1
|
Noh MR, Padanilam BJ. Cell death induced by acute renal injury: a perspective on the contributions of accidental and programmed cell death. Am J Physiol Renal Physiol 2024; 327:F4-F20. [PMID: 38660714 PMCID: PMC11390133 DOI: 10.1152/ajprenal.00275.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024] Open
Abstract
The involvement of cell death in acute kidney injury (AKI) is linked to multiple factors including energy depletion, electrolyte imbalance, reactive oxygen species, inflammation, mitochondrial dysfunction, and activation of several cell death pathway components. Since our review in 2003, discussing the relative contributions of apoptosis and necrosis, several other forms of cell death have been identified and are shown to contribute to AKI. Currently, these various forms of cell death can be fundamentally divided into accidental cell death and regulated or programmed cell death based on functional aspects. Several death initiator and effector molecules switch molecules that may act as signaling components triggering either death or protective mechanisms or alternate cell death pathways have been identified as part of the machinery. Intriguingly, several of these cell death pathways share components and signaling pathways suggesting complementary or compensatory functions. Thus, defining the cross talk between distinct cell death pathways and identifying the unique molecular effectors for each type of cell death may be required to develop novel strategies to prevent cell death. Furthermore, depending on the multiple forms of cell death simultaneously induced in different AKI settings, strategies for combination therapies that block multiple cell death pathways need to be developed to completely prevent injury, cell death, and renal function. This review highlights the various cell death pathways, cross talk, and interactions between different cell death modalities in AKI.
Collapse
Affiliation(s)
- Mi Ra Noh
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Babu J Padanilam
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| |
Collapse
|
2
|
Satalkar V, Swamy KV. Pathophysiology of acute kidney injury on a molecular level: A brief review. MGM JOURNAL OF MEDICAL SCIENCES 2022. [DOI: 10.4103/mgmj.mgmj_161_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
3
|
Diverse Roles of Mitochondria in Renal Injury from Environmental Toxicants and Therapeutic Drugs. Int J Mol Sci 2021; 22:ijms22084172. [PMID: 33920653 PMCID: PMC8073222 DOI: 10.3390/ijms22084172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/05/2021] [Accepted: 04/14/2021] [Indexed: 01/19/2023] Open
Abstract
Mitochondria are well-known to function as the primary sites of ATP synthesis in most mammalian cells, including the renal proximal tubule. Other functions have also been associated with different mitochondrial activities, including the regulation of redox status and the initiation of mitophagy and apoptosis. Mechanisms for the membrane transport of glutathione (GSH) and various GSH-derived metabolites across the mitochondrial inner membrane of renal proximal tubular cells are critical determinants of these functions and may serve as pharmacological targets for potential therapeutic approaches. Specific interactions of reactive intermediates, derived from drug metabolism, with molecular components in mitochondria have been identified as early steps in diverse forms of chemically-induced nephrotoxicity. Applying this key observation, we developed a novel hypothesis regarding the identification of early, sensitive, and specific biomarkers of exposure to nephrotoxicants. The underlying concept is that upon exposure to a diverse array of environmental contaminants, as well as therapeutic drugs whose efficacy is limited by nephrotoxicity, renal mitochondria will release both high- and low-molecular-weight components into the urine or the extracellular medium in an in vitro model. The detection of these components may then serve as indicators of exposure before irreversible renal injury has occurred.
Collapse
|
4
|
Gottwald EM, Schuh CD, Drücker P, Haenni D, Pearson A, Ghazi S, Bugarski M, Polesel M, Duss M, Landau EM, Kaech A, Ziegler U, Lundby AKM, Lundby C, Dittrich PS, Hall AM. The iron chelator Deferasirox causes severe mitochondrial swelling without depolarization due to a specific effect on inner membrane permeability. Sci Rep 2020; 10:1577. [PMID: 32005861 PMCID: PMC6994599 DOI: 10.1038/s41598-020-58386-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022] Open
Abstract
The iron chelator Deferasirox (DFX) causes severe toxicity in patients for reasons that were previously unexplained. Here, using the kidney as a clinically relevant in vivo model for toxicity together with a broad range of experimental techniques, including live cell imaging and in vitro biophysical models, we show that DFX causes partial uncoupling and dramatic swelling of mitochondria, but without depolarization or opening of the mitochondrial permeability transition pore. This effect is explained by an increase in inner mitochondrial membrane (IMM) permeability to protons, but not small molecules. The movement of water into mitochondria is prevented by altering intracellular osmotic gradients. Other clinically used iron chelators do not produce mitochondrial swelling. Thus, DFX causes organ toxicity due to an off-target effect on the IMM, which has major adverse consequences for mitochondrial volume regulation.
Collapse
Affiliation(s)
| | - Claus D Schuh
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Patrick Drücker
- Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
| | - Dominik Haenni
- Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Adam Pearson
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Susan Ghazi
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Milica Bugarski
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | | | - Michael Duss
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Ehud M Landau
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Andres Kaech
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Urs Ziegler
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Anne K M Lundby
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Carsten Lundby
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Petra S Dittrich
- Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
| | - Andrew M Hall
- Institute of Anatomy, University of Zurich, Zurich, Switzerland. .,Department of Nephrology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Erpicum P, Rowart P, Defraigne JO, Krzesinski JM, Jouret F. What we need to know about lipid-associated injury in case of renal ischemia-reperfusion. Am J Physiol Renal Physiol 2018; 315:F1714-F1719. [PMID: 30332314 DOI: 10.1152/ajprenal.00322.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Renal segmental metabolism is reflected by the complex distribution of the main energy pathways along the nephron, with fatty acid oxidation preferentially used in the cortex area. Ischemia/reperfusion injury (IRI) is due to the restriction of renal blood flow, rapidly leading to a metabolic switch toward anaerobic conditions. Subsequent unbalance between energy demand and oxygen/nutrient delivery compromises kidney cell functions, resulting in a complex inflammatory cascade including the production of reactive oxygen species (ROS). Renal IRI especially involves lipid accumulation. Lipid peroxidation is one of the major events of ROS-associated tissue injury. Here, we briefly review the current knowledge of renal cell lipid metabolism in normal and ischemic conditions. Next, we focus on renal lipid-associated injury, with emphasis on its mechanisms and consequences during the course of IRI. Finally, we discuss preclinical observations aiming at preventing and/or attenuating lipid-associated IRI.
Collapse
Affiliation(s)
- Pauline Erpicum
- Division of Nephrology, University of Liège Academic Hospital , Liège , Belgium.,Groupe Interdisciplinaire de Génoprotéomique Appliquée, Cardiovascular Sciences, University of Liège , Liège , Belgium
| | - Pascal Rowart
- Groupe Interdisciplinaire de Génoprotéomique Appliquée, Cardiovascular Sciences, University of Liège , Liège , Belgium
| | - Jean-Olivier Defraigne
- Groupe Interdisciplinaire de Génoprotéomique Appliquée, Cardiovascular Sciences, University of Liège , Liège , Belgium.,Division of Cardio-Thoracic Surgery, University of Liège Academic Hospital , Liège , Belgium
| | | | - François Jouret
- Division of Nephrology, University of Liège Academic Hospital , Liège , Belgium.,Groupe Interdisciplinaire de Génoprotéomique Appliquée, Cardiovascular Sciences, University of Liège , Liège , Belgium
| |
Collapse
|
6
|
Sancho-Martínez SM, Prieto-García L, Prieto M, Fuentes-Calvo I, López-Novoa JM, Morales AI, Martínez-Salgado C, López-Hernández FJ. N-acetylcysteine transforms necrosis into apoptosis and affords tailored protection from cisplatin cytotoxicity. Toxicol Appl Pharmacol 2018; 349:83-93. [PMID: 29679655 DOI: 10.1016/j.taap.2018.04.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 12/21/2022]
Abstract
Nephrotoxicity is the main limitation to the dosage and anticancer efficacy of cisplatin. Cisplatin produces tubular epithelial cell apoptosis and necrosis depending on the concentration of the drug. Protection from cisplatin nephrotoxicity must therefore tackle both cell death modes. For its ability to reduce cisplatin reactivity, in addition to its antioxidant effect, we tested and found that N-acetylcysteine (NAC) was most effective at inhibiting cisplatin cytotoxicity. NAC has no significant effect on cell death induced by either cycloheximide or Fas activation, indicating a rather selective action. Pt-DNA-binding experiments suggest that the differential effectiveness of NAC is due to its capacity to quench cisplatin reactivity inside the cell. NAC abolishes cisplatin-induced apoptosis, and transforms the necrosis induced by high concentrations of cisplatin into apoptosis. In fact, NAC allows the anti-apoptotic molecule Bcl-2 to reduce the cell death caused by pro-necrotic concentrations of cisplatin, to a significantly greater extent than in the absence of NAC. In rats, a dosage of NAC that significantly ameliorates cisplatin nephrotoxicity, has little effect on gentamicin nephrotoxicity. These characteristics provide NAC with a rationale as a potential nephroprotectant specifically tailored to and especially effective for therapeutic courses with platinated antineoplastics, which prompts to deepening into further preclinical knowledge, and to initiate clinical studies with NAC and mixed therapies composed of NAC and antiapoptotic drugs.
Collapse
Affiliation(s)
- Sandra M Sancho-Martínez
- Institute of Biomedical Research of Salamanca (IBSAL), Spain; Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain; Group of Biomedical Research in Critical Care Medicine (BioCritic), Valladolid, Spain
| | - Laura Prieto-García
- Institute of Biomedical Research of Salamanca (IBSAL), Spain; Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain; Group of Biomedical Research in Critical Care Medicine (BioCritic), Valladolid, Spain
| | - Marta Prieto
- Institute of Biomedical Research of Salamanca (IBSAL), Spain; Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain; Group of Biomedical Research in Critical Care Medicine (BioCritic), Valladolid, Spain
| | - Isabel Fuentes-Calvo
- Institute of Biomedical Research of Salamanca (IBSAL), Spain; Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain
| | - José M López-Novoa
- Institute of Biomedical Research of Salamanca (IBSAL), Spain; Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain
| | - Ana I Morales
- Institute of Biomedical Research of Salamanca (IBSAL), Spain; Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain; Group of Biomedical Research in Critical Care Medicine (BioCritic), Valladolid, Spain
| | - Carlos Martínez-Salgado
- Institute of Biomedical Research of Salamanca (IBSAL), Spain; Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain; Instituto de Estudios de Ciencias de la Salud de Castilla y León, Soria, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain; Group of Biomedical Research in Critical Care Medicine (BioCritic), Valladolid, Spain
| | - Francisco J López-Hernández
- Institute of Biomedical Research of Salamanca (IBSAL), Spain; Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain; Instituto de Estudios de Ciencias de la Salud de Castilla y León, Soria, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain; Group of Biomedical Research in Critical Care Medicine (BioCritic), Valladolid, Spain.
| |
Collapse
|
7
|
Adedoyin O, Boddu R, Traylor A, Lever JM, Bolisetty S, George JF, Agarwal A. Heme oxygenase-1 mitigates ferroptosis in renal proximal tubule cells. Am J Physiol Renal Physiol 2017; 314:F702-F714. [PMID: 28515173 DOI: 10.1152/ajprenal.00044.2017] [Citation(s) in RCA: 271] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ferroptosis is an iron-dependent form of regulated nonapoptotic cell death, which contributes to damage in models of acute kidney injury (AKI). Heme oxygenase-1 (HO-1) is a cytoprotective enzyme induced in response to cellular stress, and is protective against AKI because of its antiapoptotic and anti-inflammatory properties. However, the role of HO-1 in regulating ferroptosis is unclear. The purpose of this study was to elucidate the role of HO-1 in regulating ferroptotic cell death in renal proximal tubule cells (PTCs). Immortalized PTCs obtained from HO-1+/+ and HO-1-/- mice were treated with erastin or RSL3, ferroptosis inducers, in the presence or absence of antioxidants, an iron source, or an iron chelator. Cells were assessed for changes in morphology and metabolic activity as an indicator of cell viability. Treatment of HO-1+/+ PTCs with erastin resulted in a time- and dose-dependent increase in HO-1 gene expression and protein levels compared with vehicle-treated controls. HO-1-/- cells showed increased dose-dependent erastin- or RSL3-induced cell death in comparison to HO-1+/+ PTCs. Iron supplementation with ferric ammonium citrate in erastin-treated cells decreased cell viability further in HO-1-/- PTCs compared with HO-1+/+ cells. Cotreatment with ferrostatin-1 (ferroptosis inhibitor), deferoxamine (iron chelator), or N-acetyl-l-cysteine (glutathione replenisher) significantly increased cell viability and attenuated erastin-induced ferroptosis in both HO-1+/+ and HO-1-/- PTCs. These results demonstrate an important antiferroptotic role of HO-1 in renal epithelial cells.
Collapse
Affiliation(s)
- Oreoluwa Adedoyin
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Ravindra Boddu
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Amie Traylor
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Jeremie M Lever
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Subhashini Bolisetty
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - James F George
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama.,Department of Surgery, University of Alabama at Birmingham , Birmingham, Alabama
| | - Anupam Agarwal
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama.,Birmingham VA Medical Center , Birmingham, Alabama
| |
Collapse
|
8
|
Hurst S, Hoek J, Sheu SS. Mitochondrial Ca 2+ and regulation of the permeability transition pore. J Bioenerg Biomembr 2017; 49:27-47. [PMID: 27497945 PMCID: PMC5393273 DOI: 10.1007/s10863-016-9672-x] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 07/31/2016] [Indexed: 02/06/2023]
Abstract
The mitochondrial permeability transition pore was originally described in the 1970's as a Ca2+ activated pore and has since been attributed to the pathogenesis of many diseases. Here we evaluate how each of the current models of the pore complex fit to what is known about how Ca2+ regulates the pore, and any insight that provides into the molecular identity of the pore complex. We also discuss the central role of Ca2+ in modulating the pore's open probability by directly regulating processes, such as ATP/ADP balance through the tricarboxylic acid cycle, electron transport chain, and mitochondrial membrane potential. We review how Ca2+ influences second messengers such as reactive oxygen/nitrogen species production and polyphosphate formation. We discuss the evidence for how Ca2+ regulates post-translational modification of cyclophilin D including phosphorylation by glycogen synthase kinase 3 beta, deacetylation by sirtuins, and oxidation/ nitrosylation of key residues. Lastly we introduce a novel view into how Ca2+ activated proteolysis through calpains in the mitochondria may be a driver of sustained pore opening during pathologies such as ischemia reperfusion injury.
Collapse
Affiliation(s)
- Stephen Hurst
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Suite 543D, Philadelphia, PA, 19107, USA
| | - Jan Hoek
- Mitocare Center for Mitochondria Research, Department of Pathology Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Shey-Shing Sheu
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Suite 543D, Philadelphia, PA, 19107, USA.
| |
Collapse
|
9
|
Preterm neonatal urinary renal developmental and acute kidney injury metabolomic profiling: an exploratory study. Pediatr Nephrol 2017; 32:151-161. [PMID: 27435284 PMCID: PMC5123933 DOI: 10.1007/s00467-016-3439-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/27/2016] [Accepted: 05/29/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Acute kidney injury (AKI) staging has been developed in the adult and pediatric populations, but these do not yet exist for the neonatal population. Metabolomics was utilized to uncover biomarkers of normal and AKI-associated renal function in preterm infants. The study comprised 20 preterm infants with an AKI diagnosis who were matched by gestational age and gender to 20 infants without an AKI diagnosis. METHODS Urine samples from pre-term newborn infants collected on day 2 of life were analyzed using broad-spectrum nuclear magnetic resonance (NMR) metabolomics. Multivariate analysis methods were used to identify metabolite profiles that differentiated AKI and no AKI, and to identify a metabolomics profile correlating with gestational age in infants with and without AKI. RESULTS There was a clear distinction between the AKI and no-AKI profiles. Two previously identified biomarkers of AKI, hippurate and homovanillate, differentiated AKI from no-AKI profiles. Pathway analysis revealed similarities to cholinergic neurons, prenatal nicotine exposure on pancreatic β cells, and amitraz-induced inhibition of insulin secretion. Additionally, a pH difference was noted. Both pH and the metabolites were found to be associated with AKI; however, only the metabotype was a significant predictor of AKI. Pathways for the no-AKI group that correlated uniquely with gestational age included aminoacyl-t-RNA biosynthesis, whereas pathways in the AKI group yielded potential metabolite changes in pyruvate metabolism. CONCLUSIONS Metabolomics was able to differentiate the urinary profiles of neonates with and without an AKI diagnosis and metabolic developmental profiles correlated with gestational age. Further studies in larger cohorts are needed to validate these results.
Collapse
|
10
|
Ying Y, Padanilam BJ. Regulation of necrotic cell death: p53, PARP1 and cyclophilin D-overlapping pathways of regulated necrosis? Cell Mol Life Sci 2016; 73:2309-24. [PMID: 27048819 PMCID: PMC5490387 DOI: 10.1007/s00018-016-2202-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 12/15/2022]
Abstract
In contrast to apoptosis and autophagy, necrotic cell death was considered to be a random, passive cell death without definable mediators. However, this dogma has been challenged by recent developments suggesting that necrotic cell death can also be a regulated process. Regulated necrosis includes multiple cell death modalities such as necroptosis, parthanatos, ferroptosis, pyroptosis, and mitochondrial permeability transition pore (MPTP)-mediated necrosis. Several distinctive executive molecules, particularly residing on the mitochondrial inner and outer membrane, amalgamating to form the MPTP have been defined. The c-subunit of the F1F0ATP synthase on the inner membrane and Bax/Bak on the outer membrane are considered to be the long sought components that form the MPTP. Opening of the MPTP results in loss of mitochondrial inner membrane potential, disruption of ATP production, increased ROS production, organelle swelling, mitochondrial dysfunction and consequent necrosis. Cyclophilin D, along with adenine nucleotide translocator and the phosphate carrier are considered to be important regulators involved in the opening of MPTP. Increased production of ROS can further trigger other necrotic pathways mediated through molecules such as PARP1, leading to irreversible cell damage. This review examines the roles of PARP1 and cyclophilin D in necrotic cell death. The hierarchical role of p53 in regulation and integration of key components of signaling pathway to elicit MPTP-mediated necrosis and ferroptosis is explored. In the context of recent insights, the indistinct role of necroptosis signaling in tubular necrosis after ischemic kidney injury is scrutinized. We conclude by discussing the participation of p53, PARP1 and cyclophilin D and their overlapping pathways to elicit MPTP-mediated necrosis and ferroptosis in acute kidney injury.
Collapse
Affiliation(s)
- Yuan Ying
- Department of Cellular and Integrative Physiology, 985850 University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Babu J Padanilam
- Department of Cellular and Integrative Physiology, 985850 University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA.
- Department of Internal Medicine, Division of Nephrology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
11
|
Weinberg JM, Bienholz A, Venkatachalam MA. The role of glycine in regulated cell death. Cell Mol Life Sci 2016; 73:2285-308. [PMID: 27066896 PMCID: PMC4955867 DOI: 10.1007/s00018-016-2201-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 01/22/2023]
Abstract
The cytoprotective effects of glycine against cell death have been recognized for over 28 years. They are expressed in multiple cell types and injury settings that lead to necrosis, but are still not widely appreciated or considered in the conceptualization of cell death pathways. In this paper, we review the available data on the expression of this phenomenon, its relationship to major pathophysiologic pathways that lead to cell death and immunomodulatory effects, the hypothesis that it involves suppression by glycine of the development of a hydrophilic death channel of molecular dimensions in the plasma membrane, and evidence for its impact on disease processes in vivo.
Collapse
Affiliation(s)
- Joel M Weinberg
- Division of Nephrology, Department of Internal Medicine, Veterans Affairs Ann Arbor Healthcare System and University of Michigan, Room 1560, MSRB II, Ann Arbor, MI, 48109-0676, USA.
| | - Anja Bienholz
- Department of Nephrology, University Duisburg-Essen, 45122, Essen, Germany
| | - M A Venkatachalam
- Department of Pathology, University of Texas Health Science Center, San Antonio, TX, 78234, USA
| |
Collapse
|
12
|
Yang Y, Song M, Liu Y, Liu H, Sun L, Peng Y, Liu F, Venkatachalam MA, Dong Z. Renoprotective approaches and strategies in acute kidney injury. Pharmacol Ther 2016; 163:58-73. [PMID: 27108948 DOI: 10.1016/j.pharmthera.2016.03.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 03/18/2016] [Indexed: 12/17/2022]
Abstract
Acute kidney injury (AKI) is a major renal disease associated with high mortality rate and increasing prevalence. Decades of research have suggested numerous chemical and biological agents with beneficial effects in AKI. In addition, cell therapy and molecular targeting have been explored for reducing kidney tissue damage and promoting kidney repair or recovery from AKI. Mechanistically, these approaches may mitigate oxidative stress, inflammation, cell death, and mitochondrial and other organellar damage, or activate cytoprotective mechanisms such as autophagy and pro-survival factors. However, none of these findings has been successfully translated into clinical treatment of AKI. In this review, we analyze these findings and propose experimental strategies for the identification of renoprotective agents or methods with clinical potential. Moreover, we propose the consideration of combination therapy by targeting multiple targets in AKI.
Collapse
Affiliation(s)
- Yuan Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Meifang Song
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Youming Peng
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fuyou Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | | | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|
13
|
Alnasser HA, Guan Q, Zhang F, Gleave ME, Nguan CYC, Du C. Requirement of clusterin expression for prosurvival autophagy in hypoxic kidney tubular epithelial cells. Am J Physiol Renal Physiol 2016; 310:F160-73. [DOI: 10.1152/ajprenal.00304.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/05/2015] [Indexed: 02/08/2023] Open
Abstract
Cellular autophagy is a prosurvival mechanism in the kidney against ischemia-reperfusion injury (IRI), but the molecular pathways that activate the autophagy in ischemic kidneys are not fully understood. Clusterin (CLU) is a chaperone-like protein, and its expression is associated with kidney resistance to IRI. The present study investigated the role of CLU in prosurvival autophagy in the kidney. Renal IRI was induced in mice by clamping renal pedicles at 32°C for 45 min. Hypoxia in renal tubular epithelial cell (TEC) cultures was induced by exposure to a 1% O2 atmosphere. Autophagy was determined by either light chain 3-BII expression with Western blot analysis or light chain 3-green fluorescent protein aggregation with confocal microscopy. Cell apoptosis was determined by flow cytometric analysis. The unfolded protein response was determined by PCR array. Here, we showed that autophagy was significantly activated by IRI in wild-type (WT) but not CLU-deficient kidneys. Similarly, autophagy was activated by hypoxia in human proximal TECs (HKC-8) and WT mouse primary TECs but was impaired in CLU-null TECs. Hypoxia-activated autophagy was CLU dependent and positively correlated with cell survival, and inhibition of autophagy significantly promoted cell death in both HKC-8 and mouse WT/CLU-expressing TECs but not in CLU-null TECs. Further experiments showed that CLU-dependent prosurvival autophagy was associated with activation of the unfolded protein response in hypoxic kidney cells. In conclusion, these data suggest that activation of prosurvival autophagy by hypoxia in kidney cells requires CLU expression and may be a key cytoprotective mechanism of CLU in the protection of the kidney from hypoxia/ischemia-mediated injury.
Collapse
Affiliation(s)
- Hatem A. Alnasser
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Qiunong Guan
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada; and
| | - Fan Zhang
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Martin E. Gleave
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Christopher Y. C. Nguan
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Caigan Du
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada; and
| |
Collapse
|
14
|
Mooren FC. Magnesium and disturbances in carbohydrate metabolism. Diabetes Obes Metab 2015; 17:813-23. [PMID: 25974209 DOI: 10.1111/dom.12492] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/04/2015] [Accepted: 05/08/2015] [Indexed: 12/12/2022]
Abstract
Magnesium is actively involved in a number of metabolic reactions as an important co-factor, with special emphasis on carbohydrate metabolism. After a brief overview of the regulation of intra- and extracellular magnesium, the present review first describes the regulatory role of magnesium in important metabolic pathways involved in energy metabolism and glycaemic control. Next the clinical significance of hypomagnesaemic conditions with regard to the management of glucose in prediabetic stages, such as insulin resistance/impaired glucose tolerance and in type 2 diabetes mellitus are characterized. Cross-sectional as well as longitudinal studies suggest that a reduced dietary magnesium intake serves as a risk factor for the incidence of both impaired glucose regulation and type 2 diabetes. Mechanisms that might be responsible for diabetes-associated hypomagnesaemia are discussed. Furthermore, the role of hypomagnesaemia in the development and progression of chronic diabetic complications are addressed. Finally, the available literature on the effects of magnesium supplementation on glycaemic control parameters during prediabetic conditions (preventive approach) as well as type 2 diabetes mellitus (therapeutic approach) are reviewed systematically. There is considerable evidence that chronic magnesium supplementation may delay the progression from impaired glucose regulation to type 2 diabetes; however, the effects of oral magnesium supplementation as an adjunct therapy for type 2 diabetes are quite heterogeneous with respect to the various measures of glycaemic control. The results of this review suggest a requirement for critical consideration of the pros and cons of magnesium replacement therapy, based on variables such as magnesium status, stage of disease and glycaemic control.
Collapse
Affiliation(s)
- Frank C Mooren
- Department of Sports Medicine, Institute of Sports Sciences, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
15
|
Abstract
AKI is pathologically characterized by sublethal and lethal damage of renal tubules. Under these conditions, renal tubular cell death may occur by regulated necrosis (RN) or apoptosis. In the last two decades, tubular apoptosis has been shown in preclinical models and some clinical samples from patients with AKI. Mechanistically, apoptotic cell death in AKI may result from well described extrinsic and intrinsic pathways as well as ER stress. Central converging nodes of these pathways are mitochondria, which become fragmented and sensitized to membrane permeabilization in response to cellular stress, resulting in the release of cell death-inducing factors. Whereas apoptosis is known to be regulated, tubular necrosis was thought to occur by accident until recent work unveiled several RN subroutines, most prominently receptor-interacting protein kinase-dependent necroptosis and RN induced by mitochondrial permeability transition. Additionally, other cell death pathways, like pyroptosis and ferroptosis, may also be of pathophysiologic relevance in AKI. Combination therapy targeting multiple cell-death pathways may, therefore, provide maximal therapeutic benefits.
Collapse
Affiliation(s)
- Andreas Linkermann
- Clinic for Nephrology and Hypertension, Christian-Albrechts-University, Kiel, Germany;
| | - Guochun Chen
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; and
| | - Guie Dong
- Department of Cellular Biology and Anatomy, Charlie Norwood Veterans Affairs Medical Center and Medical College of Georgia at Georgia Regents University, Augusta, Georgia
| | - Ulrich Kunzendorf
- Clinic for Nephrology and Hypertension, Christian-Albrechts-University, Kiel, Germany
| | - Stefan Krautwald
- Clinic for Nephrology and Hypertension, Christian-Albrechts-University, Kiel, Germany
| | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; and Department of Cellular Biology and Anatomy, Charlie Norwood Veterans Affairs Medical Center and Medical College of Georgia at Georgia Regents University, Augusta, Georgia
| |
Collapse
|
16
|
Bienholz A, Al-Taweel A, Roeser NF, Kribben A, Feldkamp T, Weinberg JM. Substrate modulation of fatty acid effects on energization and respiration of kidney proximal tubules during hypoxia/reoxygenation. PLoS One 2014; 9:e94584. [PMID: 24728405 PMCID: PMC3984175 DOI: 10.1371/journal.pone.0094584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 03/17/2014] [Indexed: 12/03/2022] Open
Abstract
Kidney proximal tubules subjected to hypoxia/reoxygenation develop a nonesterified fatty acid-induced energetic deficit characterized by persistent partial mitochondrial deenergization that can be prevented and reversed by citric acid cycle substrates. To further assess the role of competition between fatty acids and substrates on inner membrane substrate carriers in the deenergization and the contribution to deenergization of fatty acid effects on respiratory function, digitonin-permeabilized rabbit and mouse tubules were studied using either addition of exogenous oleate after control normoxic incubation or increases of endogenous fatty acids produced by hypoxia/reoxygenation. The results demonstrated major effects of matrix oxaloacetate accumulation on succinate-supported energization and respiration and their modification by fatty acids. Improvements of energization in the presence of fatty acids by glutamate were shown to result predominantly from lowering matrix oxaloacetate rather than from amelioration of transmembrane cycling of fatty acids and uncoupling. Mouse tubules had 2.5 fold higher rates of succinate utilization, which resulted in stronger effects of oxaloacetate accumulation than rabbit tubules. Hypoxia/reoxygenation induced respiratory inhibition that was more severe for complex I-dependent substrates. Fatty acids themselves did not acutely contribute to this respiratory inhibition, but lowering them during 60 min. reoxygenation to allow recovery of ATP during that period alleviated it. These data clarify the basis for the nonesterified fatty acid-induced mitochondrial energetic deficit in kidney proximal tubules that impairs structural and functional recovery and provide insight into interactions that need to be considered in the design of substrate-based interventions to improve mitochondrial function.
Collapse
Affiliation(s)
- Anja Bienholz
- Division of Nephrology, Department of Internal Medicine, Veterans Affairs Ann Arbor Healthcare System and University of Michigan, Ann Arbor, Michigan, United States of America
- Division of Nephrology, Department of Internal Medicine, University Duisburg-Essen, Essen, Germany
| | - Ahmad Al-Taweel
- Division of Nephrology, Department of Internal Medicine, Veterans Affairs Ann Arbor Healthcare System and University of Michigan, Ann Arbor, Michigan, United States of America
| | - Nancy F. Roeser
- Division of Nephrology, Department of Internal Medicine, Veterans Affairs Ann Arbor Healthcare System and University of Michigan, Ann Arbor, Michigan, United States of America
| | - Andreas Kribben
- Division of Nephrology, Department of Internal Medicine, University Duisburg-Essen, Essen, Germany
| | - Thorsten Feldkamp
- Division of Nephrology, Department of Internal Medicine, Veterans Affairs Ann Arbor Healthcare System and University of Michigan, Ann Arbor, Michigan, United States of America
- Division of Nephrology, Department of Internal Medicine, University Duisburg-Essen, Essen, Germany
- Division of Nephrology and Hypertension, Department of Internal Medicine, Christian-Albrechts-University, Kiel, Germany
| | - Joel M. Weinberg
- Division of Nephrology, Department of Internal Medicine, Veterans Affairs Ann Arbor Healthcare System and University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
17
|
Linkermann A, De Zen F, Weinberg J, Kunzendorf U, Krautwald S. Programmed necrosis in acute kidney injury. Nephrol Dial Transplant 2013; 27:3412-9. [PMID: 22942173 DOI: 10.1093/ndt/gfs373] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Programmed cell death (PCD) had been widely used synonymously to caspase-mediated apoptosis until caspase-independent cell death was described. Identification of necrosis as a regulated process in ischaemic conditions has recently changed our understanding of PCD. At least three pathways of programmed necrosis (PN) have been identified. First, receptor-interacting protein kinase 3 (RIP3)-dependent necroptosis causes organ failure following stroke, myocardial infarction and renal ischaemia/reperfusion injury. Necroptosis can be mediated either by a large intracellular caspase-8-containing signalling complex called the ripoptosome or by the RIP1-/RIP3-containing necroptosome and is controlled by a caspase-8/FLICE inhibitory protein(long) heterodimer at least in the latter case. Second, mitochondrial permeability transition mediates apoptotic or necrotic stimuli and depends on the mitochondrial protein cyclophilin D. The third PN pathway involves the poly(ADP-ribose) polymerase-calpain axis that contributes to acute kidney injury (AKI). Preclinical interference with the PN pathways therefore raises expectations for the future treatment of ischaemic conditions. In this brief review, we aim to summarize the clinically relevant PCD pathways and to transfer the basic science data to settings of AKI. We conclude that pathologists were quite right to refer to ischaemic kidney injury as 'acute tubular necrosis'.
Collapse
|
18
|
Zhan M, Brooks C, Liu F, Sun L, Dong Z. Mitochondrial dynamics: regulatory mechanisms and emerging role in renal pathophysiology. Kidney Int 2013; 83:568-81. [PMID: 23325082 PMCID: PMC3612360 DOI: 10.1038/ki.2012.441] [Citation(s) in RCA: 287] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mitochondria are a class of dynamic organelles that constantly undergo fission and fusion. Mitochondrial dynamics is governed by a complex molecular machinery and finely tuned by regulatory proteins. During cell injury or stress, the dynamics is shifted to fission, resulting in mitochondrial fragmentation, which contributes to mitochondrial damage and consequent cell injury and death. Emerging evidence has suggested a role of mitochondrial fragmentation in the pathogenesis of renal diseases including acute kidney injury and diabetic nephropathy. A better understanding of the regulation of mitochondrial dynamics and its pathogenic changes may unveil novel therapeutic strategies.
Collapse
Affiliation(s)
- Ming Zhan
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China
| | | | | | | | | |
Collapse
|
19
|
Baban B, Liu JY, Mozaffari MS. Aryl hydrocarbon receptor agonist, leflunomide, protects the ischemic-reperfused kidney: role of Tregs and stem cells. Am J Physiol Regul Integr Comp Physiol 2012; 303:R1136-46. [PMID: 23100028 DOI: 10.1152/ajpregu.00315.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The aryl hydrocarbon receptor (AHR) has emerged as a major modulator of inflammatory processes. We tested the hypothesis that AHR activation protects the ischemic-reperfused kidney in association with the suppression of the inflammatory response. Accordingly, male mice were treated with the nondioxin AHR agonist, leflunomide (40 mg/kg ip); vehicle-treated animals served as controls. Thereafter, the right kidney was subjected to an ischemia (45 min)-reperfusion (4 h) insult, while the left kidney served as a sham control. Renal cells prepared from ischemic-reperfused kidneys of leflunomide-treated mice displayed preservation of mitochondrial membrane potential (Ψ(m)) and decreased apoptosis and necrosis compared with vehicle-treated ischemic-reperfused kidneys. Leflunomide treatment increased regulatory T cells (Tregs; forkhead box P3+) and IL-10-positive cells but reduced IL-17- and IL-23-expressing cells in both the peripheral blood and kidney cells, indicative of down-regulation of inflammatory responses. Leflunomide treatment also increased mobilization of stems cells subsets (i.e., mesenchymal and hematopoietic stem cells and endothelial progenitor cells) in the peripheral blood and promoted their recruitment into the ischemic-reperfused kidney. Collectively, the results indicate that AHR stimulation may represent a novel renoprotective mechanism likely involving mobilization and recruitment of Tregs and stem cells into the damaged kidney.
Collapse
Affiliation(s)
- Babak Baban
- Dept. of Oral Biology, College of Dental Medicine, Georgia Health Sciences Univ., 1120 15th St., CL-2112, Augusta, GA 30912, USA.
| | | | | |
Collapse
|
20
|
Acute kidney injury: a conspiracy of Toll-like receptor 4 on endothelia, leukocytes, and tubules. Pediatr Nephrol 2012; 27:1847-54. [PMID: 22033798 PMCID: PMC3523189 DOI: 10.1007/s00467-011-2029-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/31/2011] [Accepted: 09/01/2011] [Indexed: 01/08/2023]
Abstract
Ischemic acute kidney injury (AKI) contributes to considerable morbidity and mortality in hospitalized patients and can contribute to rejection during kidney transplantation. Maladaptive immune responses can exacerbate injury, and targeting these responses holds promise as therapy for AKI. In the last decade, a number of molecules and receptors were identified in the innate immune response to ischemia-reperfusion injury. This review primarily focuses on one pathway that leads to maladaptive inflammation: toll-like receptor 4 (TLR4) and one of its ligands, high mobility group box protein 1 (HMGB1). The temporal-spatial roles and potential therapeutics targeting this particular receptor-ligand interaction are also explored.
Collapse
|
21
|
Belyaeva EA, Sokolova TV, Emelyanova LV, Zakharova IO. Mitochondrial electron transport chain in heavy metal-induced neurotoxicity: effects of cadmium, mercury, and copper. ScientificWorldJournal 2012; 2012:136063. [PMID: 22619586 PMCID: PMC3349094 DOI: 10.1100/2012/136063] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 12/15/2011] [Indexed: 02/05/2023] Open
Abstract
To clarify the role of mitochondrial electron transport chain (mtETC) in heavy-metal-induced neurotoxicity, we studied action of Cd2+, Hg2+, and Cu2+ on cell viability, intracellular reactive oxygen species formation, respiratory function, and mitochondrial membrane potential of rat cell line PC12. As found, the metals produced, although in a different way, dose- and time-dependent changes of all these parameters. Importantly, Cd2+ beginning from 10 [mu]M and already at short incubation time (3 h) significantly inhibited the FCCP-uncoupled cell respiration; besides, practically the complete inhibition of the respiration was reached after 3 h incubation with 50 [mu]M Hg2+ or 500 [mu]M Cd2+, whereas even after 48 h exposure with 500 [mu]M Cu2+, only a 50% inhibition of the respiration occurred. Against the Cd2+-induced cell injury, not only different antioxidants and mitochondrial permeability transition pore inhibitors were protective but also such mtETC effectors as FCCP and stigmatellin (complex III inhibitor). However, all mtETC effectors used did not protect against the Hg2+- or Cu2+-induced cell damage. Notably, stigmatellin was shown to be one of the strongest protectors against the Cd2+-induced cell damage, producing a 15–20% increase in the cell viability. The mechanisms of the mtETC involvement in the heavy-metal-induced mitochondrial membrane permeabilization and cell death are discussed.
Collapse
Affiliation(s)
- Elena A Belyaeva
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, Thorez pr. 44, 194223 Saint-Petersburg, Russia.
| | | | | | | |
Collapse
|
22
|
Abstract
Acute kidney injury (AKI) is the leading cause of nephrology consultation and is associated with high mortality rates. The primary causes of AKI include ischemia, hypoxia, or nephrotoxicity. An underlying feature is a rapid decline in glomerular filtration rate (GFR) usually associated with decreases in renal blood flow. Inflammation represents an important additional component of AKI leading to the extension phase of injury, which may be associated with insensitivity to vasodilator therapy. It is suggested that targeting the extension phase represents an area potential of treatment with the greatest possible impact. The underlying basis of renal injury appears to be impaired energetics of the highly metabolically active nephron segments (i.e., proximal tubules and thick ascending limb) in the renal outer medulla, which can trigger conversion from transient hypoxia to intrinsic renal failure. Injury to kidney cells can be lethal or sublethal. Sublethal injury represents an important component in AKI, as it may profoundly influence GFR and renal blood flow. The nature of the recovery response is mediated by the degree to which sublethal cells can restore normal function and promote regeneration. The successful recovery from AKI depends on the degree to which these repair processes ensue and these may be compromised in elderly or chronic kidney disease (CKD) patients. Recent data suggest that AKI represents a potential link to CKD in surviving patients. Finally, earlier diagnosis of AKI represents an important area in treating patients with AKI that has spawned increased awareness of the potential that biomarkers of AKI may play in the future.
Collapse
Affiliation(s)
- David P Basile
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | | | | |
Collapse
|
23
|
Park JS, Pasupulati R, Feldkamp T, Roeser NF, Weinberg JM. Cyclophilin D and the mitochondrial permeability transition in kidney proximal tubules after hypoxic and ischemic injury. Am J Physiol Renal Physiol 2011; 301:F134-50. [PMID: 21490135 PMCID: PMC3129895 DOI: 10.1152/ajprenal.00033.2011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 04/08/2011] [Indexed: 01/08/2023] Open
Abstract
Mitochondrial matrix cyclophilin D (CyPD) is known to promote development of the mitochondrial permeability transition (MPT). Kidney proximal tubule cells are especially prone to deleterious effects of mitochondrial damage because of their dependence on oxidative mitochondrial metabolism for ATP production. To clarify the role of CyPD and the MPT in proximal tubule injury during ischemia-reperfusion (I/R) and hypoxia-reoxygenation (H/R), we assessed freshly isolated tubules and in vivo injury in wild-type (WT) and Ppif(-/-) CyPD-null mice. Isolated mouse tubules developed a sustained, nonesterified fatty acid-mediated energetic deficit after H/R in vitro that could be substantially reversed by delipidated albumin and supplemental citric acid cycle substrates but was not modified by the absence of CyPD. Susceptibility of WT and Ppif(-/-) tubules to the MPT was increased by H/R but was less in normoxic and H/R Ppif(-/-) than WT tubules. Correction of the energetic deficit that developed during H/R strongly increased resistance to the MPT. Ppif(-/-) mice were resistant to I/R injury in vivo spanning a wide range of severity. The data clarify involvement of the MPT in oxygen deprivation-induced tubule cell injury by showing that the MPT does not contribute to the initial bioenergetic deficit produced by H/R but the deficit predisposes to subsequent development of the MPT, which contributes pathogenically to kidney I/R injury in vivo.
Collapse
Affiliation(s)
- Jeong Soon Park
- Nephrology Division, Dept. of Internal Medicine, Rm. 1560, MSRB II, University of Michigan Medical Center, Ann Arbor, MI 48109-0676, USA
| | | | | | | | | |
Collapse
|
24
|
Hall AM. Pores for thought: new strategies to re-energize stressed mitochondria in acute kidney injury. J Am Soc Nephrol 2011; 22:986-9. [PMID: 21566050 DOI: 10.1681/asn.2011030309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
25
|
Nielsen TT, Støttrup NB, Løfgren B, Bøtker HE. Metabolic fingerprint of ischaemic cardioprotection: importance of the malate-aspartate shuttle. Cardiovasc Res 2011; 91:382-91. [PMID: 21349875 DOI: 10.1093/cvr/cvr051] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The convergence of cardioprotective intracellular signalling pathways to modulate mitochondrial function as an end-target of cytoprotective stimuli is well described. However, our understanding of whether the complementary changes in mitochondrial energy metabolism are secondary responses or inherent mechanisms of ischaemic cardioprotection remains incomplete. In the heart, the malate-aspartate shuttle (MAS) constitutes the primary metabolic pathway for transfer of reducing equivalents from the cytosol into the mitochondria for oxidation. The flux of MAS is tightly linked to the flux of the tricarboxylic acid cycle and the electron transport chain, partly by the amino acid l-glutamate. In addition, emerging evidence suggests the MAS is an important regulator of cytosolic and mitochondrial calcium homeostasis. In the isolated rat heart, inhibition of MAS during ischaemia and early reperfusion by the aminotransferase inhibitor aminooxyacetate induces infarct limitation, improves haemodynamic responses, and modulates glucose metabolism, analogous to effects observed in classical ischaemic preconditioning. On the basis of these findings, the mechanisms through which MAS preserves mitochondrial function and cell survival are reviewed. We conclude that the available evidence is supportive of a down-regulation of mitochondrial respiration during lethal ischaemia with a gradual 'wake-up' during reperfusion as a pivotal feature of ischaemic cardioprotection. Finally, comments on modulating myocardial energy metabolism by the cardioprotective amino acids glutamate and glutamine are given.
Collapse
Affiliation(s)
- Torsten Toftegaard Nielsen
- Department of Cardiology, Skejby Hospital, Aarhus University Hospital, Brendstrupgaardsvej 100, Aarhus N, Denmark.
| | | | | | | |
Collapse
|
26
|
Plotnikov EY, Chupyrkina AA, Jankauskas SS, Pevzner IB, Silachev DN, Skulachev VP, Zorov DB. Mechanisms of nephroprotective effect of mitochondria-targeted antioxidants under rhabdomyolysis and ischemia/reperfusion. Biochim Biophys Acta Mol Basis Dis 2010; 1812:77-86. [PMID: 20884348 DOI: 10.1016/j.bbadis.2010.09.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 09/07/2010] [Accepted: 09/20/2010] [Indexed: 01/04/2023]
Abstract
Oxidative stress-related renal pathologies apparently include rhabdomyolysis and ischemia/reperfusion phenomenon. These two pathologies were chosen for study in order to develop a proper strategy for protection of the kidney. Mitochondria were found to be a key player in these pathologies, being both the source and the target for excessive production of reactive oxygen species (ROS). A mitochondria-targeted compound which is a conjugate of a positively charged rhodamine molecule with plastoquinone (SkQR1) was found to rescue the kidney from the deleterious effect of both pathologies. Intraperitoneal injection of SkQR1 before the onset of pathology not only normalized the level of ROS and lipid peroxidized products in kidney mitochondria but also decreased the level of cytochrome c in the blood, restored normal renal excretory function and significantly lowered mortality among animals having a single kidney exposed to ischemia/reperfusion. The SkQR1-derivative missing plastoquinone (C12R1) possessed some, although limited nephroprotective properties and enhanced animal survival after ischemia/reperfusion. SkQR1 was found to induce some elements of nephroprotective pathways providing ischemic tolerance such as an increase in erythropoietin levels and phosphorylation of glycogen synthase kinase 3β in the kidney. SkQR1 also normalized renal erythropoietin level lowered after kidney ischemia/reperfusion and injection of a well-known nephrotoxic agent gentamicin.
Collapse
Affiliation(s)
- E Y Plotnikov
- Laboratory of Mitochondrial Structure and Functions, AN Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991 Russia
| | | | | | | | | | | | | |
Collapse
|