1
|
Min L, Chen Y, Zhong F, Gu L, Lee K, He JC. Role and Mechanisms of Tyro3 in Podocyte Biology and Glomerular Disease. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:398-406. [PMID: 39430290 PMCID: PMC11488836 DOI: 10.1159/000540452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/17/2024] [Indexed: 10/22/2024]
Abstract
Background Podocyte loss occurs in both primary and secondary glomerular diseases, leading to the progression of kidney disease. A large body of evidence suggests that apoptosis and detachment are the mechanisms mediating the reduction in podocyte numbers in glomerular diseases. Recent studies demonstrate a renal protective effect of protein S (PS) through the activation of Tyro3, one of the TAM receptors. Tyro3 is predominantly expressed in podocytes within the kidney, and its expression increases in early diabetic kidney disease (DKD) but decreases in patients with progressive DKD and focal segmental glomerulosclerosis (FSGS). Glomerular expression of Tyro3 also correlates with the progression of DKD and predicts the progression of primary glomerular diseases. High glucose increases Tyro3 expression, while TNF-α suppresses the expression of PS and Tyro3. PS has anti-inflammatory and antiapoptotic effects in podocytes, likely via the activation of the Akt pathway and the inhibition of NF-kB activation. In vivo, the knockout of PS or Tyro3 exacerbates podocyte loss and glomerular disease, while the overexpression of PS and Tyro3 attenuates the injury in mice with DKD and FSGS. Tyro3 agonists have also been shown to protect podocytes from injury in these animal models. Summary Tyro3 plays a critical role in podocyte biology and glomerular disease. Tyro3 agonists could potentially be developed as a new therapy for glomerular disease. Key Message The aim of this review article was to summarize the role and mechanisms mediating the protective effects of Tyro3 in podocyte biology and glomerular disease. Additionally, we discuss the possibility of developing Tyro3 agonists as potential treatment for glomerular diseases.
Collapse
Affiliation(s)
- Lulin Min
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yixin Chen
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fang Zhong
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leyi Gu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kyung Lee
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John Cijiang He
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Renal Section, James J Peters Veterans Affair Medical Center, Bronx, NY, USA
| |
Collapse
|
2
|
Hu W, Tan J, Lin Y, Tao Y, Zhou Q. Bibliometric and visual analysis of ACE2/Ang 1-7/MasR axis in diabetes and its microvascular complications from 2000 to 2023. Heliyon 2024; 10:e31405. [PMID: 38807880 PMCID: PMC11130665 DOI: 10.1016/j.heliyon.2024.e31405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
Background The pathogenesis of diabetes and its microvascular complications are intimately associated with renin angiotensin system dysregulation. Evidence suggests the angiotensin converting enzyme 2 (ACE2)/angiotensin 1-7 (Ang 1-7)/Mas receptor (MasR) axis regulates metabolic imbalances, inflammatory responses, reduces oxidative stress, and sustains microvascular integrity, thereby strengthening defences against diabetic conditions. This study aims to conduct a comprehensive analysis of the ACE2/Ang 1-7/MasR axis in diabetes and its microvascular complications over the past two decades, focusing on key contributors, research hotspots, and thematic trends. Methods This cross-sectional bibliometric analysis of 349 English-language publications was performed using HistCite, VOSviewer, CiteSpace, and Bibliometrix R for visualization and metric analysis. Primary analytical metrics included publication count and keyword trend dynamics. Results The United States, contributing 105 articles, emerged as the most productive country, with the University of Florida leading institutions with 18 publications. Benter IF was the most prolific author with 14 publications, and Clinical Science was the leading journal with 13 articles. A total of 151 of the 527 author's keywords with two or more occurrences clustered into four major clusters: diabetic microvascular pathogenesis, metabolic systems, type 2 diabetes, and coronavirus infections. Keywords such as "SARS", "ACE2", "coronavirus", "receptor" and "infection" displayed the strongest citation bursts. The thematic evolution in this field expanded from focusing on the renin angiotensin system (2002-2009) to incorporating ACE2 and diabetes metabolism (2010-2016). The latter period (2017-2023) witnessed a significant surge in diabetes research, reflecting the impact of COVID-19 and associated conditions such as diabetic retinopathy and cardiomyopathy. Conclusions This scientometric study offers a detailed analysis of the ACE2/Ang 1-7/MasR axis in diabetes and its microvascular complications, providing valuable insights for future research directions.
Collapse
Affiliation(s)
- Weiwen Hu
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Jian Tan
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Yeting Lin
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Yulin Tao
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Qiong Zhou
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, People's Republic of China
| |
Collapse
|
3
|
Guo Z, Niu Q, Mi X, Yang B, Cai M, Liang Y. Sirt1 activation prevents high glucose-induced angiotensin converting enzyme 2 downregulation in renal tubular cells by regulating the TIMP3/ADAM17 pathway. Mol Biol Rep 2024; 51:81. [PMID: 38183511 DOI: 10.1007/s11033-023-08957-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/17/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND Angiotensin converting enzyme 2 (ACE2) exerts renoprotective effects in diabetic kidney disease (DKD) by converting angiotensin (Ang) II into Ang (1-7). Previous studies have demonstrated that ACE2 expression in renal tubules is downregulated in DKD, but the mechanism is not fully understood. Sirtuin-1 (Sirt1) is a protein deacetylase that may regulate the activity of the renin-angiotensin system. The present study investigated the effects of Sirt1 on ACE2 expression under high glucose (HG) conditions and the underlying signaling pathway. METHODS AND RESULTS Rats with DKD and NRK-52E cells cultured with HG were employed in this study. Western blotting, immunohistochemistry detection and qRT-PCR were performed for protein and mRNA expression analyses. Rats subjected to DKD displayed downregulated expression of Sirt1 and ACE2 in kidneys. Resveratrol, an activator of Sirt1, restored ACE2 expression and ameliorated renal injuries. Similarly, pharmacological activation of Sirt1 with SRT1720 markedly upregulated ACE2 in NRK-52E cells cultured with HG, while Sirt1 small interfering RNA (siRNA) further suppressed ACE2 expression. In addition, A disintegrin and metalloproteinase (ADAM) 17 was observed to be upregulated, and its inhibitor, tissue inhibitor of metalloproteinase 3 (TIMP3), was downregulated in the kidneys of diabetic rats and NRK-52E cells incubated with HG. The TIMP3/ADAM17 pathway was involved in the regulation of ACE2 expression, as evidenced by decreased ACE2 expression levels after TIMP3-siRNA pretreatment. SRT1720 ameliorated the imbalance of TIMP3/ADAM17 induced by HG and consequently enhanced the expression of ACE2. Notably, the above effect of SRT1720 on ACE2 was interrupted by TIMP3-siRNA. CONCLUSIONS Our findings suggest that Sirt1 activation may prevent HG-induced downregulation of renal tubular ACE2 by modulating the TIMP3/ADAM17 pathway. Sirt1 stimulation might be a potential strategy for the treatment of DKD.
Collapse
Affiliation(s)
- Ziyu Guo
- Department of Nephrology, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Qingyu Niu
- Department of Nephrology, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Xinning Mi
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China
| | - Bing Yang
- Department of Nephrology, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Meishun Cai
- Department of Nephrology, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Yaoxian Liang
- Department of Nephrology, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China.
| |
Collapse
|
4
|
Sikora H, Gruba N, Wysocka M, Piwkowska A, Lesner A. Optimization of fluorescent substrates for ADAM17 and their utility in the detection of diabetes. Anal Biochem 2023; 681:115337. [PMID: 37783443 DOI: 10.1016/j.ab.2023.115337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
ADAM17 (a disintegrin and metalloproteinase 17) is a sheddase that releases various types of membrane-associated proteins, including adhesive molecules, cytokines and their receptors, and inflammatory mediators. Evidence suggests that the enzyme is involved in the proteolytic cleavage of antiaging transmembrane protein Klotho (KL). What is more, reduced serum and urinary KL levels are observed in the early stages of chronic kidney disease. This study aimed to optimise the ADAM17 specific and selective fluorescent substrates. Then, the obtained substrate was used to detect the enzyme in urine samples of patients diagnosed with diabetes. It turned out that in all cases we were able to detect proteolytic activity, which was the opposite of the healthy samples.
Collapse
Affiliation(s)
- Honorata Sikora
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Natalia Gruba
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 Street, PL, 80-308, Gdańsk, Poland.
| | - Magdalena Wysocka
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute Polish Academy of Sciences, Wita Stwosza 63, 80-308, Gdansk, Poland; Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Adam Lesner
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 Street, PL, 80-308, Gdańsk, Poland
| |
Collapse
|
5
|
Liu J, Ye L, Lin K, Zhong T, Luo J, Wang T, Suo L, Mo Q, Li S, Chen Q, Yu Y. miR-4299 inhibits tumor progression in pancreatic cancer through targeting ADAM17. Mol Cell Biochem 2023; 478:1727-1742. [PMID: 36565360 DOI: 10.1007/s11010-022-04617-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/18/2022] [Indexed: 12/25/2022]
Abstract
Pancreatic cancer (PC) is one of the most aggressive malignant tumors in human beings. Tumor capacity of evading immune-mediated lysis is a critical step in PC malignant progression. We aimed to evaluate the underlying regulatory mechanism of miR-4299 in the proliferation, metastasis, apoptosis, and immune escape in PC. miR-4299 and ADAM17 expressions in PC tissues and cell lines were detected using qRT-PCR. MTT assay and flow cytometry were used to detect cell viability and apoptosis, respectively. A luciferase reporter gene assay was conducted to confirm the targeted relationship between miR-4299 and ADAM17. Xenograft tumors in nude mice were used to detect tumorigenesis in vivo. PC cells were co-cultured with NK cells for determining the immune escape ability. NKG2D-positive rate of NK cells was detected using flow cytometry; NK cell-killing ability was detected using MTT assay. miR-4299 was downregulated in PC tissues and cell lines. miR-4299 inhibited PC cell proliferation and invasion, promoted cell apoptosis, and reduced PC tumor growth in vivo. ADAM17 3'UTR directly bound to miR-4299. ADAM17 overexpression could reverse miR-4299 effects on PC cell viability, invasion, apoptosis, and immune escape. miR-4299 exerted suppressive effects on PC cell proliferation, invasion, and immune escape via targeting ADAM17 expression. This study revealed a novel miR-4299/ADAM17 axis-modulating PC progression and proposed to concern the immune regulatory mechanism of miRNAs in PC development.
Collapse
Affiliation(s)
- Junhong Liu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China
| | - Lin Ye
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China
| | - Kangqiang Lin
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China
| | - Tieshan Zhong
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China
| | - Jiguang Luo
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China
| | - Tao Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China
| | - Liya Suo
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China
| | - Qingrong Mo
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China
| | - Shuqun Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China
| | - Qian Chen
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China
| | - Yaqun Yu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China.
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China.
| |
Collapse
|
6
|
Darka Aslan I, Sel G, Barut F, Baser Acikgoz R, Balci S, Ozmen U, Barut A, Harma M, Harma MI. Investigation of CD56, ADAM17 and FGF21 Expressions in the Placentas of Preeclampsia Cases. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1145. [PMID: 37374349 DOI: 10.3390/medicina59061145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
Objective: In the present study, we investigated the expression of CD56, ADAM17 and FGF21 antibodies (Ab), which we think have an effect on the pathophysiology of preeclampsia (PE), in pregnant patients with healthy placentas and placentas with PE. The expression of these antibodies has been investigated in a limited amount of former research, but their role in PE has not yet been clarified. With this study, we aimed to contribute to the elucidation of the pathophysiology of PE and the detection of new target molecules for treatment. Materials and Methods: Parturients with singleton pregnancy at 32 weeks or above without any maternal or fetal pathology who were admitted to the Department of Obstetrics and Gynecology, Zonguldak Bülent Ecevit University Practice and Research Hospital between 11 January 2020 and 7 January 2022 were included in the present study. Pregnant women with coexisting disease or a pathology related to the placenta (ablation placenta, vasa previa, hemangioma, etc.) were excluded. CD56, ADAM17 and FGF21 antibodies were histopathologically and immunohistochemically detected in 60 placentas with PE (study group) and 43 healthy placentas (control group). Results: CD56, ADAM17 and FGF21 proteins were all more intensely expressed in preeclamptic placentas and a statistically significant difference was found between the two groups for all three antibodies (p < 0.001). Deciduitis, perivillous fibrin deposition, intervillous fibrin, intervillous hemorrhage, infarct, calcification, laminar necrosis and syncytial node were found to be significantly more common in the study group (p < 0.001). Conclusions: We observed that CD56, ADAM17 and FGF21 expressions increased in preeclamptic placentas. These Ab may be responsible for the pathogenesis of PE, which can be illuminated with further studies.
Collapse
Affiliation(s)
- Irem Darka Aslan
- Department of Gynecology and Obsterics, Faculty of Medicine, Zonguldak Bulent Ecevit University, Esenköy, Kozlu, 67000 Zonguldak, Turkey
| | - Gorker Sel
- Department of Gynecology and Obsterics, Faculty of Medicine, Zonguldak Bulent Ecevit University, Esenköy, Kozlu, 67000 Zonguldak, Turkey
| | - Figen Barut
- Department of Medical Pathology, Faculty of Medicine, Zonguldak Bulent Ecevit University, Esenköy, Kozlu, 67000 Zonguldak, Turkey
| | - Rabia Baser Acikgoz
- Department of Gynecology and Obsterics, Zonguldak Alapli Public Hospital, Yeni Siteler Street, 67850 Zonguldak, Turkey
| | - Sibel Balci
- Department of Biostatistics, Faculty of Medicine, Kocaeli University, 41380 Kocaeli, Turkey
| | - Ulku Ozmen
- Department of Gynecology and Obsterics, Faculty of Medicine, Zonguldak Bulent Ecevit University, Esenköy, Kozlu, 67000 Zonguldak, Turkey
| | - Aykut Barut
- Department of Gynecology and Obsterics, Faculty of Medicine, Zonguldak Bulent Ecevit University, Esenköy, Kozlu, 67000 Zonguldak, Turkey
| | - Muge Harma
- Department of Gynecology and Obsterics, Faculty of Medicine, Zonguldak Bulent Ecevit University, Esenköy, Kozlu, 67000 Zonguldak, Turkey
| | - Mehmet Ibrahim Harma
- Department of Gynecology and Obsterics, Faculty of Medicine, Zonguldak Bulent Ecevit University, Esenköy, Kozlu, 67000 Zonguldak, Turkey
| |
Collapse
|
7
|
Qiu X, Wang J, Zhang W, Duan C, Chen T, Zhang D, Su J, Gao L. Disruption of the ADAM17/NF-κB feedback loop in astrocytes ameliorates HIV-1 Tat-induced inflammatory response and neuronal death. J Neurovirol 2023; 29:283-296. [PMID: 37185939 DOI: 10.1007/s13365-023-01131-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/06/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023]
Abstract
A disintegrin and metalloproteinases (ADAMs) are involved in multiple neurodegenerative diseases. However, the roles and mechanisms of ADAMs in HIV-associated neurocognitive disorder (HAND) remain unclear. Transactivator of transcription (Tat) induces inflammatory response in astrocytes, thereby leading to neuronal apoptosis in the central nervous system. In this study, we determined that ADAM17 expression was upregulated during soluble Tat stimulus in HEB astroglial cells. Inhibition of ADAM17 suppressed Tat-induced pro-inflammatory cytokines production and rescued the astrocytes-derived conditioned media (ACM)-mediated SH-SY5Y neural cells apoptosis. Moreover, ADAM17 mediated Tat-triggered inflammatory response in a NF-κB-dependent manner. Conversely, Tat induced ADAM17 expression via NF-κB signaling pathway. In addition, pharmacological inhibition of NF-κB signaling inhibited Tat-induced inflammatory response, which could be rescued by overexpression of ADAM17. Taken together, our study clarifies the potential role of the ADAM17/NF-κB feedback loop in Tat-induced inflammatory response in astrocytes and the ACM-mediated neuronal death, which could be a novel therapeutic target for relief of HAND.
Collapse
Affiliation(s)
- Xiaoxia Qiu
- Nantong Health College of Jiangsu Province, Nantong, 226001, People's Republic of China
| | - Jianjun Wang
- Nantong Health College of Jiangsu Province, Nantong, 226001, People's Republic of China
| | - Wei Zhang
- Nantong Health College of Jiangsu Province, Nantong, 226001, People's Republic of China
| | - Chengwei Duan
- Medical Research Center, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China
| | - Tianpeng Chen
- Medical Research Center, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China
| | - Dongmei Zhang
- Medical Research Center, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China
| | - Jianbin Su
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Lin Gao
- Medical Research Center, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
8
|
Maas SL, Donners MMPC, van der Vorst EPC. ADAM10 and ADAM17, Major Regulators of Chronic Kidney Disease Induced Atherosclerosis? Int J Mol Sci 2023; 24:ijms24087309. [PMID: 37108478 PMCID: PMC10139114 DOI: 10.3390/ijms24087309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Chronic kidney disease (CKD) is a major health problem, affecting millions of people worldwide, in particular hypertensive and diabetic patients. CKD patients suffer from significantly increased cardiovascular disease (CVD) morbidity and mortality, mainly due to accelerated atherosclerosis development. Indeed, CKD not only affects the kidneys, in which injury and maladaptive repair processes lead to local inflammation and fibrosis, but also causes systemic inflammation and altered mineral bone metabolism leading to vascular dysfunction, calcification, and thus, accelerated atherosclerosis. Although CKD and CVD individually have been extensively studied, relatively little research has studied the link between both diseases. This narrative review focuses on the role of a disintegrin and metalloproteases (ADAM) 10 and ADAM17 in CKD and CVD and will for the first time shed light on their role in CKD-induced CVD. By cleaving cell surface molecules, these enzymes regulate not only cellular sensitivity to their micro-environment (in case of receptor cleavage), but also release soluble ectodomains that can exert agonistic or antagonistic functions, both locally and systemically. Although the cell-specific roles of ADAM10 and ADAM17 in CVD, and to a lesser extent in CKD, have been explored, their impact on CKD-induced CVD is likely, yet remains to be elucidated.
Collapse
Affiliation(s)
- Sanne L Maas
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
| | - Marjo M P C Donners
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
| | - Emiel P C van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), 80336 Munich, Germany
| |
Collapse
|
9
|
Decreased expression of ADAM10 on monocytes is associated with chronic allograft dysfunction in kidney transplant recipients. Int Immunopharmacol 2023; 115:109710. [PMID: 36652757 DOI: 10.1016/j.intimp.2023.109710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023]
Abstract
BACKGROUND Chronic allograft dysfunction (CAD) is a common cause of allograft loss in kidney transplant recipients (KTRs). Our previous study found that elevated serum soluble T cell immunoglobulin mucin-3 (sTim-3) was positively associated with the severity of CAD in KTRs. sTim-3 was reported to be generated from ADAM10/ADAM17-mediated ectodomain shedding of membrane Tim-3 (mTim-3) in humans. However, whether mTim-3 shedding-related molecules participate in the progression of CAD remains unknown. Here, we explored the relationships between different forms of Tim-3, including mTim-3 on different peripheral blood cell subsets, serum and urine sTim-3, and ADAM10/17 expression and active status to investigate their roles in CAD. METHODS 63 KTRs with stable grafts, 91 KTRs with CAD and 42 healthy controls (HCs) were enrolled. Total Tim-3, pADAM10/17 and mADAM10/17 proteins were semiquantified by western blot. Serum and urine sTim-3 concentrations were determined by ELISA. mTim-3 and ADAM10/17 expression on leukocyte subpopulations was determined by flow cytometry. RESULTS The KTR groups displayed significantly higher levels of urine sTim-3 pg/μmol creatinine than the HC group, while no difference was found between the two KTR groups. KTRs with CAD presented reduced nonactive pADAM10 protein but unaltered active mADAM10 when compared to the Stable group; no difference was found between the KTR groups regarding total Tim-3 and p/m ADAM17 protein levels. In addition, the CAD group showed lower mTim-3 expression on BDCA3+ DC than the Stable group; no other difference was observed in its expression on B, T, NK, NKT, monocyte subsets and other DC subsets among groups. With the deterioration of allograft function, ADAM10 expression densities on classical, intermediate, and non-classical monocytes were significantly decreased. Correlation analyses revealed that eGFR and serum sTim-3 exhibited weak to modest correlations with ADAM10 on monocyte and DC subsets. CONCLUSIONS Our data indicated that ADAM10, especially its decreased expression on monocytes, may play an important role in the progression of CAD in KTRs. However, whether there is an interaction between ADAM10 and mTim-3 in the pathogenesis of CAD in KTRs needs to be further studied.
Collapse
|
10
|
A Closer Look at ACE2 Signaling Pathway and Processing during COVID-19 Infection: Identifying Possible Targets. Vaccines (Basel) 2022; 11:vaccines11010013. [PMID: 36679858 PMCID: PMC9867515 DOI: 10.3390/vaccines11010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/11/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Since the identification of its role as the functional receptor for SARS-CoV in 2003 and for SARS-CoV-2 in 2020, ACE2 has been studied in depth to understand COVID-19 susceptibility and severity. ACE2 is a widely expressed protein, and it plays a major regulatory role in the renin-angiotensin-aldosterone System (RAAS). The key to understanding susceptibility and severity may be found in ACE2 variants. Some variants have been shown to affect binding affinity with SARS-CoV-2. In this review, we discuss the role of ACE2 in COVID-19 infection, highlighting the importance of ACE2 isoforms (soluble and membrane-bound) and explore how ACE2 variants may influence an individual's susceptibility to SARS-CoV-2 infection and disease outcome.
Collapse
|
11
|
Wang K, Xuan Z, Liu X, Zheng M, Yang C, Wang H. Immunomodulatory role of metalloproteinase ADAM17 in tumor development. Front Immunol 2022; 13:1059376. [PMID: 36466812 PMCID: PMC9715963 DOI: 10.3389/fimmu.2022.1059376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/03/2022] [Indexed: 12/25/2023] Open
Abstract
ADAM17 is a member of the a disintegrin and metalloproteinase (ADAM) family of transmembrane proteases involved in the shedding of some cell membrane proteins and regulating various signaling pathways. More than 90 substrates are regulated by ADAM17, some of which are closely relevant to tumor formation and development. Besides, ADAM17 is also responsible for immune regulation and its substrate-mediated signal transduction. Recently, ADAM17 has been considered as a major target for the treatment of tumors and yet its immunomodulatory roles and mechanisms remain unclear. In this paper, we summarized the recent understanding of structure and several regulatory roles of ADAM17. Importantly, we highlighted the immunomodulatory roles of ADAM17 in tumor development, as well as small molecule inhibitors and monoclonal antibodies targeting ADAM17.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Zixue Xuan
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiaoyan Liu
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Meiling Zheng
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Chao Yang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, China
| | - Haiyong Wang
- Department of Internal Medicine Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
12
|
Wang L, Feng J, Deng Y, Yang Q, Wei Q, Ye D, Rong X, Guo J. CCAAT/Enhancer-Binding Proteins in Fibrosis: Complex Roles Beyond Conventional Understanding. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9891689. [PMID: 36299447 PMCID: PMC9575473 DOI: 10.34133/2022/9891689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/18/2022] [Indexed: 07/29/2023]
Abstract
CCAAT/enhancer-binding proteins (C/EBPs) are a family of at least six identified transcription factors that contain a highly conserved basic leucine zipper domain and interact selectively with duplex DNA to regulate target gene expression. C/EBPs play important roles in various physiological processes, and their abnormal function can lead to various diseases. Recently, accumulating evidence has demonstrated that aberrant C/EBP expression or activity is closely associated with the onset and progression of fibrosis in several organs and tissues. During fibrosis, various C/EBPs can exert distinct functions in the same organ, while the same C/EBP can exert distinct functions in different organs. Modulating C/EBP expression or activity could regulate various molecular processes to alleviate fibrosis in multiple organs; therefore, novel C/EBPs-based therapeutic methods for treating fibrosis have attracted considerable attention. In this review, we will explore the features of C/EBPs and their critical functions in fibrosis in order to highlight new avenues for the development of novel therapies targeting C/EBPs.
Collapse
Affiliation(s)
- Lexun Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiaojiao Feng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanyue Deng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qianqian Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Quxing Wei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dewei Ye
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
13
|
Potential Similarities in Sex Difference in Key Genes and Their Expression, Network, EQTL and Pathways between COVID-19 and Chronic Kidney Disease Based on Mouse Model. J Pers Med 2022; 12:jpm12071190. [PMID: 35887687 PMCID: PMC9323909 DOI: 10.3390/jpm12071190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
COVID-19 and chronic kidney disease (CKD) share similarity in sex bias and key genes in the disease pathway of sex difference. We investigated the sex difference of molecular pathways of four key players of these two diseases using an existing large set of whole genome expression profiles from the kidneys of female and male mouse models. Our data show that there is little to no correlation at the whole genome expression level between female and male mice among these four genes. There are considerable sex differences among genes in upstream regulation, Ace2 complex interaction, and downstream pathways. Snap25 and Plcb4 may play important roles in the regulation of the expression level of Adam17, Tmprss2, and Cd146 in females. In males, Adh4 is a candidate gene for the regulation of Adam17, while Asl, Auts2, and Rabger1 are candidates for Tmprss2. Within the Ace2 complex, Cd146 directly influences the expression level of Adam17 and Ace2 in the female, while in the male Adam potentially has a stronger influence on Ace2 than that of Tmprss2. Among the top 100 most related genes, only one or two genes from four key genes and 11 from the control B-Actin were found to be the same between sexes. Among the top 10 sets of genes in the downstream pathway of Ace2, only two sets are the same between the sexes. We concluded that these known key genes and novel genes in CKD may play significant roles in the sex difference in the CKD and COVID-19 disease pathways.
Collapse
|
14
|
Gruba N, Musielak M, Rejmak W, Lesner A. Detection of ADAM15 in urine from patients with bladder cancer. Anal Biochem 2022; 654:114805. [PMID: 35810783 DOI: 10.1016/j.ab.2022.114805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 11/01/2022]
Abstract
Cancer is one of the leading causes of death in the United States and Europe. Of the cancers, bladder cancer is the 10th most frequently diagnosed cancer and the 13th most frequently diagnosed cancer in men. There are many studies showing that proteolytic enzymes, e.g. A Disintegrin and Metalloproteinases (ADAMs), play a key role in the development and progression of neoplasms. In this paper, we present the use of chromogenic substrate of ADAM15 for the qualitative determination of specific activity of enzyme in urine of patients with confirmed bladder cancer. In the first step, we optimized the substrate molecule in non-primed positions using combinatorial chemistry. By means of the obtained ABZ-His-Ala-Arg-Gly-ANB-NH2 peptide, we detected ADAM15 activity in urine samples collected from patients diagnosed with bladder cancer. In contrast, we did not observe such activity in urine obtained from healthy volunteers.
Collapse
Affiliation(s)
- Natalia Gruba
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 Street, PL 80-308, Gdańsk, Poland.
| | - Monika Musielak
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 Street, PL 80-308, Gdańsk, Poland
| | - Wiktoria Rejmak
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 Street, PL 80-308, Gdańsk, Poland
| | - Adam Lesner
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 Street, PL 80-308, Gdańsk, Poland
| |
Collapse
|
15
|
Analysis of Leukocyte Recruitment in Continuous Veno-Venous Hemofiltration with Regional Citrate vs. Systemic Heparin Anticoagulation. Cells 2022; 11:cells11111815. [PMID: 35681510 PMCID: PMC9180305 DOI: 10.3390/cells11111815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/23/2022] [Accepted: 05/28/2022] [Indexed: 11/17/2022] Open
Abstract
Acute kidney injury (AKI) is a frequent complication in critically ill patients. Supportive treatment of AKI patients is based on renal-replacement therapy, including continuous veno-venous hemofiltration (CVVH). To limit clotting events on extracorporeal surfaces, anticoagulants are administered, including systemic heparin and local citrate. The differential and comparative effects of these anticoagulants on leukocyte function in acute kidney injury patients are, so far, insufficiently understood. In this bio-add-on-study, AKI patients were randomized as part of a parallel-group trial to either systemic heparin or regional citrate anticoagulation. Patient samples were collected upon inclusion, prior to CVVH initiation at day 0, day 1, day 3 and day 5, following CVVH initiation, and one day after cessation of CVVH, then immediately analyzed. Flow cytometric assessment of surface-receptor molecules was conducted. Whole-blood-perfused human microfluidic chambers were used for the analysis of neutrophil rolling and adhesion. Acute kidney injury was associated with significant changes in the surface expression of CD182 and CD16 throughout CVVH treatment, independent of the anticoagulation regime. AKI furthermore abrogated selectin-induced slow leukocyte rolling and diminished chemokine-induced leukocyte arrest. Subgroup analyses of citrate vs. heparin treatment showed no significant differences between groups, independent of the duration of CVVH treatment. CD182 and CD16 expression remained low in both groups throughout CVVH therapy. These data confirm that AKI impairs selectin-mediated leukocyte slow rolling and chemokine-induced leukocyte arrest in vitro. Systemic heparin or local citrate anticoagulation have no differential effect on the leukocyte recruitment steps examined in this study.
Collapse
|
16
|
SARS- CoV-2 infection and oxidative stress in early-onset preeclampsia. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166321. [PMID: 34920081 PMCID: PMC8668602 DOI: 10.1016/j.bbadis.2021.166321] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/23/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023]
Abstract
SARS-CoV-2 causes coronavirus disease 2019 (COVID-19) also in pregnant women. Infection in pregnancy leads to maternal and placental functional alterations. Pregnant women with vascular defects such as preeclampsia show high susceptibility to SARS-CoV-2 infection by undefined mechanisms. Pregnant women infected with SARS-CoV-2 show higher rates of preterm birth and caesarean delivery, and their placentas show signs of vasculopathy and inflammation. It is still unclear whether the foetus is affected by the maternal infection with this virus and whether maternal infection associates with postnatal affections. The SARS-CoV-2 infection causes oxidative stress and activation of the immune system leading to cytokine storm and next tissue damage as seen in the lung. The angiotensin-converting-enzyme 2 expression is determinant for these alterations in the lung. Since this enzyme is expressed in the human placenta, SARS-CoV-2 could infect the placenta tissue, although reported to be of low frequency compared with maternal lung tissue. Early-onset preeclampsia (eoPE) shows higher expression of ADAM17 (a disintegrin and metalloproteinase 17) causing an imbalanced renin-angiotensin system and endothelial dysfunction. A similar mechanism seems to potentially account for SARS-CoV-2 infection. This review highlights the potentially common characteristics of pregnant women with eoPE with those with COVID-19. A better understanding of the mechanisms of SARS-CoV-2 infection and its impact on the placenta function is determinant since eoPE/COVID-19 association may result in maternal metabolic alterations that might lead to a potential worsening of the foetal programming of diseases in the neonate, young, and adult.
Collapse
|
17
|
Kawabe M, Nakashima A, Yamamoto I, Ohkido I, Yokoo T, Urashima M. Higher Soluble ACE2 Levels and Increased Risk of Infection-Related Hospitalization in Patients on Maintenance Hemodialysis. Front Med (Lausanne) 2022; 9:791284. [PMID: 35155493 PMCID: PMC8825492 DOI: 10.3389/fmed.2022.791284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background Angiotensin-converting enzyme 2 (ACE2) works as an endogenous counter-regulator of the renin-angiotensin system, which has pivotal roles in preventing both cardiovascular disease (CVD) and inflammation. In general populations, higher plasma soluble ACE2 levels were reported to be associated with increased risks of all-cause death and major CVD. Because infections are fatal in patients on maintenance hemodialysis, we aimed to explore whether soluble ACE2 levels are associated with an increased risk of infection-related hospitalization in these patients. Methods Using data from a prospective, multicenter, cohort study conducted in Tokyo, Japan, we performed a post-hoc analyses of 724 clinically stable patients on maintenance hemodialysis. We measured baseline serum soluble ACE2 levels and assessed potential determinants of its with infection-related hospitalization as a primary outcome as well as all-cause death and CVD as secondary outcomes using a Cox proportional hazards model. Results The soluble ACE2 level (median, 0.16 ng/ml; interquartile range, 0.07–0.57 ng/ml) showed a weak negative association with age. During a median follow-up of 39 months, 106 patients (14.6%) were hospitalized with infectious diseases. Compared with the lower half of soluble ACE2 levels, the higher half was associated with an increased risk of infection-related hospitalization (hazard ratio, 1.57; 95% confidence interval, 1.02–2.41) with adjustment by other risk factors. On the other hand, there were no significant associations between soluble ACE2 and risks of all-cause death and CVD. Conclusion Higher soluble ACE2 levels may associate with an increased risk of infection-related hospitalization in patients on maintenance hemodialysis.
Collapse
Affiliation(s)
- Mayuko Kawabe
- Division of Molecular Epidemiology, The Jikei University School of Medicine, Tokyo, Japan.,Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Akio Nakashima
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Izumi Yamamoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Ichiro Ohkido
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Mitsuyoshi Urashima
- Division of Molecular Epidemiology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
18
|
ADAM and ADAMTS disintegrin and metalloproteinases as major factors and molecular targets in vascular malfunction and disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 94:255-363. [PMID: 35659374 PMCID: PMC9231755 DOI: 10.1016/bs.apha.2021.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A Disintegrin and Metalloproteinase (ADAM) and A Disintegrin and Metalloproteinase with Thrombospondin Motifs (ADAMTS) are two closely related families of proteolytic enzymes. ADAMs are largely membrane-bound enzymes that act as molecular scissors or sheddases of membrane-bound proteins, growth factors, cytokines, receptors and ligands, whereas ADAMTS are mainly secreted enzymes. ADAMs have a pro-domain, and a metalloproteinase, disintegrin, cysteine-rich and transmembrane domain. Similarly, ADAMTS family members have a pro-domain, and a metalloproteinase, disintegrin, and cysteine-rich domain, but instead of a transmembrane domain they have thrombospondin motifs. Most ADAMs and ADAMTS are activated by pro-protein convertases, and can be regulated by G-protein coupled receptor agonists, Ca2+ ionophores and protein kinase C. Activated ADAMs and ADAMTS participate in numerous vascular processes including angiogenesis, vascular smooth muscle cell proliferation and migration, vascular cell apoptosis, cell survival, tissue repair, and wound healing. ADAMs and ADAMTS also play a role in vascular malfunction and cardiovascular diseases such as hypertension, atherosclerosis, coronary artery disease, myocardial infarction, heart failure, peripheral artery disease, and vascular aneurysm. Decreased ADAMTS13 is involved in thrombotic thrombocytopenic purpura and microangiopathies. The activity of ADAMs and ADAMTS can be regulated by endogenous tissue inhibitors of metalloproteinases and other synthetic small molecule inhibitors. ADAMs and ADAMTS can be used as diagnostic biomarkers and molecular targets in cardiovascular disease, and modulators of ADAMs and ADAMTS activity may provide potential new approaches for the management of cardiovascular disorders.
Collapse
|
19
|
Ishiko S, Goligorsky MS. Ways and Means of Cellular Reconditioning for Kidney Regeneration. Am J Nephrol 2022; 53:96-107. [PMID: 35259745 PMCID: PMC9019837 DOI: 10.1159/000522050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/13/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Mitochondrial, lysosomal, and peroxisomal dysfunction; defective autophagy; mitophagy; and pexophagy, as well as the loss of glycocalyx integrity are known contributors to initiation and progression of diverse kidney diseases. Those cellular organelles are tightly interactive in health, and during development of a disease, damage in one may propagate to others. By extension, it follows that restoring an individual defect may culminate in a broader restorative spectrum and improvement of cell and organ functions. SUMMARY A novel strategy of reconditioning cellular organellar dysfunction, which we define as refurbishment of pathogenically pivotal intra- or extracellular elements, damaged in the course of disease and impeding restoration, is briefly outlined in this overview. Individual therapeutic reconditioning approaches targeting selected organelles are cataloged. We anticipate that the proposed reconditioning strategy in the future may enrich the arsenal of regenerative medicine and nephrology. KEY MESSAGE The arsenal of regenerative medicine and nephrology consisting of organ transplantation, use of stem cells, cell-free approaches, cell reprogramming strategies, and organ engineering has been enriched by the reconditioning strategy. The latter is based on the recognition of two facts that (a) impairment of diverse cellular organelles contributes to pathogenesis of kidney disease and (b) individual organelles are functionally interactively coupled, which explains the "domino effect" leading to their dysfunction. Reconditioning takes advantage of these facts and, while initially directed to restore the function of individual cellular organelles, culminates in the propagation of a therapeutic intervention to account for improved cell and organ function. Examples of such interventions are briefly summarized along the presentation of defective cellular organelles contributing to pathogenesis of kidney disease.
Collapse
Affiliation(s)
- Shinya Ishiko
- Department of Medicine, New York Medical College, Valhalla, New York, USA,
| | - Michael S Goligorsky
- Department of Medicine, Physiology and Pharmacology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
20
|
Palau V, Villanueva S, Jarrín J, Benito D, Márquez E, Rodríguez E, Soler MJ, Oliveras A, Gimeno J, Sans L, Crespo M, Pascual J, Barrios C, Riera M. Redefining the Role of ADAM17 in Renal Proximal Tubular Cells and Its Implications in an Obese Mouse Model of Pre-Diabetes. Int J Mol Sci 2021; 22:ijms222313093. [PMID: 34884897 PMCID: PMC8657896 DOI: 10.3390/ijms222313093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/14/2022] Open
Abstract
Acute and chronic kidney lesions induce an increase in A Disintegrin And Metalloproteinase domain 17 (ADAM17) that cleaves several transmembrane proteins related to inflammatory and fibrotic pathways. Our group has demonstrated that renal ADAM17 is upregulated in diabetic mice and its inhibition decreases renal inflammation and fibrosis. The purpose of the present study was to analyze how Adam17 deletion in proximal tubules affects different renal structures in an obese mice model. Tubular Adam17 knockout male mice and their controls were fed a high-fat diet (HFD) for 22 weeks. Glucose tolerance, urinary albumin-to-creatinine ratio, renal histology, and pro-inflammatory and pro-fibrotic markers were evaluated. Results showed that wild-type mice fed an HFD became obese with glucose intolerance and renal histological alterations mimicking a pre-diabetic condition; consequently, greater glomerular size and mesangial expansion were observed. Adam17 tubular deletion improved glucose tolerance and protected animals against glomerular injury and prevented podocyte loss in HFD mice. In addition, HFD mice showed more glomerular macrophages and collagen accumulation, which was prevented by Adam17 deletion. Galectin-3 expression increased in the proximal tubules and glomeruli of HFD mice and ameliorated with Adam17 deletion. In conclusion, Adam17 in proximal tubules influences glucose tolerance and participates in the kidney injury in an obese pre-diabetic murine model. The role of ADAM17 in the tubule impacts on glomerular inflammation and fibrosis.
Collapse
Affiliation(s)
- Vanesa Palau
- Department of Nephrology, Hospital del Mar-Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain; (V.P.); (S.V.); (J.J.); (D.B.); (E.M.); (E.R.); (A.O.); (L.S.); (M.C.); (J.P.)
| | - Sofia Villanueva
- Department of Nephrology, Hospital del Mar-Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain; (V.P.); (S.V.); (J.J.); (D.B.); (E.M.); (E.R.); (A.O.); (L.S.); (M.C.); (J.P.)
| | - Josué Jarrín
- Department of Nephrology, Hospital del Mar-Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain; (V.P.); (S.V.); (J.J.); (D.B.); (E.M.); (E.R.); (A.O.); (L.S.); (M.C.); (J.P.)
| | - David Benito
- Department of Nephrology, Hospital del Mar-Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain; (V.P.); (S.V.); (J.J.); (D.B.); (E.M.); (E.R.); (A.O.); (L.S.); (M.C.); (J.P.)
| | - Eva Márquez
- Department of Nephrology, Hospital del Mar-Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain; (V.P.); (S.V.); (J.J.); (D.B.); (E.M.); (E.R.); (A.O.); (L.S.); (M.C.); (J.P.)
| | - Eva Rodríguez
- Department of Nephrology, Hospital del Mar-Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain; (V.P.); (S.V.); (J.J.); (D.B.); (E.M.); (E.R.); (A.O.); (L.S.); (M.C.); (J.P.)
| | - María José Soler
- Nephrology Research Group, Vall d’Hebron Research Institute (VHIR), Nephrology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
| | - Anna Oliveras
- Department of Nephrology, Hospital del Mar-Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain; (V.P.); (S.V.); (J.J.); (D.B.); (E.M.); (E.R.); (A.O.); (L.S.); (M.C.); (J.P.)
| | - Javier Gimeno
- Department of Pathology, Hospital del Mar, 08003 Barcelona, Spain;
| | - Laia Sans
- Department of Nephrology, Hospital del Mar-Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain; (V.P.); (S.V.); (J.J.); (D.B.); (E.M.); (E.R.); (A.O.); (L.S.); (M.C.); (J.P.)
| | - Marta Crespo
- Department of Nephrology, Hospital del Mar-Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain; (V.P.); (S.V.); (J.J.); (D.B.); (E.M.); (E.R.); (A.O.); (L.S.); (M.C.); (J.P.)
| | - Julio Pascual
- Department of Nephrology, Hospital del Mar-Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain; (V.P.); (S.V.); (J.J.); (D.B.); (E.M.); (E.R.); (A.O.); (L.S.); (M.C.); (J.P.)
| | - Clara Barrios
- Department of Nephrology, Hospital del Mar-Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain; (V.P.); (S.V.); (J.J.); (D.B.); (E.M.); (E.R.); (A.O.); (L.S.); (M.C.); (J.P.)
- Correspondence: (C.B.); (M.R.); Tel.: +34-65-004-2149 (C.B.); +34-93-316-0626 (M.R.)
| | - Marta Riera
- Department of Nephrology, Hospital del Mar-Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain; (V.P.); (S.V.); (J.J.); (D.B.); (E.M.); (E.R.); (A.O.); (L.S.); (M.C.); (J.P.)
- Correspondence: (C.B.); (M.R.); Tel.: +34-65-004-2149 (C.B.); +34-93-316-0626 (M.R.)
| |
Collapse
|
21
|
Deshpande MS, Banerjee T. A decoy strategy to activate the immune system. IUBMB Life 2021; 73:1205-1209. [PMID: 34455696 DOI: 10.1002/iub.2548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022]
Abstract
An approach comprising a novel fusion protein and inactivated virus, as a more efficacious vaccine against invading viruses is presented, using SARS-CoV-2 as a most prominent example. The fusion protein consists of the Hepatitis B surface antigen (HBsAg) conjugated to the N-terminal helix (NTH) of Angiotensin-Converting Enzyme 2 (ACE2), which is the receptor for SARS-CoV-2. For vaccination, this fusion protein is to be administered together with the whole killed virus. The NTH would bind to the Receptor Binding Domain (RBD) of the Spike protein of the killed virus. Due to HBsAg acting as a decoy, immune responses would be mounted. Neutralizing antibodies (NAbs) pre-existing in people already vaccinated with the recombinant Hepatitis B vaccine, fresh production of NAbs, and NAbs produced by memory B cells would bind to the HBsAg. This would lead to "presentation" of the killed virus to elements of the immune system at close range. Also, there would be enhanced opsonization and effective antigen presentation. This two-component vaccine could be a platform strategy, wherein HBsAg could be linked to the part of the cellular receptor that any new intractable virus binds to, and is administered together with whole inactivated virus. Now, the same fusion protein, administered by itself to persons with infection, would have therapeutic action, yet by harnessing elements of the immune system. NAbs would bind to the fusion protein as above, the NTH of which would bind to the RBDs of the infecting virus, which, in effect would be neutralized.
Collapse
Affiliation(s)
- Manisha S Deshpande
- Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Tanushree Banerjee
- Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India.,Molecular Neuroscience Research Laboratory, Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| |
Collapse
|
22
|
Interplay between extracellular matrix components and cellular and molecular mechanisms in kidney fibrosis. Clin Sci (Lond) 2021; 135:1999-2029. [PMID: 34427291 DOI: 10.1042/cs20201016] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022]
Abstract
Chronic kidney disease (CKD) is characterized by pathological accumulation of extracellular matrix (ECM) proteins in renal structures. Tubulointerstitial fibrosis is observed in glomerular diseases as well as in the regeneration failure of acute kidney injury (AKI). Therefore, finding antifibrotic therapies comprises an intensive research field in Nephrology. Nowadays, ECM is not only considered as a cellular scaffold, but also exerts important cellular functions. In this review, we describe the cellular and molecular mechanisms involved in kidney fibrosis, paying particular attention to ECM components, profibrotic factors and cell-matrix interactions. In response to kidney damage, activation of glomerular and/or tubular cells may induce aberrant phenotypes characterized by overproduction of proinflammatory and profibrotic factors, and thus contribute to CKD progression. Among ECM components, matricellular proteins can regulate cell-ECM interactions, as well as cellular phenotype changes. Regarding kidney fibrosis, one of the most studied matricellular proteins is cellular communication network-2 (CCN2), also called connective tissue growth factor (CTGF), currently considered as a fibrotic marker and a potential therapeutic target. Integrins connect the ECM proteins to the actin cytoskeleton and several downstream signaling pathways that enable cells to respond to external stimuli in a coordinated manner and maintain optimal tissue stiffness. In kidney fibrosis, there is an increase in ECM deposition, lower ECM degradation and ECM proteins cross-linking, leading to an alteration in the tissue mechanical properties and their responses to injurious stimuli. A better understanding of these complex cellular and molecular events could help us to improve the antifibrotic therapies for CKD.
Collapse
|
23
|
Abstract
Matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinases (ADAMs) belong to the metzincin family of zinc-containing multidomain molecules, and can act as soluble or membrane-bound proteases. These enzymes inactivate or activate other soluble or membrane-expressed mediator molecules, which enables them to control developmental processes, tissue remodelling, inflammatory responses and proliferative signalling pathways. The dysregulation of MMPs and ADAMs has long been recognized in acute kidney injury and in chronic kidney disease, and genetic targeting of selected MMPs and ADAMs in different mouse models of kidney disease showed that they can have detrimental and protective roles. In particular, MMP-2, MMP-7, MMP-9, ADAM10 and ADAM17 have been shown to have a mainly profibrotic effect and might therefore represent therapeutic targets. Each of these proteases has been associated with a different profibrotic pathway that involves tissue remodelling, Wnt-β-catenin signalling, stem cell factor-c-kit signalling, IL-6 trans-signalling or epidermal growth factor receptor (EGFR) signalling. Broad-spectrum metalloproteinase inhibitors have been used to treat fibrotic kidney diseases experimentally but more targeted approaches have since been developed, including inhibitory antibodies, to avoid the toxic side effects initially observed with broad-spectrum inhibitors. These advances not only provide a solid foundation for additional preclinical studies but also encourage further translation into clinical research.
Collapse
|
24
|
ADAM 17 and Epithelial-to-Mesenchymal Transition: The Evolving Story and Its Link to Fibrosis and Cancer. J Clin Med 2021; 10:jcm10153373. [PMID: 34362154 PMCID: PMC8347979 DOI: 10.3390/jcm10153373] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
For decades, metalloproteinase 17 (ADAM17) has been the goal of wide investigation. Since its discovery as the tumour necrosis factor-α convertase, it has been studied as the main drug target, especially in the context of inflammatory conditions and tumour. In fact, evidence is mounting to support a key role of ADAM17 in the induction of the proliferation, migration and progression of tumour cells and the trigger of the pro-fibrotic process during chronic inflammatory conditions; this occurs, probably, through the activation of epithelial-to-mesenchymal transition (EMT). EMT is a central morphologic conversion that occurs in adults during wound healing, tumour progression and organ fibrosis. EMT is characterised by the disassembly of cell–cell contacts, remodelling of the actin cytoskeleton and separation of cells, and generates fibroblast-like cells that express mesenchymal markers and have migratory properties. This transition is characterised by loss of epithelial proteins such as E-cadherin and the acquisition of new mesenchymal markers, including vimentin and a-smooth muscle actin. The present review discusses the current understanding of molecular mechanisms involved in ADAM17-dependent EMT in order to individuate innovative therapeutic strategies using ADAM17-related pathways.
Collapse
|
25
|
Typiak M, Kulesza T, Rachubik P, Rogacka D, Audzeyenka I, Angielski S, Saleem MA, Piwkowska A. Role of Klotho in Hyperglycemia: Its Levels and Effects on Fibroblast Growth Factor Receptors, Glycolysis, and Glomerular Filtration. Int J Mol Sci 2021; 22:7867. [PMID: 34360633 PMCID: PMC8345972 DOI: 10.3390/ijms22157867] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 01/14/2023] Open
Abstract
Hyperglycemic conditions (HG), at early stages of diabetic nephropathy (DN), cause a decrease in podocyte numbers and an aberration of their function as key cells for glomerular plasma filtration. Klotho protein was shown to overcome some negative effects of hyperglycemia. Klotho is also a coreceptor for fibroblast growth factor receptors (FGFRs), the signaling of which, together with a proper rate of glycolysis in podocytes, is needed for a proper function of the glomerular filtration barrier. Therefore, we measured levels of Klotho in renal tissue, serum, and urine shortly after DN induction. We investigated whether it influences levels of FGFRs, rates of glycolysis in podocytes, and albumin permeability. During hyperglycemia, the level of membrane-bound Klotho in renal tissue decreased, with an increase in the shedding of soluble Klotho, its higher presence in serum, and lower urinary excretion. The addition of Klotho increased FGFR levels, especially FGFR1/FGFR2, after their HG-induced decrease. Klotho also increased levels of glycolytic parameters of podocytes, and decreased podocytic and glomerular albumin permeability in HG. Thus, we found that the decrease in the urinary excretion of Klotho might be an early biomarker of DN and that Klotho administration may have several beneficial effects on renal function in DN.
Collapse
Affiliation(s)
- Marlena Typiak
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdansk, Poland; (T.K.); (P.R.); (D.R.); (I.A.); (S.A.); (A.P.)
| | - Tomasz Kulesza
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdansk, Poland; (T.K.); (P.R.); (D.R.); (I.A.); (S.A.); (A.P.)
| | - Patrycja Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdansk, Poland; (T.K.); (P.R.); (D.R.); (I.A.); (S.A.); (A.P.)
| | - Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdansk, Poland; (T.K.); (P.R.); (D.R.); (I.A.); (S.A.); (A.P.)
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdansk, Poland; (T.K.); (P.R.); (D.R.); (I.A.); (S.A.); (A.P.)
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Stefan Angielski
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdansk, Poland; (T.K.); (P.R.); (D.R.); (I.A.); (S.A.); (A.P.)
| | - Moin A. Saleem
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK;
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdansk, Poland; (T.K.); (P.R.); (D.R.); (I.A.); (S.A.); (A.P.)
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| |
Collapse
|
26
|
Li T, Shen K, Li J, Leung SWS, Zhu T, Shi Y. Glomerular Endothelial Cells Are the Coordinator in the Development of Diabetic Nephropathy. Front Med (Lausanne) 2021; 8:655639. [PMID: 34222276 PMCID: PMC8249723 DOI: 10.3389/fmed.2021.655639] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/21/2021] [Indexed: 12/22/2022] Open
Abstract
The prevalence of diabetes is consistently rising worldwide. Diabetic nephropathy is a leading cause of chronic renal failure. The present study aimed to explore the crosstalk among the different cell types inside diabetic glomeruli, including glomerular endothelial cells, mesangial cells, podocytes, and immune cells, by analyzing an online single-cell RNA profile (GSE131882) of patients with diabetic nephropathy. Differentially expressed genes in the glomeruli were processed by gene enrichment and protein-protein interactions analysis. Glomerular endothelial cells, as well as podocytes, play a critical role in diabetic nephropathy. A subgroup of glomerular endothelial cells possesses characteristic angiogenesis genes, indicating that angiogenesis takes place in the progress of diabetic nephropathy. Immune cells such as macrophages, T lymphocytes, B lymphocytes, and plasma cells also contribute to the disease progression. By using iTALK, the present study reports complicated cellular crosstalk inside glomeruli. Dysfunction of glomerular endothelial cells and immature angiogenesis result from the activation of both paracrine and autocrine signals. The present study reinforces the importance of glomerular endothelial cells in the development of diabetic nephropathy. The exploration of the signaling pathways involved in aberrant angiogenesis reported in the present study shed light on potential therapeutic target(s) for diabetic nephropathy.
Collapse
Affiliation(s)
- Tingting Li
- Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kaiyuan Shen
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiawei Li
- Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Susan W S Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tongyu Zhu
- Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Shi
- Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Cantero-Navarro E, Fernández-Fernández B, Ramos AM, Rayego-Mateos S, Rodrigues-Diez RR, Sánchez-Niño MD, Sanz AB, Ruiz-Ortega M, Ortiz A. Renin-angiotensin system and inflammation update. Mol Cell Endocrinol 2021; 529:111254. [PMID: 33798633 DOI: 10.1016/j.mce.2021.111254] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/05/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022]
Abstract
The most classical view of the renin-angiotensin system (RAS) emphasizes its role as an endocrine regulator of sodium balance and blood pressure. However, it has long become clear that the RAS has pleiotropic actions that contribute to organ damage, including modulation of inflammation. Angiotensin II (Ang II) activates angiotensin type 1 receptors (AT1R) to promote an inflammatory response and organ damage. This represents the pathophysiological basis for the successful use of RAS blockers to prevent and treat kidney and heart disease. However, other RAS components could have a built-in capacity to brake proinflammatory responses. Angiotensin type 2 receptor (AT2R) activation can oppose AT1R actions, such as vasodilatation, but its involvement in modulation of inflammation has not been conclusively proven. Angiotensin-converting enzyme 2 (ACE2) can process Ang II to generate angiotensin-(1-7) (Ang-(1-7)), that activates the Mas receptor to exert predominantly anti-inflammatory responses depending on the context. We now review recent advances in the understanding of the interaction of the RAS with inflammation. Specific topics in which novel information became available recently include intracellular angiotensin receptors; AT1R posttranslational modifications by tissue transglutaminase (TG2) and anti-AT1R autoimmunity; RAS modulation of lymphoid vessels and T lymphocyte responses, especially of Th17 and Treg responses; interactions with toll-like receptors (TLRs), programmed necrosis, and regulation of epigenetic modulators (e.g. microRNAs and bromodomain and extraterminal domain (BET) proteins). We additionally discuss an often overlooked effect of the RAS on inflammation which is the downregulation of anti-inflammatory factors such as klotho, peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), transient receptor potential ankyrin 1 (TRPA1), SNF-related serine/threonine-protein kinase (SNRK), serine/threonine-protein phosphatase 6 catalytic subunit (Ppp6C) and n-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP). Both transcription factors, such as nuclear factor κB (NF-κB), and epigenetic regulators, such as miRNAs are involved in downmodulation of anti-inflammatory responses. A detailed analysis of pathways and targets for downmodulation of anti-inflammatory responses constitutes a novel frontier in RAS research.
Collapse
Affiliation(s)
- Elena Cantero-Navarro
- Molecular and Cellular Biology in Renal and Vascular Pathology. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain; Red de Investigación Renal (REDINREN), Spain
| | - Beatriz Fernández-Fernández
- Red de Investigación Renal (REDINREN), Spain; Unidad de Diálisis. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Adrian M Ramos
- Red de Investigación Renal (REDINREN), Spain; Unidad de Diálisis. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Sandra Rayego-Mateos
- Molecular and Cellular Biology in Renal and Vascular Pathology. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain; Red de Investigación Renal (REDINREN), Spain
| | - Raúl R Rodrigues-Diez
- Molecular and Cellular Biology in Renal and Vascular Pathology. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain; Red de Investigación Renal (REDINREN), Spain
| | - María Dolores Sánchez-Niño
- Red de Investigación Renal (REDINREN), Spain; Unidad de Diálisis. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Ana B Sanz
- Red de Investigación Renal (REDINREN), Spain; Unidad de Diálisis. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Marta Ruiz-Ortega
- Molecular and Cellular Biology in Renal and Vascular Pathology. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain; Red de Investigación Renal (REDINREN), Spain.
| | - Alberto Ortiz
- Red de Investigación Renal (REDINREN), Spain; Unidad de Diálisis. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain.
| |
Collapse
|
28
|
Implications of ADAM17 activation for hyperglycaemia, obesity and type 2 diabetes. Biosci Rep 2021; 41:228464. [PMID: 33904577 PMCID: PMC8128101 DOI: 10.1042/bsr20210029] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
In this review, we focus specifically on the role that the metalloproteinase, A Disintegrin and Metalloproteinase 17 [ADAM17] plays in the development and progression of the metabolic syndrome. There is a well-recognised link between the ADAM17 substrate tumour necrosis factor α (TNF-α) and obesity, inflammation and diabetes. In addition, knocking out ADAM17 in mice leads to an extremely lean phenotype. Importantly, ADAM17-deficient mice exhibit one of the most pronounced examples of hypermetabolism in rodents to date. It is vital to further understand the mechanistic role that ADAM17 plays in the metabolic syndrome. Such studies will demonstrate that ADAM17 is a valuable therapeutic target to treat obesity and diabetes.
Collapse
|
29
|
The Downregulation of ADAM17 Exerts Protective Effects against Cardiac Fibrosis by Regulating Endoplasmic Reticulum Stress and Mitophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5572088. [PMID: 34035876 PMCID: PMC8118735 DOI: 10.1155/2021/5572088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/27/2021] [Accepted: 04/09/2021] [Indexed: 02/08/2023]
Abstract
Background A disintegrin and metalloproteinase 17 (ADAM17) is a transmembrane protein that is widely expressed in various tissues; it mediates the shedding of many membrane-bound molecules, involving cell-cell and cell-matrix interactions. We investigated the role of ADAM17 within mouse cardiac fibroblasts (mCFs) in heart fibrosis. Methods mCFs were isolated from the hearts of neonatal mice. Effects of ADAM17 on the differentiation of mCFs towards myofibroblasts and their fibrotic behaviors following induction with TGF-β1 were examined. The expression levels of fibrotic proteins, such as collagen I and α-SMA, were assessed by qRT-PCR analysis and western blotting. Cell proliferation and migration were measured using the CCK-8 and wound healing assay. To identify the target gene for ADAM17, the protein levels of the components of endoplasmic reticulum (ER) stress and the PINK1/Parkin pathway were assessed following ADAM17 silencing. The effects of ADAM17 silencing or treatment with thapsigargin, a key stimulator of acute ER stress, on mCFs proliferation, migration, and collagen secretion were also examined. In vivo, we used a mouse model of cardiac fibrosis established by left anterior descending artery ligation; the mice were administered oral gavage with a selective ADAM17 inhibitor (TMI-005) for 4 weeks after the operation. Results We found that the ADAM17 expression levels were higher in fibrosis heart tissues and TGF-β1-treated mCFs. The ADAM17-specific siRNAs decreased TGF-β1-induced increase in the collagen secretion, proliferation, and migration of mCFs. Knockdown of ADAM17 reduces the activation of mCFs by inhibiting the ATF6 branch of ER stress and further activating mitophagy. Moreover, decreased ADAM17 expression also ameliorated cardiac fibrosis and improved heart function. Conclusions This study highlights that mCF ADAM17 expression plays a key role in cardiac fibrosis by regulating ER stress and mitophagy, thereby limiting fibrosis and improving heart function. Therefore, ADAM17 downregulation, within the physiological range, could exert protective effects against cardiac fibrosis.
Collapse
|
30
|
Oz M, Lorke DE, Kabbani N. A comprehensive guide to the pharmacologic regulation of angiotensin converting enzyme 2 (ACE2), the SARS-CoV-2 entry receptor. Pharmacol Ther 2021; 221:107750. [PMID: 33275999 PMCID: PMC7854082 DOI: 10.1016/j.pharmthera.2020.107750] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023]
Abstract
The recent emergence of coronavirus disease-2019 (COVID-19) as a global pandemic has prompted scientists to address an urgent need for defining mechanisms of disease pathology and treatment. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent for COVID-19, employs angiotensin converting enzyme 2 (ACE2) as its primary target for cell surface attachment and likely entry into the host cell. Thus, understanding factors that may regulate the expression and function of ACE2 in the healthy and diseased body is critical for clinical intervention. Over 66% of all adults in the United States are currently using a prescription drug and while earlier findings have focused on possible upregulation of ACE2 expression through the use of renin angiotensin system (RAS) inhibitors, mounting evidence suggests that various other widely administered drugs used in the treatment of hypertension, heart failure, diabetes mellitus, hyperlipidemias, coagulation disorders, and pulmonary disease may also present a varied risk for COVID-19. Specifically, we summarize mechanisms on how heparin, statins, steroids and phytochemicals, besides their established therapeutic effects, may also interfere with SARS-CoV-2 viral entry into cells. We also describe evidence on the effect of several vitamins, phytochemicals, and naturally occurring compounds on ACE2 expression and activity in various tissues and disease models. This comprehensive review aims to provide a timely compendium on the potential impact of commonly prescribed drugs and pharmacologically active compounds on COVID-19 pathology and risk through regulation of ACE2 and RAS signaling.
Collapse
Key Words
- adam17, a disintegrin and metalloprotease 17
- ace, angiotensin i converting enzyme
- ace-inh., angiotensin i converting enzyme inhibitor
- ampk, amp-activated protein kinase
- ang-ii, angiotensin ii
- arb, angiotensin ii type 1-receptor blocker
- ards, acute respiratory distress syndrome
- at1-r, angiotensin ii type 1-receptor
- βarb, β-adrenergic receptor blockers
- bk, bradykinin
- ccb, calcium channel blockers
- ch25h, cholesterol-25-hydroxylase
- copd, chronic obstructive lung disease
- cox, cyclooxygenase
- covid-19, coronavirus disease-2019
- dabk, [des-arg9]-bradykinin
- erk, extracellular signal-regulated kinase
- 25hc, 25-hydroxycholesterol
- hs, heparan sulfate
- hspg, heparan sulfate proteoglycan
- ibd, inflammatory bowel disease
- map, mitogen-activated protein
- mers, middle east respiratory syndrome
- mrb, mineralocorticoid receptor blocker
- nos, nitric oxide synthase
- nsaid, non-steroid anti-inflammatory drug
- ras, renin-angiotensin system
- sars-cov, severe acute respiratory syndrome coronavirus
- sh, spontaneously hypertensive
- s protein, spike protein
- sirt1, sirtuin 1
- t2dm, type 2 diabetes mellitus
- tcm, traditional chinese medicine
- tmprss2, transmembrane protease, serine 2
- tnf, tumor necrosis factor
- ufh, unfractionated heparin
Collapse
Affiliation(s)
- Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait.
| | - Dietrich Ernst Lorke
- Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates; Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Nadine Kabbani
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
31
|
|
32
|
Batchu SN, Kaur H, Yerra VG, Advani SL, Kabir MG, Liu Y, Klein T, Advani A. Lung and Kidney ACE2 and TMPRSS2 in Renin-Angiotensin System Blocker-Treated Comorbid Diabetic Mice Mimicking Host Factors That Have Been Linked to Severe COVID-19. Diabetes 2021; 70:759-771. [PMID: 33310740 DOI: 10.2337/db20-0765] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/27/2020] [Indexed: 12/20/2022]
Abstract
The causes of the increased risk of severe coronavirus disease 2019 (COVID-19) in people with diabetes are unclear. It has been speculated that renin-angiotensin system (RAS) blockers may promote COVID-19 by increasing ACE2, which severe acute respiratory syndrome coronavirus 2 uses to enter host cells, along with the host protease TMPRSS2. Taking a reverse translational approach and by combining in situ hybridization, primary cell isolation, immunoblotting, quantitative RT-PCR, and liquid chromatography-tandem mass spectrometry, we studied lung and kidney ACE2 and TMPRSS2 in diabetic mice mimicking host factors linked to severe COVID-19. In healthy young mice, neither the ACE inhibitor ramipril nor the AT1 receptor blocker telmisartan affected lung or kidney ACE2 or TMPRSS2, except for a small increase in kidney ACE2 protein with ramipril. In contrast, mice with comorbid diabetes (aging, high-fat diet, and streptozotocin-induced diabetes) had heightened lung ACE2 and TMPRSS2 protein levels and increased lung ACE2 activity. None of these parameters were affected by RAS blockade. ACE2 was similarly upregulated in the kidneys of mice with comorbid diabetes compared with aged controls, whereas TMPRSS2 (primarily distal nephron) was highest in telmisartan-treated animals. Upregulation of lung ACE2 activity in comorbid diabetes may contribute to an increased risk of severe COVID-19. This upregulation is driven by comorbidity and not by RAS blockade.
Collapse
Affiliation(s)
- Sri Nagarjun Batchu
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Harmandeep Kaur
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Veera Ganesh Yerra
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Suzanne L Advani
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - M Golam Kabir
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Youan Liu
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Thomas Klein
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma, Biberach, Germany
| | - Andrew Advani
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Andreucci M, Provenzano M, Faga T, Michael A, Patella G, Mastroroberto P, Serraino GF, Bracale UM, Ielapi N, Serra R. Aortic Aneurysms, Chronic Kidney Disease and Metalloproteinases. Biomolecules 2021; 11:194. [PMID: 33573220 PMCID: PMC7912263 DOI: 10.3390/biom11020194] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Metalloproteinases (MPs) are proteolytic enzymes involved in extracellular matrix deposition, regulation of cellular signals of inflammation, proliferation, and apoptosis. Metalloproteinases are classified into three families: Matrix-MPs (MMPs), A-Disintegrin-and-Metalloprotease (ADAMs), and the A-Disintegrin-and-Metalloproteinase-with-Thrombospondin-1-like-Domains (ADAMTS). Previous studies showed that MPs are involved in the development of aortic aneurysms (AA) and, concomitantly, in the onset of chronic kidney disease (CKD). CKD has been, per se, associated with an increased risk for AA. The aim of this review is to examine the pathways that may associate MPs with CKD and AA. Several MMPs, such as MMP-2, -8, -9, and TIMP-1 have been shown to damage the AA wall and to have a toxic effect on renal tubular cells, leading to fibrosis. Similarly, ADAM10 and 17 have been shown to degrade collagen in the AA wall and to worsen kidney function via pro-inflammatory stimuli, the impairment of the Renin-Angiotensin-Aldosterone System, and the degradation of structural proteins. Moreover, MMP-2 and -9 inhibitors reduced aneurysm growth and albuminuria in experimental and human studies. It would be important, in the future, to expand research on MPs from both a prognostic, namely, to refine risk stratification in CKD patients, and a predictive perspective, likely to improve prognosis in response to targeted treatments.
Collapse
Affiliation(s)
- Michele Andreucci
- Department of Health Sciences, “Magna Graecia” University, I-88100 Catanzaro, Italy; (M.A.); (T.F.); (A.M.); (G.P.)
| | - Michele Provenzano
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, I-88100 Catanzaro, Italy;
| | - Teresa Faga
- Department of Health Sciences, “Magna Graecia” University, I-88100 Catanzaro, Italy; (M.A.); (T.F.); (A.M.); (G.P.)
| | - Ashour Michael
- Department of Health Sciences, “Magna Graecia” University, I-88100 Catanzaro, Italy; (M.A.); (T.F.); (A.M.); (G.P.)
| | - Gemma Patella
- Department of Health Sciences, “Magna Graecia” University, I-88100 Catanzaro, Italy; (M.A.); (T.F.); (A.M.); (G.P.)
| | - Pasquale Mastroroberto
- Department of Experimental and Clinical Medicine, University of Catanzaro, I-88100 Catanzaro, Italy; (P.M.); (G.F.S.)
| | - Giuseppe Filiberto Serraino
- Department of Experimental and Clinical Medicine, University of Catanzaro, I-88100 Catanzaro, Italy; (P.M.); (G.F.S.)
| | | | - Nicola Ielapi
- Department of Public Health and Infectious Disease, “Sapienza” University of Rome, I-00185 Roma, Italy;
| | - Raffaele Serra
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, I-88100 Catanzaro, Italy;
- Interuniversity Center of Phlebolymphology (CIFL), “Magna Graecia” University, I-88100 Catanzaro, Italy
| |
Collapse
|
34
|
Kim DY, Lee M, Kim EJ. Involvement of Klotho, TNF‑α and ADAMs in radiation‑induced senescence of renal epithelial cells. Mol Med Rep 2020; 23:22. [PMID: 33179086 PMCID: PMC7673348 DOI: 10.3892/mmr.2020.11660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/18/2020] [Indexed: 11/06/2022] Open
Abstract
While radiation nephropathy is a major problem associated with radiotherapy, the exact mechanisms underlying its pathogenesis and the mediators involved in kidney deterioration remain to be elucidated. In view of the finding that senescence is typically increased post‑irradiation, the present study examined whether ionizing radiation may cause kidney injury by enhancing premature senescence. The present study explored the relevance of the aging suppressor, Klotho, which has anti‑aging activity and is highly expressed in murine renal cells/kidney tissues, under irradiation conditions. Firstly, the effects of radiation on mouse inner medullary collecting duct‑3 (mIMCD‑3) cells and kidney tissues of mice were assessed. Subsequently, the mRNA expression levels of Klotho, TNF‑α and ADAM metallopeptidase domain (ADAM)9/10/17 were analyzed by reverse transcription‑quantitative PCR following exposure to radiation. In addition, the levels of these proteins were measured by western blotting or ELISA. The results revealed that irradiation of mIMCD‑3 cells clearly triggered cellular senescence. Notably, Klotho gene expression was considerably decreased in radiation‑exposed mIMCD‑3 cells and in the kidney tissues of irradiated BALB/c mice, and the corresponding translated protein was consistently expressed following radiation exposure. Moreover, expression of TNF‑α, a negative regulator of Klotho, was significantly increased, whereas ADAM9/10/17, an ectodomain shedding enzyme of Klotho, was decreased in irradiated mIMCD‑3 cells and in the kidney tissues of BALB/c mice. Collectively, these data suggested that TNF‑α‑mediated inhibition of Klotho expression and blockage of soluble Klotho formation via decreased ADAM expression following irradiation may contribute to the development of renal dysfunction through acceleration of radiation‑induced cellular senescence.
Collapse
Affiliation(s)
- Da Yeon Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Minyoung Lee
- Department of Radiological and Medico‑Oncological Sciences, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Eun Ju Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| |
Collapse
|
35
|
Hrenak J, Simko F. Renin-Angiotensin System: An Important Player in the Pathogenesis of Acute Respiratory Distress Syndrome. Int J Mol Sci 2020; 21:ijms21218038. [PMID: 33126657 PMCID: PMC7663767 DOI: 10.3390/ijms21218038] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 02/08/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by massive inflammation, increased vascular permeability and pulmonary edema. Mortality due to ARDS remains very high and even in the case of survival, acute lung injury can lead to pulmonary fibrosis. The renin-angiotensin system (RAS) plays a significant role in these processes. The activities of RAS molecules are subject to dynamic changes in response to an injury. Initially, increased levels of angiotensin (Ang) II and des-Arg9-bradykinin (DABK), are necessary for an effective defense. Later, augmented angiotensin converting enzyme (ACE) 2 activity supposedly helps to attenuate inflammation. Appropriate ACE2 activity might be decisive in preventing immune-induced damage and ensuring tissue repair. ACE2 has been identified as a common target for different pathogens. Some Coronaviruses, including SARS-CoV-2, also use ACE2 to infiltrate the cells. A number of questions remain unresolved. The importance of ACE2 shedding, associated with the release of soluble ACE2 and ADAM17-mediated activation of tumor necrosis factor-α (TNF-α)-signaling is unclear. The roles of other non-classical RAS-associated molecules, e.g., alamandine, Ang A or Ang 1-9, also deserve attention. In addition, the impact of established RAS-inhibiting drugs on the pulmonary RAS is to be elucidated. The unfavorable prognosis of ARDS and the lack of effective treatment urge the search for novel therapeutic strategies. In the context of the ongoing SARS-CoV-2 pandemic and considering the involvement of humoral disbalance in the pathogenesis of ARDS, targeting the renin-angiotensin system and reducing the pathogen's cell entry could be a promising therapeutic strategy in the struggle against COVID-19.
Collapse
Affiliation(s)
- Jaroslav Hrenak
- Department of Cardiovascular Surgery, Inselspital – University Hospital of Bern, Freiburgstrasse 18, 3010 Bern, Switzerland;
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovak
| | - Fedor Simko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovak
- 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, Limbova 5, 833 05 Bratislava, Slovak
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovak
- Correspondence:
| |
Collapse
|
36
|
Novaes Rocha V. Viral replication of SARS-CoV-2 could be self-limitative - The role of the renin-angiotensin system on COVID-19 pathophysiology. Med Hypotheses 2020; 145:110330. [PMID: 33049594 PMCID: PMC7528883 DOI: 10.1016/j.mehy.2020.110330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/05/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023]
Abstract
Currently, the world is suffering with one of the biggest pandemics of recent history. Caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the coronavirus disease 2019 (COVID-19) is provoking devastating consequences on economic and social fields throughout all continents. Therefore, pathophysiological knowledge about COVID-19 is imperative for better planning of preventive measures, diagnosis, and therapeutics of the disease. Based on previous studies, this work proposes new hypothesis related to the role of the renin-angiotensin system on the pathophysiology of COVID-19, and its purpose is to enrich the discussion and to offer alternative ways for experimental and clinical studies aiming at the formulation of new diagnosis and/or treatment methods.
Collapse
Affiliation(s)
- Vinicius Novaes Rocha
- Laboratory of Pathology and Veterinary Histology, Department of Veterinary Medicine, Faculty of Medicine, Federal University of Juiz de Fora, Brazil.
| |
Collapse
|
37
|
Aitken RJ. COVID-19 and human spermatozoa-Potential risks for infertility and sexual transmission? Andrology 2020; 9:48-52. [PMID: 32649023 PMCID: PMC7404878 DOI: 10.1111/andr.12859] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 12/21/2022]
Abstract
As COVID‐19 infections wreak havoc across the globe, attention has rightly been focused on the vital organ systems (lung, kidney and heart) that are vulnerable to viral attack and contribute to the acute pathology associated with this disease. However, we should not lose sight of the fact that COVID‐19 will attack any cell type in the body expressing ACE2 ‐ including human spermatozoa. These cells possess the entire repertoire of receptors (AT1R, AT2R, MAS) and ligand processing enzymes (ACE1 and ACE2) needed to support the angiotensin signalling cascade. The latter not only provides COVID‐19 with a foothold on the sperm surface but may also promote integration, given the additional presence of a range of proteases (TMPRSS2, TMPRSS11B, TMPRSS12, furin) capable of promoting viral fusion. This article reviews the roles played by these various cellular constituents in maintaining the vitality of human spermatozoa and their competence for fertilization. The reproductive consequences of a viral attack on these systems, in terms of fertility and the risk of sexual transmission, are currently unknown. However, we should be alive to the possibility that there may be reproductive consequences of COVID‐19 infection in young males that go beyond their capacity to survive a viral attack.
Collapse
Affiliation(s)
- Robert John Aitken
- Priority Research Centre for Reproductive Science, Faculty of Science and Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
38
|
Speth RC. Response to recent commentaries regarding the involvement of angiotensin-converting enzyme 2 (ACE2) and renin-angiotensin system blockers in SARS-CoV-2 infections. Drug Dev Res 2020; 81:643-646. [PMID: 32304146 PMCID: PMC7264739 DOI: 10.1002/ddr.21672] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Robert C Speth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA.,Department of Pharmacology and Physiology, College of Medicine, Georgetown University, Washington, District of Columbia, USA
| |
Collapse
|