, 18071 Granada, Spain
| |
Collapse
|
34
|
Aspects of Carbon Monoxide in Form of CO-Releasing Molecules Used in Cancer Treatment: More Light on the Way. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9326454. [PMID: 28286606 PMCID: PMC5327762 DOI: 10.1155/2017/9326454] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 01/10/2017] [Accepted: 01/15/2017] [Indexed: 01/23/2023]
Abstract
Carbon monoxide (CO) has always been recognised as a toxic gas, due to its higher affinity for haemoglobin than oxygen. However, biological studies have revealed an intriguing role for CO as an endogenous signalling molecule, a gasotransmitter. CO is demonstrated to exert many cellular activities including anti-inflammatory, antiapoptotic, and antiproliferative activities. In animal studies, CO gas administration can prevent tissues from hypoxia or ischemic-reperfusion injury. As a result, there are a plethora of reports dealing with the biological applications of CO and CO-releasing molecules (CORMs) in inflammatory and vascular diseases. CORMs have already been tested as a therapeutic agent in clinical trials. More recently, an increased interest has been drawn to CO's potential use as an anticancer agent. In this review, we will aim to give an overview of the research focused on the role of CO and CORMs in different types of cancer and expand to the recent development of the next generation CORMs for clinical application in cancer treatment.
Collapse
|
35
|
Malik S, Suchal K, Bhatia J, Khan SI, Vasisth S, Tomar A, Goyal S, Kumar R, Arya DS, Ojha SK. Therapeutic Potential and Molecular Mechanisms of Emblica officinalis Gaertn in Countering Nephrotoxicity in Rats Induced by the Chemotherapeutic Agent Cisplatin. Front Pharmacol 2016; 7:350. [PMID: 27752245 PMCID: PMC5045924 DOI: 10.3389/fphar.2016.00350] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/15/2016] [Indexed: 12/24/2022] Open
Abstract
Emblica officinalis Gaertn. belonging to family Euphorbiaceae is commonly known as Indian gooseberry or "Amla" in India. It is used as a 'rejuvenating herb' in traditional system of Indian medicine. It has been shown to possess antioxidant, anti-inflammatory and anti-apoptotic effects. Thus, on the basis of its biological effects, the present study was undertaken to evaluate the protective effect of the dried fruit extract of the E. Officinalis (EO) in cisplatin-induced nephrotoxicity in rats and also to evaluate the mechanism of its nephroprotection. The study was done on male albino Wistar rats. They were divided into six groups (n = 6) viz. control, cisplatin-control, cisplatin and EO (150, 300, and 600 mg/kg; p.o. respectively in different groups) and EO only (600 mg/kg; p.o. only). EO was administered orally to the rats for a period of 10 days and on the 7th day, a single injection of cisplatin (8 mg/kg; i.p.) was administered to the cisplatin-control and EO treatment groups. The rats were sacrificed on the 10th day. Cisplatin-control rats had deranged renal function parameters and the kidney histology confirmed the presence of acute tubular necrosis. Furthermore, there were increased oxidative stress, apoptosis and inflammation along with higher expression of MAPK pathway proteins in the rat kidney from the cisplatin-control group. Contrary to this, EO (600 mg/kg) significantly normalized renal function, bolstered antioxidant status and ameliorated histological alterations. The inflammation and apoptosis were markedly lower in comparison to cisplatin-control rats. Furthermore, EO (600 mg/kg) inhibited MAPK phosphorylation which was instrumental in preserving renal function and morphology. In conclusion, the results of our study demonstrated that EO attenuated cisplatin-induced nephrotoxicity in rats through suppression of MAPK induced inflammation and apoptosis.
Collapse
Affiliation(s)
- Salma Malik
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences New Delhi, India
| | - Kapil Suchal
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences New Delhi, India
| | - Jagriti Bhatia
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences New Delhi, India
| | - Sana I Khan
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences New Delhi, India
| | - Swati Vasisth
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences New Delhi, India
| | - Ameesha Tomar
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences New Delhi, India
| | - Sameer Goyal
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research Shirpur, India
| | - Rajeev Kumar
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences New Delhi, India
| | - Dharamvir S Arya
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences New Delhi, India
| | - Shreesh K Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University Al Ain, UAE
| |
Collapse
|
36
|
ElKady AI, Ramadan WS. The aqueous extract of cinnamon bark ameliorated cisplatin-induced cytotoxicity in vero cells without compromising the anticancer efficiency of cisplatin. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2016; 160:363-71. [DOI: 10.5507/bp.2016.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/17/2016] [Indexed: 12/31/2022] Open
|
37
|
Hosick PA, AlAmodi AA, Hankins MW, Stec DE. Chronic treatment with a carbon monoxide releasing molecule reverses dietary induced obesity in mice. Adipocyte 2016; 5:1-10. [PMID: 27144091 PMCID: PMC4836479 DOI: 10.1080/21623945.2015.1038443] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 03/31/2015] [Accepted: 03/31/2015] [Indexed: 01/23/2023] Open
Abstract
Chronic, low level treatment with a carbon monoxide releasing molecule (CO-RM), CORM-A1, has been shown to prevent the development of obesity in response to a high fat diet. The objective of this study was to test the hypothesis that chronic, low level treatment with this CO-RM can reverse established obesity via a mechanism independent of food intake. Dietary induced obese mice were treated with CORM-A1, the inactive compound iCORM-A1, or saline every 48 hours for 30 weeks while maintained on a high fat (60%) diet. Chronic treatment with CORM-A1 resulted in a 33% decrease from initial body weight over the 30 week treatment period while treatment with iCORM and saline were associated with 18 and 25% gain in initial body weight over the same time frame. Chronic treatment with CORM-A1 did not affect food intake or activity but resulted in a significant increase in metabolism. CORM-A1 treatment also resulted in lower fasting blood glucose, improvement in insulin sensitivity and decreased heptatic steatosis. Chronic treatment with CO releasing molecules can reverse dietary induced obesity and normalize insulin resistance independent of changes in food intake or activity. These findings are likely though a mechanism which increases metabolism.
Collapse
|
38
|
Hu S, Cui X, He W, Chen X, Gu Z, Zhao J, Zeng G, Shi Z, Zhu L, Nie H. Synthesis, Structural Characterization and Preliminary Biological Studies of Several Heterocyclic Transition Metal Carbonyl Complexes. Z Anorg Allg Chem 2015. [DOI: 10.1002/zaac.201500592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
39
|
Wang P, Huang J, Li Y, Chang R, Wu H, Lin J, Huang Z. Exogenous Carbon Monoxide Decreases Sepsis-Induced Acute Kidney Injury and Inhibits NLRP3 Inflammasome Activation in Rats. Int J Mol Sci 2015; 16:20595-608. [PMID: 26334271 PMCID: PMC4613220 DOI: 10.3390/ijms160920595] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 08/11/2015] [Accepted: 08/19/2015] [Indexed: 02/07/2023] Open
Abstract
Carbon monoxide (CO) has shown various physiological effects including anti-inflammatory activity in several diseases, whereas the therapeutic efficacy of CO on sepsis-induced acute kidney injury (AKI) has not been reported as of yet. The purpose of the present study was to explore the effects of exogenous CO on sepsis-induced AKI and nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome activation in rats. Male rats were subjected to cecal ligation and puncture (CLP) to induce sepsis and AKI. Exogenous CO delivered from CO-releasing molecule 2 (CORM-2) was used intraperitoneally as intervention after CLP surgery. Therapeutic effects of CORM-2 on sepsis-induced AKI were assessed by measuring serum creatinine (Scr) and blood urea nitrogen (BUN), kidney histology scores, apoptotic cell scores, oxidative stress, levels of cytokines TNF-α and IL-1β, and NLRP3 inflammasome expression. CORM-2 treatment protected against the sepsis-induced AKI as evidenced by reducing serum Scr/BUN levels, apoptotic cells scores, increasing survival rates, and decreasing renal histology scores. Furthermore, treatment with CORM-2 significantly reduced TNF-α and IL-1β levels and oxidative stress. Moreover, CORM-2 treatment significantly decreased NLRP3 inflammasome protein expressions. Our study provided evidence that CORM-2 treatment protected against sepsis-induced AKI and inhibited NLRP3 inflammasome activation, and suggested that CORM-2 could be a potential therapeutic candidate for treating sepsis-induced AKI.
Collapse
Affiliation(s)
- Peng Wang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China.
- Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou 510120, China.
| | - Jian Huang
- Department of Nephrology, the Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.
| | - Yi Li
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China.
- Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou 510120, China.
| | - Ruiming Chang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China.
| | - Haidong Wu
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China.
| | - Jiali Lin
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China.
- Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou 510120, China.
| | - Zitong Huang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China.
- Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
40
|
Ramakrishna B, Nagarajaprakash R, Manimaran B. One-step synthesis of oxamidato bridged fac-Ru(CO)3 core based dinuclear compounds: Spectroscopic and structural characterisation. J Organomet Chem 2015. [DOI: 10.1016/j.jorganchem.2015.05.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
41
|
Mackern-Oberti JP, Obreque J, Méndez GP, Llanos C, Kalergis AM. Carbon monoxide inhibits T cell activation in target organs during systemic lupus erythematosus. Clin Exp Immunol 2015; 182:1-13. [PMID: 26095291 DOI: 10.1111/cei.12657] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2015] [Indexed: 01/15/2023] Open
Abstract
Systemic lupus erythematosus is characterized by the presence of circulating anti-nuclear antibodies (ANA) and systemic damage that includes nephritis, haematological manifestations and pulmonary compromise, among others. Although major progress has been made in elucidating the molecular mechanisms responsible for autoimmunity, current therapies for lupus have not improved considerably. Because the exposure of carbon monoxide (CO) has been shown to display beneficial immunoregulatory properties in different immune-mediated diseases, we investigated whether CO therapy improves lupus-related kidney injury in lupus mice. MRL-Fas(lpr) lupus mice were exposed to CO and disease progression was evaluated. ANA, leucocyte-infiltrating populations in spleen, kidney and lung and kidney lesions, were measured. CO therapy significantly decreased the frequency of activated B220(+) CD4(-) CD8(-) T cells in kidneys and lungs, as well as serum levels of ANA. Furthermore, we observed that CO therapy reduced kidney injury by decreasing proliferative glomerular damage and immune complexes deposition, decreased proinflammatory cytokine production and finally delayed the impairment of kidney function. CO exposure ameliorates kidney and lung leucocyte infiltration and delays kidney disease in MRL-Fas(lpr) lupus mice. Our data support the notion that CO could be explored as a potential new therapy for lupus nephritis.
Collapse
Affiliation(s)
- J P Mackern-Oberti
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Microbiología y Genética Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Institute of Medicine and Experimental Biology of Cuyo (IMBECU), Science and Technology Center (CCT) of Mendoza, National Council of Scientific and Technical Research (CONICET), Mendoza, Argentina
| | - J Obreque
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Inmunología Clínica y Reumatología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - G P Méndez
- Departamento de Anatomía Patológica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - C Llanos
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Inmunología Clínica y Reumatología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - A M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Microbiología y Genética Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Inmunología Clínica y Reumatología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Pontificia Universidad Católica de Chile, Santiago, Chile.,INSERM UMR 1064-Center for Research in Transplantation and Immunology, Nantes, France
| |
Collapse
|
42
|
Choi EK, Park HJ, Sul OJ, Rajasekaran M, Yu R, Choi HS. Carbon monoxide reverses adipose tissue inflammation and insulin resistance upon loss of ovarian function. Am J Physiol Endocrinol Metab 2015; 308:E621-30. [PMID: 25714672 DOI: 10.1152/ajpendo.00458.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 02/19/2015] [Indexed: 11/22/2022]
Abstract
We hypothesized that carbon monoxide (CO) might suppress chronic inflammation, which led to metabolic disturbances. Ovariectomy (OVX) was performed in mice to mimic chronic inflammation secondary to loss of ovarian function. OVX increased fat mass and the infiltration of highly inflammatory CD11c cells into adipose tissue (AT), resulting in a disturbance of glucose metabolism. Treatment of CO attenuated these; CO decreased recruitment of CD11c-expressing cells in AT and reduced expression of CD11c in bone marrow-derived macrophages, protecting them from M1 polarization. Upregulated cGMP and decreased reactive oxygen species were responsible for the inhibitory activity of CO on CD11c expression; knockdown of soluble guanylate cyclase or heme oxygenase-1 using small interfering RNAs reduced this inhibition substantially. Improved OVX-induced insulin resistance (IR) by CO was highly associated with its activity to attenuate AT inflammation. Our results suggest a therapeutic value of CO to treat postmenopausal IR by reducing AT inflammation.
Collapse
MESH Headings
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/immunology
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/pathology
- Adiposity/drug effects
- Aging
- Animals
- Antimetabolites/pharmacology
- Carbon Monoxide/pharmacology
- Cells, Cultured
- Cyclic GMP/agonists
- Cyclic GMP/metabolism
- Female
- Guanylate Cyclase/antagonists & inhibitors
- Guanylate Cyclase/genetics
- Guanylate Cyclase/metabolism
- Heme Oxygenase-1/antagonists & inhibitors
- Heme Oxygenase-1/genetics
- Heme Oxygenase-1/metabolism
- Injections, Intraperitoneal
- Insulin Resistance
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Membrane Proteins/antagonists & inhibitors
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice, Inbred C57BL
- Organometallic Compounds/administration & dosage
- Organometallic Compounds/pharmacology
- Organometallic Compounds/therapeutic use
- Ovariectomy/adverse effects
- Panniculitis/immunology
- Panniculitis/metabolism
- Panniculitis/pathology
- Panniculitis/prevention & control
- Prodrugs/administration & dosage
- Prodrugs/pharmacology
- Prodrugs/therapeutic use
- RNA Interference
- Reactive Oxygen Species/antagonists & inhibitors
- Reactive Oxygen Species/metabolism
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Soluble Guanylyl Cyclase
- Specific Pathogen-Free Organisms
Collapse
Affiliation(s)
- Eun-Kyung Choi
- Department of Biological Sciences, University of Ulsan, Ulsan, South Korea; and
| | - Hyun-Jung Park
- Department of Biological Sciences, University of Ulsan, Ulsan, South Korea; and
| | - Ok-Joo Sul
- Department of Biological Sciences, University of Ulsan, Ulsan, South Korea; and
| | - Monisha Rajasekaran
- Department of Biological Sciences, University of Ulsan, Ulsan, South Korea; and
| | - Rina Yu
- Department of Food Science and Nutrition, University of Ulsan, Ulsan, South Korea
| | - Hye-Seon Choi
- Department of Biological Sciences, University of Ulsan, Ulsan, South Korea; and
| |
Collapse
|
43
|
Liu H, Gong Y, Zhang T, Li N, Zhao Q, Chen Y, Liu B, Zheng Y. Syntheses, Cytotoxicity and Properties of CO Releasing Molecules Containing Acetyl Salicylamide-3-pyridine. CHINESE J CHEM 2015. [DOI: 10.1002/cjoc.201400824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
44
|
Schallner N, Otterbein LE. Friend or foe? Carbon monoxide and the mitochondria. Front Physiol 2015; 6:17. [PMID: 25691872 PMCID: PMC4315013 DOI: 10.3389/fphys.2015.00017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/11/2015] [Indexed: 12/30/2022] Open
Affiliation(s)
- Nils Schallner
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, MA, USA ; Department of Anesthesiology and Intensive Care Medicine, University Medical Center Freiburg Freiburg, Germany
| | - Leo E Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, MA, USA
| |
Collapse
|
45
|
Ince S, Arslan Acaroz D, Neuwirth O, Demirel HH, Denk B, Kucukkurt I, Turkmen R. Protective effect of polydatin, a natural precursor of resveratrol, against cisplatin-induced toxicity in rats. Food Chem Toxicol 2014. [DOI: 10.10.1016/j.fct.2014.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
46
|
Ince S, Arslan Acaroz D, Neuwirth O, Demirel HH, Denk B, Kucukkurt I, Turkmen R. Protective effect of polydatin, a natural precursor of resveratrol, against cisplatin-induced toxicity in rats. Food Chem Toxicol 2014; 72:147-53. [PMID: 25051394 DOI: 10.1016/j.fct.2014.07.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/25/2014] [Accepted: 07/12/2014] [Indexed: 11/18/2022]
Abstract
The aim of the present study was to evaluate the possible protective effect of polydatin (PD) on cisplatin (Cis) induced oxidative stress in rats. Totally, thirty male Wistar albino rats were fed standard rodent diet and divided into 5 equal groups: the control group (vehicle treated) was treated with physiological saline for ten days both orally and intraperitoneally (i.p.), the second group was orally treated with physiological saline and 7 mg/kg single i.p. injection of Cis on the seventh day, and third, fourth, and fifth groups were treated orally PD at 25, 50, and 100 mg/kg/day, respectively for 10 days starting seven days before Cis injection and 7 mg/kg single i.p. Cis was injected on the seventh day. Cis resulted in significant increase malondialdehyde levels and decreased glutathione levels. In addition, Cis treatment decreased superoxide dismutase and catalase activities in erythrocyte and tissues. Also, Cis treatment caused to increase DNA damage and affected serum biochemical parameters whereas slightly decreased AchE activity. However, treatment of PD resulted in reversal of Cis-induced oxidative stress, lipid peroxidation, and activities of antioxidant enzymes. In conclusion, PD has protective effect in rats against Cis-induced oxidative stress, enhances antioxidant defence mechanism, and regenerates their tissues.
Collapse
Affiliation(s)
- Sinan Ince
- Afyon Kocatepe University, Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, 03030 Afyonkarahisar, Turkey.
| | - Damla Arslan Acaroz
- Afyon Kocatepe University, Faculty of Veterinary Medicine, Department of Biochemistry, 03030 Afyonkarahisar, Turkey
| | - Ondřej Neuwirth
- University of Veterinary and Pharmaceutical Sciences, Faculty of Pharmacy, Department of Natural Drugs, CZ 612 42 Brno, Czech Republic
| | | | - Baris Denk
- Afyon Kocatepe University, Faculty of Veterinary Medicine, Department of Biochemistry, 03030 Afyonkarahisar, Turkey
| | - Ismail Kucukkurt
- Afyon Kocatepe University, Faculty of Veterinary Medicine, Department of Biochemistry, 03030 Afyonkarahisar, Turkey
| | - Ruhi Turkmen
- Afyon Kocatepe University, Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, 03030 Afyonkarahisar, Turkey
| |
Collapse
|
47
|
Yetik-Anacak G, Sorrentino R, Linder AE, Murat N. Gas what: NO is not the only answer to sexual function. Br J Pharmacol 2014; 172:1434-54. [PMID: 24661203 DOI: 10.1111/bph.12700] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/18/2014] [Accepted: 03/17/2014] [Indexed: 01/08/2023] Open
Abstract
The ability to get and keep an erection is important to men for several reasons and the inability is known as erectile dysfunction (ED). ED has started to be accepted as an early indicator of systemic endothelial dysfunction and subsequently of cardiovascular diseases. The role of NO in endothelial relaxation and erectile function is well accepted. The discovery of NO as a small signalling gasotransmitter led to the investigation of the role of other endogenously derived gases, carbon monoxide (CO) and hydrogen sulphide (H2 S) in physiological and pathophysiological conditions. The role of NO and CO in sexual function and dysfunction has been investigated more extensively and, recently, the involvement of H2 S in erectile function has also been confirmed. In this review, we focus on the role of these three sister gasotransmitters in the physiology, pharmacology and pathophysiology of sexual function in man, specifically erectile function. We have also reviewed the role of soluble guanylyl cyclase/cGMP pathway as a common target of these gasotransmitters. Several studies have proposed alternative therapies targeting different mechanisms in addition to PDE-5 inhibition for ED treatment, since some patients do not respond to these drugs. This review highlights complementary and possible coordinated roles for these mediators and treatments targeting these gasotransmitters in erectile function/ED.
Collapse
Affiliation(s)
- G Yetik-Anacak
- Department of Pharmacology, Faculty of Pharmacy, Ege University, İzmir, Turkey
| | | | | | | |
Collapse
|
48
|
Anti-inflammatory effects of carbon monoxide-releasing molecule on trinitrobenzene sulfonic acid-induced colitis in mice. Dig Dis Sci 2014; 59:1142-51. [PMID: 24442266 DOI: 10.1007/s10620-013-3014-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 12/20/2013] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND AIM Recent findings indicate that carbon monoxide (CO) in non-toxic doses exerts a beneficial anti-inflammatory action in various experimental models. However, the precise anti-inflammatory mechanism of CO in the intestine remains unclear. Here, we assessed the effects of a novel water-soluble CO-releasing molecule, CORM-3, on trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice. METHODS To induce colitis, C57BL/6 male mice received an enema of TNBS. CORM-3 or its inactive compound, iCORM-3, were administered intraperitoneally, once immediately before, and twice daily after receiving an enema of TNBS. Three days after TNBS administration, the distal colon was removed, assessed for colonic damage and histological scores, polymorphonuclear leukocyte recruitment (tissue-associated myeloperoxidase, MPO activity), and TNF-α, IFN-γ and IL-17A expression (mRNA and protein levels in the colon mucosa). CD4(+) T cells isolated from murine spleens were stimulated with anti-CD3/CD28, in the presence or absence of CORM-3/iCORM-3. The cell supernatants were assessed for TNF-α and IFN-γ expression, 24 h following stimulation. RESULTS Colonic damage and histological scores were significantly increased in TNBS-induced mice compared to sham-operated mice. Tissue-associated MPO activity and expression of TNF-α, IFN-γ, and IL-17A in the colonic mucosa were higher in TNBS-induced colitis mice. The above changes were attenuated in CORM-3-treated mice. Further, CORM-3 was effective in reducing TNF-α and IFN-γ production in anti-CD3/CD28-stimulated CD4(+) T cells. CONCLUSIONS These findings indicate that CO released from CORM-3 ameliorates inflammatory responses in the colon of TNBS-challenged mice at least in part through a mechanism that involves the suppression of inflammatory cell recruitment/activation.
Collapse
|
49
|
Nakao A, Yamada T, Kohama K, Yoshie N, Fujisaki N, Kotani J. Application of carbon monoxide for treatment of acute kidney injury. Acute Med Surg 2014; 1:127-134. [PMID: 29930836 DOI: 10.1002/ams2.38] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 02/16/2014] [Indexed: 12/21/2022] Open
Abstract
Acute kidney injury in critically ill patients is common and associated with a substantial increase in morbidity and mortality. Even with aggressive medical care and renal replacement therapy, acute kidney injury remains a significant health care concern. Recent published reports offer new strategies for the prevention and amelioration of acute kidney injury using carbon monoxide. Although considered a toxic environmental gas, carbon monoxide has recently aroused scientific and clinical interest, as its beneficial effects and mechanisms of action have been substantially defined in various in vitro and in vivo experiments. The exogenous application of carbon monoxide can confer cytoprotection by modulating intracellular signaling pathways through its anti-inflammatory, anti-apoptotic, vasodilative, antithrombotic and antiproliferative properties. Thus, evidence is accumulating to support the notion of carbon monoxide treatment for acute kidney disease. In this review, we focus on the extensively analyzed advantageous value of treatment with inhaled/soluble carbon monoxide in the context of kidney injury. Mechanisms such as signaling pathways, as well as an expanded view regarding toxicity and side-effects, are described broadly. In addition, we discuss the clinical applicability of carbon monoxide as a promising therapeutic strategy for the treatment of patients with acute kidney disease based on translating basic experimental findings into clinical application.
Collapse
Affiliation(s)
- Atsunori Nakao
- Department of Emergency, Disaster, and Critical Care Medicine Hyogo College of Medicine Nishinomiya Japan
| | - Taihei Yamada
- Department of Emergency, Disaster, and Critical Care Medicine Hyogo College of Medicine Nishinomiya Japan
| | - Keisuke Kohama
- Department of Emergency, Disaster, and Critical Care Medicine Hyogo College of Medicine Nishinomiya Japan
| | - Norichika Yoshie
- Department of Emergency, Disaster, and Critical Care Medicine Hyogo College of Medicine Nishinomiya Japan
| | - Noritomo Fujisaki
- Department of Emergency, Disaster, and Critical Care Medicine Hyogo College of Medicine Nishinomiya Japan
| | - Joji Kotani
- Department of Emergency, Disaster, and Critical Care Medicine Hyogo College of Medicine Nishinomiya Japan
| |
Collapse
|
50
|
Tayem Y, Green CJ, Motterlini R, Foresti R. Isothiocyanate–cysteine conjugates protect renal tissue against cisplatin-induced apoptosis via induction of heme oxygenase-1. Pharmacol Res 2014; 81:1-9. [DOI: 10.1016/j.phrs.2014.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 01/02/2014] [Accepted: 01/03/2014] [Indexed: 12/27/2022]
|