1
|
Yang J, Sun R, Pei Z. Improvement of the Immunity System Through Sports: Novel Regulatory Mechanisms for Hypertension. Rev Cardiovasc Med 2024; 25:385. [PMID: 39484112 PMCID: PMC11522756 DOI: 10.31083/j.rcm2510385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 11/03/2024] Open
Abstract
Hypertension and its resulting target organ damage is a complex process associated with a range of physiological and molecular factors, including immune regulation. The profound effects of exercise on normal immune system function and the development and progression of hypertension are well known. This review aims to create new avenues for preventing and treating hypertension and its associated target organ damage. This narrative review emphasizes the role of exercise training in the prevention/treatment of hypertension development through immune response modulation and presents current perspectives on the available scientific evidence. Several studies have shown that exercise regulates hypertension by altering immune cells, which is partly attributable to the anti-inflammatory effects of exercise training. Regular exercise modifies immune modulation and could represent a new mechanism for regulating hypertension. Although the utilization of exercise training and the immune system in conjunction for treating and preventing hypertension is still in its early stages, current scientific literature indicates numerous potential physiological links between exercise training, the immune system, and hypertension.
Collapse
Affiliation(s)
- Jin Yang
- Department of Central Laboratory, Central Hospital of Dalian University of Technology, 116033 Dalian, Liaoning, China
| | - Rui Sun
- Emergency Department, The First Affiliated Hospital of Dalian Medical University, 116011 Dalian, Liaoning, China
| | - Zuowei Pei
- Department of Central Laboratory, Central Hospital of Dalian University of Technology, 116033 Dalian, Liaoning, China
- Department of Cardiology, Central Hospital of Dalian University of Technology, 116033 Dalian, Liaoning, China
- Faculty of Medicine, Dalian University of Technology, 116024 Dalian, Liaoning, China
| |
Collapse
|
2
|
Benson LN, Mu S. Interferon gamma in the pathogenesis of hypertension - recent insights. Curr Opin Nephrol Hypertens 2024; 33:154-160. [PMID: 38164939 PMCID: PMC10842676 DOI: 10.1097/mnh.0000000000000966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW The mounting body of evidence underscores the pivotal role of interferon gamma (IFNγ) in the pathogenesis of hypertension, prompting exploration of the mechanisms by which this cytokine fosters a pro-inflammatory immune milieu, subsequently exacerbating hypertension. In this review, we delve into recent preclinical and clinical studies from the past two years to elucidate how IFNγ participates in the progression of hypertension. RECENT FINDINGS IFNγ promotes renal CD8 + T cell accumulation by upregulating tubular PDL1 and MHC-I, intensifying cell-to-cell interaction. Intriguingly, a nucleotide polymorphism in LNK, predisposing towards hypertension, correlates with augmented T cell IFNγ production. Additionally, anti-IFNγ treatment exhibits protective effects against T cell-mediated inflammation during angiotensin II infusion or transverse aortic constriction. Moreover, knockout of the mineralocorticoid receptor in T cells protects against cardiac dysfunction induced by myocardial infarction, correlating with reduced IFNγ and IL-6, decreased macrophage recruitment, and attenuated fibrosis. Interestingly, increased IFNγ production correlates with elevated blood pressure, impacting individuals with type 2 diabetes, nondiabetics, and obese hypertensive patients. SUMMARY These revelations spotlight IFNγ as the critical mediator bridging the initial phase of blood pressure elevation with the sustained and exacerbated pathology. Consequently, blocking IFNγ signaling emerges as a promising therapeutic target to improve the management of this 'silent killer.'
Collapse
Affiliation(s)
- Lance N. Benson
- Heersink School of Medicine: Department of CardioRenal Physiology and Medicine, Division of Nephrology University of Alabama at Birmingham, Birmingham, Alabama
| | - Shengyu Mu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
3
|
Dunn SE, Perry WA, Klein SL. Mechanisms and consequences of sex differences in immune responses. Nat Rev Nephrol 2024; 20:37-55. [PMID: 37993681 DOI: 10.1038/s41581-023-00787-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2023] [Indexed: 11/24/2023]
Abstract
Biological sex differences refer to differences between males and females caused by the sex chromosome complement (that is, XY or XX), reproductive tissues (that is, the presence of testes or ovaries), and concentrations of sex steroids (that is, testosterone or oestrogens and progesterone). Although these sex differences are binary for most human individuals and mice, transgender individuals receiving hormone therapy, individuals with genetic syndromes (for example, Klinefelter and Turner syndromes) and people with disorders of sexual development reflect the diversity in sex-based biology. The broad distribution of sex steroid hormone receptors across diverse cell types and the differential expression of X-linked and autosomal genes means that sex is a biological variable that can affect the function of all physiological systems, including the immune system. Sex differences in immune cell function and immune responses to foreign and self antigens affect the development and outcome of diverse diseases and immune responses.
Collapse
Affiliation(s)
- Shannon E Dunn
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada
| | - Whitney A Perry
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, MA, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
4
|
Hirata T, Fan F, Fan L, Amin G, White T, Geurts AM, Kojima N, Takahashi T, Miyata N, Williams J, Roman RJ. Knockout of Matrix Metalloproteinase 2 Opposes Hypertension- and Diabetes-induced Nephropathy. J Cardiovasc Pharmacol 2023; 82:445-457. [PMID: 37643020 PMCID: PMC10691661 DOI: 10.1097/fjc.0000000000001473] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023]
Abstract
ABSTRACT The progression of chronic kidney disease results from the accumulation of extracellular matrix leading to end-stage renal disease. We previously demonstrated that a broad-spectrum matrix metalloproteinase (MMP) inhibitor reduced renal injury in rat models of hypertension and diabetes. However, the isoforms and mechanisms involved are unclear. This study examined the role of MMP2 during the development of proteinuria and renal injury after induction of hypertension or diabetes in Dahl salt-sensitive (SS) and MMP2 knockout (KO) rats. Mean arterial pressure rose from 115 ± 2 to 145 ± 2 mm Hg and 116 ± 1 to 152 ± 3 mm Hg in MMP2 KO and SS rats fed a high-salt (8% NaCl) diet for 3 weeks. The degree of proteinuria, glomerular injury, renal fibrosis, and podocyte loss was lower in MMP2 KO rats than in SS rats. Blood glucose and HbA1c levels, and mean arterial pressure rose to the same extent in streptozotocin-treated SS and MMP2 KO rats. However, the degree of proteinuria, glomerulosclerosis, renal fibrosis, renal hypertrophy, glomerular permeability to albumin, and the renal expression of MMP2 and TGFβ1 were significantly reduced in MMP2 KO rats. Glomerular filtration rate fell by 33% after 12 weeks of diabetes in streptozotocin-treated SS rats compared with time-control rats, but glomerular filtration rate only fell by 12% in MMP2 KO rats. These results indicate that activation of MMP2 plays an essential role in the pathogenesis of hypertensive and diabetic nephropathy and suggests that an MMP2 inhibitor might slow the progression of chronic kidney disease.
Collapse
Affiliation(s)
- Takashi Hirata
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd, Saitama, Japan
| | - Fan Fan
- Department of Physiology, Augusta University, Augusta, GA
| | - Letao Fan
- Research Headquarters of Pharmaceutical Operation, Taisho Pharmaceutical Co., Ltd, Saitama, Japan
| | - Ghadir Amin
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS
| | | | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | - Naoki Kojima
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd, Saitama, Japan
| | - Teisuke Takahashi
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd, Saitama, Japan
| | - Noriyuki Miyata
- Research Headquarters of Pharmaceutical Operation, Taisho Pharmaceutical Co., Ltd, Saitama, Japan
| | - Jan Williams
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS
| |
Collapse
|
5
|
Vlachovsky SG, Di Ciano LA, Oddo EM, Azurmendi PJ, Silberstein C, Ibarra FR. Role of Female Sex Hormones and Immune Response in Salt-Sensitive Hypertension Development: Evidence from Experimental Models. Curr Hypertens Rep 2023; 25:405-419. [PMID: 37676461 DOI: 10.1007/s11906-023-01257-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2023] [Indexed: 09/08/2023]
Abstract
PURPOSEOF REVIEW Female sex hormones have systemic effects unrelated to their reproductive function. We describe experiences of different research groups and our own, on aspects related to the importance of female sex hormones on blood pressure (BP) regulation and salt-sensitivity-mediated BP response and salt sensitivity without alterations in BP, as well as renal sodium handling and interactions with the immune system. RECENT FINDINGS Changes in sodium intake in normotensive premenopausal women cause more BP variations than in men. After menopause, women often develop arterial hypertension (HT) with a profile of sodium sensitivity. Besides, experimental results have shown that in adult rat models resembling the postmenopausal hormonal state induced by ovariectomy, controlling BP is not enough to avoid renal and other tissue infiltration with immune cells, which does not occur when sodium intake is low or normal. Therefore, excess sodium promotes an inflammatory state with the involvement of immune cells. The evidence of activation of adaptive immunity, besides changes in T cell subpopulations, includes changes in sodium transporters and receptors. More studies are needed to evaluate the particular sodium sensitivity of women and its meaning. Changes in lifestyle and sodium intake reduction are the main therapeutic steps. However, to face the actual burden of salt-sensitive HT in postmenopausal women and its associated inflammatory/immune changes, it seems reasonable to work on immune cell activity by considering the peripheral blood mononuclear cell phenotypes of molecules and transport proteins related to sodium handle, both to screen for and treat cell activation.
Collapse
Affiliation(s)
- Sandra G Vlachovsky
- Universidad de Buenos Aires, Instituto de Investigaciones Medicas A. Lanari, Laboratorio de Nefrología Experimental y Bioquímica Molecular, Combatientes de Malvinas 3150, Buenos Aires, 1427, Argentina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
| | - Luis A Di Ciano
- Universidad de Buenos Aires, Instituto de Investigaciones Medicas A. Lanari, Laboratorio de Nefrología Experimental y Bioquímica Molecular, Combatientes de Malvinas 3150, Buenos Aires, 1427, Argentina
| | - Elisabet M Oddo
- Universidad de Buenos Aires, Instituto de Investigaciones Medicas A. Lanari, Laboratorio de Nefrología Experimental y Bioquímica Molecular, Combatientes de Malvinas 3150, Buenos Aires, 1427, Argentina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
| | - Pablo J Azurmendi
- Universidad de Buenos Aires, Instituto de Investigaciones Medicas A. Lanari, Laboratorio de Nefrología Experimental y Bioquímica Molecular, Combatientes de Malvinas 3150, Buenos Aires, 1427, Argentina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
| | - Claudia Silberstein
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Departamento de Ciencias Fisiológicas. Instituto de Fisiología y Biofísica B. Houssay (IFIBIO-Houssay), Laboratorio de Fisiología Renal, Paraguay 2155, piso 4, Buenos Aires, 1121, Argentina.
| | - Fernando R Ibarra
- Universidad de Buenos Aires, Instituto de Investigaciones Medicas A. Lanari, Laboratorio de Nefrología Experimental y Bioquímica Molecular, Combatientes de Malvinas 3150, Buenos Aires, 1427, Argentina.
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina.
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Departamento de Ciencias Fisiológicas. Instituto de Fisiología y Biofísica B. Houssay (IFIBIO-Houssay), Laboratorio de Fisiología Renal, Paraguay 2155, piso 4, Buenos Aires, 1121, Argentina.
| |
Collapse
|
6
|
Copur S, Peltek IB, Mutlu A, Tanriover C, Kanbay M. A new immune disease: systemic hypertension. Clin Kidney J 2023; 16:1403-1419. [PMID: 37664577 PMCID: PMC10469084 DOI: 10.1093/ckj/sfad059] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Indexed: 09/05/2023] Open
Abstract
Systemic hypertension is the most common medical comorbidity affecting the adult population globally, with multiple associated outcomes including cerebrovascular diseases, cardiovascular diseases, vascular calcification, chronic kidney disease, metabolic syndrome and mortality. Despite advancements in the therapeutic field approximately one in every five adult patients with hypertension is classified as having treatment-resistant hypertension, indicating the need for studies to provide better understanding of the underlying pathophysiology and the need for more therapeutic targets. Recent pre-clinical studies have demonstrated the role of the innate and adaptive immune system including various cell types and cytokines in the pathophysiology of hypertension. Moreover, pre-clinical studies have indicated the potential beneficial effects of immunosuppressant medications in the control of hypertension. Nevertheless, it is unclear whether such pathophysiological mechanisms and therapeutic alternatives are applicable to human subjects, while this area of research is undoubtedly a rapidly growing field.
Collapse
Affiliation(s)
- Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Ibrahim B Peltek
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Ali Mutlu
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Cem Tanriover
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Mehmet Kanbay
- Department of Medicine, Section of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
7
|
Poudel B, Ekperikpe US, Mandal S, Wilson GE, Shields CA, Cornelius DC, Williams JM. Chronic treatment with IL-25 increases renal M2 macrophages and reduces renal injury in obese Dahl salt-sensitive rats during the prepubescent stage. Am J Physiol Renal Physiol 2023; 325:F87-F98. [PMID: 37167270 PMCID: PMC10292980 DOI: 10.1152/ajprenal.00209.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023] Open
Abstract
Recently, we have reported that the early progression of proteinuria in the obese Dahl salt-sensitive (SS) leptin receptor mutant (SSLepRmutant) strain was associated with increased renal macrophage infiltration before puberty. Macrophages can be divided into two distinct phenotypes: M1 (proinflammatory) and M2 (anti-inflammatory). Moreover, previous studies have demonstrated that interleukin (IL)-25 converts resting macrophages and M1 into M2. Therefore, the present study examined whether treatment with IL-25 would reduce the early progression of renal injury in SSLepRmutant rats by increasing renal M2. We also investigated the impact of IL-25 on M2 subtypes: M2a (wound healing/anti-inflammatory), M2b (immune mediated/proinflammatory), M2c (regulatory/anti-inflammatory), and M2d (tumor associated/proangiogenic). Four-wk-old SS and SSLepRmutant rats were treated with either control (IgG) or IL-25 (1 µg/day ip every other day) for 4 wk. The kidneys from SSLepRmutant rats displayed progressive proteinuria and renal histopathology versus SS rats. IL-25 treatment had no effect on these parameters in SS rats. However, in the SSLepRmutant strain, proteinuria was markedly reduced after IL-25 treatment. Chronic treatment with IL-25 significantly decreased glomerular and tubular injury and renal fibrosis in the SSLepRmutant strain. Although the administration of IL-25 did not change total renal macrophage infiltration in both SS and SSLepRmutant rats, IL-25 increased M2a by >50% and reduced M1 by 60% in the kidneys of SSLepRmutant rats. Overall, these data indicate that IL-25 reduces the early progression of renal injury in SSLepRmutant rats by inducing M2a and suppressing M1 and suggest that IL-25 may be a therapeutic target for renal disease associated with obesity. NEW & NOTEWORTHY For the past few decades, immune cells and inflammatory cytokines have been demonstrated to play an important role in the development of renal disease. The present study provides strong evidence that interleukin-25 slows the early progression of renal injury in obese Dahl salt-sensitive rats before puberty by increasing systemic anti-inflammatory cytokines and renal M2a macrophages.
Collapse
Affiliation(s)
- Bibek Poudel
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Ubong S Ekperikpe
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Sautan Mandal
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Gregory E Wilson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Corbin A Shields
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Denise C Cornelius
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Jan M Williams
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| |
Collapse
|
8
|
Akintunde J, Olayinka M, Ugbaja V, Akinfenwa C, Akintola T, Akamo A, Bello I. Downregulation of inflammatory erectile dysfunction by Mantisa religiosa egg-cake through NO-cGMP-PKG dependent NF-kB signaling cascade activated by mixture of salt intake. Toxicol Rep 2023; 10:633-646. [PMID: 37250529 PMCID: PMC10220466 DOI: 10.1016/j.toxrep.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/06/2023] [Accepted: 05/13/2023] [Indexed: 05/31/2023] Open
Abstract
We hypothesized whether 10% praying-mantis-egg-cake (10% PMEC) can be applied against inflammatory-erectile-dysfunction and whether it could be linked to NO-cGMP-dependent PKG signaling cascade. Ninety male albino-rats were randomly distributed into nine (n = 10) groups. Group I was given distilled water. Group II and III were pre-treated with 80 mg/kg NaCl and 75 mg/kg MSG, respectively. Group IV was pre-treated with 80 mg/kg NaCl + 75 mg/kg MSG. Group V was administered with 80 mg/kg NaCl+ 3 mg/kg Amylopidin. Group VI was given 80 mg/kg NaCl + 10% PMEC. Group VII was treated with 75 mg/kg MSG + 10% PMEC. Group VIII was treated with 80 mg/kg NaCl+ 75 mg/kg MSG + 10% PMEC. Group IX was post-treated with 10% PMEC for 14 days. Penile PDE-51, arginase, ATP hydrolytic, cholinergic, dopaminergic (MAO-A) and adenosinergic (ADA) enzymes were hyperactive on intoxication with NaCl and MSG. The erectile dysfunction caused by inflammation was linked to alteration of NO-cGMP-dependent PKG signaling cascade via up-regulation of key cytokines and chemokine (MCP-1). These lesions were prohibited by protein-rich-cake (10% PMEC). Thus, protein-rich-cake (10% PMEC) by a factor of 4 (25%) inhibited penile cytokines/MCP-1 on exposure to mixture of salt-intake through NO-cGMP-PKG dependent-NF-KB signaling cascade in rats.
Collapse
Affiliation(s)
- J.K. Akintunde
- Molecular Toxicology and Biomedical, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - M.C. Olayinka
- Molecular Toxicology and Biomedical, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - V.C. Ugbaja
- Molecular Toxicology and Biomedical, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - C.A. Akinfenwa
- Molecular Toxicology and Biomedical, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - T.E. Akintola
- Molecular Toxicology and Biomedical, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - A.J. Akamo
- Molecular Toxicology and Biomedical, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - I.J. Bello
- School of Applied Sciences, Adeyemi Federal University of Education, Ondo, Nigeria
| |
Collapse
|
9
|
Mouton AJ, do Carmo JM, da Silva AA, Omoto ACM, Hall JE. Targeting immunometabolism during cardiorenal injury: roles of conventional and alternative macrophage metabolic fuels. Front Physiol 2023; 14:1139296. [PMID: 37234412 PMCID: PMC10208225 DOI: 10.3389/fphys.2023.1139296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/14/2023] [Indexed: 05/28/2023] Open
Abstract
Macrophages play critical roles in mediating and resolving tissue injury as well as tissue remodeling during cardiorenal disease. Altered immunometabolism, particularly macrophage metabolism, is a critical underlying mechanism of immune dysfunction and inflammation, particularly in individuals with underlying metabolic abnormalities. In this review, we discuss the critical roles of macrophages in cardiac and renal injury and disease. We also highlight the roles of macrophage metabolism and discuss metabolic abnormalities, such as obesity and diabetes, which may impair normal macrophage metabolism and thus predispose individuals to cardiorenal inflammation and injury. As the roles of macrophage glucose and fatty acid metabolism have been extensively discussed elsewhere, we focus on the roles of alternative fuels, such as lactate and ketones, which play underappreciated roles during cardiac and renal injury and heavily influence macrophage phenotypes.
Collapse
Affiliation(s)
- Alan J. Mouton
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States
| | - Jussara M. do Carmo
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States
| | - Alexandre A. da Silva
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States
| | - Ana C. M. Omoto
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States
| | - John E. Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
10
|
Zeng YR, Song JB, Wang D, Huang ZX, Zhang C, Sun YP, Shu G, Xiong Y, Guan KL, Ye D, Wang P. The immunometabolite itaconate stimulates OXGR1 to promote mucociliary clearance during the pulmonary innate immune response. J Clin Invest 2023; 133:160463. [PMID: 36919698 PMCID: PMC10014103 DOI: 10.1172/jci160463] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 01/25/2023] [Indexed: 03/16/2023] Open
Abstract
Pathogens and inflammatory conditions rapidly induce the expression of immune-responsive gene 1 (IRG1) in cells of myeloid lineage. IRG1 encodes an aconitate decarboxylase (ACOD1) that produces the immunomodulatory metabolite itaconate (ITA). In addition to rapid intracellular accumulation, ITA is also secreted from the cell, but whether secreted ITA functions as a signaling molecule is unclear. Here, we identified ITA as an orthosteric agonist of the GPCR OXGR1, with an EC50 of approximately 0.3 mM, which was in the same range as the physiological concentration of extracellular ITA upon macrophage activation. ITA activated OXGR1 to induce Ca2+ mobilization, ERK phosphorylation, and endocytosis of the receptor. In a mouse model of pulmonary infection with bacterial Pseudomonas aeruginosa, ITA stimulated Oxgr1-dependent mucus secretion and transport in respiratory epithelium, the primary innate defense mechanism of the airway. Our study thus identifies ITA as a bona fide ligand for OXGR1 and the ITA/OXGR1 paracrine signaling pathway during the pulmonary innate immune response.
Collapse
Affiliation(s)
- Yi-Rong Zeng
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, and Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Jun-Bin Song
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, and Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Dezheng Wang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, and Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zi-Xuan Huang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, and Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Cheng Zhang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, and Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yi-Ping Sun
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, and Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Gang Shu
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yue Xiong
- Cullgen Inc., San Diego, California, USA
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, UCSD, La Jolla, California, USA
| | - Dan Ye
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, and Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Pu Wang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, and Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| |
Collapse
|
11
|
Ekperikpe US, Poudel B, Shields CA, Mandal S, Cornelius DC, Williams JM. Neutralizing MIP3 α Reduces Renal Immune Cell Infiltration and Progressive Renal Injury in Young Obese Dahl Salt-Sensitive Rats. J Pharmacol Exp Ther 2023; 384:445-454. [PMID: 36507846 PMCID: PMC9976792 DOI: 10.1124/jpet.122.001298] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Recently, we reported that the early progression of renal injury in obese Dahl salt-sensitive leptin receptor mutant (SSLepRmutant) rats was associated with increased macrophage inflammatory protein 3-α (MIP3α) expression prior to puberty. Therefore, this study tested the hypothesis that MIP3α plays a role in recruiting immune cells, thereby triggering renal inflammation and early progressive renal injury in SSLepRmutant rats prior to puberty. Four-week-old Dahl salt-sensitive (SS) and SSLepRmutant rats either served as control (IgG; intraperitoneal, every other day) or received MIP3α-neutralizing antibody (MNA; 100 µg/kg) for 4 weeks. MNA reduced circulating and renal MIP3α levels and proinflammatory immune cells by 50%. Although MNA treatment did not affect blood glucose and plasma cholesterol levels, MNA markedly decreased insulin resistance and triglyceride levels in SSLepRmutant rats. We observed no differences in mean arterial pressure (MAP) between SS and SSLepRmutant rats, and MNA had no effect on MAP in either strain. Proteinuria was significantly increased in SSLepRmutant rats versus SS rats over the course of the study. Treatment with MNA markedly decreased proteinuria in SSLepRmutant rats while not affecting SS rats. Also, MNA decreased glomerular and tubular injury and renal fibrosis in SSLepRmutant rats while not affecting SS rats. Overall, these data indicate that MIP3α plays an important role in renal inflammation during the early progression of renal injury in obese SSLepRmutant rats prior to puberty. These data also suggest that MIP3α may be a novel therapeutic target to inhibit insulin resistance and prevent progressive proteinuria in obese children. SIGNIFICANCE STATEMENT: Childhood obesity is increasing at an alarming rate and is now being associated with renal disease. Although most studies have focused on the mechanisms of renal injury associated with adult obesity, few studies have examined the mechanisms of renal injury involved during childhood obesity. In the current study, we observed that the progression of renal injury in obese Dahl salt-sensitive leptin receptor mutant rats was associated with an increase in MIP3α, a chemokine, before puberty, and inhibition of MIP3α markedly reduced renal injury.
Collapse
Affiliation(s)
- Ubong S Ekperikpe
- Departments of Pharmacology and Toxicology and Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Bibek Poudel
- Departments of Pharmacology and Toxicology and Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Corbin A Shields
- Departments of Pharmacology and Toxicology and Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Sautan Mandal
- Departments of Pharmacology and Toxicology and Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Denise C Cornelius
- Departments of Pharmacology and Toxicology and Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jan M Williams
- Departments of Pharmacology and Toxicology and Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
12
|
Martin K, Toussaint ND, Tan SJ, Hewitson TD. Skin regulation of salt and blood pressure and potential clinical implications. Hypertens Res 2023; 46:408-416. [PMID: 36434290 DOI: 10.1038/s41440-022-01096-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/27/2022]
Abstract
Sodium chloride, as salt, gives rise to hypertension. Nevertheless, individual susceptibility to the ramifications of sodium chloride is heterogeneous. The conventional nephron-centric regulation of sodium with neurohormonal inputs and responses is now expanded to include an intricate extrarenal pathway including the endothelium, skin, lymphatics, and immune cells. An overabundance of sodium is buffered and regulated by the skin interstitium. Excess sodium passes through (and damages) the vascular endothelium and can be dynamically stored in the skin, modulated by skin immune cells and lymphatics. This excess interstitially stored sodium is implicated in hypertension, cardiovascular dysfunction, metabolic disruption, and inflammatory dysregulation. This extrarenal pathway of regulating sodium represents a novel target for better blood pressure management, rebalancing disturbed inflammation, and hence addressing cardiovascular and metabolic disease.
Collapse
Affiliation(s)
- Kylie Martin
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia. .,Department of Medicine, University of Melbourne, Parkville, Victoria, Australia.
| | - Nigel D Toussaint
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Sven-Jean Tan
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Timothy D Hewitson
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
13
|
Goodlett BL, Balasubbramanian D, Navaneethabalakrishnan S, Love SE, Luera EM, Konatham S, Chiasson VL, Wedgeworth S, Rutkowski JM, Mitchell BM. Genetically inducing renal lymphangiogenesis attenuates hypertension in mice. Clin Sci (Lond) 2022; 136:1759-1772. [PMID: 36345993 PMCID: PMC10586591 DOI: 10.1042/cs20220547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Hypertension (HTN) is associated with renal proinflammatory immune cell infiltration and increased sodium retention. We reported previously that renal lymphatic vessels, which are responsible for trafficking immune cells from the interstitial space to draining lymph nodes, increase in density under hypertensive conditions. We also demonstrated that augmenting renal lymphatic density can prevent HTN in mice. Whether renal lymphangiogenesis can treat HTN in mice is unknown. We hypothesized that genetically inducing renal lymphangiogenesis after the establishment of HTN would attenuate HTN in male and female mice from three different HTN models. METHODS Mice with inducible kidney-specific overexpression of VEGF-D (KidVD) experience renal lymphangiogenesis upon doxycycline administration. HTN was induced in KidVD+ and KidVD- mice by subcutaneous release of angiotensin II, administration of the nitric oxide synthase inhibitor L-NAME, or consumption of a 4% salt diet following a L-NAME priming and washout period. After a week of HTN stimuli treatment, doxycycline was introduced. Systolic blood pressure (SBP) readings were taken weekly. Kidney function was determined from urine and serum measures. Kidneys were processed for RT-qPCR, flow cytometry, and imaging. RESULTS Mice that underwent renal-specific lymphangiogenesis had significantly decreased SBP and renal proinflammatory immune cells. Additionally, renal lymphangiogenesis was associated with a decrease in sodium transporter expression and increased fractional excretion of sodium, indicating improved sodium handling efficiency. CONCLUSIONS These findings demonstrate that augmenting renal lymphangiogenesis can treat HTN in male and female mice by improving renal immune cell trafficking and sodium handling.
Collapse
Affiliation(s)
- Bethany L Goodlett
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| | | | | | - Sydney E Love
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| | - Emily M Luera
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| | - Sunitha Konatham
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| | - Valorie L Chiasson
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| | - Sophie Wedgeworth
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| | - Joseph M Rutkowski
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| | - Brett M Mitchell
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| |
Collapse
|
14
|
Alexander MR, Hank S, Dale BL, Himmel L, Zhong X, Smart CD, Fehrenbach DJ, Chen Y, Prabakaran N, Tirado B, Centrella M, Ao M, Du L, Shyr Y, Levy D, Madhur MS. A Single Nucleotide Polymorphism in SH2B3/LNK Promotes Hypertension Development and Renal Damage. Circ Res 2022; 131:731-747. [PMID: 36169218 PMCID: PMC9588739 DOI: 10.1161/circresaha.121.320625] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 09/15/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND SH2B3 (SH2B adaptor protein 3) is an adaptor protein that negatively regulates cytokine signaling and cell proliferation. A common missense single nucleotide polymorphism in SH2B3 (rs3184504) results in substitution of tryptophan (Trp) for arginine (Arg) at amino acid 262 and is a top association signal for hypertension in human genome-wide association studies. Whether this variant is causal for hypertension, and if so, the mechanism by which it impacts pathogenesis is unknown. METHODS We used CRISPR-Cas9 technology to create mice homozygous for the major (Arg/Arg) and minor (Trp/Trp) alleles of this SH2B3 polymorphism. Mice underwent angiotensin II (Ang II) infusion to evaluate differences in blood pressure (BP) elevation and end-organ damage including albuminuria and renal fibrosis. Cytokine production and Stat4 phosphorylation was also assessed in Arg/Arg and Trp/Trp T cells. RESULTS Trp/Trp mice exhibit 10 mmHg higher systolic BP during chronic Ang II infusion compared to Arg/Arg controls. Renal injury and perivascular fibrosis are exacerbated in Trp/Trp mice compared to Arg/Arg controls following Ang II infusion. Renal and ex vivo stimulated splenic CD8+ T cells from Ang II-infused Trp/Trp mice produce significantly more interferon gamma (IFNg) compared to Arg/Arg controls. Interleukin-12 (IL-12)-induced IFNg production is greater in Trp/Trp compared to Arg/Arg CD8+ T cells. In addition, IL-12 enhances Stat4 phosphorylation to a greater degree in Trp/Trp compared to Arg/Arg CD8+ T cells, suggesting that Trp-encoding SH2B3 exhibits less negative regulation of IL-12 signaling to promote IFNg production. Finally, we demonstrated that a multi-SNP model genetically predicting increased SH2B3 expression in lymphocytes is inversely associated with hypertension and hypertensive chronic kidney disease in humans.. CONCLUSIONS Taken together, these results suggest that the Trp encoding allele of rs3184504 is causal for BP elevation and renal dysfunction, in part through loss of SH2B3-mediated repression of T cell IL-12 signaling leading to enhanced IFNg production.
Collapse
Affiliation(s)
- Matthew R. Alexander
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
- Department of Medicine, Division of Cardiovascular Medicine, VUMC, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Samuel Hank
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Bethany L. Dale
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Lauren Himmel
- Department of Pathology, Microbiology and Immunology, VUMC, Nashville, TN, USA
| | - Xue Zhong
- Department of Medicine, Division of Genetic Medicine, VUMC, Nashville, TN, USA
| | - Charles D. Smart
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Daniel J. Fehrenbach
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Yuhan Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
| | | | | | - Megan Centrella
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Mingfang Ao
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Liping Du
- Department of Biostatistics, VUMC, Nashville, TN
| | - Yu Shyr
- Department of Biostatistics, VUMC, Nashville, TN
| | - Daniel Levy
- Framingham Heart Study, Framingham, MA and Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Meena S. Madhur
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
- Department of Medicine, Division of Cardiovascular Medicine, VUMC, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
15
|
Chaudhari S, Pham GS, Brooks CD, Dinh VQ, Young-Stubbs CM, Shimoura CG, Mathis KW. Should Renal Inflammation Be Targeted While Treating Hypertension? Front Physiol 2022; 13:886779. [PMID: 35770194 PMCID: PMC9236225 DOI: 10.3389/fphys.2022.886779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/17/2022] [Indexed: 11/28/2022] Open
Abstract
Despite extensive research and a plethora of therapeutic options, hypertension continues to be a global burden. Understanding of the pathological roles of known and underexplored cellular and molecular pathways in the development and maintenance of hypertension is critical to advance the field. Immune system overactivation and inflammation in the kidneys are proposed alternative mechanisms of hypertension, and resistant hypertension. Consideration of the pathophysiology of hypertension in chronic inflammatory conditions such as autoimmune diseases, in which patients present with autoimmune-mediated kidney inflammation as well as hypertension, may reveal possible contributors and novel therapeutic targets. In this review, we 1) summarize current therapies used to control blood pressure and their known effects on inflammation; 2) provide evidence on the need to target renal inflammation, specifically, and especially when first-line and combinatory treatment efforts fail; and 3) discuss the efficacy of therapies used to treat autoimmune diseases with a hypertension/renal component. We aim to elucidate the potential of targeting renal inflammation in certain subsets of patients resistant to current therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Keisa W. Mathis
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
16
|
Han Z, Ma K, Tao H, Liu H, Zhang J, Sai X, Li Y, Chi M, Nian Q, Song L, Liu C. A Deep Insight Into Regulatory T Cell Metabolism in Renal Disease: Facts and Perspectives. Front Immunol 2022; 13:826732. [PMID: 35251009 PMCID: PMC8892604 DOI: 10.3389/fimmu.2022.826732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 11/29/2022] Open
Abstract
Kidney disease encompasses a complex set of diseases that can aggravate or start systemic pathophysiological processes through their complex metabolic mechanisms and effects on body homoeostasis. The prevalence of kidney disease has increased dramatically over the last two decades. CD4+CD25+ regulatory T (Treg) cells that express the transcription factor forkhead box protein 3 (Foxp3) are critical for maintaining immune homeostasis and preventing autoimmune disease and tissue damage caused by excessive or unnecessary immune activation, including autoimmune kidney diseases. Recent studies have highlighted the critical role of metabolic reprogramming in controlling the plasticity, stability, and function of Treg cells. They are also likely to play a vital role in limiting kidney transplant rejection and potentially promoting transplant tolerance. Metabolic pathways, such as mitochondrial function, glycolysis, lipid synthesis, glutaminolysis, and mammalian target of rapamycin (mTOR) activation, are involved in the development of renal diseases by modulating the function and proliferation of Treg cells. Targeting metabolic pathways to alter Treg cells can offer a promising method for renal disease therapy. In this review, we provide a new perspective on the role of Treg cell metabolism in renal diseases by presenting the renal microenvironment、relevant metabolites of Treg cell metabolism, and the role of Treg cell metabolism in various kidney diseases.
Collapse
Affiliation(s)
- Zhongyu Han
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.,Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hongxia Tao
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongli Liu
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiong Zhang
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Xiyalatu Sai
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, China
| | - Yunlong Li
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingxuan Chi
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Qing Nian
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.,Department of Blood Transfusion Sicuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Linjiang Song
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chi Liu
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
17
|
Gill PA, Inniss S, Kumagai T, Rahman FZ, Smith AM. The Role of Diet and Gut Microbiota in Regulating Gastrointestinal and Inflammatory Disease. Front Immunol 2022; 13:866059. [PMID: 35450067 PMCID: PMC9016115 DOI: 10.3389/fimmu.2022.866059] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/14/2022] [Indexed: 12/20/2022] Open
Abstract
Diet is an important lifestyle factor that is known to contribute in the development of human disease. It is well established that poor diet plays an active role in exacerbating metabolic diseases, such as obesity, diabetes and hypertension. Our understanding of how the immune system drives chronic inflammation and disease pathogenesis has evolved in recent years. However, the contribution of dietary factors to inflammatory conditions such as inflammatory bowel disease, multiple sclerosis and arthritis remain poorly defined. A western diet has been associated as pro-inflammatory, in contrast to traditional dietary patterns that are associated as being anti-inflammatory. This may be due to direct effects of nutrients on immune cell function. Diet may also affect the composition and function of gut microbiota, which consequently affects immunity. In animal models of inflammatory disease, diet may modulate inflammation in the gastrointestinal tract and in other peripheral sites. Despite limitations of animal models, there is now emerging evidence to show that anti-inflammatory effects of diet may translate to human gastrointestinal and inflammatory diseases. However, appropriately designed, larger clinical studies must be conducted to confirm the therapeutic benefit of dietary therapy.
Collapse
Affiliation(s)
- Paul A Gill
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, United Kingdom
| | - Saskia Inniss
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, United Kingdom
| | - Tomoko Kumagai
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, United Kingdom
| | - Farooq Z Rahman
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, United Kingdom.,Department of Gastroenterology, University College London Hospitals National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Andrew M Smith
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, United Kingdom
| |
Collapse
|
18
|
Tissue Sodium Accumulation: Pathophysiology and Clinical Implications. Antioxidants (Basel) 2022; 11:antiox11040750. [PMID: 35453435 PMCID: PMC9031161 DOI: 10.3390/antiox11040750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 02/05/2023] Open
Abstract
Excessive sodium intake has been well established as a risk factor for the development and progression of cardiovascular and renal diseases. Its adverse effects are achieved by renal sodium retention and related volume expansion and by inducing low-grade inflammation and oxidative stress (OS) in the target tissues. This review presents the recent concept of nonosmotic sodium storage in the skin interstitium, the subsequent dissociation of sodium and volume homeostasis, and the cellular response to the increased tissue sodium concentration. Furthermore, data are shown on the sodium barrier and buffering potential of the endothelial glycocalyx that may protect the functional integrity of the endothelium when it is challenged by an increased sodium load. Finally, examples will be given of the involvement of oxygen free radicals (OFR) in sodium-induced tissue damage, and some clinical entities will be mentioned that are causally associated with sodium/volume retention and OS.
Collapse
|
19
|
Ilatovskaya DV, Levchenko V, Winsor K, Blass GR, Spires DR, Sarsenova E, Polina I, Zietara A, Paterson M, Kriegel AJ, Staruschenko A. Effects of elevation of ANP and its deficiency on cardiorenal function. JCI Insight 2022; 7:148682. [PMID: 35380994 PMCID: PMC9090260 DOI: 10.1172/jci.insight.148682] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/30/2022] [Indexed: 11/17/2022] Open
Abstract
Atrial natriuretic peptide (ANP), encoded by Nppa, is a vasodilatory hormone that promotes salt excretion. Genome-wide association studies identified Nppa as a causative factor of blood pressure development, and in humans, ANP levels were suggested as an indicator of salt sensitivity. This study aimed to provide insights into the effects of ANP on cardiorenal function in salt-sensitive hypertension. To address this question, hypertension was induced in SSNPPA-/- (knockout of Nppa in the Dahl Salt-Sensitive (SS) rat background) or SSWT (wild type Dahl SS) rats by a high salt diet challenge (HS, 4% NaCl for 21 days). Chronic infusion of ANP in SSWT rats attenuated the increase in blood pressure and cardiorenal damage. Overall, SSNPPA-/- strain demonstrated higher blood pressure and intensified cardiac fibrosis (with no changes in ejection fraction) compared to SSWT rats. Furthermore, SSNPPA-/- rats exhibited kidney hypertrophy and higher glomerular injury scores, reduced diuresis, and lower sodium and chloride excretion than SSWT when fed a HS diet. Additionally, the activity of epithelial Na+ channel (ENaC) was found to be increased in the collecting ducts of the SSNPPA-/- rats. Taken together, these data show promise for the therapeutic benefits of ANP and ANP-increasing drugs for treating salt-sensitive hypertension.
Collapse
Affiliation(s)
- Daria V Ilatovskaya
- Department of Physiology, Medical College of Georgia, Augusta, United States of America
| | - Vladislav Levchenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, United States of America
| | - Kristen Winsor
- Department of Physiology, Medical College of Wisconsin, Milwaukee, United States of America
| | - Gregory R Blass
- Department of Physiology, Medical College of Wisconsin, Milwaukee, United States of America
| | - Denisha R Spires
- Department of Physiology, Medical College of Georgia, Augusta, United States of America
| | - Elizaveta Sarsenova
- Department of Medicine, Medical University of South Carolina, Charleston, United States of America
| | - Iuliia Polina
- Department of Medicine, Medical University of South Carolina, Charleston, United States of America
| | - Adrian Zietara
- Department of Physiology, Medical College of Wisconsin, Milwaukee, United States of America
| | - Mark Paterson
- Department of Physiology, Medical College of Wisconsin, Milwaukee, United States of America
| | - Alison J Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, United States of America
| | | |
Collapse
|
20
|
Poudel B, Shields CA, Ekperikpe US, Brown AK, Travis OK, Maury JC, Fitzgerald S, Smith SV, Cornelius DC, Williams JM. The SS LepR mutant rat represents a novel model to study obesity-induced renal injury before puberty. Am J Physiol Regul Integr Comp Physiol 2022; 322:R299-R308. [PMID: 35107024 PMCID: PMC8917907 DOI: 10.1152/ajpregu.00179.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 02/08/2023]
Abstract
Prepubertal obesity (PPO) has emerged as a major health problem over the past few decades and is a risk factor for the development of proteinuria. The current study investigated whether the development of renal injury in the obese SSLepR mutant strain occurs before puberty. When determining the temporal changes in serum sex hormones in female and male SS and SSLepR mutant rats between 4 and 10 wk of age, we only observed significant increases in estradiol and testosterone levels in female and male SS rats at 10 wk of age than at 4 wk of age. The results suggest that studying both strains between 4 and 8 wk of age is appropriate to study the effects of PPO on renal injury in this model. Proteinuria was significantly higher in SSLepR mutant rats as opposed to the values observed in SS rats at 8 wk of age, and we did not observe any sex differences in proteinuria in either strain. The kidneys from the SSLepR mutant rats displayed significant glomerular and tubular injury and renal fibrosis versus the values measured in SS rats without any sex differences. Overall, we observed increased immune cell infiltration in the kidneys from SSLepR mutant rats compared with SS rats. Interestingly, female SSLepR mutant rats displayed significant increases in not only M1 macrophages (proinflammatory) but also M2 macrophages (anti-inflammatory) versus male SSLepR mutant rats. These results suggest the SSLepR mutant rat may be a useful model to study early progression of obesity-related renal injury before the onset of puberty.
Collapse
Affiliation(s)
- Bibek Poudel
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Corbin A Shields
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ubong S Ekperikpe
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Andrea K Brown
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Olivia K Travis
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jordan C Maury
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Sarah Fitzgerald
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Stanley V Smith
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Denise C Cornelius
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jan M Williams
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
21
|
Wenzel UO, Ehmke H, Bode M. Immune mechanisms in arterial hypertension. Recent advances. Cell Tissue Res 2021; 385:393-404. [PMID: 33394136 PMCID: PMC8523494 DOI: 10.1007/s00441-020-03409-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023]
Abstract
Increasing evidence indicates that hypertension and hypertensive end-organ damage are not only mediated by hemodynamic injury. Inflammation also plays an important role in the pathophysiology and contributes to the deleterious consequences of this disease. Cells of the innate immune system including monocyte/macrophages and dendritic cells can promote blood pressure elevation via effects mostly on kidney and vascular function. Moreover, convincing evidence shows that T and B cells from the adaptive immune system are involved in hypertension and hypertensive end-organ damage. Skin monocyte/macrophages, regulatory T cells, natural killer T cells, and myeloid-derived suppressor cells have been shown to exert blood pressure controlling effects. Sodium intake is undoubtedly indispensable for normal body function but can be detrimental when taken in excess of dietary requirements. Sodium levels also modulate the function of monocyte/macrophages, dendritic cells, and different T cell subsets. Some of these effects are mediated by changes in the microbiome and metabolome that can be found after high salt intake. Modulation of the immune response can reduce severity of blood pressure elevation and hypertensive end-organ damage in several animal models. The purpose of this review is to briefly summarize recent advances in immunity and hypertension as well as hypertensive end-organ damage.
Collapse
Affiliation(s)
- Ulrich O Wenzel
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Heimo Ehmke
- Department of Cellular and Integrative Physiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Marlies Bode
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| |
Collapse
|
22
|
Yu SQ, Ma S, Wang DH. Ablation of TRPV1-positive nerves exacerbates salt-induced hypertension and tissue injury in rats after renal ischemia-reperfusion via infiltration of macrophages. Clin Exp Hypertens 2021; 43:254-262. [PMID: 33327798 PMCID: PMC7858237 DOI: 10.1080/10641963.2020.1860078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/16/2020] [Accepted: 11/26/2020] [Indexed: 01/28/2023]
Abstract
Background: High-salt intake after renal ischemia/reperfusion (I/R) injury leads to hypertension and further renal injury, but the mechanisms are largely unknown. This study tested the hypothesis that degeneration of transient receptor potential vanilloid 1 (TRPV1)-positive nerves exacerbates salt-induced hypertension and renal injury after I/R via enhancing renal macrophage infiltration.Methods: Large dose of capsaicin (CAP, 100 mg/kg, subcutaneously) was used to degenerate rat TRPV1-positive nerves. Then, rats were subjected to renal I/R injury and fed with a low-salt (0.4% NaCl) diet for 5 weeks after I/R, followed by a high-salt (4% NaCl) diet for 4 weeks during which macrophages were depleted using liposome-encapsulated clodronate (LC, 1.3 ml/kg/week, intravenously).Results: The protein level of TRPV1 in the kidney was downregulated by renal I/R injury and was further decreased by CAP treatment. LC treatment did not affect the protein levels of renal TRPV1. After renal I/R injury, high-salt diet significantly increased renal macrophage infiltration, inflammatory cytokines (tumor necrosis factor-alpha and interleukin 1 beta), systolic blood pressure, the urine/water intake ratio, plasma creatine and urea levels, urinary 8-isoprostane, and renal collagen deposition. Interestingly, CAP treatment further increased these parameters. These increases were abolished by depleting macrophages with LC treatment.Conclusions: These data suggest that degenerating TRPV1-positive nerves exacerbates salt-induced hypertension and tissue injury in rats after renal I/R injury via macrophages-mediated renal inflammation.
Collapse
Affiliation(s)
- Shuang-Quan Yu
- Division of Nanomedicine and Molecular Intervention, Department of Medicine, Michigan State University , East Lansing, MI, USA
| | - Shuangtao Ma
- Division of Nanomedicine and Molecular Intervention, Department of Medicine, Michigan State University , East Lansing, MI, USA
| | - Donna H Wang
- Division of Nanomedicine and Molecular Intervention, Department of Medicine, Michigan State University , East Lansing, MI, USA
- Neuroscience Program, Michigan State University , East Lansing, MI, USA
- Cell and Molecular Biology Program, Michigan State University , East Lansing, MI, USA
| |
Collapse
|
23
|
The Role of the Renal Dopaminergic System and Oxidative Stress in the Pathogenesis of Hypertension. Biomedicines 2021; 9:biomedicines9020139. [PMID: 33535566 PMCID: PMC7912729 DOI: 10.3390/biomedicines9020139] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 01/11/2023] Open
Abstract
The kidney is critical in the long-term regulation of blood pressure. Oxidative stress is one of the many factors that is accountable for the development of hypertension. The five dopamine receptor subtypes (D1R–D5R) have important roles in the regulation of blood pressure through several mechanisms, such as inhibition of oxidative stress. Dopamine receptors, including those expressed in the kidney, reduce oxidative stress by inhibiting the expression or action of receptors that increase oxidative stress. In addition, dopamine receptors stimulate the expression or action of receptors that decrease oxidative stress. This article examines the importance and relationship between the renal dopaminergic system and oxidative stress in the regulation of renal sodium handling and blood pressure. It discusses the current information on renal dopamine receptor-mediated antioxidative network, which includes the production of reactive oxygen species and abnormalities of renal dopamine receptors. Recognizing the mechanisms by which renal dopamine receptors regulate oxidative stress and their degree of influence on the pathogenesis of hypertension would further advance the understanding of the pathophysiology of hypertension.
Collapse
|