1
|
Castro CFG, Nardiello C, Hadzic S, Kojonazarov B, Kraut S, Gierhardt M, Schäffer J, Bednorz M, Quanz K, Heger J, Korfei M, Wilhelm J, Hecker M, Bartkuhn M, Arnhold S, Guenther A, Seeger W, Schulz R, Weissmann N, Sommer N, Pak O. The Role of the Redox Enzyme p66Shc in Biological Aging of the Lung. Aging Dis 2024; 15:911-926. [PMID: 37548932 PMCID: PMC10917546 DOI: 10.14336/ad.2023.0715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/15/2023] [Indexed: 08/08/2023] Open
Abstract
The mitochondrial adaptor protein p66Shc has been suggested to control life span in mice via the release of hydrogen peroxide. However, the role of p66Shc in lung aging remains unsolved. Thus, we investigated the effects of p66Shc-/- on the aging of the lung and pulmonary circulation. In vivo lung and cardiac characteristics were investigated in p66Shc-/- and wild type (WT) mice at 3, 12, and 24 months of age by lung function measurements, micro-computed tomography (µCT), and echocardiography. Alveolar number and muscularization of small pulmonary arteries were measured by stereology and vascular morphometry, respectively. Protein and mRNA levels of senescent markers were measured by western blot and PCR, respectively. Lung function declined similarly in WT and p66Shc-/- mice during aging. However, µCT analyses and stereology showed slightly enhanced signs of aging-related parameters in p66Shc-/- mice, such as a decline of alveolar density. Accordingly, p66Shc-/- mice showed higher protein expression of the senescence marker p21 in lung homogenate compared to WT mice of the corresponding age. Pulmonary vascular remodeling was increased during aging, but aged p66Shc-/- mice showed similar muscularization of pulmonary vessels and hemodynamics like WT mice. In the heart, p66Shc-/- prevented the deterioration of right ventricular (RV) function but promoted the decline of left ventricular (LV) function during aging. p66Shc-/- affects the aging process of the lung and the heart differently. While p66Shc-/- slightly accelerates lung aging and deteriorates LV function in aged mice, it seems to exert protective effects on RV function during aging.
Collapse
Affiliation(s)
- Claudia F. Garcia Castro
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
| | - Claudio Nardiello
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
| | - Stefan Hadzic
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
| | - Baktybek Kojonazarov
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
- Institute for Lung Health (ILH), Giessen, Germany.
| | - Simone Kraut
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
| | - Mareike Gierhardt
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina.
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
| | - Julia Schäffer
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
| | - Mariola Bednorz
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
| | - Karin Quanz
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
| | - Jacqueline Heger
- Institute of Physiology, Justus-Liebig University of Giessen, Giessen, Germany.
| | - Martina Korfei
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
| | - Jochen Wilhelm
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
- Institute for Lung Health (ILH), Giessen, Germany.
| | - Matthias Hecker
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
| | - Marek Bartkuhn
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
- Institute for Lung Health (ILH), Giessen, Germany.
| | - Stefan Arnhold
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig University of Giessen, Giessen, Germany.
| | - Andreas Guenther
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
- European IPF Registry & Biobank (eurIPFreg), Giessen, Germany.
- Agaplesion Evangelisches Krankenhaus Mittelhessen, Giessen, Germany
| | - Werner Seeger
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- Institute for Lung Health (ILH), Giessen, Germany.
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University of Giessen, Giessen, Germany.
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
| | - Natascha Sommer
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
| | - Oleg Pak
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
| |
Collapse
|
2
|
Zhang R, Qin C, Zhang J, HonghongRen, Wang Y, Wu Y, Zhao L, Wang J, Zhang J, Liu F. DNA hypomethylation of Syk induces oxidative stress and apoptosis via the PKCβ/P66shc signaling pathway in diabetic kidney disease. FASEB J 2024; 38:e23564. [PMID: 38522019 DOI: 10.1096/fj.202301579r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/19/2024] [Accepted: 03/06/2024] [Indexed: 03/25/2024]
Abstract
Epigenetic alterations, especially DNA methylation, have been shown to play a role in the pathogenesis of diabetes mellitus (DM) and its complications, including diabetic kidney disease (DKD). Spleen tyrosine kinase (Syk) is known to be involved in immune and inflammatory disorders. We, therefore, investigated the possible involvement of Syk promoter methylation in DKD, and the mechanisms underlying this process. Kidney tissues were obtained from renal biopsies of patients with early and advanced DKD. A diabetic mouse model (ApoE-/- DM) was generated from ApoE knockout (ApoE-/-) mice using a high-fat and high-glucose diet combined with low-dose streptozocin intraperitoneal injection. We also established an in vitro model using HK2 cells. A marked elevation in the expression levels of Syk, PKCβ, and P66shc in renal tubules was observed in patients with DKD. In ApoE-/- DM mice, Syk expression and the binding of Sp1 to the Syk gene promoter were both increased in the kidney. In addition, the promoter region of the Syk gene exhibited hypomethylation. Syk inhibitor (R788) intervention improved renal function and alleviated pathologic changes in ApoE-/- DM mice. Moreover, R788 intervention alleviated oxidative stress and apoptosis and downregulated the expression of PKCβ/P66shc signaling pathway proteins. In HK2 cells, oxLDL combined with high-glucose stimulation upregulated Sp1 expression in the nucleus (compared with control and oxLDL groups), and this was accompanied by an increase in the binding of Sp1 to the Syk gene promoter. SP1 silencing downregulated the expression of Syk and inhibited the production of reactive oxygen species and cell apoptosis. Finally, PKC agonist intervention reversed the oxidative stress and apoptosis induced by Syk inhibitor (R406). In DKD, hypomethylation at the Syk gene promoter was accompanied by an increase in Sp1 binding at the promoter. As a consequence of this enhanced Sp1 binding, Syk gene expression was upregulated. Syk inhibitors could attenuate DKD-associated oxidative stress and apoptosis via downregulation of PKCβ/P66shc signaling pathway proteins. Together, our results identify Syk as a promising target for intervention in DKD.
Collapse
Affiliation(s)
- Rui Zhang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Chunmei Qin
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Department of Nephrology, Luzhou People's Hospital, Luzhou, Sichuan, China
| | - Junlin Zhang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - HonghongRen
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yiting Wang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yucheng Wu
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Lijun Zhao
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jiali Wang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jie Zhang
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Regenerative Medicine Research Center, Chengdu, Sichuan, China
| | - Fang Liu
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Kumar J, Uppulapu SK, Kumari S, Sharma K, Paradee W, Yadav RP, Kumar V, Kumar S. P66Shc Mediates SUMO2-induced Endothelial Dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577109. [PMID: 38328241 PMCID: PMC10849724 DOI: 10.1101/2024.01.24.577109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Sumoylation is a post-translational modification that can regulate different physiological functions. Increased sumoylation, specifically conjugation of SUMO2/3 (small ubiquitin like modifier 2/3), is detrimental to vascular health. However, the molecular mechanism mediating this effect is poorly understood. Here, we demonstrate that SUMO2 modifies p66Shc, which impairs endothelial function. Using multiple approaches, we show that p66Shc is a direct target of SUMO2. Mass spectrometry identified that SUMO2 modified lysine-81 in the unique collagen homology-2 domain of p66Shc. SUMO2ylation of p66Shc increased phosphorylation at serine-36, causing it to translocate to the mitochondria. Notably, sumoylation-deficient p66Shc (p66ShcK81R) was resistant to SUMO2-induced p66ShcS36 phosphorylation and mitochondrial translocation. Ingenuity pathway analysis showed that majority of effects of p66Shc SUMO2ylation were mediated via p66ShcK81. Finally, p66ShcK81R knockin mice were resistant to SUMO2-induced endothelial dysfunction. Collectively, our work uncovers a posttranslational modification of redox protein p66Shc and identifies SUMO2-p66Shc signaling as a regulator of vascular endothelial function.
Collapse
|
4
|
Haslem L, Hays JM, Hays FA. p66Shc in Cardiovascular Pathology. Cells 2022; 11:cells11111855. [PMID: 35681549 PMCID: PMC9180016 DOI: 10.3390/cells11111855] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 02/06/2023] Open
Abstract
p66Shc is a widely expressed protein that governs a variety of cardiovascular pathologies by generating, and exacerbating, pro-apoptotic ROS signals. Here, we review p66Shc’s connections to reactive oxygen species, expression, localization, and discuss p66Shc signaling and mitochondrial functions. Emphasis is placed on recent p66Shc mitochondrial function discoveries including structure/function relationships, ROS identity and regulation, mechanistic insights, and how p66Shc-cyt c interactions can influence p66Shc mitochondrial function. Based on recent findings, a new p66Shc mitochondrial function model is also put forth wherein p66Shc acts as a rheostat that can promote or antagonize apoptosis. A discussion of how the revised p66Shc model fits previous findings in p66Shc-mediated cardiovascular pathology follows.
Collapse
Affiliation(s)
- Landon Haslem
- Biochemistry and Molecular Biology Department, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.H.); (J.M.H.)
| | - Jennifer M. Hays
- Biochemistry and Molecular Biology Department, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.H.); (J.M.H.)
| | - Franklin A. Hays
- Biochemistry and Molecular Biology Department, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.H.); (J.M.H.)
- Stephenson Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Correspondence:
| |
Collapse
|
5
|
Miller B, Regner K, Sorokin A. p66Shc signaling does not contribute to tubular damage induced by renal ischemia-reperfusion injury in rat. Biochem Biophys Res Commun 2022; 603:69-74. [PMID: 35278882 PMCID: PMC8969123 DOI: 10.1016/j.bbrc.2022.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 11/02/2022]
Abstract
Renal ischemia-reperfusion (IR) injury is one of the major causes of acute kidney injury and represents a significant risk factor for renal transplantation. The level of renal damage is influenced by the ischemic duration and is caused by excessive amounts of produced reactive oxygen species (ROS). Adaptor protein p66Shc is known to regulate cellular and organ's sensitivity to oxidative stress and to contribute significantly to mitochondrial production of hydrogen peroxide in stress conditions. Studies carried out in cultured renal cells suggest that p66Shc-mediated mitochondrial dysfunction and ROS production are responsible for renal ischemic injury. We used our genetically modified rats, which either lack p66Shc expression, or express p66Shc variant, which constitutively generates increased quantities of hydrogen peroxide, to evaluate potential contribution of p66Shc signaling to renal damage in ischemia reperfusion rat model. Analysis of outer medulla tubule damage revealed the lack of contribution of either p66Shc expression or its constitutive signaling to IR injury in rat model.
Collapse
|
6
|
Mousavi S, Khazeei Tabari MA, Bagheri A, Samieefar N, Shaterian N, Kelishadi R. The Role of p66Shc in Diabetes: A Comprehensive Review from Bench to Bedside. J Diabetes Res 2022; 2022:7703520. [PMID: 36465704 PMCID: PMC9715346 DOI: 10.1155/2022/7703520] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
It is well-documented that diabetes is an inflammatory and oxidative disease, with an escalating global burden. Still, there is no definite treatment for diabetes or even prevention of its harmful complications. Therefore, understanding the molecular pathways associated with diabetes might help in finding a solution. p66Shc is a member of Shc family proteins, and it is considered as an oxidative stress sensor and regulator in cells. There are inconsistent data about the role of p66Shc in inducing diabetes, but accumulating evidence supports its role in the pathogenesis of diabetes-related complications, including macro and microangiopathies. There is growing hope that by understanding and targeting molecular pathways involved in this network, prevention of diabetes or its complications would be achievable. This review provides an overview about the role of p66Shc in the development of diabetes and its complications.
Collapse
Affiliation(s)
- SeyedehFatemeh Mousavi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Mazandaran, Iran
- USERN Office, Mazandaran University of Medical Sciences, Mazandaran, Iran
| | - Alireza Bagheri
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Noosha Samieefar
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Negar Shaterian
- Student Research Committee, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
- USERN Office, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Roya Kelishadi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
- USERN Office, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
Hughes WE, Hockenberry J, Miller B, Sorokin A, Beyer AM. Modulation of p66Shc impairs cerebrovascular myogenic tone in low renin but not low nitric oxide models of systemic hypertension. Am J Physiol Heart Circ Physiol 2021; 321:H1096-H1102. [PMID: 34714691 PMCID: PMC8834231 DOI: 10.1152/ajpheart.00542.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/22/2022]
Abstract
Cerebral blood flow and perfusion are tightly maintained through autoregulation despite changes in transmural pressure. Oxidative stress impairs cerebral blood flow, precipitating cerebrovascular events. Phosphorylation of the adaptor protein p66Shc increases mitochondrial-derived oxidative stress. The effect of p66Shc gain or loss of function in nonhypertensive rats is unclear. We hypothesized that p66Shc gain of function would impair autoregulation of cerebral microcirculation under physiological and pathological conditions. Three previously established transgenic [salt-sensitive (SS) background] p66Shc rats were used, p66-Del/SS (express p66Shc with a nine-amino acid deletion), p66Shc-knockout (KO)/SS (frameshift premature termination codon), and p66Shc signaling and knock-in substitution of Ser36Ala (p66Shc-S36A)/SS (substitution of Ser36Ala). The p66Shc-Del were also bred on Sprague-Dawley (SD) backgrounds (p66-Del/SD), and a subset was exposed to a hypertensive stimulus [NG-nitro-l-arginine methyl ester (l-NAME)] for 4 wk. Active and passive diameters to increasing transmural pressure were measured and myogenic tone was calculated in all groups (SS and SD). Myogenic responses to increasing pressure were impaired in p66Shc-Del/SS rats relative to wild-type (WT)/SS and knock-in substitution of Ser36Ala (S36A; P < 0.05). p66-Del/SD rats did not demonstrate changes in active/passive diameters or myogenic tone relative to WT/SD but did demonstrate attenuated passive diameter responses to higher transmural pressure relative to p66-Del/SS. Four weeks of a hypertensive stimulus (l-NAME) did not alter active or passive diameter responses to increasing transmural pressure (P = 0.86-0.99), but increased myogenic responses relative to p66-Del/SD (P < 0.05). Collectively, we demonstrate the functional impact of p66Shc within the cerebral circulation and demonstrate that the genetic background of p66Shc rats largely drives changes in cerebrovascular function.NEW & NOTEWORTHY We demonstrate that the modulation of p66Shc signaling impairs cerebral artery myogenic tone in a low renin model of hypertension. This impairment is dependent upon the genetic background, as modulated p66Shc signaling in Sprague-Dawley rats does not impair cerebral artery myogenic tone.
Collapse
Affiliation(s)
- William E Hughes
- Department of Medicine and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Joe Hockenberry
- Department of Medicine and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Bradley Miller
- Department of Medicine and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Andrey Sorokin
- Department of Medicine and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Andreas M Beyer
- Department of Medicine and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
8
|
Jelinek HF, Helf C, Khalaf K. Human SHC-transforming protein 1 and its isoforms p66shc: A novel marker for prediabetes. J Diabetes Investig 2021; 12:1881-1889. [PMID: 33759377 PMCID: PMC8504898 DOI: 10.1111/jdi.13551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 03/02/2021] [Accepted: 03/18/2021] [Indexed: 12/15/2022] Open
Abstract
AIMS Prediabetes is a multifactorial condition. Current guidelines for diabetes screening recommend either the use of glycated hemoglobin (HbA1c), or blood glucose level (BGL). This research aimed to identify if p66shc a component of the Human SHC-Transforming Protein 1 (Shc1), a mitochondrial associated oxidative stress biomarker, is significantly altered in patients with elevated BGL. Furthermore, we evaluated if inflammatory and oxidative stress markers, such as p66shc, are a useful addition to the regularly used biomarkers to increase sensitivity for identification of prediabetes. METHODS All participants attended the Diabetic Health Screening at Charles Sturt University (CSU), Australia. The cross-sectional clinical study collected demographic and clinical variables from 346 participants and classified into control or prediabetes based on fasting BGL. Blood and urine samples were analyzed for oxidative stress and inflammation markers. Logistic regression was used to compare multidimensional diagnostic models for prediabetes, including p66shc/Shc1, to the current HbA1c-only model in terms of sensitivity, specificity and predictive accuracy. Significance was set at P ≤ 0.05. RESULTS A significant decrease of p66shc/Shc1 was determined in prediabetes compared to controls (P ≤ 0.05). HbA1c testing resulted in an accuracy of 62%, while adding p66shc and triglycerides increased predictive accuracy to 88.05%. When HbA1c was omitted and Shc1 was combined with 8-hydroxy-2'-deoxyguanosine (8-OHdG) and monocyte chemo-attractant protein-1 (MCP-1), a predictive accuracy of 89.5% was achieved. CONCLUSION Our findings showed a major improvement of sensitivity to identify prediabetes by including oxidative stress and inflammatory biomarkers underlining beneficial diagnostic information, which most likely improves prevention and early treatment options in prediabetes.
Collapse
Affiliation(s)
- Herbert F Jelinek
- Department of Biomedical EngineeringKhalifa UniversityAbu DhabiUnited Arab Emirates
- Health Engineering Innovation CenterKhalifa UniversityAbu DhabiUnited Arab Emirates
- Biotechnology CenterKhalifa UniversityAbu DhabiUnited Arab Emirates
| | | | - Kinda Khalaf
- Department of Biomedical EngineeringKhalifa UniversityAbu DhabiUnited Arab Emirates
- Health Engineering Innovation CenterKhalifa UniversityAbu DhabiUnited Arab Emirates
| |
Collapse
|
9
|
Lower p66Shc promoter methylation in subjects with chronic renal failure. PLoS One 2021; 16:e0257176. [PMID: 34529688 PMCID: PMC8445414 DOI: 10.1371/journal.pone.0257176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/24/2021] [Indexed: 11/19/2022] Open
Abstract
Objective To determine the correlation between DNA methylation of p66Shc promoter and some markers of inflammatory and oxidative stress in chronic renal failure (CRF) patients compared with healthy subjects. Methods An observational cross-sectional study was conducted in the nephrology department at Sidi Bouzid Regional Hospital (Tunisia). In total, 39 patients with CRF and 37 healthy subjects were included. Several biochemical parameters were measured. Furthermore, markers of the oxidative and inflammatory status (MDA, TAS, SOD, and CRP) were evaluated. The p66Shc methylation status was determined using the methylation-specific PCR. Results Our results showed that levels of blood glucose, urea, creatinine, uric acid, ChT, TG, albuminuria, CRP and MDA were significantly elevated in CRF patients compared to controls. Furthermore, p66Shc promoter region was highly demethylated in CRF patients compared to healthy controls (84% vs 4%). Our data showed a positive correlation between p66Shc hypomethylation and levels of MDA (r = 0.93; p<0, 05) and CRP (r = 0.89; P <0, 05), as well as a significant negative correlation between p66Shc hypomethylation, TAS (r = -0.76; P <0, 05) and SOD (r = -0.77; p<0, 05) levels. Similarly, there was a positive correlation between p66Shc hypomethylation and the disease stages. Importantly, multiple regression analysis showed that p66shc DNA hypomethylation remains strongly correlated with MDA, CRP and stages of CRF. Conclusion This study indicates that the DNA hypomethylation of p66shc promoter was correlated with oxidative and inflammatory stress and the disease stages in CRF patients.
Collapse
|
10
|
Martin CE, Jones N. ShcA expression in podocytes is dispensable for glomerular development but its upregulation is associated with kidney disease. Am J Transl Res 2021; 13:9874-9882. [PMID: 34540124 PMCID: PMC8430102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/18/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND ShcA (SHC1) is a phosphotyrosine adaptor protein which plays broad signaling roles within the cell. Systemic loss of ShcA during embryogenesis is lethal, while its aberrant expression contributes to disease. We recently demonstrated that ShcA is highly expressed during glomerular development and that it is upregulated within podocytes in experimental kidney injury and chronic kidney disease. The objective of this study was to analyze the in vivo role of ShcA in podocytes. METHODS We selectively deleted all three isoforms of ShcA from mouse kidney podocytes using the Cre/lox system driven by the podocyte-specific podocin promoter (Nphs2). Immunostaining of kidney sections was used to confirm ShcA deletion in podocytes. Coomassie blue staining of protein gels was used to detect urinary albumin. Light and electron microscopy were used to assess glomerular morphology. Transcript levels of SHC1 in human renal disease were assessed using the Nephroseq database. RESULTS Mice lacking podocyte ShcA were born at the expected Mendelian frequency and did not display overt renal impairment or changes in podocyte architecture beyond one year of age. In parallel, we correlated increased ShcA mRNA expression in the human kidney with proteinuria and reduced glomerular filtration rate. CONCLUSION Our studies reveal that ShcA is dispensable for normal kidney function, but its upregulation is associated with disease.
Collapse
Affiliation(s)
- Claire E Martin
- Department of Molecular and Cellular Biology, University of Guelph Guelph, ON, Canada
| | - Nina Jones
- Department of Molecular and Cellular Biology, University of Guelph Guelph, ON, Canada
| |
Collapse
|
11
|
Ren C, Zhou X, Bao X, Zhang J, Tang J, Zhu Z, Zhang N, Bai Y, Xi Y, Zhang Q, Ma B. Dioscorea zingiberensis ameliorates diabetic nephropathy by inhibiting NLRP3 inflammasome and curbing the expression of p66Shc in high-fat diet/streptozotocin-induced diabetic mice. J Pharm Pharmacol 2021; 73:1218-1229. [PMID: 34061184 DOI: 10.1093/jpp/rgab053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/01/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Diabetic nephropathy (DN) is a severe diabetic complication. Dioscorea zingiberensis (DZ) possesses excellent pharmacological properties with lower toxicity. The purpose of this study was to investigate the efficacy and mechanism of DZ in DN. METHODS DN was established by the high-fat diet combining intraperitoneal injection of streptozotocin in mice. The DZ (125 and 250 mg/kg/day) were intragastrical administered for 8 consecutive weeks. After treatment, blood, urine and kidney tissue were collected for biological detection, renal morphology, fibrosis and molecular mechanism research, respectively. KEY FINDINGS This study has shown that DZ significantly ameliorated kidney hypertrophy, renal structural damage and abnormal function of the kidney indicators (creatinine, urinary protein and blood urea nitrogen). Further molecular mechanism data suggested that the NLRP3/Cleaved-caspase-1 signal pathway was remarkably activated in DN, and DZ treatment reversed these changes, which indicated that it effectively attenuated inflammatory response caused by hyperglycaemia. In addition, DN inhibits hyperglycaemia-induced activation of oxidative stress by suppressing the expression of p66Shc proteins. CONCLUSIONS DZ could efficiently suppress oxidative stress and inflammatory responses to postpone the development of DN, and its mechanism might be related to inhibition of NLRP3 and p66Shc activities. Thus, DZ could be developed into a new therapeutic agent for DN.
Collapse
Affiliation(s)
- Chaoxing Ren
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, People's Republic of China
| | - Xiaowei Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, People's Republic of China
| | - Xiaowen Bao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, People's Republic of China
| | - Jie Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, People's Republic of China
| | - Jun Tang
- Jiangsu Huanghe Pharmaceutical Co., Ltd, Yancheng, People's Republic of China
| | - Zhiming Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, People's Republic of China
| | - Nan Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, People's Republic of China
- School of Chemical and Molecular Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Yu Bai
- Department of Biological Sciences, University of Toronto Scarborough, ON, Canada
| | - Youli Xi
- Department of Pharmacy, Nanjing Drum Tower Hospital, Nanjing, People's Republic of China
| | - Qi Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, People's Republic of China
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, People's Republic of China
| |
Collapse
|
12
|
Sirtuins and Renal Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10081198. [PMID: 34439446 PMCID: PMC8388938 DOI: 10.3390/antiox10081198] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/04/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
Renal failure is a major health problem that is increasing worldwide. To improve clinical outcomes, we need to understand the basic mechanisms of kidney disease. Aging is a risk factor for the development and progression of kidney disease. Cells develop an imbalance of oxidants and antioxidants as they age, resulting in oxidative stress and the development of kidney damage. Calorie restriction (CR) is recognized as a dietary approach that promotes longevity, reduces oxidative stress, and delays the onset of age-related diseases. Sirtuins, a type of nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylase, are considered to be anti-aging molecules, and CR induces their expression. The sirtuin family consists of seven enzymes (Sirt1–7) that are involved in processes and functions related to antioxidant and oxidative stress, such as DNA damage repair and metabolism through histone and protein deacetylation. In fact, a role for sirtuins in the regulation of antioxidants and redox substances has been suggested. Therefore, the activation of sirtuins in the kidney may represent a novel therapeutic strategy to enhancing resistance to many causative factors in kidney disease through the reduction of oxidative stress. In this review, we discuss the relationship between sirtuins and oxidative stress in renal disease.
Collapse
|
13
|
p66Shc-mediated hydrogen peroxide production impairs nephrogenesis causing reduction of number of glomeruli. Life Sci 2021; 279:119661. [PMID: 34087282 DOI: 10.1016/j.lfs.2021.119661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 01/15/2023]
Abstract
AIMS Adaptor protein p66Shc, encoded by Shc1 gene, contributes to the pathogenesis of oxidative stress-related diseases. p66Shc ability to promote oxidative stress-related diseases requires phosphorylation of serine 36 residue (Ser36) and depends on translocation of p66Shc to the mitochondria. We tested the hypothesis that abnormal p66Shc-mediated reactive oxygen species (ROS) production could be critically involved in nephrons development during nephrogenesis. MAIN METHODS We have generated unique mutant rats (termed p66Shc-Del), which express endogenous p66Shc with a 9-amino acid deletion, and lack regulatory Ser36. H2O2 renal production was measured by enzymatic microelectrode biosensors. Nephron numbers in 3-5 weeks old p66Shc-Del rats were quantified using the acid maceration method. KEY FINDINGS p66Shc-Del rats, as wild type salt sensitive rats, display increased mean arterial blood pressure following chronic exposure to a high salt diet. In contrast to wild type rats, p66Shc-Del rats display increased H2O2 renal production and are characterized by a reduction in renal function. The number of glomeruli is significantly reduced in adult p66Shc-Del rats. SIGNIFICANCE Since low nephron number is an established risk factor for kidney disease and hypertension in humans and rodents, our data suggest that H2O2 renal production, caused by irregular signaling of p66Shc, could be critical in regulating nephrogenesis and that abnormal p66Shc signaling negatively impacts kidney development and renal function by increasing susceptibility to diabetic nephropathy and hypertension-induced nephropathy.
Collapse
|
14
|
Miller B, Kostrominova TY, Geurts AM, Sorokin A. Double p52Shc/p46Shc Rat Knockout Demonstrates Severe Gait Abnormalities Accompanied by Dilated Cardiomyopathy. Int J Mol Sci 2021; 22:5237. [PMID: 34063460 PMCID: PMC8155973 DOI: 10.3390/ijms22105237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/03/2021] [Accepted: 05/12/2021] [Indexed: 12/04/2022] Open
Abstract
The ubiquitously expressed adaptor protein Shc exists in three isoforms p46Shc, p52Shc, and p66Shc, which execute distinctly different actions in cells. The role of p46Shc is insufficiently studied, and the purpose of this study was to further investigate its functional significance. We developed unique rat mutants lacking p52Shc and p46Shc isoforms (p52Shc/46Shc-KO) and carried out histological analysis of skeletal and cardiac muscle of parental and genetically modified rats with impaired gait. p52Shc/46Shc-KO rats demonstrate severe functional abnormalities associated with impaired gait. Our analysis of p52Shc/46Shc-KO rat axons and myelin sheets in cross-sections of the sciatic nerve revealed the presence of significant anomalies. Based on the lack of skeletal muscle fiber atrophy and the presence of sciatic nerve abnormalities, we suggest that the impaired gait in p52Shc/46Shc-KO rats might be due to the sensory feedback from active muscle to the brain locomotor centers. The lack of dystrophin in some heart muscle fibers reflects damage due to dilated cardiomyopathy. Since rats with only p52Shc knockout do not display the phenotype of p52Shc/p46Shc-KO, abnormal locomotion is likely to be caused by p46Shc deletion. Our data suggest a previously unknown role of 46Shc actions and signaling in regulation of gait.
Collapse
Affiliation(s)
- Bradley Miller
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53266, USA;
| | - Tatiana Y. Kostrominova
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine-Northwest, Gary, IN 46408, USA;
| | - Aron M. Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53266, USA;
| | - Andrey Sorokin
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53266, USA;
| |
Collapse
|
15
|
Ma H, Wang C, Liu X, Zhan M, Wei W, Niu J. Src homolog and collagen homolog1 isoforms in acute and chronic liver injuries. Life Sci 2021; 273:119302. [PMID: 33662427 DOI: 10.1016/j.lfs.2021.119302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
Src homolog and collagen homolog (SHC) proteins are adaptor proteins bound to cell surface receptors that play an important role in signal transduction and related diseases. As an important member of the SHC protein family, SHC1 regulates cell proliferation and apoptosis, reactive oxygen species (ROS) production, and oxidative stress. Three isomeric proteins namely, p46shc, p52shc, and p66shc, are produced from the same SHC1 gene locus. All the three proteins are found in the liver, and are widely expressed in various hepatic cells. SHC1 has been proven to be associated with acute and chronic liver injuries of different etiologies, and plays important roles in liver fibrosis and hepatocellular carcinoma (HCC). Therefore, this review summarizes recent studies that discuss and explore the role of SHC1 in the occurrence and progression of liver diseases. We also provide a theoretical basis for future studies.
Collapse
Affiliation(s)
- Heming Ma
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Chang Wang
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Xu Liu
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Mengru Zhan
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Wei Wei
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Junqi Niu
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
16
|
ALTamimi JZ, AlFaris NA, Al-Farga AM, Alshammari GM, BinMowyna MN, Yahya MA. Curcumin reverses diabetic nephropathy in streptozotocin-induced diabetes in rats by inhibition of PKCβ/p 66Shc axis and activation of FOXO-3a. J Nutr Biochem 2021; 87:108515. [PMID: 33017608 DOI: 10.1016/j.jnutbio.2020.108515] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/01/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023]
Abstract
This study investigated if the nephroprotective effect of Curcumin in streptozotocin-induced type 1 diabetes mellitus (DM) in rats involves downregulation/inhibition of p66Shc and examined the underlying mechanisms. Rats were divided into 4 groups (n = 12/group) as control, control + Curcumin (100 mg/kg), T1DM, and T1DM + Curcumin. Curcumin was administered orally to control or diabetic rats for 12 weeks daily. As compared to diabetic rats, Curcumin didn't affect either plasma glucose or insulin levels but significantly reduced serum levels of urea, blood urea nitrogen, and creatinine, and concurrently reduced albumin/protein urea and increased creatinine clearance. It also prevented the damage in renal tubules and mitochondria, mesangial cell expansion, the thickness of the basement membrane. Mechanistically, Curcumin reduced mRNA and protein levels of collagen I/III and transforming growth factor- β-1 (TGF-β1), reduced inflammatory cytokines levels, improved markers of mitochondrial function, and suppressed the release of cytochrome-c and the activation of caspase-3. In the kidneys of both control and diabetic rats, Curcumin reduced the levels of reactive oxygen species (ROS), increased mRNA levels of manganese superoxide dismutase (MnSOD) and gamma-glutamyl ligase, increased glutathione (GSH) and protein levels of Bcl-2 and MnSOD, and increased the nuclear levels of nuclear factor2 (Nrf2) and FOXO-3a. Besides, Curcumin reduced the nuclear activity of the nuclear factor-kappa B (NF-κB), downregulated protein kinase CβII (PKCβII), NADPH oxidase, and p66Shc, and decreased the activation of p66Shc. In conclusion, Curcumin prevents kidney damage in diabetic rats by activating Nrf2, inhibiting Nf-κB, suppressing NADPH oxidase, and downregulating/inhibiting PKCβII/p66Shc axis.
Collapse
Affiliation(s)
- Jozaa Z ALTamimi
- Nutrition and Food Science, Department of Physical Sport Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nora A AlFaris
- Nutrition and Food Science, Department of Physical Sport Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.
| | - Ammar M Al-Farga
- Biochemistry Department, College of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Ghedeir M Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Mohammed A Yahya
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
17
|
Gao P, Yang W, Sun L. Mitochondria-Associated Endoplasmic Reticulum Membranes (MAMs) and Their Prospective Roles in Kidney Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3120539. [PMID: 32952849 PMCID: PMC7487091 DOI: 10.1155/2020/3120539] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) serve as essential hubs for interorganelle communication in eukaryotic cells and play multifunctional roles in various biological pathways. A defect in ER-mitochondria signaling or MAMs dysfunction has pleiotropic effects on a variety of intracellular events, which results in disturbances of the mitochondrial quality control system, Ca2+ dyshomeostasis, apoptosis, ER stress, and inflammasome activation, which all contribute to the onset and progression of kidney disease. Here, we review the structure and molecular compositions of MAMs as well as the experimental methods used to study these interorganellar contact sites. We will specifically summarize the downstream signaling pathways regulated by MAMs, mainly focusing on mitochondrial quality control, oxidative stress, ER-mitochondria Ca2+ crosstalk, apoptosis, inflammasome activation, and ER stress. Finally, we will discuss how alterations in MAMs integrity contribute to the pathogenesis of kidney disease and offer directions for future research.
Collapse
Affiliation(s)
- Peng Gao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Kidney Disease & Blood Purification, in Hunan Province, Changsha, Hunan, 410011, China
- Institute of Nephrology, Central South University, Changsha, Hunan, 410011, China
| | - Wenxia Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Kidney Disease & Blood Purification, in Hunan Province, Changsha, Hunan, 410011, China
- Institute of Nephrology, Central South University, Changsha, Hunan, 410011, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Kidney Disease & Blood Purification, in Hunan Province, Changsha, Hunan, 410011, China
- Institute of Nephrology, Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
18
|
Zhang J, Li Y, Wang B, Luo Y, Shi J, Zhao B. The p66shc-mediated Regulation of Hepatocyte Senescence Influences Hepatic Steatosis in Nonalcoholic Fatty Liver Disease. Med Sci Monit 2020; 26:e921887. [PMID: 32191680 PMCID: PMC7104657 DOI: 10.12659/msm.921887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Recent studies have suggested that hepatocyte senescence could contribute to hepatic steatosis and its progression in nonalcoholic fatty liver disease (NAFLD). However, the underlying mechanism causing hepatocyte senescence in this pathological condition is still unclear. A thorough understanding of the mechanism could provide a new target for therapeutic intervention. The purpose of this study was to investigate the role of p66shc in hepatocyte senescence and hepatocyte damage in NAFLD progression. Material/Methods We examined the expression levels of hepatic p66shc and senescence markers in rats and humans with NAFLD, and we assessed the effect of p66shc knockdown or overexpression on senescence and steatosis in human liver cells. Results In this study, we showed that increased hepatic p66shc expression was consistent with upregulated expression of the following senescence markers in NAFLD rats: heterochromatin protein-1-beta (HP1β), p16, p21, and p53. Furthermore, senescence and steatosis could be induced in hepatoblastoma cell line (HepG2) cells when cells were stimulated with a low concentration of H2O2, and this effect was significantly alleviated by knockdown of p66shc. However, overexpression of p66shc could promote senescence and steatosis in L02 cells. Finally, increased hepatic p66shc protein levels correlated with enhanced expression of the senescence marker p21 and mirrored the degree of disease severity in NAFLD patients. Conclusions Our findings indicated that the increase in hepatocyte senescence and steatosis in NAFLD may be caused by the upregulation of p66shc expression, implying that strategies for p66shc-mediated regulation of hepatocyte senescence may provide new therapeutic tools for NAFLD.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China (mainland)
| | - Yanpeng Li
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, China (mainland)
| | - Bingyuan Wang
- Department of Elderly Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Yan Luo
- Center for Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China (mainland)
| | - Junping Shi
- Department of Liver Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China (mainland)
| | - Baiyun Zhao
- Drug Clinical Trial Institution, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
19
|
Wright KD, Miller BS, El-Meanawy S, Tsaih SW, Banerjee A, Geurts AM, Sheinin Y, Sun Y, Kalyanaraman B, Rui H, Flister MJ, Sorokin A. The p52 isoform of SHC1 is a key driver of breast cancer initiation. Breast Cancer Res 2019; 21:74. [PMID: 31202267 PMCID: PMC6570928 DOI: 10.1186/s13058-019-1155-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/23/2019] [Indexed: 01/23/2023] Open
Abstract
Background SHC1 proteins (also called SHCA) exist in three functionally distinct isoforms (p46SHC, p52SHC, and p66SHC) that serve as intracellular adaptors for several key signaling pathways in breast cancer. Despite the broad evidence implicating SHC1 gene products as a central mediator of breast cancer, testing the isoform-specific roles of SHC1 proteins have been inaccessible due to the lack of isoform-specific inhibitors or gene knockout models. Methods Here, we addressed this issue by generating the first isoform-specific gene knockout models for p52SHC and p66SHC, using germline gene editing in the salt-sensitive rat strain. Compared with the wild-type (WT) rats, we found that genetic ablation of the p52SHC isoform significantly attenuated mammary tumor formation, whereas the p66SHC knockout had no effect. Rats were dosed with 7,12-dimethylbenz(a)anthracene (DMBA) by oral gavage to induce mammary tumors, and progression of tumor development was followed for 15 weeks. At 15 weeks, tumors were excised and analyzed by RNA-seq to determine differences between tumors lacking p66SHC or p52SHC. Results Compared with the wild-type (WT) rats, we found that genetic ablation of the p52SHC isoform significantly attenuated mammary tumor formation, whereas the p66SHC knockout had no effect. These data, combined with p52SHC being the predominant isoform that is upregulated in human and rat tumors, provide the first evidence that p52SHC is the oncogenic isoform of Shc1 gene products in breast cancer. Compared with WT tumors, 893 differentially expressed (DE; FDR < 0.05) genes were detected in p52SHC KO tumors compared with only 18 DE genes in the p66SHC KO tumors, further highlighting that p52SHC is the relevant SHC1 isoform in breast cancer. Finally, gene network analysis revealed that p52SHC KO disrupted multiple key pathways that have been previously implicated in breast cancer initiation and progression, including ESR1 and mTORC2/RICTOR. Conclusion Collectively, these data demonstrate the p52SHC isoform is the key driver of DMBA-induced breast cancer while the expression of p66SHC and p46SHC are not enough to compensate. Electronic supplementary material The online version of this article (doi:10.1186/s13058-019-1155-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kevin D Wright
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Bradley S Miller
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Sarah El-Meanawy
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Shirng-Wern Tsaih
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Anjishnu Banerjee
- Institute for Health and Equity, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Aron M Geurts
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Yuri Sheinin
- Department of Pathology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Yunguang Sun
- Department of Pathology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Michael J Flister
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Andrey Sorokin
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA. .,Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
20
|
Miller BS, Blumenthal SR, Shalygin A, Wright KD, Staruschenko A, Imig JD, Sorokin A. Inactivation of p66Shc Decreases Afferent Arteriolar K ATP Channel Activity and Decreases Renal Damage in Diabetic Dahl SS Rats. Diabetes 2018; 67:2206-2212. [PMID: 30131395 PMCID: PMC6198347 DOI: 10.2337/db18-0308] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/16/2018] [Indexed: 12/17/2022]
Abstract
Increased expression of adaptor protein p66Shc has been associated with progression of diabetic nephropathy. Afferent arteriolar dilation and glomerular hyperfiltration in diabetes are due to increased KATP channel availability and activity. Hyperglycemia was induced in Dahl salt-sensitive (SS) rats in a model of diabetes induced by streptozotocin (STZ). Renal injury was evaluated in SS rats and genetically modified SS rats either lacking p66Shc (p66Shc knockout [p66ShcKO]) or expressing p66Shc mutant (p66Shc-S36A). Afferent arteriolar diameter responses during STZ-induced hyperfiltration were determined by using the juxtamedullary nephron technique. Albuminuria and glomerular injury were mitigated in p66ShcKO and p66Shc-S36A rats with STZ-induced diabetes. SS rats with STZ-induced diabetes had significantly increased afferent arteriolar diameter, whereas p66ShcKO and p66Shc-S36A rats did not. SS rats with STZ-induced diabetes, but not p66ShcKO or p66Shc-S36A rats with STZ-induced diabetes, had an increased vasodilator response to the KATP channel activator pinacidil. Likewise, the KATP inhibitor glibenclamide resulted in a greater decrease in afferent arteriolar diameter in SS rats with STZ-induced diabetes than in STZ-treated SS p66ShcKO and p66Shc-S36A rats. Using patch-clamp electrophysiology, we demonstrated that p66ShcKO decreases KATP channel activity. These results indicate that inactivation of the adaptor protein p66Shc decreases afferent arteriolar KATP channel activity and decreases renal damage in diabetic SS rats.
Collapse
Affiliation(s)
- Bradley S Miller
- Department of Medicine, Division of Nephrology, Medical College of Wisconsin, Milwaukee, WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI
| | - Shoshana R Blumenthal
- Department of Medicine, Division of Nephrology, Medical College of Wisconsin, Milwaukee, WI
| | - Alexey Shalygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Kevin D Wright
- Department of Medicine, Division of Nephrology, Medical College of Wisconsin, Milwaukee, WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI
| | - Alexander Staruschenko
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | - John D Imig
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI
| | - Andrey Sorokin
- Department of Medicine, Division of Nephrology, Medical College of Wisconsin, Milwaukee, WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
21
|
Palygin O, Miller BS, Nishijima Y, Zhang DX, Staruschenko A, Sorokin A. Endothelin receptor A and p66Shc regulate spontaneous Ca 2+ oscillations in smooth muscle cells controlling renal arterial spontaneous motion. FASEB J 2018; 33:2636-2645. [PMID: 30303741 DOI: 10.1096/fj.201800776rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adaptor protein p66Shc is overexpressed in smooth muscle cells of renal resistance vessels of hypertensive salt-sensitive rats and is involved in the regulation of renal vascular tone. We applied 2-photon laser scanning fluorescence microscopy to analyze spontaneous dynamic fluctuations in intracellular calcium concentrations ([Ca2+]i) in smooth muscle cells embedded in the walls of freshly isolated renal resistance arteries. The amplitude, number of events, and frequency of spontaneous [Ca2+]i oscillations triggered by endogenously released endothelin-1 were recorded in smooth muscle cells of the renal arteries. Endothelin receptor A antagonist BQ123 dramatically reduced the amplitude and frequency of spontaneous Ca2+ events, producing marked inhibition of renal vessels spontaneous motion. Spontaneous Ca2+ fluctuations in smooth muscle cells of p66Shc knockout (p66ShcKO) rats had significantly higher amplitude than in control rats. The frequency of spontaneous [Ca2+]i oscillations did not change in p66ShcKO rats, suggesting that p66Shc expression did not affect endothelin-1 release from resident endothelial cells. Acute application of endothelin-1 revealed significantly elevated production of the total [Ca2+]i in p66ShcKO rats. Spontaneous cytosolic Ca2+ oscillations in smooth muscle cells of renal vessels mediate their spontaneous motion via the endothelin-1/endothelin receptor A pathway. p66Shc decreases the amplitude of individual changes in [Ca2+]i, which mitigates the spontaneous motion of renal vessels.-Palygin, O., Miller, B. S., Nishijima, Y., Zhang, D. X., Staruschenko, A., Sorokin, A. Endothelin receptor A and p66Shc regulate spontaneous Ca2+ oscillations in smooth muscle cells controlling renal arterial spontaneous motion.
Collapse
Affiliation(s)
- Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Bradley S Miller
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Division of Nephrology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Yoshinori Nishijima
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Division of Cardiology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; and.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - David X Zhang
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Division of Cardiology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; and.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Andrey Sorokin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Division of Nephrology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
22
|
Cao W, Liu X, Xu X, Zeng M, Sun B, Yu X, Wang N, Mao H, Zhang B, Yuan Y, Xing C. The Src homology and collagen A (ShcA) adaptor protein may participate in the pathogenesis of membranous lupus nephritis. Lupus 2018; 27:2014-2019. [PMID: 30189773 DOI: 10.1177/0961203318796295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The Src homology and collagen A (ShcA) adaptor protein that binds to tyrosine kinase receptors. ShcA plays a role in insulin signaling, stress resistance and energy metabolism. The 66-kDa Src homology 2 domain-containing protein (p66shc) belongs to the ShcA family and has been associated with reactive oxygen species (ROS); increased ROS is involved in the pathology of lupus nephritis (LN). However, whether ShcA can act as a biomarker for oxidative injury in LN is unknown. This study is aimed to investigate the ShcA expression in kidney tissues from patients presenting with LN and the association between ShcA expression and clinical parameters. Renal biopsy tissues were obtained from 62 LN, 20 primary membranous nephropathy (MN) and 10 other secondary MN patients. ShcA was measured by immunofluorescence. The expression of ShcA in the membranous lupus nephritis (class V) group showed a higher trend but there were no significant differences compared with pure mesangial disease (class II) and proliferative (Class III/IV) lupus nephritis. ShcA deposits were negative in primary and other secondary MN. ShcA might act as a new biomarker and a diagnostic tool to identify membranous lupus nephritis with other MN.
Collapse
Affiliation(s)
- W Cao
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - X Liu
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - X Xu
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - M Zeng
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - B Sun
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - X Yu
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - N Wang
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - H Mao
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - B Zhang
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Y Yuan
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - C Xing
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
23
|
Dhande IS, Cranford SM, Zhu Y, Kneedler SC, Hicks MJ, Wenderfer SE, Braun MC, Doris PA. Susceptibility to Hypertensive Renal Disease in the Spontaneously Hypertensive Rat Is Influenced by 2 Loci Affecting Blood Pressure and Immunoglobulin Repertoire. Hypertension 2018; 71:700-708. [PMID: 29437896 PMCID: PMC5843527 DOI: 10.1161/hypertensionaha.117.10593] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/02/2017] [Accepted: 12/27/2017] [Indexed: 12/11/2022]
Abstract
High blood pressure exerts its deleterious effects on health largely through acceleration of end-organ diseases. Among these, progressive loss of renal function is particularly important, not only for the direct consequences of kidney damage but also because loss of renal function is associated with amplification of other adverse cardiovascular outcomes. Genetic susceptibility to hypertension and associated end-organ disease is non-Mendelian in both humans and in a rodent model, the spontaneously hypertensive rat (SHR). Here, we report that hypertensive end-organ disease in the inbred SHR-A3 line is attributable to genetic variation in the immunoglobulin heavy chain on chromosome 6. This variation coexists with variation in a 10 Mb block on chromosome 17 that contains genetic variation in 2 genes involved in immunoglobulin Fc receptor signaling. Substitution of these genomic regions into the SHR-A3 genome from the closely related, but injury-resistant, SHR-B2 line normalizes both biomarker and histological measures of renal injury. Our findings indicate that genetic variation leads to a contribution by immune mechanisms hypertensive end-organ injury and that, in this rat model, disease is influenced by differences in germ line antibody repertoire.
Collapse
Affiliation(s)
- Isha S Dhande
- From the Institute of Molecular Medicine, University of Texas HSC at Houston (I.S.D., S.M.C., Y.Z., S.C.K., P.A.D.); and Department of Pediatrics (S.E.W., M.C.B.) and Department of Pathology and Immunology (M.J.H.), Baylor College of Medicine, Houston, TX
| | - Stacy M Cranford
- From the Institute of Molecular Medicine, University of Texas HSC at Houston (I.S.D., S.M.C., Y.Z., S.C.K., P.A.D.); and Department of Pediatrics (S.E.W., M.C.B.) and Department of Pathology and Immunology (M.J.H.), Baylor College of Medicine, Houston, TX
| | - Yaming Zhu
- From the Institute of Molecular Medicine, University of Texas HSC at Houston (I.S.D., S.M.C., Y.Z., S.C.K., P.A.D.); and Department of Pediatrics (S.E.W., M.C.B.) and Department of Pathology and Immunology (M.J.H.), Baylor College of Medicine, Houston, TX
| | - Sterling C Kneedler
- From the Institute of Molecular Medicine, University of Texas HSC at Houston (I.S.D., S.M.C., Y.Z., S.C.K., P.A.D.); and Department of Pediatrics (S.E.W., M.C.B.) and Department of Pathology and Immunology (M.J.H.), Baylor College of Medicine, Houston, TX
| | - M John Hicks
- From the Institute of Molecular Medicine, University of Texas HSC at Houston (I.S.D., S.M.C., Y.Z., S.C.K., P.A.D.); and Department of Pediatrics (S.E.W., M.C.B.) and Department of Pathology and Immunology (M.J.H.), Baylor College of Medicine, Houston, TX
| | - Scott E Wenderfer
- From the Institute of Molecular Medicine, University of Texas HSC at Houston (I.S.D., S.M.C., Y.Z., S.C.K., P.A.D.); and Department of Pediatrics (S.E.W., M.C.B.) and Department of Pathology and Immunology (M.J.H.), Baylor College of Medicine, Houston, TX
| | - Michael C Braun
- From the Institute of Molecular Medicine, University of Texas HSC at Houston (I.S.D., S.M.C., Y.Z., S.C.K., P.A.D.); and Department of Pediatrics (S.E.W., M.C.B.) and Department of Pathology and Immunology (M.J.H.), Baylor College of Medicine, Houston, TX
| | - Peter A Doris
- From the Institute of Molecular Medicine, University of Texas HSC at Houston (I.S.D., S.M.C., Y.Z., S.C.K., P.A.D.); and Department of Pediatrics (S.E.W., M.C.B.) and Department of Pathology and Immunology (M.J.H.), Baylor College of Medicine, Houston, TX.
| |
Collapse
|