1
|
Chen R, Lin Q, Tang H, Dai X, Jiang L, Cui N, Li X. PD-1 immunology in the kidneys: a growing relationship. Front Immunol 2024; 15:1458209. [PMID: 39507530 PMCID: PMC11537962 DOI: 10.3389/fimmu.2024.1458209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
In recent years, knowledge regarding immune regulation has expanded rapidly, and major advancements have been made in immunotherapy for immune-associated disorders, particularly cancer. The programmed cell death 1 (PD-1) pathway is a cornerstone in immune regulation. It comprises PD-1 and its ligands mediating immune tolerance mechanisms and immune homeostasis. Accumulating evidence demonstrates that the PD-1 axis has a crucial immunosuppressive role in the tumor microenvironment and autoimmune diseases. PD-1 receptors and ligands on immune cells and renal parenchymal cells aid in maintaining immunological homeostasis in the kidneys. Here, we present a comprehensive review of PD-1 immunology in various kidney disorders, including renal cell carcinoma, glomerulonephritis, kidney transplantation, renal aging, and renal immune-related adverse events secondary to PD-1 immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Ningxun Cui
- Department of Nephrology and Immunology, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaozhong Li
- Department of Nephrology and Immunology, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
2
|
McKinzie SR, Kaverina N, Schweickart RA, Chaney CP, Eng DG, Pereira BMV, Kestenbaum B, Pippin JW, Wessely O, Shankland SJ. Podocytes from hypertensive and obese mice acquire an inflammatory, senescent, and aged phenotype. Am J Physiol Renal Physiol 2024; 326:F644-F660. [PMID: 38420674 PMCID: PMC11208020 DOI: 10.1152/ajprenal.00417.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024] Open
Abstract
Patients with hypertension or obesity can develop glomerular dysfunction characterized by injury and depletion of podocytes. To better understand the molecular processes involved, young mice were treated with either deoxycorticosterone acetate (DOCA) or fed a high-fat diet (HFD) to induce hypertension or obesity, respectively. The transcriptional changes associated with these phenotypes were measured by unbiased bulk mRNA sequencing of isolated podocytes from experimental models and their respective controls. Key findings were validated by immunostaining. In addition to a decrease in canonical proteins and reduced podocyte number, podocytes from both hypertensive and obese mice exhibited a sterile inflammatory phenotype characterized by increases in NLR family pyrin domain containing 3 (NLRP3) inflammasome, protein cell death-1, and Toll-like receptor pathways. Finally, although the mice were young, podocytes in both models exhibited increased expression of senescence and aging genes, including genes consistent with a senescence-associated secretory phenotype. However, there were differences between the hypertension- and obesity-associated senescence phenotypes. Both show stress-induced podocyte senescence characterized by increased p21 and p53. Moreover, in hypertensive mice, this is superimposed upon age-associated podocyte senescence characterized by increased p16 and p19. These results suggest that senescence, aging, and inflammation are critical aspects of the podocyte phenotype in experimental hypertension and obesity in mice.NEW & NOTEWORTHY Hypertension and obesity can lead to glomerular dysfunction in patients, causing podocyte injury and depletion. Here, young mice given deoxycorticosterone acetate or a high-fat diet to induce hypertension or obesity, respectively. mRNA sequencing of isolated podocytes showed transcriptional changes consistent with senescence, a senescent-associated secretory phenotype, and aging, which was confirmed by immunostaining. Ongoing studies are determining the mechanistic roles of the accelerated aging podocyte phenotype in experimental hypertension and obesity.
Collapse
Affiliation(s)
- Sierra R McKinzie
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Natalya Kaverina
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, United States
| | | | - Christopher P Chaney
- Department of Medicine, University of Texas Southwestern, Dallas, Texas, United States
| | - Diana G Eng
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, United States
| | | | - Bryan Kestenbaum
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Jeffrey W Pippin
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Oliver Wessely
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - Stuart J Shankland
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, United States
| |
Collapse
|
3
|
Roccatello D, Lan HY, Sciascia S, Sethi S, Fornoni A, Glassock R. From inflammation to renal fibrosis: A one-way road in autoimmunity? Autoimmun Rev 2024; 23:103466. [PMID: 37848157 DOI: 10.1016/j.autrev.2023.103466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023]
Abstract
Renal fibrosis is now recognized as a main determinant of renal pathology to include chronic kidney disease. Deposition of pathological matrix in the walls of glomerular capillaries, the interstitial space, and around arterioles predicts and contributes to the functional demise of the nephron and its surrounding vasculature. The recent identification of the major cell populations of fibroblast precursors in the kidney interstitium such as pericytes and tissue-resident mesenchymal stem cells, or bone-marrow-derived macrophages, and in the glomerulus such as podocytes, parietal epithelial and mesangial cells, has enabled the study of the fibrogenic process thought the lens of involved immunological pathways. Besides, a growing body of evidence is supporting the role of the lymphatic system in modulating the immunological response potentially leading to inflammation and ultimately renal damage. These notions have moved our understanding of renal fibrosis to be recognized as a clinical entity and new main player in autoimmunity, impacting directly the management of patients.
Collapse
Affiliation(s)
- Dario Roccatello
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley (North-West Italy), San Giovanni Bosco Hub Hospital, ASL Città di Torino and Department of Clinical and Biological Sciences of the University of Turin, Turin, Italy.
| | - Hui-Yao Lan
- Department of Medicine & Therapeutics, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases,Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Savino Sciascia
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley (North-West Italy), San Giovanni Bosco Hub Hospital, ASL Città di Torino and Department of Clinical and Biological Sciences of the University of Turin, Turin, Italy
| | - Sanjeev Sethi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Alessia Fornoni
- Peggy and Harold Katz Family Drug Discovery Center, Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, USA
| | - Richard Glassock
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
4
|
de Zoysa N, Haruhara K, Nikolic-Paterson DJ, Kerr PG, Ling J, Gazzard SE, Puelles VG, Bertram JF, Cullen-McEwen LA. Podocyte number and glomerulosclerosis indices are associated with the response to therapy for primary focal segmental glomerulosclerosis. Front Med (Lausanne) 2024; 11:1343161. [PMID: 38510448 PMCID: PMC10951056 DOI: 10.3389/fmed.2024.1343161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
Corticosteroid therapy, often in combination with inhibition of the renin-angiotensin system, is first-line therapy for primary focal and segmental glomerulosclerosis (FSGS) with nephrotic-range proteinuria. However, the response to treatment is variable, and therefore new approaches to indicate the response to therapy are required. Podocyte depletion is a hallmark of early FSGS, and here we investigated whether podocyte number, density and/or size in diagnostic biopsies and/or the degree of glomerulosclerosis could indicate the clinical response to first-line therapy. In this retrospective single center cohort study, 19 participants (13 responders, 6 non-responders) were included. Biopsies obtained at diagnosis were prepared for analysis of podocyte number, density and size using design-based stereology. Renal function and proteinuria were assessed 6 months after therapy commenced. Responders and non-responders had similar levels of proteinuria at the time of biopsy and similar kidney function. Patients who did not respond to treatment at 6 months had a significantly higher percentage of glomeruli with global sclerosis than responders (p < 0.05) and glomerulosclerotic index (p < 0.05). Podocyte number per glomerulus in responders was 279 (203-507; median, IQR), 50% greater than that of non-responders (186, 118-310; p < 0.05). These findings suggest that primary FSGS patients with higher podocyte number per glomerulus and less advanced glomerulosclerosis are more likely to respond to first-line therapy at 6 months. A podocyte number less than approximately 216 per glomerulus, a GSI greater than 1 and percentage global sclerosis greater than approximately 20% are associated with a lack of response to therapy. Larger, prospective studies are warranted to confirm whether these parameters may help inform therapeutic decision making at the time of diagnosis of primary FSGS.
Collapse
Affiliation(s)
- Natasha de Zoysa
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| | - Kotaro Haruhara
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Division of Nephrology and Hypertension, Jikei University School of Medicine, Tokyo, Japan
| | - David J. Nikolic-Paterson
- Department of Nephrology, Monash Medical Centre, Clayton, VIC, Australia
- Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia
| | - Peter G. Kerr
- Department of Nephrology, Monash Medical Centre, Clayton, VIC, Australia
- Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia
| | - Jonathan Ling
- Department of Nephrology, Monash Medical Centre, Clayton, VIC, Australia
- Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia
| | - Sarah E. Gazzard
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| | - Victor G. Puelles
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - John F. Bertram
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Melbourne, VIC, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Brisbane, QLD, Australia
| | - Luise A. Cullen-McEwen
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| |
Collapse
|
5
|
Fang Z, Lee K, He JC. Injury in nonaged podocytes as an accelerator of glomerular aging. Am J Physiol Renal Physiol 2024; 326:F118-F119. [PMID: 38031730 DOI: 10.1152/ajprenal.00344.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
- Zhengying Fang
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Kyung Lee
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - John Cijiang He
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
- Renal Section, James J. Peters Veterans Affair Medical Center, Bronx, New York, United States
| |
Collapse
|
6
|
Shankland SJ, Rule AD, Kutz JN, Pippin JW, Wessely O. Podocyte Senescence and Aging. KIDNEY360 2023; 4:1784-1793. [PMID: 37950369 PMCID: PMC10758523 DOI: 10.34067/kid.0000000000000284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
As the population in many industrial countries is aging, the risk, incidence, and prevalence of CKD increases. In the kidney, advancing age results in a progressive decrease in nephron number and an increase in glomerulosclerosis. In this review, we focus on the effect of aging on glomerular podocytes, the post-mitotic epithelial cells critical for the normal integrity and function of the glomerular filtration barrier. The podocytes undergo senescence and transition to a senescence-associated secretory phenotype typified by the production and secretion of inflammatory cytokines that can influence neighboring glomerular cells by paracrine signaling. In addition to senescence, the aging podocyte phenotype is characterized by ultrastructural and functional changes; hypertrophy; cellular, oxidative, and endoplasmic reticulum stress; reduced autophagy; and increased expression of aging genes. This results in a reduced podocyte health span and a shortened life span. Importantly, these changes in the pathways/processes characteristic of healthy podocyte aging are also often similar to pathways in the disease-induced injured podocyte. Finally, the better understanding of podocyte aging and senescence opens therapeutic options to slow the rate of podocyte aging and promote kidney health.
Collapse
Affiliation(s)
- Stuart J. Shankland
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
| | - Andrew D. Rule
- Division of Nephrology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - J. Nathan Kutz
- Department of Applied Mathematics, University of Washington, Seattle, Washington
| | - Jeffrey W. Pippin
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
| | - Oliver Wessely
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| |
Collapse
|
7
|
Elshani M, Um IH, Leung S, Reynolds PA, Chapman A, Kudsy M, Harrison DJ. Transcription Factor NFE2L1 Decreases in Glomerulonephropathies after Podocyte Damage. Cells 2023; 12:2165. [PMID: 37681897 PMCID: PMC10487238 DOI: 10.3390/cells12172165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023] Open
Abstract
Podocyte cellular injury and detachment from glomerular capillaries constitute a critical factor contributing to kidney disease. Notably, transcription factors are instrumental in maintaining podocyte differentiation and homeostasis. This study explores the hitherto uninvestigated expression of Nuclear Factor Erythroid 2-related Factor 1 (NFE2L1) in podocytes. We evaluated the podocyte expression of NFE2L1, Nuclear Factor Erythroid 2-related Factor 2 (NFE2L2), and NAD(P)H:quinone Oxidoreductase (NQO1) in 127 human glomerular disease biopsies using multiplexed immunofluorescence and image analysis. We found that both NFE2L1 and NQO1 expressions were significantly diminished across all observed renal diseases. Furthermore, we exposed human immortalized podocytes and ex vivo kidney slices to Puromycin Aminonucleoside (PAN) and characterized the NFE2L1 protein isoform expression. PAN treatment led to a reduction in the nuclear expression of NFE2L1 in ex vivo kidney slices and podocytes.
Collapse
Affiliation(s)
- Mustafa Elshani
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK (D.J.H.)
- Pathology, Laboratory Medicine, Royal Infirmary of Edinburgh, Little France, Edinburgh EH16 6NA, UK
- NuCana plc, 3 Lochside Way, Edinburgh EH12 9DT, UK
| | - In Hwa Um
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK (D.J.H.)
| | - Steve Leung
- Urology Department, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Paul A. Reynolds
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK (D.J.H.)
| | - Alex Chapman
- Urology Department, Victoria Hospital, Hayfield Road, Kirkcaldy KY2 5AH, UK
| | - Mary Kudsy
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK (D.J.H.)
| | - David J. Harrison
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK (D.J.H.)
- Pathology, Laboratory Medicine, Royal Infirmary of Edinburgh, Little France, Edinburgh EH16 6NA, UK
| |
Collapse
|
8
|
Kaverina N, Schweickart RA, Chan GC, Maggiore JC, Eng DG, Zeng Y, McKinzie SR, Perry HS, Ali A, O’Connor C, Pereira BMV, Theberge AB, Vaughan JC, Loretz CJ, Chang A, Hukriede NA, Bitzer M, Pippin JW, Wessely O, Shankland SJ. Inhibiting NLRP3 signaling in aging podocytes improves their life- and health-span. Aging (Albany NY) 2023; 15:6658-6689. [PMID: 37487005 PMCID: PMC10415579 DOI: 10.18632/aging.204897] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023]
Abstract
The decrease in the podocyte's lifespan and health-span that typify healthy kidney aging cause a decrease in their normal structure, physiology and function. The ability to halt and even reverse these changes becomes clinically relevant when disease is superimposed on an aged kidney. RNA-sequencing of podocytes from middle-aged mice showed an inflammatory phenotype with increases in the NLRP3 inflammasome, signaling for IL2/Stat5, IL6 and TNF, interferon gamma response, allograft rejection and complement, consistent with inflammaging. Furthermore, injury-induced NLRP3 signaling in podocytes was further augmented in aged mice compared to young ones. The NLRP3 inflammasome (NLRP3, Caspase-1, IL1β IL-18) was also increased in podocytes of middle-aged humans. Higher transcript expression for NLRP3 in human glomeruli was accompanied by reduced podocyte density and increased global glomerulosclerosis and glomerular volume. Pharmacological inhibition of NLRP3 with MCC950, or gene deletion, reduced podocyte senescence and the genes typifying aging in middle-aged mice, which was accompanied by an improved podocyte lifespan and health-span. Moreover, modeling the injury-dependent increase in NLRP3 signaling in human kidney organoids confirmed the anti-senescence effect of MC9950. Finally, NLRP3 also impacted liver aging. Together, these results suggest a critical role for the NLRP3 inflammasome in podocyte and liver aging.
Collapse
Affiliation(s)
- Natalya Kaverina
- Division of Nephrology, University of Washington, Seattle, WA 98109, USA
| | - R. Allen Schweickart
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44106, USA
| | - Gek Cher Chan
- Department of Medicine, Division of Nephrology, National University Hospital, Singapore
| | - Joseph C. Maggiore
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Diana G. Eng
- Division of Nephrology, University of Washington, Seattle, WA 98109, USA
| | - Yuting Zeng
- Department of Chemistry, University of Washington, Seattle, WA 98109, USA
| | - Sierra R. McKinzie
- Division of Nephrology, University of Washington, Seattle, WA 98109, USA
| | - Hannah S. Perry
- Department of Chemistry, University of Washington, Seattle, WA 98109, USA
| | - Adilijiang Ali
- Department of Chemistry, University of Washington, Seattle, WA 98109, USA
| | | | | | | | - Joshua C. Vaughan
- Department of Chemistry, University of Washington, Seattle, WA 98109, USA
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98109, USA
| | - Carol J. Loretz
- Division of Nephrology, University of Washington, Seattle, WA 98109, USA
| | - Anthony Chang
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Neil A. Hukriede
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Markus Bitzer
- Division of Nephrology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jeffrey W. Pippin
- Division of Nephrology, University of Washington, Seattle, WA 98109, USA
| | - Oliver Wessely
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44106, USA
| | - Stuart J. Shankland
- Division of Nephrology, University of Washington, Seattle, WA 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
9
|
Ha MH, Kim MS, An H, Sung M, Lee YH, Yang D, Jung SH, Baek J, Choi Y, Taylor D, Zhang Y, Lee S, Jeong HY. PTEN-induced kinase 1 is associated with renal aging, via the cGAS-STING pathway. Aging Cell 2023; 22:e13865. [PMID: 37183600 PMCID: PMC10352563 DOI: 10.1111/acel.13865] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/16/2023] Open
Abstract
Mitochondrial dysfunction is considered to be an important mediator of the pro-aging process in chronic kidney disease, which is continuously increasing worldwide. Although PTEN-induced kinase 1 (PINK1) regulates mitochondrial function, its role in renal aging remains unclear. We investigated the association between PINK1 and renal aging, especially through the cGAS-STING pathway, which is known to result in an inflammatory phenotype. Pink1 knockout (Pink1-/- ) C57BL/6 mice and senescence-induced renal tubular epithelial cells (HKC-8) treated with H2 O2 were used as the renal aging models. Extensive analyses at transcriptomic-metabolic levels have explored changes in mitochondrial function in PINK1 deficiency. To investigate whether PINK1 deficiency affects renal aging through the cGAS-STING pathway, we explored their expression levels in PINK1 knockout mice and senescence-induced HKC-8 cells. PINK1 deficiency enhances kidney fibrosis and tubular injury, and increases senescence and the senescence-associated secretory phenotype (SASP). These phenomena were most apparent in the 24-month-old Pink1-/- mice and HKC-8 cells treated with PINK1 siRNA and H2 O2 . Gene expression analysis using RNA sequencing showed that PINK1 deficiency is associated with increased inflammatory responses, and transcriptomic and metabolomic analyses suggested that PINK1 deficiency is related to mitochondrial metabolic dysregulation. Activation of cGAS-STING was prominent in the 24-month-old Pink1-/- mice. The expression of SASPs was most noticeable in senescence-induced HKC-8 cells and was attenuated by the STING inhibitor, H151. PINK1 is associated with renal aging, and mitochondrial dysregulation by PINK1 deficiency might stimulate the cGAS-STING pathway, eventually leading to senescence-related inflammatory responses.
Collapse
Affiliation(s)
- Min Heui Ha
- Division of Nephrology, Department of Internal MedicineCHA Bundang Medical CenterSeongnamKorea
| | - Man S. Kim
- Clinical Research InstituteKyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee UniversitySeoulKorea
| | - Hyun‐Ju An
- Division of Nephrology, Department of Internal MedicineCHA Bundang Medical CenterSeongnamKorea
| | - Min‐Ji Sung
- Division of Nephrology, Department of Internal MedicineCHA Bundang Medical CenterSeongnamKorea
| | - Yu Ho Lee
- Division of Nephrology, Department of Internal MedicineCHA Bundang Medical CenterSeongnamKorea
| | - Dong‐Ho Yang
- Division of Nephrology, Department of Internal MedicineCHA Bundang Medical CenterSeongnamKorea
| | - Sang Hyun Jung
- Division of Nephrology, Department of Internal MedicineCHA Bundang Medical CenterSeongnamKorea
| | - Jihyun Baek
- Division of Nephrology, Department of Internal MedicineCHA Bundang Medical CenterSeongnamKorea
| | - Yueun Choi
- Department of Biomedical Science and TechnologyGraduate School, Kyung Hee UniversitySeoulKorea
| | - Deanne M. Taylor
- Department of Pediatrics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Biomedical and Health InformaticsThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Yuanchao Zhang
- Department of Biomedical and Health InformaticsThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - So‐Young Lee
- Division of Nephrology, Department of Internal MedicineCHA Bundang Medical CenterSeongnamKorea
| | - Hye Yun Jeong
- Division of Nephrology, Department of Internal MedicineCHA Bundang Medical CenterSeongnamKorea
| |
Collapse
|
10
|
Gazzard SE, van der Wolde J, Haruhara K, Bertram JF, Cullen‐McEwen LA. Nephron deficit and low podocyte density increase risk of albuminuria and glomerulosclerosis in a model of diabetes. Physiol Rep 2023; 11:e15579. [PMID: 36695822 PMCID: PMC9875819 DOI: 10.14814/phy2.15579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
Podocytes are terminally differentiated epithelial cells in glomeruli. Podocyte injury and loss are features of many diseases leading to chronic kidney disease (CKD). The developmental origins of health and disease hypothesis propose an adverse intrauterine environment can lead to CKD later in life, especially when a second postnatal challenge is experienced. The aim of this study was to examine whether a suboptimal maternal environment would result in reduced podocyte endowment, increasing susceptibility to diabetes-induced renal injury. Female C57BL/6 mice were fed a low protein diet (LPD) to induce growth restriction or a normal protein diet (NPD) from 3 weeks before mating until weaning (postnatal Day 21, P21) when nephron and podocyte endowment were assessed in one male and one female offspring per litter. Littermates were administered streptozotocin or vehicle at 6 weeks of age. Urinary albumin excretion, glomerular size, and podometrics were assessed following 18 weeks of hyperglycemia. LPD offspring were growth restricted and had lower nephron and podocyte number at P21. However, by 24 weeks the podocyte deficit was no longer evident and despite low nephron endowment neither albuminuria nor glomerulosclerosis were observed. Podocyte number was unaffected by 18 weeks of hyperglycemia in NPD and LPD offspring. Diabetes increased glomerular volume reducing podocyte density, with more pronounced effects in LPD offspring. LPD and NPD diabetic offspring developed mild albuminuria with LPD demonstrating an earlier onset. LPD offspring also developed glomerular pathology. These findings indicate that growth-restricted LPD offspring with low nephron number and normalized podocyte endowment were more susceptible to alterations in glomerular volume and podocyte density leading to more rapid onset of albuminuria and renal injury than NPD offspring.
Collapse
Affiliation(s)
- Sarah E. Gazzard
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery InstituteMonash UniversityMelbourneAustralia
| | - James van der Wolde
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery InstituteMonash UniversityMelbourneAustralia
| | - Kotaro Haruhara
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery InstituteMonash UniversityMelbourneAustralia
- Division of Nephrology and Hypertension, Department of Internal MedicineThe Jikei University School of MedicineTokyoJapan
| | - John F. Bertram
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery InstituteMonash UniversityMelbourneAustralia
- ARC Training Centre for Cell and Tissue Engineering TechnologiesMelbourneAustralia
| | - Luise A. Cullen‐McEwen
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery InstituteMonash UniversityMelbourneAustralia
| |
Collapse
|
11
|
Adeva-Andany MM, Adeva-Contreras L, Fernández-Fernández C, Carneiro-Freire N, Domínguez-Montero A. Histological Manifestations of Diabetic Kidney Disease and its Relationship with Insulin Resistance. Curr Diabetes Rev 2023; 19:50-70. [PMID: 35346008 DOI: 10.2174/1573399818666220328145046] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/18/2022] [Accepted: 02/08/2022] [Indexed: 11/22/2022]
Abstract
Histological manifestations of diabetic kidney disease (DKD) include mesangiolysis, mesangial matrix expansion, mesangial cell proliferation, thickening of the glomerular basement membrane, podocyte loss, foot process effacement, and hyalinosis of the glomerular arterioles, interstitial fibrosis, and tubular atrophy. Glomerulomegaly is a typical finding. Histological features of DKD may occur in the absence of clinical manifestations, having been documented in patients with normal urinary albumin excretion and normal glomerular filtration rate. Furthermore, the histological picture progresses over time, while clinical data may remain normal. Conversely, histological lesions of DKD improve with metabolic normalization following effective pancreas transplantation. Insulin resistance has been associated with the clinical manifestations of DKD (nephromegaly, glomerular hyperfiltration, albuminuria, and kidney failure). Likewise, insulin resistance may underlie the histological manifestations of DKD. Morphological changes of DKD are absent in newly diagnosed type 1 diabetes patients (with no insulin resistance) but appear afterward when insulin resistance develops. In contrast, structural lesions of DKD are typically present before the clinical diagnosis of type 2 diabetes. Several heterogeneous conditions that share the occurrence of insulin resistance, such as aging, obesity, acromegaly, lipodystrophy, cystic fibrosis, insulin receptor dysfunction, and Alström syndrome, also share both clinical and structural manifestations of kidney disease, including glomerulomegaly and other features of DKD, focal segmental glomerulosclerosis, and C3 glomerulopathy, which might be ascribed to the reduction in the synthesis of factor H binding sites (such as heparan sulfate) that leads to uncontrolled complement activation. Alström syndrome patients show systemic interstitial fibrosis markedly similar to that present in diabetes.
Collapse
Affiliation(s)
- María M Adeva-Andany
- Internal Medicine Department, Nephrology Division, Hospital General Juan Cardona c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Lucía Adeva-Contreras
- University of Santiago de Compostela Medical School, Santiago de Compostela, Acoruna, Spain
| | - Carlos Fernández-Fernández
- Internal Medicine Department, Nephrology Division, Hospital General Juan Cardona c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Natalia Carneiro-Freire
- Internal Medicine Department, Nephrology Division, Hospital General Juan Cardona c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Alberto Domínguez-Montero
- Internal Medicine Department, Nephrology Division, Hospital General Juan Cardona c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| |
Collapse
|
12
|
Shankland SJ, Wessely O. Zoning in on podocytes. Kidney Int 2022; 102:966-968. [PMID: 36272754 DOI: 10.1016/j.kint.2022.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 12/14/2022]
Abstract
Podocytes undergo defined morphologic changes during development, homeostasis, and aging, and on injury. Quantitative podometric assessments of podocyte endowment provide a powerful tool to interrogate glomerular health. Expanding this approach to a regional assessment demonstrates that the podocytes from cortical, subcortical, and juxtamedullary glomeruli are not only morphologically heterogeneous per se, but respond differently to stressors, such as age and hypertension. This suggests that zonal glomerular changes harbor critical information to understand glomerulopathies.
Collapse
Affiliation(s)
- Stuart J Shankland
- Division of Nephrology, University of Washington, Seattle, Washington, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA.
| | - Oliver Wessely
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA.
| |
Collapse
|
13
|
Haruhara K, Kanzaki G, Sasaki T, Hatanaka S, Okabayashi Y, Puelles VG, Harper IS, Shimizu A, Cullen-McEwen LA, Tsuboi N, Yokoo T, Bertram JF. Associations between nephron number and podometrics in human kidneys. Kidney Int 2022; 102:1127-1135. [PMID: 36175177 DOI: 10.1016/j.kint.2022.07.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/06/2022] [Accepted: 07/20/2022] [Indexed: 12/14/2022]
Abstract
Podocyte loss and resultant nephron loss are common processes in the development of glomerulosclerosis and chronic kidney disease. While the cortical distribution of glomerulosclerosis is known to be non-uniform, the relationship between the numbers of non-sclerotic glomeruli (NSG), podometrics and zonal differences in podometrics remain incompletely understood. To help define this, we studied autopsy kidneys from 50 adults with median age 68 years and median eGFR 73.5 mL/min/1.73m2 without apparent glomerular disease in a cross-sectional analysis. The number of NSG per kidney was estimated using the physical dissector/fractionator combination, while podometrics were estimated using model-based stereology. The number of NSG per kidney was directly correlated with podocyte number per tuft and podocyte density. Each additional 100,000 NSG per kidney was associated with 26 more podocytes per glomerulus and 16 podocytes per 106 μm3 increase in podocyte density. These associations were independent of clinical factors and cortical zone. While podocyte number per glomerulus was similar in the three zones, superficial glomeruli were the smallest and had the highest podocyte density but smallest podocytes. Increasing age and hypertension were associated with lower podocyte number, with age mostly affecting superficial glomeruli, and hypertension mostly affecting juxtamedullary glomeruli. Thus, in this first study to report a direct correlation between the number of NSG and podometrics, we suggest that podocyte number is decreasing in NSG of individuals losing nephrons. However, another possible interpretation may be that more nephrons might protect against further podocyte loss.
Collapse
Affiliation(s)
- Kotaro Haruhara
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia; Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.
| | - Go Kanzaki
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takaya Sasaki
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Saeko Hatanaka
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yusuke Okabayashi
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan; III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Victor G Puelles
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia; III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ian S Harper
- Monash Micro Imaging, Monash University, Clayton, Australia
| | - Akira Shimizu
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Luise A Cullen-McEwen
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Nobuo Tsuboi
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - John F Bertram
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia; Australian Research Council (ARC) Training Centre for Cell and Tissue Engineering Technologies, Melbourne, Australia.
| |
Collapse
|
14
|
Navarro-Betancourt JR, Cybulsky AV. The IRE1α pathway in glomerular diseases: The unfolded protein response and beyond. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:971247. [PMID: 39086958 PMCID: PMC11285563 DOI: 10.3389/fmmed.2022.971247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/07/2022] [Indexed: 08/02/2024]
Abstract
Endoplasmic reticulum (ER) function is vital for protein homeostasis ("proteostasis"). Protein misfolding in the ER of podocytes (glomerular visceral epithelial cells) is an important contributor to the pathogenesis of human glomerular diseases. ER protein misfolding causes ER stress and activates a compensatory signaling network called the unfolded protein response (UPR). Disruption of the UPR, in particular deletion of the UPR transducer, inositol-requiring enzyme 1α (IRE1α) in mouse podocytes leads to podocyte injury and albuminuria in aging, and exacerbates injury in glomerulonephritis. The UPR may interact in a coordinated manner with autophagy to relieve protein misfolding and its consequences. Recent studies have identified novel downstream targets of IRE1α, which provide new mechanistic insights into proteostatic pathways. Novel pathways of IRE1α signaling involve reticulophagy, mitochondria, metabolism, vesicular trafficking, microRNAs, and others. Mechanism-based therapies for glomerulopathies are limited, and development of non-invasive ER stress biomarkers, as well as targeting ER stress with pharmacological compounds may represent a therapeutic opportunity for preventing or attenuating progression of chronic kidney disease.
Collapse
Affiliation(s)
| | - Andrey V. Cybulsky
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
15
|
Shankland SJ, Wessely O. GSKβ as a target in podocyte aging. Kidney Int 2022; 102:463-465. [PMID: 35660495 DOI: 10.1016/j.kint.2022.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/22/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Stuart J Shankland
- Division of Nephrology, University of Washington, Seattle, Washington, USA; Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington, USA.
| | - Oliver Wessely
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA.
| |
Collapse
|
16
|
Pippin JW, Kaverina N, Wang Y, Eng DG, Zeng Y, Tran U, Loretz CJ, Chang A, Akilesh S, Poudel C, Perry HS, O’Connor C, Vaughan JC, Bitzer M, Wessely O, Shankland SJ. Upregulated PD-1 signaling antagonizes glomerular health in aged kidneys and disease. J Clin Invest 2022; 132:e156250. [PMID: 35968783 PMCID: PMC9374384 DOI: 10.1172/jci156250] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/24/2022] [Indexed: 01/21/2023] Open
Abstract
With an aging population, kidney health becomes an important medical and socioeconomic factor. Kidney aging mechanisms are not well understood. We previously showed that podocytes isolated from aged mice exhibit increased expression of programmed cell death protein 1 (PD-1) surface receptor and its 2 ligands (PD-L1 and PD-L2). PDCD1 transcript increased with age in microdissected human glomeruli, which correlated with lower estimated glomerular filtration rate and higher segmental glomerulosclerosis and vascular arterial intima-to-lumen ratio. In vitro studies in podocytes demonstrated a critical role for PD-1 signaling in cell survival and in the induction of a senescence-associated secretory phenotype. To prove PD-1 signaling was critical to podocyte aging, aged mice were injected with anti-PD-1 antibody. Treatment significantly improved the aging phenotype in both kidney and liver. In the glomerulus, it increased the life span of podocytes, but not that of parietal epithelial, mesangial, or endothelial cells. Transcriptomic and immunohistochemistry studies demonstrated that anti-PD-1 antibody treatment improved the health span of podocytes. Administering the same anti-PD-1 antibody to young mice with experimental focal segmental glomerulosclerosis (FSGS) lowered proteinuria and improved podocyte number. These results suggest a critical contribution of increased PD-1 signaling toward both kidney and liver aging and in FSGS.
Collapse
Affiliation(s)
| | | | - Yuliang Wang
- Paul G. Allen School of Computer Science and Engineering, and
| | | | - Yuting Zeng
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Uyen Tran
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | | | - Anthony Chang
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Shreeram Akilesh
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Chetan Poudel
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Hannah S. Perry
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | | | - Joshua C. Vaughan
- Department of Chemistry, University of Washington, Seattle, Washington, USA
- Department of Physiology and Biophysics and
| | - Markus Bitzer
- Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Oliver Wessely
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Stuart J. Shankland
- Division of Nephrology
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
17
|
van der Wolde J, Haruhara K, Puelles VG, Nikolic-Paterson D, Bertram JF, Cullen-McEwen LA. The ability of remaining glomerular podocytes to adapt to the loss of their neighbours decreases with age. Cell Tissue Res 2022; 388:439-451. [PMID: 35290515 PMCID: PMC9035415 DOI: 10.1007/s00441-022-03611-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/01/2022] [Indexed: 02/06/2023]
Abstract
Progressive podocyte loss is a feature of healthy ageing. While previous studies have reported age-related changes in podocyte number, density and size and associations with proteinuria and glomerulosclerosis, few studies have examined how the response of remaining podocytes to podocyte depletion changes with age. Mild podocyte depletion was induced in PodCreiDTR mice aged 1, 6, 12 and 18 months via intraperitoneal administration of diphtheria toxin. Control mice received intraperitoneal vehicle. Podometrics, proteinuria and glomerular pathology were assessed, together with podocyte expression of p-rp-S6, a phosphorylation target that represents activity of the mammalian target of rapamycin (mTOR). Podocyte number per glomerulus did not change in control mice in the 18-month time period examined. However, control mice at 18 months had the largest podocytes and the lowest podocyte density. Podocyte depletion at 1, 6 and 12 months resulted in mild albuminuria but no glomerulosclerosis, whereas similar levels of podocyte depletion at 18 months resulted in both albuminuria and glomerulosclerosis. Following podocyte depletion at 6 and 12 months, the number of p-rp-S6 positive podocytes increased significantly, and this was associated with an adaptive increase in podocyte volume. However, at 18 months of age, remaining podocytes were unable to further elevate mTOR expression or undergo hypertrophic adaptation in response to mild podocyte depletion, resulting in marked glomerular pathology. These findings demonstrate the importance of mTORC1-mediated podocyte hypertrophy in both physiological (ageing) and adaptive settings, highlighting a functional limit to podocyte hypertrophy reached under physiological conditions.
Collapse
Affiliation(s)
- James van der Wolde
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Kotaro Haruhara
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
- Division of Nephrology and Hypertension, Jikei University School of Medicine, Tokyo, Japan
| | - Victor G Puelles
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David Nikolic-Paterson
- Departments of Nephrology and Medicine, Monash Health and Monash University, Clayton, Vic, Australia
| | - John F Bertram
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
| | - Luise A Cullen-McEwen
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
| |
Collapse
|
18
|
Fang Y, Chen B, Liu Z, Gong AY, Gunning WT, Ge Y, Malhotra D, Gohara AF, Dworkin LD, Gong R. Age-related GSK3β overexpression drives podocyte senescence and glomerular aging. J Clin Invest 2022; 132:141848. [PMID: 35166234 PMCID: PMC8843754 DOI: 10.1172/jci141848] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
As life expectancy continues to increase, clinicians are challenged by age-related renal impairment that involves podocyte senescence and glomerulosclerosis. There is now compelling evidence that lithium has a potent antiaging activity that ameliorates brain aging and increases longevity in Drosophila and Caenorhabditis elegans. As the major molecular target of lithium action and a multitasking protein kinase recently implicated in a variety of renal diseases, glycogen synthase kinase 3β (GSK3β) is overexpressed and hyperactive with age in glomerular podocytes, correlating with functional and histological signs of kidney aging. Moreover, podocyte-specific ablation of GSK3β substantially attenuated podocyte senescence and glomerular aging in mice. Mechanistically, key mediators of senescence signaling, such as p16INK4A and p53, contain high numbers of GSK3β consensus motifs, physically interact with GSK3β, and act as its putative substrates. In addition, therapeutic targeting of GSK3β by microdose lithium later in life reduced senescence signaling and delayed kidney aging in mice. Furthermore, in psychiatric patients, lithium carbonate therapy inhibited GSK3β activity and mitigated senescence signaling in urinary exfoliated podocytes and was associated with preservation of kidney function. Thus, GSK3β appears to play a key role in podocyte senescence by modulating senescence signaling and may be an actionable senostatic target to delay kidney aging.
Collapse
Affiliation(s)
- Yudong Fang
- Division of Nephrology, Department of Medicine and.,Center for Hypertension and Precision Medicine, University of Toledo College of Medicine, Toledo, Ohio, USA.,Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bohan Chen
- Division of Nephrology, Department of Medicine and.,Division of Kidney Disease and Hypertension, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Zhangsuo Liu
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | | | - Yan Ge
- Division of Nephrology, Department of Medicine and
| | | | | | - Lance D Dworkin
- Division of Nephrology, Department of Medicine and.,Center for Hypertension and Precision Medicine, University of Toledo College of Medicine, Toledo, Ohio, USA.,Division of Kidney Disease and Hypertension, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Rujun Gong
- Division of Nephrology, Department of Medicine and.,Center for Hypertension and Precision Medicine, University of Toledo College of Medicine, Toledo, Ohio, USA.,Division of Kidney Disease and Hypertension, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio, USA
| |
Collapse
|
19
|
Shankland SJ, Wang Y, Shaw AS, Vaughan JC, Pippin JW, Wessely O. Podocyte Aging: Why and How Getting Old Matters. J Am Soc Nephrol 2021; 32:2697-2713. [PMID: 34716239 PMCID: PMC8806106 DOI: 10.1681/asn.2021050614] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/26/2021] [Indexed: 02/04/2023] Open
Abstract
The effects of healthy aging on the kidney, and how these effects intersect with superimposed diseases, are highly relevant in the context of the population's increasing longevity. Age-associated changes to podocytes, which are terminally differentiated glomerular epithelial cells, adversely affect kidney health. This review discusses the molecular and cellular mechanisms underlying podocyte aging, how these mechanisms might be augmented by disease in the aged kidney, and approaches to mitigate progressive damage to podocytes. Furthermore, we address how biologic pathways such as those associated with cellular growth confound aging in humans and rodents.
Collapse
Affiliation(s)
- Stuart J. Shankland
- Division of Nephrology, University of Washington, Seattle, Washington
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington
| | - Yuliang Wang
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington
| | - Andrey S. Shaw
- Department of Research Biology, Genentech, South San Francisco, California
| | - Joshua C. Vaughan
- Department of Chemistry, University of Washington, Seattle, Washington
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Jeffrey W. Pippin
- Division of Nephrology, University of Washington, Seattle, Washington
| | - Oliver Wessely
- Lerner Research Institute, Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic Foundation, Cleveland, Ohio
| |
Collapse
|
20
|
Ni L, Yuan C, Wu X. The recruitment mechanisms and potential therapeutic targets of podocytes from parietal epithelial cells. J Transl Med 2021; 19:441. [PMID: 34674704 PMCID: PMC8529729 DOI: 10.1186/s12967-021-03101-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/01/2021] [Indexed: 01/02/2023] Open
Abstract
Podocytes are differentiated postmitotic cells which cannot be replaced after podocyte injury. The mechanism of podocyte repopulation after injury has aroused wide concern. Parietal epithelial cells (PECs) are heterogeneous and only a specific subpopulation of PECs has the capacity to replace podocytes. Major progress has been achieved in recent years regarding the role and function of a subset of PECs which could transdifferentiate toward podocytes. Additionally, several factors, such as Notch, Wnt/ß-catenin, Wilms’ tumor-1, miR-193a and growth arrest-specific protein 1, have been shown to be involved in these processes. Finally, PECs serve as a potential therapeutic target in the conditions of podocyte loss. In this review, we discuss the latest observations and concepts about the recruitment of podocytes from PECs in glomerular diseases as well as newly identified mechanisms and the most recent treatments for this process.
Collapse
Affiliation(s)
- Lihua Ni
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
| | - Cheng Yuan
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China.
| | - Xiaoyan Wu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
21
|
Cullen-McEwen LA, van der Wolde J, Haruhara K, Tribolet L, Dowling JP, Bertram MG, de Matteo R, Haas F, Czogalla J, Okabayashi Y, Armitage JA, Black MJ, Hoy WE, Puelles VG, Bertram JF. Podocyte endowment and the impact of adult body size on kidney health. Am J Physiol Renal Physiol 2021; 321:F322-F334. [PMID: 34308670 DOI: 10.1152/ajprenal.00029.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022] Open
Abstract
Low birth weight is a risk factor for chronic kidney disease, whereas adult podocyte depletion is a key event in the pathogenesis of glomerulosclerosis. However, whether low birth weight due to poor maternal nutrition is associated with low podocyte endowment and glomerulosclerosis in later life is not known. Female Sprague-Dawley rats were fed a normal-protein diet (NPD; 20%) or low-protein diet (LPD; 8%), to induce low birth weight, from 3 wk before mating until postnatal day 21 (PN21), when kidneys from some male offspring were taken for quantitation of podocyte number and density in whole glomeruli using immunolabeling, tissue clearing, and confocal microscopy. The remaining offspring were fed a normal- or high-fat diet until 6 mo to induce catch-up growth and excessive weight gain, respectively. At PN21, podocyte number per glomerulus was 15% lower in low birth weight (LPD) than normal birth weight (NPD) offspring, with this deficit greater in outer glomeruli. Surprisingly, podocyte number in LPD offspring increased in outer glomeruli between PN21 and 6 mo, although an overall 9% podocyte deficit persisted. Postnatal fat feeding to LPD offspring did not alter podometric indexes or result in glomerular pathology at 6 mo, whereas fat feeding in NPD offspring was associated with far greater body and fat mass as well as podocyte loss, reduced podocyte density, albuminuria, and glomerulosclerosis. This is the first report that maternal diet can influence podocyte endowment. Our findings provide new insights into the impact of low birth weight, podocyte endowment, and postnatal weight on podometrics and kidney health in adulthood.NEW & NOTEWORTHY The present study shows, for the first time, that low birth weight as a result of maternal nutrition is associated with low podocyte endowment. However, a mild podocyte deficit at birth did not result in glomerular pathology in adulthood. In contrast, postnatal podocyte loss in combination with excessive body weight led to albuminuria and glomerulosclerosis. Taken together, these findings provide new insights into the associations between birth weight, podocyte indexes, postnatal weight, and glomerular pathology.
Collapse
Affiliation(s)
- Luise A Cullen-McEwen
- Stem Cells and Development Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - James van der Wolde
- Stem Cells and Development Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Kotaro Haruhara
- Stem Cells and Development Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Leon Tribolet
- Stem Cells and Development Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
- Health and Biosecurity, CSIRO, Geelong, Victoria, Australia
| | - John P Dowling
- Department of Anatomical Pathology, Monash Medical Centre, Clayton, Victoria, Australia
| | - Michael G Bertram
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umea, Sweden
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Robert de Matteo
- Stem Cells and Development Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Fabian Haas
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Czogalla
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yusuke Okabayashi
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - James A Armitage
- School of Medicine (Optometry) and Institute for Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, Victoria, Australia
| | - M Jane Black
- Stem Cells and Development Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Wendy E Hoy
- Centre for Chronic Disease, University of Queensland, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Victor G Puelles
- Stem Cells and Development Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - John F Bertram
- Stem Cells and Development Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
22
|
Parietal epithelial cell dysfunction in crescentic glomerulonephritis. Cell Tissue Res 2021; 385:345-354. [PMID: 34453566 PMCID: PMC8523405 DOI: 10.1007/s00441-021-03513-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022]
Abstract
Crescentic glomerulonephritis represents a group of kidney diseases characterized by rapid loss of kidney function and the formation of glomerular crescents. While the role of the immune system has been extensively studied in relation to the development of crescents, recent findings show that parietal epithelial cells play a key role in the pathophysiology of crescent formation, even in the absence of immune modulation. This review highlights our current understanding of parietal epithelial cell biology and the reported physiological and pathological roles that these cells play in glomerular lesion formation, especially in the context of crescentic glomerulonephritis.
Collapse
|
23
|
Butt L, Unnersjö-Jess D, Höhne M, Schermer B, Edwards A, Benzing T. A mathematical estimation of the physical forces driving podocyte detachment. Kidney Int 2021; 100:1054-1062. [PMID: 34332959 DOI: 10.1016/j.kint.2021.06.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 05/27/2021] [Accepted: 06/18/2021] [Indexed: 01/21/2023]
Abstract
Loss of podocytes, possibly through the detachment of viable cells, is a hallmark of progressive glomerular disease. Podocytes are exposed to considerable physical forces due to pressure and flow resulting in circumferential wall stress and tangential shear stress exerted on the podocyte cell body, which have been proposed to contribute to podocyte depletion. However, estimations of in vivo alterations of physical forces in glomerular disease have been hampered by a lack of quantitative functional and morphological data. Here, we used ultra-resolution data and computational analyses in a mouse model of human disease, hereditary late-onset focal segmental glomerular sclerosis, to calculate increased mechanical stress upon podocyte injury. Transversal shear stress on the lateral walls of the foot processes was prominently increased during the initial stages of podocyte detachment. Thus, our study highlights the importance of targeting glomerular hemodynamics to treat glomerular disease.
Collapse
Affiliation(s)
- Linus Butt
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - David Unnersjö-Jess
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Martin Höhne
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Aurelie Edwards
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
24
|
Fibrosis, the Bad Actor in Cardiorenal Syndromes: Mechanisms Involved. Cells 2021; 10:cells10071824. [PMID: 34359993 PMCID: PMC8307805 DOI: 10.3390/cells10071824] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiorenal syndrome is a term that defines the complex bidirectional nature of the interaction between cardiac and renal disease. It is well established that patients with kidney disease have higher incidence of cardiovascular comorbidities and that renal dysfunction is a significant threat to the prognosis of patients with cardiac disease. Fibrosis is a common characteristic of organ injury progression that has been proposed not only as a marker but also as an important driver of the pathophysiology of cardiorenal syndromes. Due to the relevance of fibrosis, its study might give insight into the mechanisms and targets that could potentially be modulated to prevent fibrosis development. The aim of this review was to summarize some of the pathophysiological pathways involved in the fibrotic damage seen in cardiorenal syndromes, such as inflammation, oxidative stress and endoplasmic reticulum stress, which are known to be triggers and mediators of fibrosis.
Collapse
|
25
|
Bondue T, Arcolino FO, Veys KRP, Adebayo OC, Levtchenko E, van den Heuvel LP, Elmonem MA. Urine-Derived Epithelial Cells as Models for Genetic Kidney Diseases. Cells 2021; 10:cells10061413. [PMID: 34204173 PMCID: PMC8230018 DOI: 10.3390/cells10061413] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 12/11/2022] Open
Abstract
Epithelial cells exfoliated in human urine can include cells anywhere from the urinary tract and kidneys; however, podocytes and proximal tubular epithelial cells (PTECs) are by far the most relevant cell types for the study of genetic kidney diseases. When maintained in vitro, they have been proven extremely valuable for discovering disease mechanisms and for the development of new therapies. Furthermore, cultured patient cells can individually represent their human sources and their specific variants for personalized medicine studies, which are recently gaining much interest. In this review, we summarize the methodology for establishing human podocyte and PTEC cell lines from urine and highlight their importance as kidney disease cell models. We explore the well-established and recent techniques of cell isolation, quantification, immortalization and characterization, and we describe their current and future applications.
Collapse
Affiliation(s)
- Tjessa Bondue
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (T.B.); (F.O.A.); (K.R.P.V.); (O.C.A.); (E.L.); (L.P.v.d.H.)
| | - Fanny O. Arcolino
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (T.B.); (F.O.A.); (K.R.P.V.); (O.C.A.); (E.L.); (L.P.v.d.H.)
| | - Koenraad R. P. Veys
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (T.B.); (F.O.A.); (K.R.P.V.); (O.C.A.); (E.L.); (L.P.v.d.H.)
- Department of Pediatrics, Division of Pediatric Nephrology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Oyindamola C. Adebayo
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (T.B.); (F.O.A.); (K.R.P.V.); (O.C.A.); (E.L.); (L.P.v.d.H.)
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Elena Levtchenko
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (T.B.); (F.O.A.); (K.R.P.V.); (O.C.A.); (E.L.); (L.P.v.d.H.)
- Department of Pediatrics, Division of Pediatric Nephrology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Lambertus P. van den Heuvel
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (T.B.); (F.O.A.); (K.R.P.V.); (O.C.A.); (E.L.); (L.P.v.d.H.)
- Department of Pediatric Nephrology, Radboud University Medical Center, 6500 Nijmegen, The Netherlands
| | - Mohamed A. Elmonem
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo 11628, Egypt
- Correspondence:
| |
Collapse
|
26
|
Haruhara K, Sasaki T, de Zoysa N, Okabayashi Y, Kanzaki G, Yamamoto I, Harper IS, Puelles VG, Shimizu A, Cullen-McEwen LA, Tsuboi N, Yokoo T, Bertram JF. Podometrics in Japanese Living Donor Kidneys: Associations with Nephron Number, Age, and Hypertension. J Am Soc Nephrol 2021; 32:1187-1199. [PMID: 33627345 PMCID: PMC8259686 DOI: 10.1681/asn.2020101486] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/11/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Podocyte depletion, low nephron number, aging, and hypertension are associated with glomerulosclerosis and CKD. However, the relationship between podometrics and nephron number has not previously been examined. METHODS To investigate podometrics and nephron number in healthy Japanese individuals, a population characterized by a relatively low nephron number, we immunostained single paraffin sections from 30 Japanese living-kidney donors (median age, 57 years) with podocyte-specific markers and analyzed images obtained with confocal microscopy. We used model-based stereology to estimate podometrics, and a combined enhanced-computed tomography/biopsy-specimen stereology method to estimate nephron number. RESULTS The median number of nonsclerotic nephrons per kidney was 659,000 (interquartile range [IQR], 564,000-825,000). The median podocyte number and podocyte density were 518 (IQR, 428-601) per tuft and 219 (IQR, 180-253) per 106μm3, respectively; these values are similar to those previously reported for other races. Total podocyte number per kidney (obtained by multiplying the individual number of nonsclerotic glomeruli by podocyte number per glomerulus) was 376 million (IQR, 259-449 million) and ranged 7.4-fold between donors. On average, these healthy kidneys lost 5.63 million podocytes per kidney per year, with most of this loss associated with glomerular loss resulting from global glomerulosclerosis, rather than podocyte loss from healthy glomeruli. Hypertension was associated with lower podocyte density and larger podocyte volume, independent of age. CONCLUSIONS Estimation of the number of nephrons, podocytes, and other podometric parameters in individual kidneys provides new insights into the relationships between these parameters, age, and hypertension in the kidney. This approach might be of considerable value in evaluating the kidney in health and disease.
Collapse
Affiliation(s)
- Kotaro Haruhara
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia,Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takaya Sasaki
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Natasha de Zoysa
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Yusuke Okabayashi
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Go Kanzaki
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Izumi Yamamoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Ian S. Harper
- Monash Micro Imaging, Monash University, Clayton, Australia
| | - Victor G. Puelles
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Akira Shimizu
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Luise A. Cullen-McEwen
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Nobuo Tsuboi
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - John F. Bertram
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| |
Collapse
|
27
|
Zimmermann M, Klaus M, Wong MN, Thebille AK, Gernhold L, Kuppe C, Halder M, Kranz J, Wanner N, Braun F, Wulf S, Wiech T, Panzer U, Krebs CF, Hoxha E, Kramann R, Huber TB, Bonn S, Puelles VG. Deep learning-based molecular morphometrics for kidney biopsies. JCI Insight 2021; 6:144779. [PMID: 33705360 PMCID: PMC8119189 DOI: 10.1172/jci.insight.144779] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/24/2021] [Indexed: 12/21/2022] Open
Abstract
Morphologic examination of tissue biopsies is essential for histopathological diagnosis. However, accurate and scalable cellular quantification in human samples remains challenging. Here, we present a deep learning-based approach for antigen-specific cellular morphometrics in human kidney biopsies, which combines indirect immunofluorescence imaging with U-Net-based architectures for image-to-image translation and dual segmentation tasks, achieving human-level accuracy. In the kidney, podocyte loss represents a hallmark of glomerular injury and can be estimated in diagnostic biopsies. Thus, we profiled over 27,000 podocytes from 110 human samples, including patients with antineutrophil cytoplasmic antibody-associated glomerulonephritis (ANCA-GN), an immune-mediated disease with aggressive glomerular damage and irreversible loss of kidney function. We identified previously unknown morphometric signatures of podocyte depletion in patients with ANCA-GN, which allowed patient classification and, in combination with routine clinical tools, showed potential for risk stratification. Our approach enables robust and scalable molecular morphometric analysis of human tissues, yielding deeper biological insights into the human kidney pathophysiology.
Collapse
Affiliation(s)
- Marina Zimmermann
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Medical Systems Biology, Center for Biomedical AI (bAIome), Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Klaus
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Medical Systems Biology, Center for Biomedical AI (bAIome), Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Milagros N Wong
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ann-Katrin Thebille
- Institute of Medical Systems Biology, Center for Biomedical AI (bAIome), Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas Gernhold
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Kuppe
- Department of Nephrology and Clinical Immunology and.,Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Maurice Halder
- Department of Nephrology and Clinical Immunology and.,Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Jennifer Kranz
- St.-Antonius Hospital Eschweiler, Department of Urology, Eschweiler, Germany.,Department of Urology and Kidney Transplantation, Martin-Luther-University, Halle, Germany
| | - Nicola Wanner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Braun
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sonia Wulf
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Wiech
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulf Panzer
- III. Department of Medicine, Division of Translational Immunology, and.,Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian F Krebs
- III. Department of Medicine, Division of Translational Immunology, and.,Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elion Hoxha
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rafael Kramann
- Department of Nephrology and Clinical Immunology and.,Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany.,Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, Center for Biomedical AI (bAIome), Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Victor G Puelles
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
28
|
Lee MB, Bitto A, Kaeberlein M. Proceedings from the annual University of Washington Geroscience Symposium, October 23, 2020. GeroScience 2021; 43:1585-1589. [PMID: 33791939 PMCID: PMC8012076 DOI: 10.1007/s11357-021-00346-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 01/02/2023] Open
Abstract
The University of Washington Nathan Shock Center of Excellence in the Biology of Aging in conjunction with the Healthy Aging and Longevity Research Institute held its annual geroscience symposium virtually on October 23, 2020. The symposium was divided into three sessions: (I) organ aging and growth signaling, (II) neurodegeneration and metabolism, and (III) innovative approaches in geroscience and aging research. Nine speakers affiliated with the University of Washington and three invited guest speakers, predominantly trainee, and junior faculty presented their research. Here, we summarize research presented during the symposium. A geroscience special issue, of which this is a part, collects submissions from symposium presenters as well as trainees supported by the Biological Mechanisms of Healthy Aging training program.
Collapse
Affiliation(s)
- Mitchell B Lee
- Department of Laboratory Medicine and Pathology, University of Washington, Box 357470, Seattle, WA, 98195-7470, USA
| | - Alessandro Bitto
- Department of Laboratory Medicine and Pathology, University of Washington, Box 357470, Seattle, WA, 98195-7470, USA
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, University of Washington, Box 357470, Seattle, WA, 98195-7470, USA.
| |
Collapse
|
29
|
Rousselle T, Bardhi E, Maluf DG, Mas VR. Epigenetic modifications and the development of kidney graft fibrosis. Curr Opin Organ Transplant 2021; 26:1-9. [PMID: 33315766 PMCID: PMC8059991 DOI: 10.1097/mot.0000000000000839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW To outline recent discoveries in epigenetic regulatory mechanisms that have potential implications in the development of renal fibrosis following kidney transplantation. RECENT FINDINGS The characterization of renal fibrosis following kidney transplantation has shown TGFβ/Smad signaling to play a major role in the progression to chronic allograft dysfunction. The onset of unregulated proinflammatory pathways are only exacerbated by the decline in regulatory mechanisms lost with progressive patient age and comorbidities such as hypertension and diabetes. However, significant developments in the recognition of epigenetic regulatory markers upstream of aberrant TGFβ-signaling has significant clinical potential to provide therapeutic targets for the treatment of renal fibrosis. In addition, discoveries in extracellular vesicles and the characterization of their cargo has laid new framework for the potential to evaluate patient outcomes independent of invasive biopsies. SUMMARY The current review summarizes the main findings in epigenetic machinery specific to the development of renal fibrosis and highlights therapeutic options that have significant potential to translate into clinical practice.
Collapse
Affiliation(s)
- Thomas Rousselle
- Surgical Sciences Division, Department of Surgery, School
of Medicine, University of Maryland
| | - Elissa Bardhi
- Surgical Sciences Division, Department of Surgery, School
of Medicine, University of Maryland
| | - Daniel G. Maluf
- Surgical Sciences Division, Department of Surgery, School
of Medicine, University of Maryland
- Program in Transplantation, School of Medicine, University
of Maryland
| | - Valeria R. Mas
- Division of Transplant, Department of Surgery, School of
Medicine, University of Maryland
| |
Collapse
|
30
|
Tiyasatkulkovit W, Aksornthong S, Adulyaritthikul P, Upanan P, Wongdee K, Aeimlapa R, Teerapornpuntakit J, Rojviriya C, Panupinthu N, Charoenphandhu N. Excessive salt consumption causes systemic calcium mishandling and worsens microarchitecture and strength of long bones in rats. Sci Rep 2021; 11:1850. [PMID: 33473159 PMCID: PMC7817681 DOI: 10.1038/s41598-021-81413-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
Excessive salt intake has been associated with the development of non-communicable diseases, including hypertension with several cardiovascular consequences. Although the detrimental effects of high salt on the skeleton have been reported, longitudinal assessment of calcium balance together with changes in bone microarchitecture and strength under salt loading has not been fully demonstrated. To address these unanswered issues, male Sprague-Dawley rats were fed normal salt diet (NSD; 0.8% NaCl) or high salt diet (HSD; 8% NaCl) for 5 months. Elevation of blood pressure, cardiac hypertrophy and glomerular deterioration were observed in HSD, thus validating the model. The balance studies were performed to monitor calcium input and output upon HSD challenge. The HSD-induced increase in calcium losses in urine and feces together with reduced fractional calcium absorption led to a decrease in calcium retention. With these calcium imbalances, we therefore examined microstructural changes of long bones of the hind limbs. Using the synchrotron radiation x-ray tomographic microscopy, we showed that trabecular structure of tibia and femur of HSD displayed a marked increase in porosity. Consistently, the volumetric micro-computed tomography also demonstrated a significant decrease in trabecular bone mineral density with expansion of endosteal perimeter in the tibia. Interestingly, bone histomorphometric analyses indicated that salt loading caused an increase in osteoclast number together with decreases in osteoblast number and osteoid volume. This uncoupling process of bone remodeling in HSD might underlie an accelerated bone loss and bone structural changes. In conclusion, long-term excessive salt consumption leads to impairment of skeletal mass and integrity possibly through negative calcium balance.
Collapse
Affiliation(s)
- Wacharaporn Tiyasatkulkovit
- grid.10223.320000 0004 1937 0490Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400 Thailand ,grid.7922.e0000 0001 0244 7875Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Sirion Aksornthong
- grid.10223.320000 0004 1937 0490Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400 Thailand ,grid.10223.320000 0004 1937 0490Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400 Thailand
| | - Punyanuch Adulyaritthikul
- grid.10223.320000 0004 1937 0490Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400 Thailand ,grid.10223.320000 0004 1937 0490Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400 Thailand
| | - Pornpailin Upanan
- grid.411825.b0000 0000 9482 780XFaculty of Allied Health Sciences, Burapha University, Chonburi, 20131 Thailand
| | - Kannikar Wongdee
- grid.10223.320000 0004 1937 0490Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400 Thailand ,grid.411825.b0000 0000 9482 780XFaculty of Allied Health Sciences, Burapha University, Chonburi, 20131 Thailand
| | - Ratchaneevan Aeimlapa
- grid.10223.320000 0004 1937 0490Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400 Thailand ,grid.10223.320000 0004 1937 0490Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400 Thailand
| | - Jarinthorn Teerapornpuntakit
- grid.10223.320000 0004 1937 0490Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400 Thailand ,grid.412029.c0000 0000 9211 2704Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000 Thailand
| | - Catleya Rojviriya
- grid.472685.aSynchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, 30000 Thailand
| | - Nattapon Panupinthu
- grid.10223.320000 0004 1937 0490Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400 Thailand ,grid.10223.320000 0004 1937 0490Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400 Thailand
| | - Narattaphol Charoenphandhu
- grid.10223.320000 0004 1937 0490Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400 Thailand ,grid.10223.320000 0004 1937 0490Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400 Thailand ,grid.10223.320000 0004 1937 0490Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170 Thailand ,The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, 10300 Thailand
| |
Collapse
|
31
|
Wang Y, Eng DG, Kaverina NV, Loretz CJ, Koirala A, Akilesh S, Pippin JW, Shankland SJ. Global transcriptomic changes occur in aged mouse podocytes. Kidney Int 2020; 98:1160-1173. [PMID: 32592814 PMCID: PMC7606654 DOI: 10.1016/j.kint.2020.05.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/17/2020] [Accepted: 05/28/2020] [Indexed: 01/15/2023]
Abstract
Glomerular podocytes undergo structural and functional changes with advanced age, that increase susceptibility of aging kidneys to worse outcomes following superimposed glomerular diseases. To delineate transcriptional changes in podocytes in aged mice, RNA-seq was performed on isolated populations of reporter-labeled (tdTomato) podocytes from multiple young (two to three months) and advanced aged mice (22 to 24 months, equivalent to 70 plus year old humans). Of the 2,494 differentially expressed genes, 1,219 were higher and 1,275 were lower in aged podocytes. Pathway enrichment showed that major biological processes increased in aged podocytes included immune responses, non-coding RNA metabolism, gene silencing and MAP kinase signaling. Conversely, aged podocytes showed downregulation of developmental, morphogenesis and metabolic processes. Canonical podocyte marker gene expression decreased in aged podocytes, with increases in apoptotic and senescence genes providing a mechanism for the progressive loss of podocytes seen with aging. In addition, we revealed aberrations in the podocyte autocrine signaling network, identified the top transcription factors perturbed in aged podocytes, and uncovered candidate gene modulations that might promote healthy aging in podocytes. The transcriptional signature of aging is distinct from other kidney diseases. Thus, our study provides insights into biomarker discovery and molecular targeting of the aging process itself within podocytes.
Collapse
Affiliation(s)
- Yuliang Wang
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington, USA; Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - Diana G Eng
- Division of Nephrology, University of Washington, Seattle, Washington, USA
| | - Natalya V Kaverina
- Division of Nephrology, University of Washington, Seattle, Washington, USA
| | - Carol J Loretz
- Division of Nephrology, University of Washington, Seattle, Washington, USA
| | - Abbal Koirala
- Division of Nephrology, University of Washington, Seattle, Washington, USA
| | - Shreeram Akilesh
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Jeffrey W Pippin
- Division of Nephrology, University of Washington, Seattle, Washington, USA
| | - Stuart J Shankland
- Division of Nephrology, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
32
|
Kaverina NV, Eng DG, Miner JH, Pippin JW, Shankland SJ. Parietal epithelial cell differentiation to a podocyte fate in the aged mouse kidney. Aging (Albany NY) 2020; 12:17601-17624. [PMID: 32858527 PMCID: PMC7521511 DOI: 10.18632/aging.103788] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/29/2020] [Indexed: 01/24/2023]
Abstract
Healthy aging is typified by a progressive and absolute loss of podocytes over the lifespan of animals and humans. To test the hypothesis that a subset of glomerular parietal epithelial cell (PEC) progenitors transition to a podocyte fate with aging, dual reporter PEC-rtTA|LC1|tdTomato|Nphs1-FLPo|FRT-EGFP mice were generated. PECs were inducibly labeled with a tdTomato reporter, and podocytes were constitutively labeled with an EGFP reporter. With advancing age (14 and 24 months) glomeruli in the juxta-medullary cortex (JMC) were more severely injured than those in the outer cortex (OC). In aged mice (24m), injured glomeruli with lower podocyte number (41% decrease), showed more PEC migration and differentiation to a podocyte fate than mildly injured or healthy glomeruli. PECs differentiated to a podocyte fate had ultrastructural features of podocytes and co-expressed the podocyte markers podocin, nephrin, p57 and VEGF164, but not markers of mesangial (Perlecan) or endothelial (ERG) cells. PECs differentiated to a podocyte fate did not express CD44, a marker of PEC activation. Taken together, we demonstrate that a subpopulation of PECs differentiate to a podocyte fate predominantly in injured glomeruli in mice of advanced age.
Collapse
Affiliation(s)
| | - Diana G. Eng
- Division of Nephrology, University of Washington, Seattle, WA 98195, USA
| | - Jeffrey H. Miner
- Division of Nephrology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Jeffrey W. Pippin
- Division of Nephrology, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
33
|
Gonçalves GD, Walton SL, Gazzard SE, van der Wolde J, Mathias PCF, Moritz KM, Cullen-McEwen LA, Bertram JF. Maternal hypoxia developmentally programs low podocyte endowment in male, but not female offspring. Anat Rec (Hoboken) 2020; 303:2668-2678. [PMID: 31984678 DOI: 10.1002/ar.24369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/02/2019] [Accepted: 12/08/2019] [Indexed: 11/07/2022]
Abstract
Fetal hypoxia is a common complication of pregnancy. We have previously reported that maternal hypoxia in late gestation in mice gives rise to male offspring with reduced nephron number, while females have normal nephron number. Male offspring later develop proteinuria and renal pathology, including glomerular pathology, whereas female offspring are unaffected. Given the central role of podocyte depletion in glomerular and renal pathology, we examined whether maternal hypoxia resulted in low podocyte endowment in offspring. Pregnant CD1 mice were allocated at embryonic day 14.5 to normoxic (21% oxygen) or hypoxic (12% oxygen) conditions. At postnatal day 21, kidneys from mice were immersion fixed, and one mid-hilar slice per kidney was immunostained with antibodies directed against p57 and synaptopodin for podocyte identification. Slices were cleared and imaged with a multiphoton microscope for podometric analysis. Male hypoxic offspring had significantly lower birth weight, nephron number, and podocyte endowment than normoxic male offspring (podocyte number; normoxic 62.86 ± 2.26 podocytes per glomerulus, hypoxic 53.38 ± 2.25; p < .01, mean ± SEM). In contrast, hypoxic female offspring had low birth weight but their nephron and podocyte endowment was the same as normoxic female offspring (podocyte number; normoxic 62.38 ± 1.86 podocytes per glomerulus, hypoxic 61.81 ± 1.80; p = .88). To the best of our knowledge, this is the first report of developmentally programmed low podocyte endowment. Given the well-known association between podocyte depletion in adulthood and glomerular pathology, we postulate that podocyte endowment may place offspring at risk of renal disease in adulthood, and explain the greater vulnerability of male offspring.
Collapse
Affiliation(s)
- Gessica D Gonçalves
- Development and Stem Cells Program, Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia.,Biological Science Program, Department of Biotechnology, Genetics and Cellular Biology, State University of Maringá, Maringá, Brazil
| | - Sarah L Walton
- School of Biomedical Sciences and Child Health Research Centre, The University of Queensland, Brisbane, Australia.,Cardiovascular Disease Program, and Department of Physiology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Sarah E Gazzard
- Development and Stem Cells Program, Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - James van der Wolde
- Development and Stem Cells Program, Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Paulo C F Mathias
- Biological Science Program, Department of Biotechnology, Genetics and Cellular Biology, State University of Maringá, Maringá, Brazil
| | - Karen M Moritz
- School of Biomedical Sciences and Child Health Research Centre, The University of Queensland, Brisbane, Australia
| | - Luise A Cullen-McEwen
- Development and Stem Cells Program, Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - John F Bertram
- Development and Stem Cells Program, Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| |
Collapse
|
34
|
Li J, Sun YBY, Chen W, Fan J, Li S, Qu X, Chen Q, Chen R, Zhu D, Zhang J, Wu Z, Chi H, Crawford S, Oorschot V, Puelles VG, Kerr PG, Ren Y, Nilsson SK, Christian M, Tang H, Chen W, Bertram JF, Nikolic-Paterson DJ, Yu X. Smad4 promotes diabetic nephropathy by modulating glycolysis and OXPHOS. EMBO Rep 2020; 21:e48781. [PMID: 31916354 DOI: 10.15252/embr.201948781] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/31/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage kidney disease. TGF-β1/Smad3 signalling plays a major pathological role in DN; however, the contribution of Smad4 has not been examined. Smad4 depletion in the kidney using anti-Smad4 locked nucleic acid halted progressive podocyte damage and glomerulosclerosis in mouse type 2 DN, suggesting a pathogenic role of Smad4 in podocytes. Smad4 is upregulated in human and mouse podocytes during DN. Conditional Smad4 deletion in podocytes protects mice from type 2 DN, independent of obesity. Mechanistically, hyperglycaemia induces Smad4 localization to mitochondria in podocytes, resulting in reduced glycolysis and oxidative phosphorylation and increased production of reactive oxygen species. This operates, in part, via direct binding of Smad4 to the glycolytic enzyme PKM2 and reducing the active tetrameric form of PKM2. In addition, Smad4 interacts with ATPIF1, causing a reduction in ATPIF1 degradation. In conclusion, we have discovered a mitochondrial mechanism by which Smad4 causes diabetic podocyte injury.
Collapse
Affiliation(s)
- Jinhua Li
- Shunde Women and Children Hospital, Guangdong Medical University, Shunde, Guangdong, China.,The Second Clinical College, Guangdong Medical University, Dongguan, Guangdong, China.,Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia.,Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia.,Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Yu Bo Yang Sun
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
| | - Weiyi Chen
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
| | - Jinjin Fan
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Songhui Li
- Biomedical Manufacturing Commonwealth Scientific and Industrial Research Organisation (CSIRO), Melbourne, Vic., Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, Vic., Australia
| | - Xinli Qu
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
| | - Qikang Chen
- Shunde Women and Children Hospital, Guangdong Medical University, Shunde, Guangdong, China
| | - Riling Chen
- Shunde Women and Children Hospital, Guangdong Medical University, Shunde, Guangdong, China
| | - Dajian Zhu
- Shunde Women and Children Hospital, Guangdong Medical University, Shunde, Guangdong, China
| | - Jinfeng Zhang
- Shunde Women and Children Hospital, Guangdong Medical University, Shunde, Guangdong, China
| | - Zhuguo Wu
- The Second Clinical College, Guangdong Medical University, Dongguan, Guangdong, China
| | - Honggang Chi
- The Second Clinical College, Guangdong Medical University, Dongguan, Guangdong, China
| | - Simon Crawford
- Monash Ramaciotti Cryo EM Platform, Monash Biomedicine Discovery Institute, Clayton, Vic., Australia
| | - Viola Oorschot
- Monash Ramaciotti Cryo EM Platform, Monash Biomedicine Discovery Institute, Clayton, Vic., Australia
| | - Victor G Puelles
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia.,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Departments of Nephrology and Medicine, Monash Health and Monash University, Clayton, Vic., Australia
| | - Peter G Kerr
- Departments of Nephrology and Medicine, Monash Health and Monash University, Clayton, Vic., Australia
| | - Yi Ren
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Susan K Nilsson
- Biomedical Manufacturing Commonwealth Scientific and Industrial Research Organisation (CSIRO), Melbourne, Vic., Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, Vic., Australia
| | - Mark Christian
- School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, UK
| | - Huanwen Tang
- Dongguan Key Laboratory of Environmental Medicine, Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - John F Bertram
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
| | - David J Nikolic-Paterson
- Departments of Nephrology and Medicine, Monash Health and Monash University, Clayton, Vic., Australia
| | - Xueqing Yu
- Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
35
|
Yu MY, Kim JE, Lee S, Choi JW, Kim YC, Han SS, Lee H, Cha RH, Lee JP, Lee JW, Kim DK, Kim YS, Yang SH. Krüppel-like factor 15 is a key suppressor of podocyte fibrosis under rotational force-driven pressure. Exp Cell Res 2020; 386:111706. [PMID: 31697927 DOI: 10.1016/j.yexcr.2019.111706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 11/16/2022]
Abstract
Krüppel-like factor 15 (KLF15) is a well-known transcription factor associated with podocyte injury and fibrosis. Recently, hypertensive nephropathy was discovered to be closely related to podocyte injury and fibrosis. However, methods to stimulate hypertension in vitro are lacking. Here, we constructed an in vitro model mimicking hypertension using a rotational force device to identify the role of KLF15 in fibrosis due to mechanically induced hypertensive injury. First, we found that KLF15 expression was decreased in patients with hypertensive nephropathy. Then, an in vitro study of hypertension due to rotational force was conducted, and an increase in fibrosis markers and decrease in KLF15 levels were determined after application of 4 mmHg pressure in primary cultured human podocytes. KLF15 and tight junction protein levels increased with retinoic acid treatment. siRNA-mediated inhibition of KLF15 exacerbated pressure-induced fibrosis injury, and KLF15 expression after treatment with angiotensin II was similar to that observed after treatment with the blood pressure modeling device. Furthermore, the reduced KLF15 levels after mechanical pressure application were restored after the administration of an antihypertensive drug. KLF15 expression was also low in vivo. We confirmed the protective role of KLF15 in fibrosis using a mechanically induced in vitro model of hypertensive injury.
Collapse
Affiliation(s)
- Mi-Yeon Yu
- Department of Internal Medicine, Hanyang University Guri Hospital, Republic of Korea
| | - Ji Eun Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Saram Lee
- Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Jin Woo Choi
- Interdisciplinary Program in Bioengineering Major, Graduate School, Seoul National University, Seoul, Republic of Korea
| | - Yong Chul Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seung Seok Han
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hajeong Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Kidney Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ran Hui Cha
- Department of Internal Medicine, National Medical Center, Seoul, Republic of Korea
| | - Jung Pyo Lee
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Jae Wook Lee
- Nephrology Clinic, National Cancer Center, Goyang, Gyeonggi-do, Republic of Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Kidney Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yon Su Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Kidney Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Hee Yang
- Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea; Kidney Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
36
|
Candelier JJ, Lorenzo HK. Idiopathic nephrotic syndrome and serum permeability factors: a molecular jigsaw puzzle. Cell Tissue Res 2019; 379:231-243. [PMID: 31848752 DOI: 10.1007/s00441-019-03147-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022]
Abstract
Nephrotic syndrome is traditionally defined using the triad of edema, hypoalbuminemia, and proteinuria, but this syndrome is very heterogeneous and difficult to clarify. Its idiopathic form (INS) is probably the most harmful and essentially comprises two entities: minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS). We will consider some hypotheses regarding the mechanisms underlying INS: (i) the presence of several glomerular permeability factors in the sera of patients that alter the morphology and function of podocytes leading to proteinuria, (ii) the putative role of immune cells. Thanks to recent data, our understanding of these disorders is evolving towards a more multifactorial origin. In this context, circulating factors may be associated according to sequential kinetic mechanisms or micro-environmental changes that need to be determined. In addition, the resulting proteinuria may trigger more proteinuria enhancing the glomerular destabilization.
Collapse
Affiliation(s)
- Jean-Jacques Candelier
- INSERM U1197, Hôpital Paul Brousse, 14 Avenue Paul Vaillant Couturier, 94800, Villejuif, France.,Université Paris-Saclay, Campus Universitaire d'Orsay, 91405, Orsay, France
| | - Hans-Kristian Lorenzo
- INSERM U1197, Hôpital Paul Brousse, 14 Avenue Paul Vaillant Couturier, 94800, Villejuif, France. .,Université Paris-Saclay, Campus Universitaire d'Orsay, 91405, Orsay, France. .,Service de Néphrologie, Hôpital Bicêtre, Faculté de Médecine Paris-Saclay, 94270, Le Kremlin-Bicêtre, France.
| |
Collapse
|
37
|
Puelles VG, van der Wolde JW, Wanner N, Scheppach MW, Cullen-McEwen LA, Bork T, Lindenmeyer MT, Gernhold L, Wong MN, Braun F, Cohen CD, Kett MM, Kuppe C, Kramann R, Saritas T, van Roeyen CR, Moeller MJ, Tribolet L, Rebello R, Sun YB, Li J, Müller-Newen G, Hughson MD, Hoy WE, Person F, Wiech T, Ricardo SD, Kerr PG, Denton KM, Furic L, Huber TB, Nikolic-Paterson DJ, Bertram JF. mTOR-mediated podocyte hypertrophy regulates glomerular integrity in mice and humans. JCI Insight 2019; 4:99271. [PMID: 31534053 DOI: 10.1172/jci.insight.99271] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 08/08/2019] [Indexed: 02/06/2023] Open
Abstract
The cellular origins of glomerulosclerosis involve activation of parietal epithelial cells (PECs) and progressive podocyte depletion. While mammalian target of rapamycin-mediated (mTOR-mediated) podocyte hypertrophy is recognized as an important signaling pathway in the context of glomerular disease, the role of podocyte hypertrophy as a compensatory mechanism preventing PEC activation and glomerulosclerosis remains poorly understood. In this study, we show that glomerular mTOR and PEC activation-related genes were both upregulated and intercorrelated in biopsies from patients with focal segmental glomerulosclerosis (FSGS) and diabetic nephropathy, suggesting both compensatory and pathological roles. Advanced morphometric analyses in murine and human tissues identified podocyte hypertrophy as a compensatory mechanism aiming to regulate glomerular functional integrity in response to somatic growth, podocyte depletion, and even glomerulosclerosis - all of this in the absence of detectable podocyte regeneration. In mice, pharmacological inhibition of mTOR signaling during acute podocyte loss impaired hypertrophy of remaining podocytes, resulting in unexpected albuminuria, PEC activation, and glomerulosclerosis. Exacerbated and persistent podocyte hypertrophy enabled a vicious cycle of podocyte loss and PEC activation, suggesting a limit to its beneficial effects. In summary, our data highlight a critical protective role of mTOR-mediated podocyte hypertrophy following podocyte loss in order to preserve glomerular integrity, preventing PEC activation and glomerulosclerosis.
Collapse
Affiliation(s)
- Victor G Puelles
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia.,Department of Nephrology, Monash Health, Melbourne, Australia.,Center for Inflammatory Diseases, Monash University, Melbourne, Australia.,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - James W van der Wolde
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Nicola Wanner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Luise A Cullen-McEwen
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Tillmann Bork
- Renal Division, University Medical Center Freiburg, Freiburg, Germany
| | - Maja T Lindenmeyer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas Gernhold
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Milagros N Wong
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Braun
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clemens D Cohen
- Nephrological Center Medical Clinic and Polyclinic IV, University of Munich, Munich, Germany
| | - Michelle M Kett
- Cardiovascular Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Australia
| | | | | | | | | | | | - Leon Tribolet
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Richard Rebello
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Yu By Sun
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Jinhua Li
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Gerhard Müller-Newen
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany
| | - Michael D Hughson
- Department of Pathology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Wendy E Hoy
- Centre for Chronic Disease, The University of Queensland, Brisbane, Queensland, Australia
| | - Fermin Person
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Wiech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sharon D Ricardo
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Peter G Kerr
- Department of Nephrology, Monash Health, Melbourne, Australia.,Center for Inflammatory Diseases, Monash University, Melbourne, Australia
| | - Kate M Denton
- Cardiovascular Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Australia
| | - Luc Furic
- Prostate Cancer Translational Research Laboratory, Peter MacCallum Cancer Centre.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Australia.,Cancer Program, Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David J Nikolic-Paterson
- Department of Nephrology, Monash Health, Melbourne, Australia.,Center for Inflammatory Diseases, Monash University, Melbourne, Australia
| | - John F Bertram
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| |
Collapse
|
38
|
Abstract
Finding new therapeutic targets of glomerulosclerosis treatment is an ongoing quest. Due to a living environment of various stresses and pathological stimuli, podocytes are prone to injuries; moreover, as a cell without proliferative potential, loss of podocytes is vital in the pathogenesis of glomerulosclerosis. Thus, sufficient understanding of factors and underlying mechanisms of podocyte injury facilitates the advancement of treating and prevention of glomerulosclerosis. The clinical symptom of podocyte injury is proteinuria, sometimes with loss of kidney functions progressing to glomerulosclerosis. Injury-induced changes in podocyte physiology and function are actually not a simple passive process, but a complex interaction of proteins that comprise the anatomical structure of podocytes at molecular levels. This chapter lists several aspects of podocyte injuries along with potential mechanisms, including glucose and lipid metabolism disorder, hypertension, RAS activation, micro-inflammation, immune disorder, and other factors. These aspects are not technically separated items, but intertwined with each other in the pathogenesis of podocyte injuries.
Collapse
|
39
|
Postnatal podocyte gain: Is the jury still out? Semin Cell Dev Biol 2019; 91:147-152. [DOI: 10.1016/j.semcdb.2018.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/24/2018] [Accepted: 07/05/2018] [Indexed: 02/06/2023]
|
40
|
Abstract
OBJECTIVE Hypertension-induced podocyte damage and the relationship with UAE is analyzed in diabetic and nondiabetic participants. PATIENTS AND METHODS Sixty-four hypertensive patients, 30 diabetics, with glomerular filtration rate (eGFR) greater than 60 ml/min per 1.73 m were included. Urinary albumin excretion was measured in morning urine using a nephelometric immunoassay and expressed as albumin/creatinine ratio. Urinary pellets were obtained from fresh urine and mRNA was assessed by real-time quantitative PCR. Likewise, protein podocyte-specific molecules were measured by western blot using specific antibodies. RESULTS Fourteen nondiabetics and 20 diabetics had increased UAE greater than 30 mg/g. In individuals with increased EUA, the mRNA expression of nephrin and CD2AP was low in diabetics, whereas only nephrin mRNA in nondiabetics. No differences were observed in podocalyxin and aquaporin-1 mRNA levels. Concerning the protein values, in both nondiabetic and diabetic patients, nephrin, CD2AP and podocalyxin were increased in patients with increased UAE, with no differences in aquaporin-1. A significant positive relationship was observed between log UAE and nephrin protein values, and an inverse association observed with mRNA. CONCLUSION Hypertensive patients who had elevated UAE showed increased urinary excretion of podocyte-specific proteins coupled with a phenotype of decreased mRNA expression. The phenotype of podocyte-specific mRNA and the increment of nephrin can be used as a valuable marker of early glomerular injury.
Collapse
|
41
|
Okabayashi Y, Tsuboi N, Kanzaki G, Sasaki T, Haruhara K, Koike K, Takahashi H, Ikegami M, Shimizu A, Yokoo T. Aging Vs. Hypertension: An Autopsy Study of Sclerotic Renal Histopathological Lesions in Adults With Normal Renal Function. Am J Hypertens 2019; 32:676-683. [PMID: 31066457 DOI: 10.1093/ajh/hpz040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/20/2019] [Accepted: 04/26/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND AIMS Arterial hypertension and glomerular ischemia coexist in elderly patients with hypertension. Thus, 2 conflicting therapeutic purposes, i.e., reduction of pressure overload and maintenance of renal arterial perfusion, must be considered in elderly patients with hypertension. This study examined this issue from the perspective of renal histopathology. METHODS Adult autopsied kidneys without apparent renal disease were analyzed for histopathological features that might be related to aging or hypertension. Mean glomerular volume (GV), global glomerulosclerosis (GGS), arteriosclerotic lesions (AL), arteriolar hyalinosis (AH), and interstitial fibrosis/tubular atrophy (IF/TA) were evaluated. RESULTS This study included 59 Japanese autopsy patients, of whom 28 (47%) were hypertensive. Overall, GGS, IF/TA, and AL, but not GV or AH, tended to increase with aging. Multivariate analysis revealed that age, but not hypertension, was an independent factor associated with GGS, IF/TA, and AL. In contrast, hypertension was independently associated with GV. AH was not associated with age or hypertension in this autopsy series. Of note, in the late elderly group (≥75 years), GGS was significantly lower in hypertensives than in normotensives. No such trend was found in the non-elderly (<65 years) or early elderly groups (65-74 years). CONCLUSIONS Normal aging has a major impact on the development of renal sclerotic lesions compared to hypertension in adults with no apparent renal disease. Hypertension may play a role in maintaining downstream glomerular perfusion in the aging kidney.
Collapse
Affiliation(s)
- Yusuke Okabayashi
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Minato City, Tokyo, Japan
| | - Nobuo Tsuboi
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Minato City, Tokyo, Japan
| | - Go Kanzaki
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Minato City, Tokyo, Japan
| | - Takaya Sasaki
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Minato City, Tokyo, Japan
| | - Kotaro Haruhara
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Minato City, Tokyo, Japan
| | - Kentaro Koike
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Minato City, Tokyo, Japan
| | - Hiroyuki Takahashi
- Department of Pathology, The Jikei University School of Medicine, Minato City, Tokyo, Japan
| | - Masahiro Ikegami
- Department of Pathology, The Jikei University School of Medicine, Minato City, Tokyo, Japan
| | - Akira Shimizu
- Department of Analytic Human Pathology, Nippon Medical School, Bunkyo City, Tokyo, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Minato City, Tokyo, Japan
| |
Collapse
|
42
|
Woolf AS. Growing a new human kidney. Kidney Int 2019; 96:871-882. [PMID: 31399199 PMCID: PMC6856720 DOI: 10.1016/j.kint.2019.04.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/01/2019] [Accepted: 04/01/2019] [Indexed: 12/17/2022]
Abstract
There are 3 reasons to generate a new human kidney. The first is to learn more about the biology of the developing and mature organ. The second is to generate tissues with which to model congenital and acquired kidney diseases. In particular, growing human kidneys in this manner ultimately should help us understand the mechanisms of common chronic kidney diseases such as diabetic nephropathy and others featuring fibrosis, as well as nephrotoxicity. The third reason is to provide functional kidney tissues that can be used directly in regenerative medicine therapies. The second and third reasons to grow new human kidneys are especially compelling given the millions of persons worldwide whose lives depend on a functioning kidney transplant or long-term dialysis, as well as those with end-stage renal disease who die prematurely because they are unable to access these treatments. As shown in this review, the aim to create healthy human kidney tissues has been partially realized. Moreover, the technology shows promise in terms of modeling genetic disease. In contrast, barely the first steps have been taken toward modeling nongenetic chronic kidney diseases or using newly grown human kidney tissue for regenerative medicine therapies.
Collapse
Affiliation(s)
- Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, United Kingdom; Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom.
| |
Collapse
|
43
|
Zhang J, Cong J, Yang J, Thomsen JS, Andreasen A, Chang SJ, Wang KY, Gu L, Zhai XY. Morphologic and morphometric study on microvasculature of developing mouse kidneys. Am J Physiol Renal Physiol 2018; 315:F852-F860. [DOI: 10.1152/ajprenal.00615.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A proper morphogenesis of the renal microvasculature is crucial not only for fulfilling the renal function but also to slow down the progression of chronic kidney disease in adulthood. However, the current description of the developing microvasculature is incomplete. The present study investigated the morphogenesis and volume densities of the renal microvasculature using computer-assisted tubular tracing, immunohistochemistry for CD34, and unbiased stereology. The earliest glomerular capillaries were observed at the lower cleft of the S-shaped nephrons, as simple loops connecting the afferent and efferent arterioles. In parallel with this, the peritubular capillaries were established. Noticeably, from early nephrogenesis on, the efferent arterioles of the early-formed glomeruli ran in close proximity to their own thick ascending limbs. In addition, the ascending vasa recta arising from the arcuate or interlobular veins also ran in close proximity to the thick descending limb. Thus, the tubules and vessels formed the typical countercurrent relation in the medulla. No loop bends were observed between descending and ascending vasa recta. The volume density of the cortical and medullary peritubular capillary increased 3.3- and 2.6-fold, respectively, from 2.34 (0.13) and 7.03 (0.09)% [means (SD)] at embryonic day 14.5 (E14.5) to 7.71 (0.44) and 18.27 (1.17)% at postnatal day 40 (P40). In contrast, the volume density of glomeruli changed only slightly during kidney development, from 4.61 (0.47)% at E14.5 to 6.07 (0.2)% at P7 to 4.19 (0.47)% at P40. These results reflect that the growth and formation of the renal microvasculature closely correspond to functional development of the tubules.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Histology and Embryology, Basic Medicine College, China Medical University, Shenyang, China
| | - Jing Cong
- Department of Histology and Embryology, Basic Medicine College, China Medical University, Shenyang, China
- Department of Histology and Embryology, Shenyang Medical College, Shenyang, China
| | - Jie Yang
- Department of Histology and Embryology, Basic Medicine College, China Medical University, Shenyang, China
| | | | - Arne Andreasen
- Department of Biomedicine-Anatomy, Aarhus University, Aarhus, Denmark
| | - Shi-Jie Chang
- Department of Biomedical Engineering, College of Fundamental Science, China Medical University, Shenyang, China
| | - Kai-Yue Wang
- Department of Histology and Embryology, Basic Medicine College, China Medical University, Shenyang, China
| | - Ling Gu
- Department of Histology and Embryology, Basic Medicine College, China Medical University, Shenyang, China
| | - Xiao-Yue Zhai
- Department of Histology and Embryology, Basic Medicine College, China Medical University, Shenyang, China
| |
Collapse
|
44
|
Haley KE, Kronenberg NM, Liehm P, Elshani M, Bell C, Harrison DJ, Gather MC, Reynolds PA. Podocyte injury elicits loss and recovery of cellular forces. SCIENCE ADVANCES 2018; 4:eaap8030. [PMID: 29963620 PMCID: PMC6021140 DOI: 10.1126/sciadv.aap8030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
In the healthy kidney, specialized cells called podocytes form a sophisticated blood filtration apparatus that allows excretion of wastes and excess fluid from the blood while preventing loss of proteins such as albumin. To operate effectively, this filter is under substantial hydrostatic mechanical pressure. Given their function, it is expected that the ability to apply mechanical force is crucial to the survival of podocytes. However, to date, podocyte mechanobiology remains poorly understood, largely because of a lack of experimental data on the forces involved. We perform quantitative, continuous, nondisruptive, and high-resolution measurements of the forces exerted by differentiated podocytes in real time using a recently introduced functional imaging modality for continuous force mapping. Using an accepted model for podocyte injury, we find that injured podocytes experience near-complete loss of cellular force transmission but that this loss of force is reversible under certain conditions. The observed changes in force correlate with F-actin rearrangement and reduced expression of podocyte-specific proteins. By introducing robust and high-throughput mechanical phenotyping and by demonstrating the significance of mechanical forces in podocyte injury, this research paves the way to a new level of understanding of the kidney. In addition, in an advance over established force mapping techniques, we integrate cellular force measurements with immunofluorescence and perform continuous long-term force measurements of a cell population. Hence, our approach has general applicability to a wide range of biomedical questions involving mechanical forces.
Collapse
Affiliation(s)
- Kathryn E. Haley
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK
| | - Nils M. Kronenberg
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK
- Scottish Universities Physics Alliance, School of Physics & Astronomy, University of St Andrews, St Andrews KY16 9SS, UK
| | - Philipp Liehm
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK
- Scottish Universities Physics Alliance, School of Physics & Astronomy, University of St Andrews, St Andrews KY16 9SS, UK
| | - Mustafa Elshani
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK
| | - Cameron Bell
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
| | - David J. Harrison
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK
| | - Malte C. Gather
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK
- Scottish Universities Physics Alliance, School of Physics & Astronomy, University of St Andrews, St Andrews KY16 9SS, UK
| | - Paul A. Reynolds
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK
| |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW Podocytes are critical components of the nephron filtration barrier and are depleted in many kidney injuries and disease states. Terminally differentiated adult podocytes are highly specialized, postmitotic cells, raising the question of whether the body has any ability to regenerate lost podocytes. This timely question has recently been illuminated by a series of innovative studies. Here, we review recent progress on this topic of significant interest and debate. RECENT FINDINGS The innovation of genetic labeling techniques enables fate tracing of individual podocytes, providing the strongest evidence yet that podocytes can be replaced by nearby progenitor cells. In particular, two progenitor pools have recently been identified in multiple studies: parietal epithelial cells and cells of renin lineage. These studies furthermore suggest that podocyte regeneration can be enhanced using ex-vivo or pharmacological interventions. SUMMARY Recent studies indicate that the podocyte compartment is more dynamic than previously believed. Bidirectional exchange with neighboring cellular compartments provides a mechanism for podocyte replacement. Based on these findings, we propose a set of criteria for evaluating podocyte regeneration and suggest that restoration of podocyte number to a subsclerotic threshold be targeted as a potentially achievable clinical goal.
Collapse
|
46
|
Tabatabaeifar M, Wlodkowski T, Simic I, Denc H, Mollet G, Weber S, Moyers JJ, Brühl B, Randles MJ, Lennon R, Antignac C, Schaefer F. An inducible mouse model of podocin-mutation-related nephrotic syndrome. PLoS One 2017; 12:e0186574. [PMID: 29049388 PMCID: PMC5648285 DOI: 10.1371/journal.pone.0186574] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/10/2017] [Indexed: 12/03/2022] Open
Abstract
Mutations in the NPHS2 gene, encoding podocin, cause hereditary nephrotic syndrome. The most common podocin mutation, R138Q, is associated with early disease onset and rapid progression to end-stage renal disease. Knock-in mice carrying a R140Q mutation, the mouse analogue of human R138Q, show developmental arrest of podocytes and lethal renal failure at neonatal age. Here we created a conditional podocin knock-in model named NPHS2R140Q/-, using a tamoxifen-inducible Cre recombinase, which permits to study the effects of the mutation in postnatal life. Within the first week of R140Q hemizygosity induction the animals developed proteinuria, which peaked after 4–5 weeks. Subsequently the animals developed progressive renal failure, with a median survival time of 12 (95% CI: 11–13) weeks. Foot process fusion was observed within one week, progressing to severe and global effacement in the course of the disease. The number of podocytes per glomerulus gradually diminished to 18% compared to healthy controls 12–16 weeks after induction. The fraction of segmentally sclerosed glomeruli was 25%, 85% and 97% at 2, 4 and 8 weeks, respectively. Severe tubulointerstitial fibrosis was present at later disease stage and was correlated quantitatively with the level of proteinuria at early disease stages. While R140Q podocin mRNA expression was elevated, protein abundance was reduced by more than 50% within one week following induction. Whereas miRNA21 expression persistently increased during the first 4 weeks, miRNA-193a expression peaked 2 weeks after induction. In conclusion, the inducible R140Q-podocin mouse model is an auspicious model of the most common genetic cause of human nephrotic syndrome, with a spontaneous disease course strongly reminiscent of the human disorder. This model constitutes a valuable tool to test the efficacy of novel pharmacological interventions aimed to improve podocyte function and viability and attenuate proteinuria, glomerulosclerosis and progressive renal failure.
Collapse
Affiliation(s)
- Mansoureh Tabatabaeifar
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| | - Tanja Wlodkowski
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| | - Ivana Simic
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| | - Helga Denc
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| | - Geraldine Mollet
- INSERM, U1163, Imagine Institute, Laboratory of Hereditary Kidney Diseases, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Stefanie Weber
- Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, Philipps-University Marburg, Marburg, Germany
| | | | - Barbara Brühl
- Institute for Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Michael Joseph Randles
- Wellcome Trust Centre for Cell Matrix Research, University of Manchester, Manchester, United Kingdom
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Rachel Lennon
- Wellcome Trust Centre for Cell Matrix Research, University of Manchester, Manchester, United Kingdom
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Corinne Antignac
- INSERM, U1163, Imagine Institute, Laboratory of Hereditary Kidney Diseases, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Paris, France
- Department of Genetics, Necker Hospital, Assistance Publique—Hôpitaux de Paris, Paris, France
| | - Franz Schaefer
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
47
|
Puelles VG, Bertram JF, Moeller MJ. Quantifying podocyte depletion: theoretical and practical considerations. Cell Tissue Res 2017; 369:229-236. [DOI: 10.1007/s00441-017-2630-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/21/2017] [Indexed: 10/19/2022]
|
48
|
Abstract
In normal glomeruli, parietal epithelial cells (PECs) line the inside of Bowman's capsule and form an inconspicuous sheet of flat epithelial cells in continuity with the proximal tubular epithelial cells (PTECs) at the urinary pole and with the podocytes at the vascular pole. PECs, PTECs and podocytes have a common mesenchymal origin and are the result of divergent differentiation during embryogenesis. Podocytes and PTECs are highly differentiated cells with well-established functions pertaining to the maintenance of the filtration barrier and transport, respectively. For PECs, no specific function other than a structural one has been known until recently. Possible important functions for PECs in the fate of the glomerulus in glomerular disease have now become apparent: (1) PECs may be involved in the replacement of lost podocytes; (2) PECs form the basis of extracapillary proliferative lesions and subsequent sclerosis in glomerular disease. In addition to the acknowledgement that PECs are crucial in glomerular disease, knowledge has been gained regarding the molecular processes driving the phenotypic changes and behavior of PECs. Understanding these molecular processes is important for the development of specific therapeutic approaches aimed at either stimulation of the regenerative function of PECs or inhibition of the pro-sclerotic action of PECs. In this review, we discuss recent advances pertaining to the role of PECs in glomerular regeneration and disease and address the major molecular processes involved.
Collapse
|
49
|
Eymael J, Smeets B. Origin and fate of the regenerating cells of the kidney. Eur J Pharmacol 2016; 790:62-73. [DOI: 10.1016/j.ejphar.2016.07.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/08/2016] [Accepted: 07/19/2016] [Indexed: 12/25/2022]
|
50
|
Zhuang A, Forbes JM. Diabetic kidney disease: a role for advanced glycation end-product receptor 1 (AGE-R1)? Glycoconj J 2016; 33:645-52. [PMID: 27270766 DOI: 10.1007/s10719-016-9693-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 01/07/2023]
Abstract
Diabetic patients are postulated to be in a perpetual state of oxidative stress and inflammation at sites where chronic complications occur. The accumulation of AGEs derived from both endogenous and exogenous sources (such as the diet) have been implicated in the development and progression of diabetic complications, particularly nephropathy. There has been some interest in investigating the potential for reducing the AGE burden in chronic disease, through the action of AGE "clearance" receptors, such as the advanced glycation end-product receptor 1 (AGE-R1). Reducing the burden of AGEs has been linked to attenuation of inflammation, slower progression of diabetic complications (in particular vascular and renal complications) and has been shown to extend lifespan. To date, however, there have been no direct investigations into whether AGE-R1 has any role in modulating normal kidney function, or specifically during the development and progression of diabetes. This mini-review will focus on the recent advances in knowledge around the mechanistic function of AGE-R1 and the implications of this for the pathogenesis of diabetic kidney disease.
Collapse
Affiliation(s)
- Aowen Zhuang
- Glycation and Diabetes Group, Mater Research Institute, Translational Research Institute, The University of Queensland, South Brisbane, Queensland, Australia
| | - Josephine M Forbes
- Glycation and Diabetes Group, Mater Research Institute, Translational Research Institute, The University of Queensland, South Brisbane, Queensland, Australia. .,Mater Clinical School, The University of Queensland, South Brisbane, Queensland, Australia.
| |
Collapse
|