1
|
Butler-Dawson J, Johnson RJ, Krisher L, Jaramillo D, Cruz A, Pilloni D, Brindley S, Rodriguez-Iturbe B, Sanchez-Lozada LG, Dally M, Newman LS. A longitudinal assessment of heat exposure and biomarkers of kidney function on heat shock protein 70 and antibodies among agricultural workers. BMC Nephrol 2024; 25:277. [PMID: 39198762 PMCID: PMC11351828 DOI: 10.1186/s12882-024-03706-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Exposure to extreme heat impacts millions of people worldwide and outdoor workers are among the populations most affected by hot temperatures. Heat stress induces several biological responses in humans, including the production of heat shock proteins (HSP) and antibodies against HSP (anti-HSP) which may play a central role in the body's cellular response to a hot environment. OBJECTIVE This longitudinal study investigated the impact of elevated temperatures and humidity on the presence of HSP70 and anti-HSP70 and examined relationships with markers of kidney function in an at-risk workforce under conditions of extreme heat and exertion in Guatemala. METHODS We collected ambient temperature and relative humidity data as well as biomarkers and clinical data from 40 sugarcane workers at the start and the end of a 6-month harvest. We used generalized mixed-effects models to estimate temperature effects on HSP70 and anti-HSP70 levels. In addition, we examined trends between HSP70 and anti-HSP70 levels and markers of kidney function across the harvest. RESULTS At the end of the harvest, temperatures were higher, and workers had, on average, higher levels of HSP70 and anti-HSP70 compared to the beginning of the season. We observed significant increasing trends with temperature indices, heat index, and HSP70 levels. Maximum temperature was associated with HSP70 increments after controlling for age, systolic and diastolic blood pressure (β: 0.21, 95% Confidence Interval: 0.09, 0.33). Kidney function decline across the harvest was associated with both higher levels of anti-HSP70 levels at the end of the harvest as well as greater increases in anti-HSP70 levels across the harvest. CONCLUSIONS These results suggest that workplace heat exposure may increase the production of HSP70 and anti-HSP70 levels and that there may be a relationship between increasing anti-HSP70 antibodies and the development of renal injury. HSP70 holds promise as a biomarker of heat stress in exposed populations.
Collapse
Affiliation(s)
- Jaime Butler-Dawson
- Center for Health, Work & Environment, Colorado School of Public Health, University of Colorado, Aurora, CO, USA.
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, 13001 E 17th Pl B119, Aurora, CO, 80045, USA.
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Lyndsay Krisher
- Center for Health, Work & Environment, Colorado School of Public Health, University of Colorado, Aurora, CO, USA
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, 13001 E 17th Pl B119, Aurora, CO, 80045, USA
| | - Diana Jaramillo
- Center for Health, Work & Environment, Colorado School of Public Health, University of Colorado, Aurora, CO, USA
| | - Alex Cruz
- Grupo Pantaleón, Guatemala, Guatemala
| | | | - Stephen Brindley
- Center for Health, Work & Environment, Colorado School of Public Health, University of Colorado, Aurora, CO, USA
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, 13001 E 17th Pl B119, Aurora, CO, 80045, USA
| | - Bernardo Rodriguez-Iturbe
- Department of Nephrology, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", México City, 14080, México
| | - Laura Gabriela Sanchez-Lozada
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, Mexico City, 14080, Mexico
| | - Miranda Dally
- Center for Health, Work & Environment, Colorado School of Public Health, University of Colorado, Aurora, CO, USA
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, 13001 E 17th Pl B119, Aurora, CO, 80045, USA
| | - Lee S Newman
- Center for Health, Work & Environment, Colorado School of Public Health, University of Colorado, Aurora, CO, USA
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, 13001 E 17th Pl B119, Aurora, CO, 80045, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, School of Medicine, University of Colorado, Aurora, CO, USA
- Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, CO, USA
| |
Collapse
|
2
|
Shokoples BG, Paradis P, Schiffrin EL. Immunological insights into hypertension: unraveling triggers and potential therapeutic avenues. Hypertens Res 2024; 47:2115-2125. [PMID: 38778172 DOI: 10.1038/s41440-024-01731-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/02/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
Hypertension remains the leading cause of morbidity and mortality worldwide. Despite its prevalence, the development of novel antihypertensive therapies has only recently accelerated, with novel agents not yet commercialized, leaving a substantial proportion of individuals resistant to existing treatments. The intricate pathophysiology of hypertension is now understood to involve chronic low-grade inflammation, which places the immune system in the spotlight as a potential target for new therapeutics. This review explores the factors that initiate and sustain an immune response in hypertension, offering insights into potential targets for new treatments. Several factors contribute to immune activation in hypertension, including diet and damage-associated molecular pattern (DAMP) generation. Diets rich in fat or sodium can promote inflammation by inducing intestinal barrier dysfunction and triggering salt-sensitive receptors in T cells and dendritic cells. DAMPs, such as extracellular adenosine triphosphate and heat-shock protein 70, are released during episodes of increased blood pressure, contributing to immune cell activation and inflammation. Unconventional innate-like γδ T cells contribute to initiating and maintaining an immune response through their potential involvement in antigen presentation and regulating cytokine-mediated responses. Immunologic memory, sustained through the formation of effector memory T cells after exposure to hypertensive insults, likely contributes to maintaining an immune response in hypertension. When exposed to hypertensive insults, these memory cells are rapidly activated and contribute to elevated blood pressure and end-organ damage. Evidence from human hypertension, although limited, supports the relevance of distinct immune pathways in hypertension, and highlights the potential of targeted immune interventions in human hypertension. Diet and acute bouts of high blood pressure result in the release of dietary triggers, neoantigens, and damage-associated molecular patterns (DAMPs), which promote immune system activation. Elements such as lipopolysaccharides (LPS), sodium, heat-shock protein (HSP)70, extracellular adenosine triphosphate (eATP), and growth arrest-specific 6 (GAS6) promote activation of innate immune cells such as dendritic cells (DCs) and monocytes (Mo) through their respective receptors (toll-like receptor [TLR]4, amiloride-sensitive epithelial sodium channel [ENaC], TLR2/4, P2X7 receptor [P2RX7], and Axl) leading to costimulatory molecule expression and interleukin (IL)-1β and IL-23 production. The neoantigens HSP70 and isolevuglandins (IsoLGs) are presented to T cells by DCs and possibly γδ T cells, triggering T cell activation, IL-17 and interferon (IFN)-γ production, and the formation of T effector memory (TEM) cells in the kidney, perivascular adipose tissue, bone marrow, and spleen. Exposure of TEM cells to their cognate antigen or previous activating stimuli causes these cells rapid expansion and activation. Cumulatively, this inflammatory state contributes to hypertension and end-organ damage. The figure was created using images from smart.servier.com and is licensed under a Creative Commons Attribution 4.0 license (CC BY 4.0).
Collapse
Affiliation(s)
- Brandon G Shokoples
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research and McGill University, Montréal, QC, Canada
| | - Pierre Paradis
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research and McGill University, Montréal, QC, Canada
| | - Ernesto L Schiffrin
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research and McGill University, Montréal, QC, Canada.
- Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montréal, QC, Canada.
| |
Collapse
|
3
|
Rodriguez-Iturbe B. Environmental stress and hypertension: the disregarded role of HSP70. J Hum Hypertens 2024; 38:538-541. [PMID: 38773240 DOI: 10.1038/s41371-024-00917-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024]
Affiliation(s)
- Bernardo Rodriguez-Iturbe
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Ciudad de México, Mexico.
| |
Collapse
|
4
|
Litwin M. Pathophysiology of primary hypertension in children and adolescents. Pediatr Nephrol 2024; 39:1725-1737. [PMID: 37700113 PMCID: PMC11026201 DOI: 10.1007/s00467-023-06142-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023]
Abstract
The progress in research on the physiology of the cardiovascular system made in the last 100 years allowed for the development of the pathogenesis not only of secondary forms of hypertension but also of primary hypertension. The main determinants of blood pressure are described by the relationship between stroke volume, heart rate, peripheral resistance, and arterial stiffness. The theories developed by Guyton and Folkow describe the importance of the volume factor and total peripheral resistance. However, none of them fully presents the pathogenesis of essential hypertension. The multifactorial model of primary hypertension pathogenesis developed by Irving Page in the 1940s, called Page's mosaic, covers most of the pathophysiological phenomena observed in essential hypertension. The most important pathophysiological phenomena included in Page's mosaic form a network of interconnected "nodes". New discoveries both from experimental and clinical studies made in recent decades have allowed the original Page mosaic to be modified and the addition of new pathophysiological nodes. Most of the clinical studies confirming the validity of the multifactorial pathogenesis of primary hypertension concern adults. However, hypertension develops in childhood and is even perinatally programmed. Therefore, the next nodes in Page's mosaic should be age and perinatal factors. This article presents data from pediatric clinical trials describing the most important pathophysiological processes associated with the development of essential hypertension in children and adolescents.
Collapse
Affiliation(s)
- Mieczysław Litwin
- Department of Nephrology and Arterial Hypertension, The Children's Memorial Health Institute, Warsaw, Poland.
| |
Collapse
|
5
|
Guzik TJ, Nosalski R, Maffia P, Drummond GR. Immune and inflammatory mechanisms in hypertension. Nat Rev Cardiol 2024; 21:396-416. [PMID: 38172242 DOI: 10.1038/s41569-023-00964-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 01/05/2024]
Abstract
Hypertension is a global health problem, with >1.3 billion individuals with high blood pressure worldwide. In this Review, we present an inflammatory paradigm for hypertension, emphasizing the crucial roles of immune cells, cytokines and chemokines in disease initiation and progression. T cells, monocytes, macrophages, dendritic cells, B cells and natural killer cells are all implicated in hypertension. Neoantigens, the NLRP3 inflammasome and increased sympathetic outflow, as well as cytokines (including IL-6, IL-7, IL-15, IL-18 and IL-21) and a high-salt environment, can contribute to immune activation in hypertension. The activated immune cells migrate to target organs such as arteries (especially the perivascular fat and adventitia), kidneys, the heart and the brain, where they release effector cytokines that elevate blood pressure and cause vascular remodelling, renal damage, cardiac hypertrophy, cognitive impairment and dementia. IL-17 secreted by CD4+ T helper 17 cells and γδ T cells, and interferon-γ and tumour necrosis factor secreted by immunosenescent CD8+ T cells, exert crucial effector roles in hypertension, whereas IL-10 and regulatory T cells are protective. Effector mediators impair nitric oxide bioavailability, leading to endothelial dysfunction and increased vascular contractility. Inflammatory effector mediators also alter renal sodium and water balance and promote renal fibrosis. These mechanisms link hypertension with obesity, autoimmunity, periodontitis and COVID-19. A comprehensive understanding of the immune and inflammatory mechanisms of hypertension is crucial for safely and effectively translating the findings to clinical practice.
Collapse
Affiliation(s)
- Tomasz J Guzik
- Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK.
- Department of Medicine and Omicron Medical Genomics Laboratory, Jagiellonian University, Collegium Medicum, Kraków, Poland.
- Africa-Europe Cluster of Research Excellence (CoRE) in Non-Communicable Diseases & Multimorbidity, African Research Universities Alliance ARUA & The Guild, Glasgow, UK.
| | - Ryszard Nosalski
- Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK
| | - Pasquale Maffia
- Africa-Europe Cluster of Research Excellence (CoRE) in Non-Communicable Diseases & Multimorbidity, African Research Universities Alliance ARUA & The Guild, Glasgow, UK
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Grant R Drummond
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, Victoria, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Khan MM, Kirabo A. Long Noncoding RNA MALAT1: Salt-Sensitive Hypertension. Int J Mol Sci 2024; 25:5507. [PMID: 38791545 PMCID: PMC11122212 DOI: 10.3390/ijms25105507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Hypertension stands as the leading global cause of mortality, affecting one billion individuals and serving as a crucial risk indicator for cardiovascular morbidity and mortality. Elevated salt intake triggers inflammation and hypertension by activating antigen-presenting cells (APCs). We found that one of the primary reasons behind this pro-inflammatory response is the epithelial sodium channel (ENaC), responsible for transporting sodium ions into APCs and the activation of NADPH oxidase, leading to increased oxidative stress. Oxidative stress increases lipid peroxidation and the formation of pro-inflammatory isolevuglandins (IsoLG). Long noncoding RNAs (lncRNAs) play a crucial role in regulating gene expression, and MALAT1, broadly expressed across cell types, including blood vessels and inflammatory cells, is also associated with inflammation regulation. In hypertension, the decreased transcriptional activity of nuclear factor erythroid 2-related factor 2 (Nrf2 or Nfe2l2) correlates with heightened oxidative stress in APCs and impaired control of various antioxidant genes. Kelch-like ECH-associated protein 1 (Keap1), an intracellular inhibitor of Nrf2, exhibits elevated levels of hypertension. Sodium, through an increase in Sp1 transcription factor binding at its promoter, upregulates MALAT1 expression. Silencing MALAT1 inhibits sodium-induced Keap1 upregulation, facilitating the nuclear translocation of Nrf2 and subsequent antioxidant gene transcription. Thus, MALAT1, acting via the Keap1-Nrf2 pathway, modulates antioxidant defense in hypertension. This review explores the potential role of the lncRNA MALAT1 in controlling the Keap1-Nrf2-antioxidant defense pathway in salt-induced hypertension. The inhibition of MALAT1 holds therapeutic potential for the progression of salt-induced hypertension and cardiovascular disease (CVD).
Collapse
Affiliation(s)
- Mohd Mabood Khan
- Department of Medicine, Preston Research Building, Vanderbilt University Medical Centre, Nashville, TN 37232, USA
| | - Annet Kirabo
- Department of Medicine, Preston Research Building, Vanderbilt University Medical Centre, Nashville, TN 37232, USA
| |
Collapse
|
7
|
Butler-Dawson J, Johnson RJ, Krisher L, Jaramillo D, Cruz A, Pilloni D, Brindley S, Rodriguez-Iturbe B, Sanchez-Lozada LG, Dally M, Newman LS. A longitudinal assessment of heat exposure and biomarkers of kidney function on heat shock protein 70 and antibodies among agricultural workers. RESEARCH SQUARE 2024:rs.3.rs-3887323. [PMID: 38343868 PMCID: PMC10854298 DOI: 10.21203/rs.3.rs-3887323/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Background Exposure to extreme heat impacts millions of people worldwide and outdoor workers are among the populations most affected by high temperatures. Heat stress induces several biological responses in humans, including the production of heat shock proteins (HSP) and antibodies against HSP (anti-HSP) which may play a central role in the body's cellular response to a hot environment. Objective This longitudinal study investigated the impact of high temperatures and humidity on the presence of HSP70 and anti-HSP70 and examined relationships with markers of kidney function in an at-risk workforce under conditions of extreme heat and exertion in Guatemala. Methods We collected ambient temperature and relative humidity data as well as biomarkers and clinical data from 40 sugarcane workers at the start and the end of a 6-month harvest. We used generalized mixed-effects models to estimate temperature effects on HSP70 and anti-HSP70 levels. In addition, we examined trends between HSP70 and anti-HSP70 levels and markers of kidney function across the harvest. Results At the end of the harvest, temperatures were higher, and workers had, on average, higher levels of HSP70 and anti-HSP70 compared to the beginning of the season. We observed significant increasing trends with temperature indices and HSP70 levels. Maximum temperature was associated with HSP70 increments after controlling for age, systolic and diastolic blood pressure (β: 0.21, 95% Confidence Interval: 0.09, 0.33). Kidney function decline across the harvest was associated with both higher levels of anti-HSP70 levels at the end of the harvest as well as greater increases in anti-HSP70 levels across the harvest. Conclusions These results suggest that workplace heat exposure may increase the production of HSP70 and anti-HSP70 levels and that there may be a relationship between increasing anti-HSP70 antibodies and the development of renal injury. HSP70 holds promise as a biomarker of heat stress in exposed populations.
Collapse
|
8
|
Sánchez-Lozada LG, Madero M, Mazzali M, Feig DI, Nakagawa T, Lanaspa MA, Kanbay M, Kuwabara M, Rodriguez-Iturbe B, Johnson RJ. Sugar, salt, immunity and the cause of primary hypertension. Clin Kidney J 2023; 16:1239-1248. [PMID: 37529651 PMCID: PMC10387395 DOI: 10.1093/ckj/sfad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 08/03/2023] Open
Abstract
Despite its discovery more than 150 years ago, the cause of primary hypertension remains unknown. Most studies suggest that hypertension involves genetic, congenital or acquired risk factors that result in a relative inability of the kidney to excrete salt (sodium chloride) in the kidneys. Here we review recent studies that suggest there may be two phases, with an initial phase driven by renal vasoconstriction that causes low-grade ischemia to the kidney, followed by the infiltration of immune cells that leads to a local autoimmune reaction that maintains the renal vasoconstriction. Evidence suggests that multiple mechanisms could trigger the initial renal vasoconstriction, but one way may involve fructose that is provided in the diet (such as from table sugar or high fructose corn syrup) or produced endogenously. The fructose metabolism increases intracellular uric acid, which recruits NADPH oxidase to the mitochondria while inhibiting AMP-activated protein kinase. A drop in intracellular ATP level occurs, triggering a survival response. Leptin levels rise, triggering activation of the sympathetic central nervous system, while vasopressin levels rise, causing vasoconstriction in its own right and stimulating aldosterone production via the vasopressin 1b receptor. Low-grade renal injury and autoimmune-mediated inflammation occur. High-salt diets can amplify this process by raising osmolality and triggering more fructose production. Thus, primary hypertension may result from the overactivation of a survival response triggered by fructose metabolism. Restricting salt and sugar and hydrating with ample water may be helpful in the prevention of primary hypertension.
Collapse
Affiliation(s)
- Laura G Sánchez-Lozada
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología “Ignacio Chavez”, Mexico City, Mexico
| | - Magdalena Madero
- Division of Nephrology, Department of Medicine, Instituto Nacional de Cardiología “Ignacio Chavez”, Mexico City, Mexico
| | - Marilda Mazzali
- Division of Nephrology, University of Campinas, São Paulo, Brazil
| | - Daniel I Feig
- Division of Pediatric Nephrology, University of Alabama, Birmingham, AL, USA
| | | | - Miguel A Lanaspa
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Mehmet Kanbay
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | | | - Bernardo Rodriguez-Iturbe
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City
| | - Richard J Johnson
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| |
Collapse
|
9
|
Watso JC, Fancher IS, Gomez DH, Hutchison ZJ, Gutiérrez OM, Robinson AT. The damaging duo: Obesity and excess dietary salt contribute to hypertension and cardiovascular disease. Obes Rev 2023; 24:e13589. [PMID: 37336641 PMCID: PMC10406397 DOI: 10.1111/obr.13589] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/08/2023] [Accepted: 05/24/2023] [Indexed: 06/21/2023]
Abstract
Hypertension is a primary risk factor for cardiovascular disease. Cardiovascular disease is the leading cause of death among adults worldwide. In this review, we focus on two of the most critical public health challenges that contribute to hypertension-obesity and excess dietary sodium from salt (i.e., sodium chloride). While the independent effects of these factors have been studied extensively, the interplay of obesity and excess salt overconsumption is not well understood. Here, we discuss both the independent and combined effects of excess obesity and dietary salt given their contributions to vascular dysfunction, autonomic cardiovascular dysregulation, kidney dysfunction, and insulin resistance. We discuss the role of ultra-processed foods-accounting for nearly 60% of energy intake in America-as a major contributor to both obesity and salt overconsumption. We highlight the influence of obesity on elevated blood pressure in the presence of a high-salt diet (i.e., salt sensitivity). Throughout the review, we highlight critical gaps in knowledge that should be filled to inform us of the prevention, management, treatment, and mitigation strategies for addressing these public health challenges.
Collapse
Affiliation(s)
- Joseph C. Watso
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Ibra S. Fancher
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, USA
| | - Dulce H. Gomez
- School of Kinesiology, Auburn University, Auburn, Alabama, USA
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | | | - Orlando M. Gutiérrez
- Division of Nephrology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
10
|
Rodriguez-Iturbe B, Johnson RJ, Sanchez-Lozada LG, Pons H. HSP70 and Primary Arterial Hypertension. Biomolecules 2023; 13:272. [PMID: 36830641 PMCID: PMC9953434 DOI: 10.3390/biom13020272] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
Heat shock protein 70 (HSP70) production is a stress-generated cellular response with high interspecies homology. HSP70 has both chaperone and cytokine functions and may induce, depending on the context, tolerogenic anti-inflammatory reactivity or immunogenic and autoimmune reactivity. Intracellular (chaperoning transit of antigens to MHC in antigen-presenting cells) and extracellular HSP70-related effects are associated with hypertension, which is an inflammatory condition recognized as the most important risk factor for cardiovascular disease mortality. Here, we review (a) the relationship between HSP70, inflammation and immune reactivity, (b) clinical evidence relating to stress, HSP70 and anti-HSP70 reactivity with primary hypertension and (c) experimental data showing that salt-sensitive hypertension is associated with delayed hypersensitivity to HSP70. This is a consequence of anti-HSP70 reactivity in the kidneys and may be prevented and corrected by the T-cell-driven inhibition of kidney inflammation triggered by specific epitopes of HSP70. Finally, we discuss our postulate that lifelong stress signals and danger-associated molecular patterns stimulate HSP-70 and individual genetic and epigenetic characteristics determine whether the HSP70 response would drive inflammatory immune reactivity causing hypertension or, alternatively, would drive immunomodulatory responses that protect against hypertension.
Collapse
Affiliation(s)
- Bernardo Rodriguez-Iturbe
- Department of Nephrology, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico
| | - Richard J. Johnson
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Laura Gabriela Sanchez-Lozada
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico
| | - Hector Pons
- Facultad de Medicina, Universidad del Zulia, Maracaibo 4011, Venezuela
| |
Collapse
|
11
|
Benson LN, Liu Y, Deck K, Mora C, Mu S. IFN- γ Contributes to the Immune Mechanisms of Hypertension. KIDNEY360 2022; 3:2164-2173. [PMID: 36591357 PMCID: PMC9802558 DOI: 10.34067/kid.0001292022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/19/2022] [Indexed: 12/31/2022]
Abstract
Hypertension is the leading cause of cardiovascular disease and the primary risk factor for mortality worldwide. For more than half a century, researchers have demonstrated that immunity plays an important role in the development of hypertension; however, the precise mechanisms are still under investigation. The current body of knowledge indicates that proinflammatory cytokines may play an important role in contributing to immune-related pathogenesis of hypertension. Interferon gamma (IFN-γ), in particular, as an important cytokine that modulates immune responses, has been recently identified as a critical regulator of blood pressure by several groups, including us. In this review, we focus on exploring the role of IFN-γ in contributing to the pathogenesis of hypertension, outlining the various immune producers of this cytokine and described signaling mechanisms involved. We demonstrate a key role for IFN-γ in hypertension through global knockout studies and related downstream signaling pathways that IFN-γ production from CD8+ T cell (CD8T) in the kidney promoting CD8T-stimulated salt retention via renal tubule cells, thereby exacerbating hypertension. We discuss potential activators of these T cells described by the current literature and relay a novel hypothesis for activation.
Collapse
Affiliation(s)
- Lance N. Benson
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Yunmeng Liu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Katherine Deck
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Christoph Mora
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Shengyu Mu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
12
|
Ertuglu LA, Mutchler AP, Yu J, Kirabo A. Inflammation and oxidative stress in salt sensitive hypertension; The role of the NLRP3 inflammasome. Front Physiol 2022; 13:1096296. [PMID: 36620210 PMCID: PMC9814168 DOI: 10.3389/fphys.2022.1096296] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Salt-sensitivity of blood pressure is an independent risk factor for cardiovascular disease and affects approximately half of the hypertensive population. While the precise mechanisms of salt-sensitivity remain unclear, recent findings on body sodium homeostasis and salt-induced immune cell activation provide new insights into the relationship between high salt intake, inflammation, and hypertension. The immune system, specifically antigen-presenting cells (APCs) and T cells, are directly implicated in salt-induced renal and vascular injury and hypertension. Emerging evidence suggests that oxidative stress and activation of the NLRP3 inflammasome drive high sodium-mediated activation of APCs and T cells and contribute to the development of renal and vascular inflammation and hypertension. In this review, we summarize the recent insights into our understanding of the mechanisms of salt-sensitive hypertension and discuss the role of inflammasome activation as a potential therapeutic target.
Collapse
Affiliation(s)
- Lale A. Ertuglu
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United Staes,*Correspondence: Annet Kirabo, ; Lale A. Ertuglu,
| | - Ashley Pitzer Mutchler
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Justin Yu
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States,*Correspondence: Annet Kirabo, ; Lale A. Ertuglu,
| |
Collapse
|
13
|
Ertuglu LA, Kirabo A. Dendritic Cell Epithelial Sodium Channel in Inflammation, Salt-Sensitive Hypertension, and Kidney Damage. KIDNEY360 2022; 3:1620-1629. [PMID: 36245645 PMCID: PMC9528365 DOI: 10.34067/kid.0001272022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/24/2022] [Indexed: 11/27/2022]
Abstract
Salt-sensitive hypertension is a major risk factor for cardiovascular morbidity and mortality. The pathophysiologic mechanisms leading to different individual BP responses to changes in dietary salt remain elusive. Research in the last two decades revealed that the immune system plays a critical role in the development of hypertension and related end organ damage. Moreover, sodium accumulates nonosmotically in human tissue, including the skin and muscle, shifting the dogma on body sodium balance and its regulation. Emerging evidence suggests that high concentrations of extracellular sodium can directly trigger an inflammatory response in antigen-presenting cells (APCs), leading to hypertension and vascular and renal injury. Importantly, sodium entry into APCs is mediated by the epithelial sodium channel (ENaC). Although the role of the ENaC in renal regulation of sodium excretion and BP is well established, these new findings imply that the ENaC may also exert BP modulatory effects in extrarenal tissue through an immune-dependent pathway. In this review, we discuss the recent advances in our understanding of the pathophysiology of salt-sensitive hypertension with a particular focus on the roles of APCs and the extrarenal ENaC.
Collapse
|
14
|
Lu X, Crowley SD. Actions of Dendritic Cells in the Kidney during Hypertension. Compr Physiol 2022; 12:4087-4101. [PMID: 35950656 DOI: 10.1002/cphy.c210050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The immune response plays a critical role in the pathogenesis of hypertension, and immune cell populations can promote blood pressure elevation via actions in the kidney. Among these cell lineages, dendritic cells (DCs), the most potent antigen-presenting cells, play a central role in regulating immune response during hypertension and kidney disease. DCs have different subtypes, and renal DCs are comprised of the CD103+ CD11b- and CD103- CD11b+ subsets. DCs become mature and express costimulatory molecules on their surface once they encounter antigen. Isolevuglandin-modified proteins function as antigens to activate DCs and trigger them to stimulate T cells. Activated T cells accumulate in the hypertensive kidney, release effector cytokines, promote renal oxidative stress, and promote renal salt and water retention. Individual subsets of activated T cells can secrete tumor necrosis factor-alpha, interleukin-17A, and interferon-gamma, each of which has augmented the elevation of blood pressure in hypertensive models by enhancing renal sodium transport. Fms-like tyrosine kinase 3 ligand-dependent classical DCs are required to sustain the full hypertensive response, but C-X3 -C chemokine receptor 1 positive DCs do not regulate blood pressure. Excess sodium enters the DC through transporters to activate DCs, whereas the ubiquitin editor A20 in dendritic cells constrains blood pressure elevation by limiting T cell activation. By contrast, activation of the salt sensing kinase, serum/glucocorticoid kinase 1 in DCs exacerbates salt-sensitive hypertension. This article discusses recent studies illustrating mechanisms through which DC-T cell interactions modulate levels of pro-hypertensive mediators to regulate blood pressure via actions in the kidney. © 2022 American Physiological Society. Compr Physiol 12:1-15, 2022.
Collapse
Affiliation(s)
- Xiaohan Lu
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, USA
| | - Steven D Crowley
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, USA
| |
Collapse
|
15
|
Natur S, Damri O, Agam G. The Effect of Global Warming on Complex Disorders (Mental Disorders, Primary Hypertension, and Type 2 Diabetes). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159398. [PMID: 35954764 PMCID: PMC9368177 DOI: 10.3390/ijerph19159398] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 01/09/2023]
Abstract
Multiple studies imply a strong relationship between global warming (GW) and complex disorders. This review summarizes such reports concentrating on three disorders-mental disorders (MD), primary hypertension, and type 2 diabetes (T2D). We also attempt to point at potential mechanisms mediating the effect of GW on these disorders. Concerning mental disorders, immediate candidates are brain levels of heat-shock proteins (HSPs). In addition, given that heat stress increases reactive oxygen species (ROS) levels which may lead to blood-brain barrier (BBB) breakdown and, hence, enhanced protein extravasation in the brain, this might finally cause, or exacerbate mental health. As for hypertension, since its causes are incompletely understood, the mechanism(s) by which heat exposure affects blood pressure (BP) is an open question. Since the kidneys participate in regulating blood volume and BP they are considered as a site of heat-associated disease, hence, we discuss hyperosmolarity as a potential mediator. In addition, we relate to autoimmunity, inflammation, sodium excretion, and HSP70 as risk factors that might play a role in the effect of heat on hypertension. In the case of T2D, we raise two potential mediators of the effect of exposure to ambient hot environment on the disease's incidence-brown adipose tissue metabolism and HSPs.
Collapse
|
16
|
Lu X, Crowley SD. The Immune System in Hypertension: a Lost Shaker of Salt 2021 Lewis K. Dahl Memorial Lecture. Hypertension 2022; 79:1339-1347. [PMID: 35545942 DOI: 10.1161/hypertensionaha.122.18554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The seminal observations of Dr Lewis Dahl regarding renal mechanisms of hypertension remain highly relevant in light of more recent experiments showing that immune system dysfunction contributes to hypertension pathogenesis. Dr Dahl established that inappropriate salt retention in the kidney plays a central role via Ohm's Law in permitting blood pressure elevation. Nevertheless, inflammatory cytokines whose expression is induced in the early stages of hypertension can alter renal blood flow and sodium transporter expression and activity to foster renal sodium retention. By elaborating these cytokines and reactive oxygen species, myeloid cells and T lymphocytes can connect systemic inflammatory signals to aberrant kidney functions that allow sustained hypertension. By activating T lymphocytes, antigen-presenting cells such as dendritic cells represent an afferent sensing mechanism triggering T cell activation, cytokine generation, and renal salt and water reabsorption. Manipulating these inflammatory signals to attenuate hypertension without causing prohibitive systemic immunosuppression will pose a challenge, but disrupting actions of inflammatory mediators locally within the kidney may offer a path through which to target immune-mediated mechanisms of hypertension while capitalizing on Dr Dahl's key recognition of the kidney's importance in blood pressure regulation.
Collapse
Affiliation(s)
- Xiaohan Lu
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC
| | - Steven D Crowley
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC
| |
Collapse
|
17
|
Santos JD, Oliveira Neto JT, Barros PR, Damasceno LEA, Lautherbach N, Assis AP, Silva CAA, Sorgi CA, Faccioli LH, Kettelhut IC, Salgado HC, Carneiro FS, Alves Filho JC, Tostes RC. Th17 cells-linked mechanisms mediate vascular dysfunction induced by testosterone in a mouse model of gender-affirming hormone therapy. Am J Physiol Heart Circ Physiol 2022; 323:H322-H335. [PMID: 35714175 DOI: 10.1152/ajpheart.00182.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Clinical data point to adverse cardiovascular events elicited by testosterone replacement therapy. Testosterone is the main hormone used in gender-affirming hormone therapy (GAHT) by transmasculine people. However, the cardiovascular impact of testosterone in experimental models of GAHT remains unknown. Sex hormones modulate T cells activation, and immune mechanisms contribute to cardiovascular risk. The present study evaluated whether testosterone negatively impacts female cardiovascular function by enhancing Th17 cells-linked effector mechanisms. Female (8 weeks-old) C57BL/6J mice received testosterone (48 mg.Kg-1.week-1) for 8 weeks. Male mice were used for phenotypical comparisons. The hormone-treatment in female mice increased circulating testosterone to levels observed in male mice. Testosterone increased lean body mass and body mass index, and decreased perigonadal fat mass, mimicking clinical findings. After 8 weeks, testosterone decreased endothelium-dependent vasodilation and increased circulating Th17 cells. After 24 weeks, testosterone increased blood pressure in female mice. Ovariectomy did not intensify phenotypical or cardiovascular effects by testosterone. Female mice lacking T and B cells [Rag1 knockout (-/-)], as well as female mice lacking IL-17 receptor (IL-17Ra-/-), did not exhibit vascular dysfunction induced by testosterone. Testosterone impaired endothelium-dependent vasodilation in female mice lacking γδ T cells, similarly to the observed in wild type female mice. Adoptive transfer of CD4+ T cells restored testosterone-induced vascular dysfunction in Rag1-/- female mice. Together, these data suggest that CD4+ T cells, most likely Th17 cells, are central to vascular dysfunction induced by testosterone in female mice, indicating that changes in immune cells balance are important in the GAHT in transmasculine people.
Collapse
Affiliation(s)
- Jeimison D Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - José T Oliveira Neto
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Paula R Barros
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Luis Eduardo Alves Damasceno
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Natalia Lautherbach
- Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Ana P Assis
- Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Carlos A A Silva
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Carlos A Sorgi
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters at Ribeira Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Lucia H Faccioli
- Department of Clinical Analyses, Toxicology and Food Science, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Isis C Kettelhut
- Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Helio C Salgado
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Fernando S Carneiro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Jose C Alves Filho
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
18
|
Affiliation(s)
- Bailong Hu
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Li
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Haiyan Zhou
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
19
|
Rami AZA, Hamid AA, Anuar NNM, Aminuddin A, Ugusman A. Exploring the Relationship of Perivascular Adipose Tissue Inflammation and the Development of Vascular Pathologies. Mediators Inflamm 2022; 2022:2734321. [PMID: 35177953 PMCID: PMC8846975 DOI: 10.1155/2022/2734321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/11/2022] [Accepted: 01/21/2022] [Indexed: 12/18/2022] Open
Abstract
Initially thought to only provide mechanical support for the underlying blood vessels, perivascular adipose tissue (PVAT) has now emerged as a regulator of vascular function. A healthy PVAT exerts anticontractile and anti-inflammatory actions on the underlying vasculature via the release of adipocytokines such as adiponectin, nitric oxide, and omentin. However, dysfunctional PVAT produces more proinflammatory adipocytokines such as leptin, resistin, interleukin- (IL-) 6, IL-1β, and tumor necrosis factor-alpha, thus inducing an inflammatory response that contributes to the pathogenesis of vascular diseases. In this review, current knowledge on the role of PVAT inflammation in the development of vascular pathologies such as atherosclerosis and hypertension was discussed.
Collapse
Affiliation(s)
- Afifah Zahirah Abd Rami
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Adila A. Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Nur Najmi Mohamad Anuar
- Center for Toxicology & Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abd Aziz, 50300 Kuala Lumpur, Malaysia
| | - Amilia Aminuddin
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Taha MM, Amer NM, Beshir S, Mahdy-Abdallah H. Association of heat shock protein70-2 genotypes with hypertension among textile workers occupationally exposed to noise. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:13998-14004. [PMID: 34601670 DOI: 10.1007/s11356-021-16802-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Noise exposure is a primary cause of hearing loss with a broad range of auditory and non-auditory effects. It is one of the occupational health risks in both developed and industrialized countries. Heat shock proteins (HSPs) are induced after severe noise exposure. Those proteins protect the ear from damage following excessive noise exposure. This protection showed high variability between individuals. The aim of the study was to investigate the variation in hearing loss and blood pressure in textile workers and its association with genetic predisposition related to HSP70 genes. Also, the role of smoking was studied. We genotyped HSP-70 (hsp70-1, hsp70-2, and hsp70-hom) genes in 109 textile workers working in a noisy environment. Diastolic and systolic blood pressure was measured for workers. Hearing was assessed using an audiogram. We reported significant variation in HSP70-homo genotypes among smoker workers and nonsmoker ones. Only HSP70-2 genotypes were associated with high significant variations in both systolic and diastolic blood pressure among textile workers. Positive correlation between duration of exposure and both systolic (P < 0.047) and diastolic blood pressure (P < 0.033) was observed among workers. Our study recorded that HSP70-2 genotypes were associated with hypertension among textile workers with absence of that association with either HSP70-1 or HSP70-homo genotypes. We also confirmed the relationship between noise exposure and blood pressure (both systolic and diastolic blood pressure). Furthermore, significant variation was shown in HSP70-hom genotypes among smoker and nonsmoker workers.
Collapse
Affiliation(s)
- Mona Mohamed Taha
- Department of Environmental and Occupational Medicine, Environmental Research Division, National Research Centre, Giza, Dokki, Egypt.
| | - Nagat Mohamed Amer
- Department of Environmental and Occupational Medicine, Environmental Research Division, National Research Centre, Giza, Dokki, Egypt
| | - Safia Beshir
- Department of Environmental and Occupational Medicine, Environmental Research Division, National Research Centre, Giza, Dokki, Egypt
| | - Heba Mahdy-Abdallah
- Department of Environmental and Occupational Medicine, Environmental Research Division, National Research Centre, Giza, Dokki, Egypt
| |
Collapse
|
21
|
Abstract
Chronic cardiovascular diseases are associated with inflammatory responses within the blood vessels and end organs. The origin of this inflammation has not been certain, and neither is its relationship to disease clear. There is a need to determine whether this association is causal or coincidental to the processes leading to cardiovascular disease. These processes are themselves complex: many cardiovascular diseases arise in conjunction with the presence of sustained elevation of blood pressure. Inflammatory processes have been linked to hypertension, and causality has been suggested. Evidence of causality poses the difficult challenge of linking the integrated and multifaceted biology of blood pressure regulation with vascular function and complex elements of immune system function. These include both, innate and adaptive immunity, as well as interactions between the host immune system and the omnipresent microorganisms that are encountered in the environment and that colonize and exist in commensal relationship with the host. Progress has been made in this task and has drawn on experimental approaches in animals, much of which have focused on hypertension occurring with prolonged infusion of angiotensin II. These laboratory studies are complemented by studies that seek to inform disease mechanism by examining the genomic basis of heritable disease susceptibility in human populations. In this realm too, evidence has emerged that implicates genetic variation affecting immunity in disease pathogenesis. In this article, we survey the genetic and genomic evidence linking high blood pressure and its end-organ injuries to immune system function and examine evidence that genomic factors can influence disease risk. © 2021 American Physiological Society. Compr Physiol 11:1-22, 2021.
Collapse
Affiliation(s)
- Isha S Dhande
- Center for Human Genetics, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Peter A Doris
- Center for Human Genetics, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
22
|
Aminian AR, Forouzanfar F. Interplay between Heat Shock Proteins, Inflammation, and Pain: A promising Therapeutic Approach. Curr Mol Pharmacol 2021; 15:170-178. [PMID: 34781874 DOI: 10.2174/1874467214666210719143150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 11/22/2022]
Abstract
Heat Shock Proteins (HSPs) are important molecular chaperones that facilitate many functions of the cells. They also play a pivotal role in cell survival, especially in the presence of stressors, including nutritional deprivation, lack of oxygen, fever, alcohol, inflammation, oxidative stress, heavy metals, as well as conditions that cause injury and necrosis. In the face of a painful stimulus encounter, many factors could be associated with pain that may include nitric oxide, excitatory amino acids, reactive oxygen species (ROS) formation, prostaglandins, and inflammatory cytokines. One influential factor affecting pain reduction is the expression of HSPs that act as a ROS scavenger, regulate the inflammatory cytokines, and reduce pain responses subsequently. Hence, we assembled information on the painkilling attributes of HSPs. In this field of research, new painkillers could be developed by targetting HSPs to alleviate pain and widen our grasp of pain in pathological conditions and neurological diseases.
Collapse
Affiliation(s)
- Ahmad Reza Aminian
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad. Iran
| |
Collapse
|
23
|
de Oliveira AA, Priviero F, Webb RC, Nunes KP. Impaired HSP70 Expression in the Aorta of Female Rats: A Novel Insight Into Sex-Specific Differences in Vascular Function. Front Physiol 2021; 12:666696. [PMID: 33967836 PMCID: PMC8100344 DOI: 10.3389/fphys.2021.666696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/25/2021] [Indexed: 12/19/2022] Open
Abstract
Heat-shock protein 70 (HSP70) contributes to cellular calcium (Ca2+) handling mechanisms during receptor-mediated vascular contraction. Interestingly, previous studies have independently reported sex-related differences in HSP70 expression and Ca2+ dynamics. Still, it is unknown if sex, as a variable, plays a role in the impact that HSP70 has upon vascular contraction. To narrow this gap, we investigated if differences exist in the expression levels of HSP70 in the aorta, and if targeting this protein contributes to sex disparity in vascular responses. We report that, compared with male animals, female rats present a reduction in the basal levels of HSP70. More compelling, we found that the blockade of HSP70 has a greater impact on phenylephrine-induced phasic and tonic vascular contraction in female animals. In fact, it seems that the inhibition of HSP70 significantly affects vascular Ca2+ handling mechanisms in females, which could be associated with the fact that these animals have impaired HSP70 expression. Corroborating this idea, we uncovered that the higher sensitivity of female rats to HSP70 inhibition does not involve an increase in NO-dependent vasodilation nor a decrease in vascular oxidative stress. In summary, our findings reveal a novel mechanism associated with sex-specific differences in vascular responses to α-1 adrenergic stimulation, which might contribute to unraveling the network of intertwined pathways conferring female protection to (cardio)vascular diseases.
Collapse
Affiliation(s)
- Amanda Almeida de Oliveira
- Laboratory of Vascular Physiology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, United States
| | - Fernanda Priviero
- Department of Physiology, Augusta University, Augusta, GA, United States
- Department of Cell Biology and Anatomy, Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, United States
| | - R. Clinton Webb
- Department of Cell Biology and Anatomy, Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, United States
| | - Kenia Pedrosa Nunes
- Laboratory of Vascular Physiology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, United States
| |
Collapse
|
24
|
Regulatory T-cell subset distribution in children with primary hypertension is associated with hypertension severity and hypertensive target organ damage. J Hypertens 2021; 38:692-700. [PMID: 31834124 DOI: 10.1097/hjh.0000000000002328] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND The relationship between circulating regulatory T-cell (Tregs) subset distribution and hypertension severity in children with primary hypertension is not known. We aimed to find out if target organ damage (TOD) in children with primary hypertension is related to defects in Tregs distribution reflected by their phenotype characteristics. METHODS The study constituted 33 nontreated hypertensive children and 35 sex-matched and age-matched controls. Using multicolor flow cytometry technique, we assessed a distribution of the total Tregs (CD4CD25CD127) and their subsets (CD45RA-naive Tregs, CD45RA memory/activated Tregs, CD45RACD31 recent thymic emigrants Tregs and mature naive CD45RACD31 Tregs) in the whole blood. RESULTS Hypertensive children showed decreased percentage of the total Tregs, the CD45RA-naive Tregs, the total CD31 Tregs and the recent thymic emigrants Tregs but elevation of the CD45RA memory/activated Treg and mature naive CD45RACD31 Tregs. Decreased frequency of the total Tregs, naive Tregs and CD31-bearing Treg cell subsets (CD31 total Tregs, CD45RACD31 recent thymic emigrants Tregs) negatively correlated to TOD markers, arterial stiffness and blood pressure elevation. In contrast, increased percentage of memory Tregs and CD31 Tregs subsets positively correlated to organ damage markers, arterial stiffness and blood pressure values. These changes were independent of BMI, age, sex and hsCRP. CONCLUSION Both diagnosis of hypertension, TOD and arterial stiffness in hypertensive children were associated with decreased population of total CD4 Tregs, limited output of recent thymic emigrants Tregs, and increased pool of activated/memory Tregs. Hypertension was an independent predictor of the circulating Treg subsets distribution irrespective of hsCRP.
Collapse
|
25
|
Mattson DL, Dasinger JH, Abais-Battad JM. Amplification of Salt-Sensitive Hypertension and Kidney Damage by Immune Mechanisms. Am J Hypertens 2021; 34:3-14. [PMID: 32725162 PMCID: PMC7891248 DOI: 10.1093/ajh/hpaa124] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/27/2020] [Accepted: 07/23/2020] [Indexed: 12/13/2022] Open
Abstract
Humans with salt-sensitive (SS) hypertension demonstrate increased morbidity, increased mortality, and renal end-organ damage when compared with normotensive subjects or those with salt-resistant hypertension. Increasing evidence indicates that immune mechanisms play an important role in the full development of SS hypertension and associated renal damage. Recent experimental advances and studies in animal models have permitted a greater understanding of the mechanisms of activation and action of immunity in this disease process. Evidence favors a role of both innate and adaptive immune mechanisms that are triggered by initial, immune-independent alterations in blood pressure, sympathetic activity, or tissue damage. Activation of immunity, which can be enhanced by a high-salt intake or by alterations in other components of the diet, leads to the release of cytokines, free radicals, or other factors that amplify renal damage and hypertension and mediate malignant disease.
Collapse
Affiliation(s)
- David L Mattson
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - John Henry Dasinger
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Justine M Abais-Battad
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
26
|
de Oliveira AA, Priviero F, Tostes RC, Webb RC, Nunes KP. Dissecting the interaction between HSP70 and vascular contraction: role of [Formula: see text] handling mechanisms. Sci Rep 2021; 11:1420. [PMID: 33446873 PMCID: PMC7809064 DOI: 10.1038/s41598-021-80966-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/09/2020] [Indexed: 01/01/2023] Open
Abstract
Heat-shock protein 70 (HSP70) is a ubiquitously expressed molecular chaperone with various biological functions. Recently, we demonstrated that HSP70 is key for adequate vascular reactivity. However, the specific mechanisms targeted by HSP70 to assist in this process remain elusive. Since there is a wealth of evidence connecting HSP70 to calcium ([Formula: see text]), a master regulator of contraction, we designed this study to investigate whether blockade of HSP70 disrupts vascular contraction via impairment of [Formula: see text] handling mechanisms. We performed functional studies in aortas isolated from male Sprague Dawley rats in the presence or absence of exogenous [Formula: see text], and we determined the effects of VER155008, an inhibitor of HSP70, on [Formula: see text] handling as well as key mechanisms that regulate vascular contraction. Changes in the intracellular concentration of [Formula: see text] were measured with a biochemical assay kit. We report that blockade of HSP70 leads to [Formula: see text] mishandling in aorta stimulated with phenylephrine, decreasing both phasic and tonic contractions. Importantly, in [Formula: see text] free Krebs' solution, inhibition of HSP70 only reduced the [Formula: see text] of the phasic contraction if the protein was blocked before IP3r-mediated [Formula: see text] release, suggesting that HSP70 has a positive effect towards this receptor. Corroborating this statement, VER155008 did not potentiate an IP3r inhibitor's outcomes, even with partial blockade. In another set of experiments, the inhibition of HSP70 attenuated the amplitude of the tonic contraction independently of the moment VER155008 was added to the chamber (i.e., whether it was before or after IP3r-mediated phasic contraction). More compelling, following re-addition of [Formula: see text], VER155008 amplified the inhibitory effects of a voltage-dependent [Formula: see text] channel blocker, but not of a voltage-independent [Formula: see text] channel inhibitor, indicating that HSP70 has a positive impact on the latter. Lastly, the mechanism by which HSP70 modulates vascular contraction does not involve the [Formula: see text] sensitizer protein, Rho-kinase, nor the SERCA pump, as blockade of these proteins in the presence of VER155008 almost abolished contraction. In summary, our findings shed light on the processes targeted by HSP70 during vascular contraction and open research avenues for potential new mechanisms in vascular diseases.
Collapse
Affiliation(s)
- Amanda A. de Oliveira
- Laboratory of Vascular Physiology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, USA
| | - Fernanda Priviero
- Department of Physiology, Augusta University, Augusta, USA
- Department of Cell Biology and Anatomy, University of South Carolina, Columbia, USA
| | - Rita C. Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - R. Clinton Webb
- Department of Cell Biology and Anatomy, University of South Carolina, Columbia, USA
| | - Kenia P. Nunes
- Laboratory of Vascular Physiology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, USA
| |
Collapse
|
27
|
Baek EJ, Kim S. Current Understanding of Pressure Natriuresis. Electrolyte Blood Press 2021; 19:38-45. [PMID: 35003284 PMCID: PMC8715224 DOI: 10.5049/ebp.2021.19.2.38] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/24/2021] [Indexed: 11/30/2022] Open
Abstract
Pressure natriuresis refers to the concept that increased renal perfusion pressure leads to a decrease in tubular reabsorption of sodium and an increased sodium excretion. The set point of blood pressure is the point at which pressure natriuresis and extracellular fluid volume are in equilibrium. The term "abnormal pressure natriuresis" usually refers to the expected abnormal effect of a certain level of blood pressure on sodium excretion. Factors that cause abnormal pressure natriuresis are known. Sympathetic nerve system, genetic factors, and dietary factors may affect an increase in renal perfusion pressure. An increase in renal perfusion pressure increases renal interstitial hydrostatic pressure (RIHP). Increased RIHP affects tubular reabsorption through alterations in tight junctional permeability to sodium in proximal tubules, redistribution of apical sodium transporters, and/or release of renal autacoids. Renal autocoids such as nitric oxide, prostaglandin E2, kinins, and angiotensin II may also regulate pressure natriuresis by acting directly on renal tubule sodium transport. In addition, inflammation and reactive oxygen species may mediate pressure natriuresis. Recently, the use of new drugs associated with pressure natriuretic mechanisms, such as angiotensin receptor neprilysin inhibitor and sodium glucose co-transporter 2 inhibitors, has been consistently demonstrated to reduce mortality and hypertension-related complications. Therefore, the understanding of pressure natriuresis is gaining attention as an antihypertensive strategy. In this review, we provide a basic overview of pressure natriuresis to the target audience of nephrologists.
Collapse
Affiliation(s)
- Eun Ji Baek
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Sejoong Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
28
|
Kritmetapak K, Charoensri S, Thaopanya R, Pongchaiyakul C. Elevated Serum Uric Acid is Associated with Rapid Decline in Kidney Function: A 10-Year Follow-Up Study. Int J Gen Med 2020; 13:945-953. [PMID: 33122937 PMCID: PMC7591020 DOI: 10.2147/ijgm.s277957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/07/2020] [Indexed: 01/21/2023] Open
Abstract
Purpose The long-term impact of changes in serum uric acid (SUA) concentration on the estimated glomerular filtration rate (eGFR) among the general population remains unclear. We investigated the longitudinal associations between changes in SUA and eGFR over 10 years in 1222 participants with baseline eGFR ≥60 mL/min/1.73 m2. Methods This was a 10-year retrospective cohort study conducted from 2007 to 2017. Rapid eGFR decline (defined as the highest quartile of change in eGFR between 2007 and 2017) and new-onset kidney disease (defined as an eGFR <60 mL/min/1.73 m2 at a 10-year follow-up) were examined using multiple logistic regression analysis, adjusted for sex, age, body mass index, systolic blood pressure, SUA, fasting plasma glucose, serum total cholesterol, and triglyceride at baseline. Results SUA was inversely correlated with eGFR, and the slopes of the SUA-eGFR regression lines were consistently steeper in females than males. A significant inverse correlation was also observed between 10-year changes in SUA and eGFR in both sexes. Multivariate analysis showed that every 1 mg/dL increase in SUA from baseline was associated with higher risk of rapid eGFR decline and new-onset kidney disease (OR 1.25; 95% CI 1.14–1.33 and OR 1.40; 95% CI 1.26–1.49, respectively). Furthermore, the subjects in the highest SUA quartile (>6.0 mg/dL) had a 2.45 times higher risk of rapid eGFR decline (95% CI 1.51–3.42) compared to those in the lowest SUA quartile (<3.9 mg/dL). Conclusion Elevated baseline SUA is an independent risk factor for rapid eGFR decline and new-onset kidney disease in the general population.
Collapse
Affiliation(s)
- Kittrawee Kritmetapak
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Suranut Charoensri
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Rattrai Thaopanya
- Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chatlert Pongchaiyakul
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW The main goal of this article is to discuss the role of the epithelial sodium channel (ENaC) in extracellular fluid and blood pressure regulation. RECENT FINDINGS Besides its role in sodium handling in the kidney, recent studies have found that ENaC expressed in other cells including immune cells can influence blood pressure via extra-renal mechanisms. Dendritic cells (DCs) are activated and contribute to salt-sensitive hypertension in an ENaC-dependent manner. We discuss recent studies on how ENaC is regulated in both the kidney and other sites including the vascular smooth muscles, endothelial cells, and immune cells. We also discuss how this extra-renal ENaC can play a role in salt-sensitive hypertension and its promise as a novel therapeutic target. The role of ENaC in blood pressure regulation in the kidney has been well studied. Recent human gene sequencing efforts have identified thousands of variants among the genes encoding ENaC, and research efforts to determine if these variants and their expression in extra-renal tissue play a role in hypertension will advance our understanding of the pathogenesis of ENaC-mediated cardiovascular disease and lead to novel therapeutic targets.
Collapse
Affiliation(s)
- Ashley L Pitzer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue, P415C Medical Research Building IV, Nashville, TN, 37232, USA
| | - Justin P Van Beusecum
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue, P415C Medical Research Building IV, Nashville, TN, 37232, USA
| | - Thomas R Kleyman
- Departments of Medicine, Cell Biology, Pharmacology, and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue, P415C Medical Research Building IV, Nashville, TN, 37232, USA. .,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
30
|
Shimada S, Abais-Battad JM, Alsheikh AJ, Yang C, Stumpf M, Kurth T, Mattson DL, Cowley AW. Renal Perfusion Pressure Determines Infiltration of Leukocytes in the Kidney of Rats With Angiotensin II-Induced Hypertension. Hypertension 2020; 76:849-858. [PMID: 32755400 DOI: 10.1161/hypertensionaha.120.15295] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The present study examined the extent to which leukocyte infiltration into the kidneys in Ang II (angiotensin II)-induced hypertension is determined by elevation of renal perfusion pressure (RPP). Male Sprague-Dawley rats were instrumented with carotid and femoral arterial catheters for continuous monitoring of blood pressure and a femoral venous catheter for infusion. An inflatable aortic occluder cuff placed between the renal arteries with computer-driven servo-controller maintained RPP to the left kidney at control levels during 7 days of intravenous Ang II (50 ng/kg per minute) or vehicle (saline) infusion. Rats were fed a 0.4% NaCl diet throughout the study. Ang II-infused rats exhibited nearly a 50 mm Hg increase of RPP (carotid catheter) to the right kidney while RPP to the left kidney (femoral catheter) was controlled at baseline pressure throughout the study. As determined at the end of the studies by flow cytometry, right kidneys exhibited significantly greater numbers of T cells, B cells, and monocytes/macrophages compared with the servo-controlled left kidneys and compared with vehicle treated rats. No difference was found between Ang II servo-controlled left kidneys and vehicle treated kidneys. Immunostaining found that the density of glomeruli, cortical, and outer medullary capillaries were significantly reduced in the right kidney of Ang II-infused rats compared with servo-controlled left kidney. We conclude that in this model of hypertension the elevation of RPP, not Ang II nor dietary salt, leads to leukocyte infiltration in the kidney and to capillary rarefaction.
Collapse
Affiliation(s)
- Satoshi Shimada
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee
| | | | - Ammar J Alsheikh
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee
| | - Chun Yang
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee
| | - Megan Stumpf
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee
| | - Theresa Kurth
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee
| | - David L Mattson
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee
| | - Allen W Cowley
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee
| |
Collapse
|
31
|
Oliveira KC, Zambom FFF, Albino AH, Alarcon Arias SC, Ávila VF, Faustino VD, Malheiros DMAC, Camara NOS, Fujihara CK, Zatz R. NF-κB blockade during short-term l-NAME and salt overload strongly attenuates the late development of chronic kidney disease. Am J Physiol Renal Physiol 2020; 319:F215-F228. [PMID: 32463727 DOI: 10.1152/ajprenal.00495.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nitric oxide synthase inhibition by Nω-nitro-l-arginine methyl ester (l-NAME) plus a high-salt diet (HS) is a model of chronic kidney disease (CKD) characterized by marked hypertension and renal injury. With cessation of treatment, most of these changes subside, but progressive renal injury develops, associated with persistent low-grade renal inflammation. We investigated whether innate immunity, and in particular the NF-κB system, is involved in this process. Male Munich-Wistar rats received HS + l-NAME (32 mg·kg-1·day-1), whereas control rats received HS only. Treatment was ceased after week 4 when 30 rats were studied. Additional rats were studied at week 8 (n = 30) and week 28 (n = 30). As expected, HS + l-NAME promoted severe hypertension, albuminuria, and renal injury after 4 wk of treatment, whereas innate immunity activation was evident. After discontinuation of treatments, partial regression of renal injury and inflammation occurred, along with persistence of innate immunity activation at week 8. At week 28, glomerular injury worsened, while renal inflammation persisted and renal innate immunity remained activated. Temporary administration of the NF-κB inhibitor pyrrolidine dithiocarbamate, in concomitancy with the early 4-wk HS + l-NAME treatment, prevented the development of late renal injury and inflammation, an effect that lasted until the end of the study. Early activation of innate immunity may be crucial to the initiation of renal injury in the HS + l-NAME model and to the autonomous progression of chronic nephropathy even after cessation of the original insult. This behavior may be common to other conditions leading to CKD.
Collapse
Affiliation(s)
- Karin Carneiro Oliveira
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Amanda Helen Albino
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Simone Costa Alarcon Arias
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Victor Ferreira Ávila
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Viviane Dias Faustino
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Niels Olsen Saraiva Camara
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil.,Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Clarice Kazue Fujihara
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Roberto Zatz
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
32
|
Sanchez-Lozada LG, Rodriguez-Iturbe B, Kelley EE, Nakagawa T, Madero M, Feig DI, Borghi C, Piani F, Cara-Fuentes G, Bjornstad P, Lanaspa MA, Johnson RJ. Uric Acid and Hypertension: An Update With Recommendations. Am J Hypertens 2020; 33:583-594. [PMID: 32179896 PMCID: PMC7368167 DOI: 10.1093/ajh/hpaa044] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 12/24/2022] Open
Abstract
The association between increased serum urate and hypertension has been a subject of intense controversy. Extracellular uric acid drives uric acid deposition in gout, kidney stones, and possibly vascular calcification. Mendelian randomization studies, however, indicate that serum urate is likely not the causal factor in hypertension although it does increase the risk for sudden cardiac death and diabetic vascular disease. Nevertheless, experimental evidence strongly suggests that an increase in intracellular urate is a key factor in the pathogenesis of primary hypertension. Pilot clinical trials show beneficial effect of lowering serum urate in hyperuricemic individuals who are young, hypertensive, and have preserved kidney function. Some evidence suggest that activation of the renin-angiotensin system (RAS) occurs in hyperuricemia and blocking the RAS may mimic the effects of xanthine oxidase inhibitors. A reduction in intracellular urate may be achieved by lowering serum urate concentration or by suppressing intracellular urate production with dietary measures that include reducing sugar, fructose, and salt intake. We suggest that these elements in the western diet may play a major role in the pathogenesis of primary hypertension. Studies are necessary to better define the interrelation between uric acid concentrations inside and outside the cell. In addition, large-scale clinical trials are needed to determine if extracellular and intracellular urate reduction can provide benefit hypertension and cardiometabolic disease.
Collapse
Affiliation(s)
- Laura G Sanchez-Lozada
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City, Mexico
| | - Bernardo Rodriguez-Iturbe
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City, Mexico
- Department of Nephrology, Instituto Nacional de Ciencias Médicas Y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| | - Eric E Kelley
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | | | - Magdalena Madero
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City, Mexico
| | - Dan I Feig
- Division of Pediatric Nephrology, University of Alabama, Birmingham, Alabama, USA
| | - Claudio Borghi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Federica Piani
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City, Mexico
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Gabriel Cara-Fuentes
- Department of Pediatrics, Division of Pediatric Nephrology, University of Colorado, Aurora, Colorado, USA
| | - Petter Bjornstad
- Division of Pediatric Endocrinology, University of Colorado, Aurora, Colorado, USA
| | - Miguel A Lanaspa
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
33
|
Fehrenbach DJ, Dasinger JH, Lund H, Zemaj J, Mattson DL. Splenocyte transfer exacerbates salt-sensitive hypertension in rats. Exp Physiol 2020; 105:864-875. [PMID: 32034948 DOI: 10.1113/ep088340] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/03/2020] [Indexed: 12/19/2022]
Abstract
NEW FINDINGS What is the central question of this study? Recruitment of immune cells to the kidney potentiates hypertensive pathology, but more refined methods are needed to assess these cells functionally. Adoptive transfer studies of immune cells have been limited in rat models and especially in the study of salt-sensitive hypertension. We tested the hypothesis that splenocyte transfer into T-cell-deficient rats is sufficient to exacerbate salt-sensitive hypertension. What is the main finding and its importance? We demonstrate that transfer of splenocytes into T-cell-deficient animals exacerbates salt-sensitive hypertension, and an enrichment in the CD4+ compartment specifically induces this phenomenon. ABSTRACT Increasing evidence of immune system activation during the progression of hypertension and renal injury has led to a need for new methods to study individual cell types. Transfer of immune cells serves as a powerful tool to isolate effects of specific subsets. Transfer studies in Rag1-/- mice have demonstrated an important role of T-cell activation in hypertension, but this approach has yielded limited success in rat models. Using the T-cell-deficient Dahl salt-sensitive (SS) rat, SSCD247-/- , we hypothesized that splenocyte transfer from SS wild-type animals into SSCD247-/- animals would populate the T-cell compartment. The Dahl SS background provides a model for studying salt-sensitive hypertension; therefore, we also tested whether the dietary salt content of the donor would confer differential salt sensitivity in the recipient. To test this, donors were maintained on either a low-salt or a high-salt diet, and at postnatal day 5 the recipients received splenocyte transfer from one of these groups before a high-salt diet challenge. We showed that splenocyte transfer elevated blood pressures while rats were fed low salt and exacerbated the salt-sensitive increase in pressure when they were fed fed high salt. Furthermore, transfer of splenocytes conferred exacerbated renal damage. Lastly, we confirmed the presence of T cells in the circulation and in the spleen, and that infiltration of immune cells, including T cells, macrophages and B cells, into the kidney was elevated in those receiving the transfer. Interestingly, the source of the splenocytes, from donors fed either a low-salt or a high-salt diet, did not significantly affect these salt-sensitive phenotypes.
Collapse
Affiliation(s)
| | - John Henry Dasinger
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Physiology, Augusta University and the Medical College of Georgia, Augusta, GA, USA
| | - Hayley Lund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jeylan Zemaj
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - David L Mattson
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Physiology, Augusta University and the Medical College of Georgia, Augusta, GA, USA
| |
Collapse
|
34
|
Alsheikh AJ, Dasinger JH, Abais-Battad JM, Fehrenbach DJ, Yang C, Cowley AW, Mattson DL. CCL2 mediates early renal leukocyte infiltration during salt-sensitive hypertension. Am J Physiol Renal Physiol 2020; 318:F982-F993. [PMID: 32150444 DOI: 10.1152/ajprenal.00521.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Studies examining mechanisms of Dahl salt-sensitive (SS) hypertension have implicated the infiltration of leukocytes in the kidneys, which contribute to renal disease and elevated blood pressure. However, the signaling pathways by which leukocytes traffic to the kidneys remain poorly understood. The present study nominated a signaling pathway by analyzing a kidney RNA sequencing data set from SS rats fed either a low-salt (0.4% NaCl) diet or a high-salt (4.0% NaCl) diet. From this analysis, chemokine (C-C motif) ligand 2 (CCL2) and chemokine (C-C motif) receptor 2 (CCR2) were nominated as a potential pathway modifying renal leukocyte infiltration and contributing to SS hypertension. The functional role of the CCL2/CCR2 pathway was tested by daily administration of CCR2 antagonist (RS-102895 at 5 mg·kg-1·day-1 in DMSO) or DMSO vehicle for 3 or 21 days by intraperitoneal injections during the high salt challenge. Blood pressure, renal leukocyte infiltration, and renal damage were evaluated. The results demonstrated that RS-102895 treatment ameliorated renal damage (urinary albumin excretion; 43.4 ± 5.1 vs. 114.7 ± 15.2 mg/day in vehicle, P < 0.001) and hypertension (144.3 ± 2.2 vs. 158.9 ± 4.8 mmHg in vehicle, P < 0.001) after 21 days of high-salt diet. It was determined that renal leukocyte infiltration was blunted by day 3 of the high-salt diet (1.4 ± 0.1 vs. 1.9 ± 0.2 in vehicle × 106 CD45+ cells/kidney, P = 0.034). An in vitro chemotaxis assay validated the effect of RS-102895 on leukocyte chemotaxis toward CCL2. The results suggest that increased CCL2 in SS kidneys is important in the early recruitment of leukocytes, and blockade of this recruitment by administering RS-102895 subsequently blunted the renal damage and hypertension.
Collapse
Affiliation(s)
- Ammar J Alsheikh
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - John Henry Dasinger
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Justine M Abais-Battad
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Daniel J Fehrenbach
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Chun Yang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - David L Mattson
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| |
Collapse
|
35
|
Drummond GR, Vinh A, Guzik TJ, Sobey CG. Immune mechanisms of hypertension. Nat Rev Immunol 2020; 19:517-532. [PMID: 30992524 DOI: 10.1038/s41577-019-0160-5] [Citation(s) in RCA: 239] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hypertension affects 30% of adults and is the leading risk factor for heart attack and stroke. Traditionally, hypertension has been regarded as a disorder of two systems that are involved in the regulation of salt-water balance and cardiovascular function: the renin-angiotensin-aldosterone system (RAAS) and the sympathetic nervous system (SNS). However, current treatments that aim to limit the influence of the RAAS or SNS on blood pressure fail in ~40% of cases, which suggests that other mechanisms must be involved. This Review summarizes the clinical and experimental evidence supporting a contribution of immune mechanisms to the development of hypertension. In this context, we highlight the immune cell subsets that are postulated to either promote or protect against hypertension through modulation of cardiac output and/or peripheral vascular resistance. We conclude with an appraisal of knowledge gaps still to be addressed before immunomodulatory therapies might be applied to at least a subset of patients with hypertension.
Collapse
Affiliation(s)
- Grant R Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia.
| | - Antony Vinh
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Tomasz J Guzik
- Department of Medicine, Jagiellonian University, Collegium Medicum, Krakow, Poland.,BHF Centre of Research Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Christopher G Sobey
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
36
|
La participación de la inmunidad en la patogenia de la hipertensión arterial. Nefrologia 2020; 40:1-3. [DOI: 10.1016/j.nefro.2019.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/17/2019] [Accepted: 04/28/2019] [Indexed: 01/08/2023] Open
|
37
|
Transcriptome Sequencing to Detect the Potential Role of Long Noncoding RNAs in Salt-Sensitive Hypertensive Rats. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2816959. [PMID: 31886193 PMCID: PMC6925802 DOI: 10.1155/2019/2816959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/18/2019] [Indexed: 01/11/2023]
Abstract
Backgrounds Long noncoding RNAs (lncRNAs) play an important role in various biological processes. However, their functions in salt-sensitive hypertension are largely unknown. In this study, the lncRNA-seq technique was employed to compare the expression profiles of lncRNAs and mRNAs in salt-sensitive hypertensive rats. Methods Blood pressure, serum sodium, and urinary creatinine were texted in salt-sensitive and salt-insensitive rats fed with different salt concentrations. High-throughput sequencing was used to detect the expression of lncRNAs and mRNA in the renal medulla of the two groups. Results Blood pressure and urinary sodium/creatinine of high-salt diets of the sensitive group were significantly higher than that in the control group. Serum sodium has no significant difference between the two groups in high-salt diets. NONRATG007131.2 and NONRATG012674.2 were the most different lncRNAs in the high salt-sensitive group. Correlation analysis reveals that Matn1, Serpinb12, Anxa8, and Hspa5 may play an important role in salt-sensitive hypertension. Conclusion This study analyzed the difference in lncRNA and mRNA between salt-sensitive and salt-insensitive rats with different salt diets by high-throughput sequencing. Salt sensitivity and salt concentration were two key factors for the induction of hypertension. We found some potential genes that play an important role in salt-sensitive hypertension.
Collapse
|
38
|
Omage K, Azeke MA. ACALYPHA WILKESIANA regulates fluid volume but affects selected tissues in salt loaded rabbits. CLINICAL PHYTOSCIENCE 2019. [DOI: 10.1186/s40816-019-0103-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
39
|
Abstract
Sodium intake is undoubtedly indispensable for normal body functions but can be detrimental when taken in excess of dietary requirements. The consequences of excessive salt intake are becoming increasingly clear as high salt consumption persists across the globe. Salt has long been suspected to promote the development of hypertension and cardiovascular diseases and is now also recognized as a potential modulator of inflammatory and autoimmune diseases through its direct and indirect effects on immune cells. The finding that, in addition to the kidneys, other organs such as the skin regulate sodium levels in the body prompted new hypotheses, including the concept that skin-resident macrophages might participate in tissue sodium regulation through their interactions with lymphatic vessels. Moreover, immune cells such as macrophages and different T cell subsets are found in sodium-rich interstitial microenvironments, where sodium levels modulate their function. Alterations to the intestinal bacterial community induced by excess dietary salt represent another relevant axis whereby salt indirectly modulates immune cell function. Depending on the inflammatory context, sodium might either contribute to protective immunity (for example, by enhancing host responses against cutaneous pathogens) or it might contribute to immune dysregulation and promote the development of cardiovascular and autoimmune diseases.
Collapse
|
40
|
Ren J, Crowley SD. Role of T-cell activation in salt-sensitive hypertension. Am J Physiol Heart Circ Physiol 2019; 316:H1345-H1353. [PMID: 30901277 PMCID: PMC6620682 DOI: 10.1152/ajpheart.00096.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 02/02/2023]
Abstract
The contributions of T lymphocytes to the pathogenesis of salt-sensitive hypertension has been well established. Under hypertensive stimuli, naive T cells develop into different subsets, including Th1, Th2, Th17, Treg, and cytotoxic CD8+ T cells, depending on the surrounding microenviroment in organs. Distinct subsets of T cells may play totally different roles in tissue damage and hypertension. The underlying mechanisms by which hypertensive stimuli activate naive T cells involve many events and different organs, such as neoantigen presentation by dendritic cells, high salt concentration, and the milieu of oxidative stress in the kidney and vasculature. Infiltrating and activated T subsets in injured organs, in turn, exert considerable impacts on tissue dysfunction, including sodium retention in the kidney, vascular stiffness, and remodeling in the vasculature. Therefore, a thorough knowledge of T-cell actions in hypertension may provide novel insights into the development of new therapeutic strategies for patients with hypertension.
Collapse
Affiliation(s)
- Jiafa Ren
- Division of Nephrology, Department of Medicine, Durham Veterans Affairs and Duke University Medical Centers , Durham, North Carolina
| | - Steven D Crowley
- Division of Nephrology, Department of Medicine, Durham Veterans Affairs and Duke University Medical Centers , Durham, North Carolina
| |
Collapse
|
41
|
Carnagarin R, Matthews V, Zaldivia MTK, Peter K, Schlaich MP. The bidirectional interaction between the sympathetic nervous system and immune mechanisms in the pathogenesis of hypertension. Br J Pharmacol 2019; 176:1839-1852. [PMID: 30129037 PMCID: PMC6534787 DOI: 10.1111/bph.14481] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/26/2018] [Accepted: 08/05/2018] [Indexed: 12/14/2022] Open
Abstract
Over the last few years, evidence has accumulated to suggest that hypertension is, at least in part, an immune-mediated inflammatory disorder. Many links between immunity and hypertension have been established and provide a complex framework of mechanistic interactions contributing to the rise in BP. These include immune-mediated inflammatory processes affecting regulatory brain nuclei and interactions with other mediators of cardiovascular regulation such as the sympathetic nervous system. Sympathoexcitation differentially regulates T-cells based upon activation status of the immune cell as well as the resident organ. Exogenous and endogenous triggers activate signalling pathways in innate and adaptive immune cells resulting in pro-inflammatory cytokine production and activation of T-lymphocytes in the cardiovascular and renal regions, now considered major factors in the development of essential hypertension. The inflammatory cascade is sustained and exacerbated by the immune flow via the brain-bone marrow-spleen-gastrointestinal axis and thereby further aggravating immune-mediated pathways resulting in a vicious cycle of established hypertension and target organ damage. This review summarizes the evidence and recent advances in linking immune-mediated inflammation, sympathetic activation and their bidirectional interactions with the development of hypertension. LINKED ARTICLES: This article is part of a themed section on Immune Targets in Hypertension. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.12/issuetoc.
Collapse
Affiliation(s)
- Revathy Carnagarin
- Dobney Hypertension Centre, School of Medicine – Royal Perth Hospital UnitThe University of Western AustraliaPerthWAAustralia
| | - Vance Matthews
- Dobney Hypertension Centre, School of Medicine – Royal Perth Hospital UnitThe University of Western AustraliaPerthWAAustralia
| | - Maria T K Zaldivia
- Atherothrombosis and Vascular BiologyBaker Heart and Diabetes InstituteMelbourneVicAustralia
- Department of MedicineMonash University, Royal Perth HospitalPerthWAAustralia
| | - Karlheinz Peter
- Atherothrombosis and Vascular BiologyBaker Heart and Diabetes InstituteMelbourneVicAustralia
- Department of MedicineMonash University, Royal Perth HospitalPerthWAAustralia
| | - Markus P Schlaich
- Dobney Hypertension Centre, School of Medicine – Royal Perth Hospital UnitThe University of Western AustraliaPerthWAAustralia
- Department of CardiologyRoyal Perth HospitalPerthWAAustralia
- Department of NephrologyRoyal Perth HospitalPerthWAAustralia
| |
Collapse
|
42
|
Motamedrad M, Shokouhifar A, Hemmati M, Moossavi M. The regulatory effect of saffron stigma on the gene expression of the glucose metabolism key enzymes and stress proteins in streptozotocin-induced diabetic rats. Res Pharm Sci 2019; 14:255-262. [PMID: 31160903 PMCID: PMC6540927 DOI: 10.4103/1735-5362.258494] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress plays a crucial role in the pathogenesis of hyperglycemia mediated complications. Since a great number of researches have reported antioxidant features of saffron, this study investigated the antioxidant effect of saffron stigma extract (SSE) in streptozotocin-induced diabetic rats. Twenty eight diabetic male Wistar rats were divided in four groups containing: two diabetic groups receiving 25 and 100 mg/kg SSE respectively, one diabetic group receiving glibenclamide (0.6 mg/kg) and one diabetic control group receiving normal saline. Seven healthy adult male Wistar rats were also used as normal control group. After treatment (21 days), fasting blood glucose, insulin, oxidative stress markers, and pancreatic regeneration were assessed. The gene expression level of heat shock factor1, heat shock protein 27, and heat shock protein 70, also glucokinase (GK), and glucose 6-phosphatase (G6Pase) were determined using real-time polymerase chain reaction (RT-PCR). SSE in high dose (100 mg/kg) reduced fasting blood glucose (8.3 ± 0.4 mmol/L) compared with diabetic control (24.6 ± 1.2 mmol/L) (P < 0.05). Furthermore, SSE in high dose increased insulin level compared with diabetic control group (12.7 ± 0.6 vs 7.1 ± 0.3 μU/mL). RT-PCR analysis revealed decline in mRNA levels of stress proteins and G6Pase and increase in mRNA level of GK in treatment diabetic groups compared with diabetic control group. Data showed antioxidant and antidiabetic effects of SSE through altering insulin release and glucose metabolism pathways. Hypoglycemic potential of SSE may be due to change in GK and G6Pase enzymes expression. These findings provide a basis for the therapeutic potential of saffron in treatment of diabetes.
Collapse
Affiliation(s)
- Maryam Motamedrad
- Student Research Committee, Birjand University of Medical Sciences, Birjand, I.R. Iran.,Departments of Biology, Faculty of Science, University of Birjand, Birjand, I.R. Iran
| | - Alireza Shokouhifar
- Student Research Committee, Birjand University of Medical Sciences, Birjand, I.R. Iran
| | - Mina Hemmati
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, I.R. Iran.,Department of Biochemistry, School of Medicine, Birjand University of Medical Sciences, Birjand, I.R. Iran
| | - Maryam Moossavi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, I.R. Iran
| |
Collapse
|
43
|
Graham LA, Aman A, Campbell DD, Augley J, Graham D, McBride MW, Fraser NJ, Ferreri NR, Dominiczak AF, Padmanabhan S. Salt stress in the renal tubules is linked to TAL-specific expression of uromodulin and an upregulation of heat shock genes. Physiol Genomics 2018; 50:964-972. [PMID: 30216136 PMCID: PMC6293113 DOI: 10.1152/physiolgenomics.00057.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/20/2018] [Accepted: 09/12/2018] [Indexed: 12/15/2022] Open
Abstract
Previously, our comprehensive cardiovascular characterization study validated Uromodulin as a blood pressure gene. Uromodulin is a glycoprotein exclusively synthesized at the thick ascending limb of the loop of Henle and is encoded by the Umod gene. Umod-/- mice have significantly lower blood pressure than Umod+/+ mice, are resistant to salt-induced changes in blood pressure, and show a leftward shift in pressure-natriuresis curves reflecting changes of sodium reabsorption. Salt stress triggers transcription factors and genes that alter renal sodium reabsorption. To date there are no studies on renal transcriptome responses to salt stress. Here we aimed use RNA-Seq to delineate salt stress pathways in tubules isolated from Umod+/+ mice (a model of sodium retention) and Umod-/- mice (a model of sodium depletion) ± 300 mosmol sodium chloride ( n = 3 per group). In response to salt stress, the tubules of Umod+/+ mice displayed an upregulation of heat shock transcripts. The greatest changes occurred in the expression of: Hspa1a (Log2 fold change 4.35, P = 2.48 e-12) and Hspa1b (Log2 fold change 4.05, P = 2.48 e-12). This response was absent in tubules of Umod-/- mice. Interestingly, seven of the genes discordantly expressed in the Umod-/- tubules were electrolyte transporters. Our results are the first to show that salt stress in renal tubules alters the transcriptome, increasing the expression of heat shock genes. This direction of effect in Umod+/+ tubules suggest the difference is due to the presence of Umod facilitating greater sodium entry into the tubule cell reflecting a specific response to salt stress.
Collapse
Affiliation(s)
- Lesley A Graham
- The British Heart Foundation Centre of Excellence, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow , Glasgow , United Kingdom
| | - Alisha Aman
- The British Heart Foundation Centre of Excellence, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow , Glasgow , United Kingdom
| | - Desmond D Campbell
- The British Heart Foundation Centre of Excellence, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow , Glasgow , United Kingdom
| | - Julian Augley
- Wolfson Wohl Cancer Research Centre, Glasgow Polyomics, University of Glasgow, Bearsden, United Kingdom
| | - Delyth Graham
- The British Heart Foundation Centre of Excellence, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow , Glasgow , United Kingdom
| | - Martin W McBride
- The British Heart Foundation Centre of Excellence, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow , Glasgow , United Kingdom
| | - Niall J Fraser
- University of Dundee, Ninewells Hospital , Dundee , United Kingdom
| | - Nicholas R Ferreri
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Anna F Dominiczak
- The British Heart Foundation Centre of Excellence, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow , Glasgow , United Kingdom
| | - Sandosh Padmanabhan
- The British Heart Foundation Centre of Excellence, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow , Glasgow , United Kingdom
| |
Collapse
|
44
|
Zheng JP, Lyu Y, Li RF, Tian FJ, Mu JB. Interaction of heat shock protein 70 (HSP70) polymorphisms and occupational hazards increases the risk of hypertension in coke oven workers. Occup Environ Med 2018; 75:807-813. [PMID: 30217924 DOI: 10.1136/oemed-2018-105160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/15/2018] [Accepted: 08/27/2018] [Indexed: 12/27/2022]
Abstract
OBJECTIVES The interaction between genetic, epigenetic inheritance and environmental factors determines susceptibility to hypertension. Previous epidemiology studies have shown that coke oven workers who are frequently exposed to various occupational hazards have remarkable increase in the risk for hypertension. Among many genetic variants identified in hypertension, heat shock protein 70 (HSP70) was found to play important roles in the pathogenesis of hypertension and associated diseases. We therefore explore the possible role of HSP70 polymorphisms and their interaction with occupational environment in hypertension risk. METHODS We carried out a case-control study among 367 coke oven workers in northwest China, focused on three common HSP70 polymorphisms (HSP70-1 G190C, HSP70-2 A1267G and HSP70-hom T2437C), and evaluated the association of HSP70 gene polymorphisms with work sites for high risk of hypertension. RESULTS The results indicated that HSP70-1 GC and CC genotype had 2.73-fold and 4.26-fold increased relative risk (95% CI 1.33 to 5.55 and 1.17 to 15.53), respectively, comparing with HSP70-1 GG genotype. HSP70-2 AG and GG conferred a 47% and 36% reduced risk (95% CI 0.23 to 0.99 and 0.14 to 0.92) comparing with HSP70-2 AA genotype. Further analysis of the interaction of HSP70 polymorphisms with occupational environment indicated a strong positive interaction between HSP70 genotype (HSP70-1 GC+CC, HSP70-2 AA and HSP70-hom TC+CC) and oven top workplace. CONCLUSIONS Collectively, these data indicate that HSP70 polymorphisms interact with occupational hazards might increase the risk of hypertension in coke oven workers.
Collapse
Affiliation(s)
- Jin-Ping Zheng
- Department of Health Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China.,Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, China
| | - Yi Lyu
- Department of Health Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Rui-Fang Li
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Feng-Jie Tian
- Department of Health Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jian-Bing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, Maryland, USA
| |
Collapse
|
45
|
Abstract
The development of stress drives a host of biological responses that include the overproduction of a family of proteins named heat shock proteins (HSPs), because they were initially studied after heat exposure. HSPs are evolutionarily preserved proteins with a high degree of interspecies homology. HSPs are intracellular proteins that also have extracellular expression. The primary role of HSPs is to protect cell function by preventing irreversible protein damage and facilitating molecular traffic through intracellular pathways. However, in addition to their chaperone role, HSPs are immunodominant molecules that stimulate natural as well as disease-related immune reactivity. The latter may be a consequence of molecular mimicry, generating cross-reactivity between human HSPs and the HSPs of infectious agents. Autoimmune reactivity driven by HSPs could also be the result of enhancement of the immune response to peptides generated during cellular injury and of their role in the delivery of peptides to the major histocompatibility complex in antigen-presenting cells. In humans, HSPs have been found to participate in the pathogenesis of a large number of diseases. This review is focused on the role of HSPs in atherosclerosis and essential hypertension.
Collapse
Affiliation(s)
- B Rodríguez-Iturbe
- 1 Instituto Venezolano de Investigaciones Científicas (IVIC-Zulia), Nephrology Service Hospital Universitario, Universidad del Zulia , Maracaibo, Venezuela
| | - R J Johnson
- 2 Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus , Aurora, CO, USA
| |
Collapse
|
46
|
Rodriguez-Iturbe B, Lanaspa MA, Johnson RJ. The role of autoimmune reactivity induced by heat shock protein 70 in the pathogenesis of essential hypertension. Br J Pharmacol 2018; 176:1829-1838. [PMID: 29679484 DOI: 10.1111/bph.14334] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/26/2018] [Accepted: 03/28/2018] [Indexed: 12/24/2022] Open
Abstract
Autoimmunity is increasingly recognized as having a central role in essential hypertension. Heat shock proteins (HSPs) are immunodominant molecules with high interspecies homology and autoimmune reactivity directed against HSP70 may play a role in the pathogenesis of hypertension. Autoimmunity to HSP70 may result from molecular mimicry between human HSP and bacterial HSP or, alternatively, as a response to HSP70-peptide complexes generated during cellular stress and delivered to the major histocompatibility complex by antigen-presenting cells. HSP70 is increased in the circulation and kidney of hypertensive patients, and genetic polymorphisms of HSP70 are associated with essential hypertension. Depending on the route and conditions of administration, HSP70 may induce or suppress immune-related inflammation. Renal inflammation induced by immunity to HSP70 causes hypertension in laboratory animals, and administration of specific peptide sequences of HSP70 results in a protective anti-inflammatory response that prevents and corrects salt-induced hypertension. Potential therapeutic uses of HSP70 in essential hypertension deserve to be investigated. LINKED ARTICLES: This article is part of a themed section on Immune Targets in Hypertension. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.12/issuetoc.
Collapse
Affiliation(s)
- Bernardo Rodriguez-Iturbe
- Nephrology Service Hospital Universitario, Universidad del Zulia, Instituto Venezolano de Investigaciones Científicas (IVIC-Zulia), Maracaibo, Venezuela
| | - Miguel A Lanaspa
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
47
|
Roncal-Jimenez CA, Sato Y, Milagres T, Andres Hernando A, García G, Bjornstad P, Dawson JB, Sorensen C, Newman L, Krisher L, Madero M, Glaser J, Gárcía-Trabanino R, Romero EJ, Song Z, Jensen T, Kuwabara M, Rodriguez-Iturbe B, Sanchez-Lozada LG, Lanaspa MA, Johnson RJ. Experimental heat stress nephropathy and liver injury are improved by allopurinol. Am J Physiol Renal Physiol 2018; 315:F726-F733. [PMID: 29667911 DOI: 10.1152/ajprenal.00543.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
An epidemic of chronic kidney disease (CKD) has been observed in Central America among workers in the sugarcane fields. One hypothesis is that the CKD may be caused by recurrent heat stress and dehydration, and potentially by hyperuricemia. Accordingly, we developed a murine model of kidney injury associated with recurrent heat stress. In the current experiment, we tested whether treatment with allopurinol (a xanthine oxidase inhibitor that reduces serum urate) provides renal protection against recurrent heat stress and dehydration. Eight-week-old male C57BL/6 mice were subjected to recurrent heat stress (39.5°C for 30 min, 7 times daily, for 5 wk) with or without allopurinol treatment and were compared with control animals with or without allopurinol treatment. Mice were allowed ad libitum access to normal laboratory chow (Harlan Teklad). Kidney histology, liver histology, and renal function were examined. Heat stress conferred both kidney and liver injury. Kidneys showed loss of proximal tubules, infiltration of monocyte/macrophages, and interstitial collagen deposition, while livers of heat-stressed mice displayed an increase in macrophages, collagen deposition, and myofibroblasts. Allopurinol provided significant protection and improved renal function in the heat-stressed mice. The renal protection was associated with reduction in intrarenal uric acid concentration and heat shock protein 70 expression. Heat stress-induced renal and liver injury can be protected with allopurinol treatment. We recommend a clinical trial of allopurinol for individuals developing renal injury in rural areas of Central America where the epidemic of chronic kidney disease is occurring.
Collapse
Affiliation(s)
- Carlos A Roncal-Jimenez
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| | - Yuka Sato
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| | - Tamara Milagres
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| | - Ana Andres Hernando
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| | - Gabriela García
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| | - Petter Bjornstad
- Department of Pediatric Endocrinology, University of Colorado School of Medicine , Aurora, Colorado
| | - Jaime Butler Dawson
- Center for Health, Work and Environment, Colorado School of Public Health , Aurora, Colorado
| | - Cecilia Sorensen
- Center for Health, Work and Environment, Colorado School of Public Health , Aurora, Colorado
| | - Lee Newman
- Center for Health, Work and Environment, Colorado School of Public Health , Aurora, Colorado
| | - Lyndsay Krisher
- Center for Health, Work and Environment, Colorado School of Public Health , Aurora, Colorado
| | - Magdalena Madero
- Department of Nephrology, Institution Nacional de Cardiologia, Ignacio Chavez, Mexico City, Mexico
| | | | | | | | - Zhilin Song
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| | - Thomas Jensen
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| | - Masanari Kuwabara
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| | - Bernardo Rodriguez-Iturbe
- Nephrology Service Hospital Universitario and Instituto Venezolano de Investigaciones Cientificas-Zulia , Maracaibo , Venezuela
| | | | - Miguel A Lanaspa
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| |
Collapse
|
48
|
Abstract
The link between inappropriate salt retention in the kidney and hypertension is well recognized. However, growing evidence suggests that the immune system can play surprising roles in sodium homeostasis, such that the study of inflammatory cells and their secreted effectors has provided important insights into salt sensitivity. As part of the innate immune system, myeloid cells have diverse roles in blood pressure regulation, ranging from prohypertensive actions in the kidney, vasculature, and brain, to effects in the skin that attenuate blood pressure elevation. In parallel, T lymphocyte subsets, as key constituents of the adaptive immune compartment, have variable effects on renal sodium handling and the hypertensive response, accruing from the functions of the cytokines that they produce. Conversely, salt can directly modulate the phenotypes of myeloid and T cells, illustrating bidirectional regulatory mechanisms through which sodium and the immune system coordinately impact blood pressure. This review details the complex interplay between myeloid cells, T cells, and salt in the pathogenesis of essential hypertension.
Collapse
Affiliation(s)
- A Justin Rucker
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27710, USA; .,Durham Veterans Affairs Medical Center, Durham, North Carolina 27705, USA
| | - Nathan P Rudemiller
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27710, USA; .,Durham Veterans Affairs Medical Center, Durham, North Carolina 27705, USA
| | - Steven D Crowley
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27710, USA; .,Durham Veterans Affairs Medical Center, Durham, North Carolina 27705, USA
| |
Collapse
|
49
|
Rodriguez-Iturbe B, Pons H, Johnson RJ. Role of the Immune System in Hypertension. Physiol Rev 2017; 97:1127-1164. [PMID: 28566539 PMCID: PMC6151499 DOI: 10.1152/physrev.00031.2016] [Citation(s) in RCA: 263] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 03/02/2017] [Accepted: 03/02/2017] [Indexed: 02/07/2023] Open
Abstract
High blood pressure is present in more than one billion adults worldwide and is the most important modifiable risk factor of death resulting from cardiovascular disease. While many factors contribute to the pathogenesis of hypertension, a role of the immune system has been firmly established by a large number of investigations from many laboratories around the world. Immunosuppressive drugs and inhibition of individual cytokines prevent or ameliorate experimental hypertension, and studies in genetically-modified mouse strains have demonstrated that lymphocytes are necessary participants in the development of hypertension and in hypertensive organ injury. Furthermore, immune reactivity may be the driving force of hypertension in autoimmune diseases. Infiltration of immune cells, oxidative stress, and stimulation of the intrarenal angiotensin system are induced by activation of the innate and adaptive immunity. High blood pressure results from the combined effects of inflammation-induced impairment in the pressure natriuresis relationship, dysfunctional vascular relaxation, and overactivity of the sympathetic nervous system. Imbalances between proinflammatory effector responses and anti-inflammatory responses of regulatory T cells to a large extent determine the severity of inflammation. Experimental and human studies have uncovered autoantigens (isoketal-modified proteins and heat shock protein 70) of potential clinical relevance. Further investigations on the immune reactivity in hypertension may result in the identification of new strategies for the treatment of the disease.
Collapse
Affiliation(s)
- Bernardo Rodriguez-Iturbe
- Renal Service, Hospital Universitario, Universidad del Zulia, and Instituto Venezolano de Investigaciones Científicas (IVIC)-Zulia, Maracaibo, Venezuela; and Division of Renal Diseases and Hypertension, University of Colorado, Anschutz Campus, Aurora, Colorado
| | - Hector Pons
- Renal Service, Hospital Universitario, Universidad del Zulia, and Instituto Venezolano de Investigaciones Científicas (IVIC)-Zulia, Maracaibo, Venezuela; and Division of Renal Diseases and Hypertension, University of Colorado, Anschutz Campus, Aurora, Colorado
| | - Richard J Johnson
- Renal Service, Hospital Universitario, Universidad del Zulia, and Instituto Venezolano de Investigaciones Científicas (IVIC)-Zulia, Maracaibo, Venezuela; and Division of Renal Diseases and Hypertension, University of Colorado, Anschutz Campus, Aurora, Colorado
| |
Collapse
|
50
|
Jakic B, Buszko M, Cappellano G, Wick G. Elevated sodium leads to the increased expression of HSP60 and induces apoptosis in HUVECs. PLoS One 2017; 12:e0179383. [PMID: 28604836 PMCID: PMC5467851 DOI: 10.1371/journal.pone.0179383] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/28/2017] [Indexed: 11/19/2022] Open
Abstract
Atherosclerosis is the leading cause of death in the world. We have previously shown that expression of heat shock protein 60 (HSP60) on the surface of endothelial cells is the main cause of initiating the disease as it acts as a T cell auto-antigen and can be triggered by classical atherosclerosis risk factors, such as infection (e.g. Chlamydia pneumoniae), chemical stress (smoking, oxygen radicals, drugs), physical insult (heat, shear blood flow) and inflammation (inflammatory cytokines, lipopolysaccharide, oxidized low density lipoprotein, advanced glycation end products). In the present study, we show that increasing levels of sodium chloride can also induce an increase in intracellular and surface expression of HSP60 protein in human umbilical vein endothelial cells. In addition, we found that elevated sodium induces apoptosis.
Collapse
Affiliation(s)
- Bojana Jakic
- Laboratory of Autoimmunity, Division of Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
- * E-mail:
| | - Maja Buszko
- Laboratory of Autoimmunity, Division of Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Giuseppe Cappellano
- Laboratory of Autoimmunity, Division of Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Georg Wick
- Laboratory of Autoimmunity, Division of Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|