1
|
Delrue C, Eisenga MF, Delanghe JR, Speeckaert MM. Personalized Antifibrotic Therapy in CKD Progression. J Pers Med 2024; 14:1141. [PMID: 39728054 DOI: 10.3390/jpm14121141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/25/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Chronic kidney disease (CKD) is a chronic disorder characterized by kidney fibrosis and extracellular matrix accumulation that can lead to end-stage kidney disease. Epithelial-to-mesenchymal transition, inflammatory cytokines, the TGF-β pathway, Wnt/β-catenin signaling, the Notch pathway, and the NF-κB pathway all play crucial roles in the progression of fibrosis. Current medications, such as renin-angiotensin-aldosterone system inhibitors, try to delay disease development but do not stop or reverse fibrosis. This review emphasizes the growing need for tailored antifibrotic medications for CKD treatment. Precision medicine, which combines proteomic, metabolomic, and genetic data, provides a practical way to personalize treatment regimens. Proteomic signatures, such as CKD273, and genetic markers, such as APOL1 and COL4A5, help in patient stratification and focused therapy development. Two recently developed antifibrotic medications, nintedanib and pirfenidone, have been proven to diminish fibrosis in preclinical animals. Additionally, research is being conducted on the efficacy of investigational drugs targeting CTGF and galectin-3 in the treatment of kidney fibrosis.
Collapse
Affiliation(s)
- Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Michele F Eisenga
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9712 CP Groningen, The Netherlands
| | - Joris R Delanghe
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
- Research Foundation-Flanders (FWO), 1000 Brussels, Belgium
| |
Collapse
|
2
|
Stoumpos S, Crowe K, Sarafidis P, Barratt J, Bolignano D, Del Vecchio L, Małyszko J, Więcek A, Ortiz A, Cozzolino M. Hypoxia-inducible factor prolyl hydroxylase inhibitors for anaemia in chronic kidney disease: a clinical practice document by the European Renal Best Practice board of the European Renal Association. Nephrol Dial Transplant 2024; 39:1710-1730. [PMID: 38573822 PMCID: PMC11427073 DOI: 10.1093/ndt/gfae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Indexed: 04/06/2024] Open
Abstract
Anaemia is a common complication of chronic kidney disease (CKD) and is associated with poor long-term outcomes and quality of life. The use of supplemental iron, erythropoiesis-stimulating agents (ESAs) and blood transfusions has been the mainstay for treatment of anaemia in CKD for more than 3 decades. Despite available treatments, CKD patients with anaemia are undertreated and moderate-severe anaemia remains prevalent in the CKD population. Anaemia has consistently been associated with greater mortality, hospitalization, cardiovascular events and CKD progression in CKD patients, and the risk increases with anaemia severity. Hypoxia-inducible factor (HIF) prolyl hydroxylase (PH) inhibitors have a novel mechanism of action by mimicking the body's response to hypoxia and have emerged as an alternative to ESAs for treatment of anaemia in CKD. Their efficacy in correcting and maintaining haemoglobin has been demonstrated in >30 phase 3 clinical trials. Additionally, HIF activation results in various pleiotropic effects beyond erythropoiesis, with cholesterol reduction and improved iron homeostasis and potential anti-inflammatory effects. The long-term safety of these agents, particularly with respect to cardiovascular and thromboembolic events, and their possible effect on tumour growth needs to be fully elucidated. This article presents in detail the effects of HIF-PH inhibitors, describes their mechanisms of action and pharmacologic properties and discusses their place in the treatment of anaemia in CKD according to the available evidence.
Collapse
Affiliation(s)
- Sokratis Stoumpos
- Renal and Transplant Unit, Queen Elizabeth University Hospital, Glasgow, UK
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Kirsty Crowe
- Renal and Transplant Unit, Queen Elizabeth University Hospital, Glasgow, UK
| | - Pantelis Sarafidis
- 1 Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessalonki, Greece
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Davide Bolignano
- Department of Medical and Surgical Sciences, Nephrology Unit, “Magna-Graecia” University, Catanzaro, Italy
| | - Lucia Del Vecchio
- Department of Nephrology and Dialysis, Sant’ Anna Hospital, ASST Lariana, Como, Italy
| | - Jolanta Małyszko
- Department of Nephrology, Dialysis and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Andrzej Więcek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Katowice, Poland
| | - Alberto Ortiz
- Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Spain, RICORS2040, Spain
| | - Mario Cozzolino
- Renal Division, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| |
Collapse
|
3
|
Faivre A, de Seigneux S. The role of hypoxia in chronic kidney disease: a nuanced perspective. Curr Opin Nephrol Hypertens 2024; 33:414-419. [PMID: 38597413 PMCID: PMC11139247 DOI: 10.1097/mnh.0000000000000989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
PURPOSE OF REVIEW This review critically examines the role of hypoxia in chronic kidney disease (CKD). While traditionally viewed as detrimental, recent insights suggest a more nuanced understanding of hypoxia's role during renal disease. RECENT FINDINGS Emerging evidence challenges the traditional view that hypoxia is universally harmful in CKD context. We review here the recent evidence about hypoxia and HIF activation in CKD. We also discuss the effect of hypoxia on the renal tissue, and the relative inhibition of different HIF isoforms. Recent advancements in therapies, such as HIF prolyl hydroxylase inhibitors (HIF-PHIs) and sodium-glucose cotransporter 2 (SGLT2) inhibitors seem to target the HIF pathway. These drugs impact anemia associated with CKDbut also renoprotection, hinting at a more complex interplay between hypoxia, HIF activation, and renal health. SUMMARY A certain level of hypoxia and specific HIF pathway activation, especially HIF-α, can be beneficial in CKD progression. Therapeutic strategies targeting HIF stabilization, such as with HIF-PHIs and SGLT2 inhibitors, offer promising avenues for enhancing renal protection. Future investigations should aim at better understanding the precise effects on HIF pathway and optimize their clinical application to improve outcomes for CKD patients.
Collapse
Affiliation(s)
- Anna Faivre
- Service de néphrologie, Département des Spécialités de Médecine Interne, Hôpitaux Universitaires de Genève
- Département de Physiologie Cellulaire et Métabolisme, Université de Genève, Genève, Suisse
| | - Sophie de Seigneux
- Service de néphrologie, Département des Spécialités de Médecine Interne, Hôpitaux Universitaires de Genève
- Département de Physiologie Cellulaire et Métabolisme, Université de Genève, Genève, Suisse
| |
Collapse
|
4
|
Xiaoshan Z, Huan C, Zhilin G, Liwen M, Yan Z, Yue C. Hypoxia-inducible factor-1α attenuates renal podocyte injury in male rats in a simulated high-altitude environment by upregulating Krüppel-like factor 4 expression. Exp Physiol 2024; 109:1188-1198. [PMID: 38774964 PMCID: PMC11215487 DOI: 10.1113/ep091443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/12/2024] [Indexed: 07/02/2024]
Abstract
Previous studies have shown that podocyte injury is involved in the development of proteinuria in rats under hypobaric hypoxia conditions. Prolyl hydroxylase inhibitors (PHIs) may reduce proteinuria. This study aimed to further investigate whether the protective effects of hypoxia-inducible factor 1α (HIF1α) on podocyte injury induced by hypobaric hypoxia are related to Krüppel-like factor 4 (KLF4). Rats were housed in a low-pressure oxygen chamber to simulate a high-altitude environment (5000 m), and a PHI was intraperitoneally injected. Urinary protein electrophoresis was performed and the morphology of the podocytes was observed by electron microscopy. Rat podocytes were cultured under 1% O2, and siRNA was used to interfere with KLF4 expression. The protein expression levels of HIF1α, KLF4, CD2-associated protein (CD2AP) and nephrin were determined by western blotting. Compared with those in the experimental group, the rats in the intervention group on day 14 had lower urinary protein levels, increased protein expression levels of CD2AP and nephrin, and reduced podocyte injury. The results of in vitro experiments showed that the protein expression levels of KLF4, CD2AP and nephrin were greater in the PHI intervention group and lower in the HIF1α inhibitors group than in the low-oxygen group. The protein expression of CD2AP and nephrin in the siKLF4-transfected podocytes treated with PHI and HIF1α inhibitors did not differ significantly from that in the low-oxygen group. HIF1α may be involved in reducing progressive high-altitude proteinuria by regulating KLF4 expression and contributing to the repair of podocyte injury induced by hypobaric hypoxia.
Collapse
Affiliation(s)
- Zeng Xiaoshan
- College of MedicineSouthwest Jiaotong UniversityChengduPR China
| | - Cheng Huan
- College of MedicineSouthwest Jiaotong UniversityChengduPR China
| | - Gan Zhilin
- College of MedicineSouthwest Jiaotong UniversityChengduPR China
| | - Mo Liwen
- Department of NephrologyGeneral Hospital of Western Theater Command of PLAChengduPR China
| | - Zeng Yan
- Department of NephrologyGeneral Hospital of Western Theater Command of PLAChengduPR China
| | - Cheng Yue
- College of MedicineSouthwest Jiaotong UniversityChengduPR China
- Department of NephrologyGeneral Hospital of Western Theater Command of PLAChengduPR China
| |
Collapse
|
5
|
Nesovic Ostojic J, Kovacevic S, Ivanov M, Brkic P, Zivotic M, Mihailovic-Stanojevic N, Karanovic D, Vajic UJ, Jeremic R, Jovovic D, Miloradovic Z. Hyperbaric Oxygen Reduces Oxidative Stress Impairment and DNA Damage and Simultaneously Increases HIF-1α in Ischemia-Reperfusion Acute Kidney Injury. Int J Mol Sci 2024; 25:3870. [PMID: 38612680 PMCID: PMC11011961 DOI: 10.3390/ijms25073870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The central exacerbating factor in the pathophysiology of ischemic-reperfusion acute kidney injury (AKI) is oxidative stress. Lipid peroxidation and DNA damage in ischemia are accompanied by the formation of 3-nitrotyrosine, a biomarker for oxidative damage. DNA double-strand breaks (DSBs) may also be a result of postischemic AKI. γH2AX(S139) histone has been identified as a potentially useful biomarker of DNA DSBs. On the other hand, hypoxia-inducible factor (HIF) is the "master switch" for hypoxic adaptation in cells and tissues. The aim of this research was to evaluate the influence of hyperbaric oxygen (HBO) preconditioning on antioxidant capacity estimated by FRAP (ferric reducing antioxidant power) and ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) assay, as well as on oxidative stress parameter 3-nitrotyrosine, and to assess its effects on γH2AX(S139), HIF-1α, and nuclear factor-κB (NF-κB) expression, in an experimental model of postischemic AKI induced in spontaneously hypertensive rats. The animals were divided randomly into three experimental groups: sham-operated rats (SHAM, n = 6), rats with induced postischemic AKI (AKI, n = 6), and group exposed to HBO preconditioning before AKI induction (AKI + HBO, n = 6). A significant improvement in the estimated glomerular filtration rate, eGFR, in AKI + HBO group (p < 0.05 vs. AKI group) was accompanied with a significant increase in plasma antioxidant capacity estimated by FRAP (p < 0.05 vs. SHAM group) and a reduced immunohistochemical expression of 3-nitrotyrosine and γH2AX(S139). Also, HBO pretreatment significantly increased HIF-1α expression (p < 0.001 vs. AKI group), estimated by Western blot and immunohistochemical analysis in kidney tissue, and decreased immunohistochemical NF-κB renal expression (p < 0.01). Taking all of these results together, we may conclude that HBO preconditioning has beneficial effects on acute kidney injury induced in spontaneously hypertensive rats.
Collapse
Affiliation(s)
- Jelena Nesovic Ostojic
- Department of Pathological Physiology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Sanjin Kovacevic
- Department of Pathological Physiology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Milan Ivanov
- Department of Cardiovascular Physiology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.I.); (N.M.-S.); (D.K.); (U.J.V.); (D.J.); (Z.M.)
| | - Predrag Brkic
- Department of Medical Physiology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (P.B.); (R.J.)
| | - Maja Zivotic
- Institute of Pathology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Nevena Mihailovic-Stanojevic
- Department of Cardiovascular Physiology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.I.); (N.M.-S.); (D.K.); (U.J.V.); (D.J.); (Z.M.)
| | - Danijela Karanovic
- Department of Cardiovascular Physiology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.I.); (N.M.-S.); (D.K.); (U.J.V.); (D.J.); (Z.M.)
| | - Una Jovana Vajic
- Department of Cardiovascular Physiology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.I.); (N.M.-S.); (D.K.); (U.J.V.); (D.J.); (Z.M.)
| | - Rada Jeremic
- Department of Medical Physiology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (P.B.); (R.J.)
| | - Djurdjica Jovovic
- Department of Cardiovascular Physiology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.I.); (N.M.-S.); (D.K.); (U.J.V.); (D.J.); (Z.M.)
| | - Zoran Miloradovic
- Department of Cardiovascular Physiology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.I.); (N.M.-S.); (D.K.); (U.J.V.); (D.J.); (Z.M.)
| |
Collapse
|
6
|
Wang N, Zhang C. Recent Advances in the Management of Diabetic Kidney Disease: Slowing Progression. Int J Mol Sci 2024; 25:3086. [PMID: 38542060 PMCID: PMC10970506 DOI: 10.3390/ijms25063086] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 01/03/2025] Open
Abstract
Diabetic kidney disease (DKD) is a major cause of chronic kidney disease (CKD), and it heightens the risk of cardiovascular incidents. The pathogenesis of DKD is thought to involve hemodynamic, inflammatory, and metabolic factors that converge on the fibrotic pathway. Genetic predisposition and unhealthy lifestyle practices both play a significant role in the development and progression of DKD. In spite of the recent emergence of angiotensin receptors blockers (ARBs)/angiotensin converting enzyme inhibitor (ACEI), sodium-glucose cotransporter 2 (SGLT2) inhibitors, and nonsteroidal mineralocorticoid receptors antagonists (NS-MRAs), current therapies still fail to effectively arrest the progression of DKD. Glucagon-like peptide 1 receptor agonists (GLP-1RAs), a promising class of agents, possess the potential to act as renal protectors, effectively slowing the progression of DKD. Other agents, including pentoxifylline (PTF), selonsertib, and baricitinib hold great promise as potential therapies for DKD due to their anti-inflammatory and antifibrotic properties. Multidisciplinary treatment, encompassing lifestyle modifications and drug therapy, can effectively decelerate the progression of DKD. Based on the treatment of heart failure, it is recommended to use multiple drugs in combination rather than a single-use drug for the treatment of DKD. Unearthing the mechanisms underlying DKD is urgent to optimize the management of DKD. Inflammatory and fibrotic factors (including IL-1, MCP-1, MMP-9, CTGF, TNF-a and TGF-β1), along with lncRNAs, not only serve as diagnostic biomarkers, but also hold promise as therapeutic targets. In this review, we delve into the potential mechanisms and the current therapies of DKD. We also explore the additional value of combing these therapies to develop novel treatment strategies. Drawing from the current understanding of DKD pathogenesis, we propose HIF inhibitors, AGE inhibitors, and epigenetic modifications as promising therapeutic targets for the future.
Collapse
Affiliation(s)
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| |
Collapse
|
7
|
Kishi S, Nagasu H, Kidokoro K, Kashihara N. Oxidative stress and the role of redox signalling in chronic kidney disease. Nat Rev Nephrol 2024; 20:101-119. [PMID: 37857763 DOI: 10.1038/s41581-023-00775-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/21/2023]
Abstract
Chronic kidney disease (CKD) is a major public health concern, underscoring a need to identify pathogenic mechanisms and potential therapeutic targets. Reactive oxygen species (ROS) are derivatives of oxygen molecules that are generated during aerobic metabolism and are involved in a variety of cellular functions that are governed by redox conditions. Low levels of ROS are required for diverse processes, including intracellular signal transduction, metabolism, immune and hypoxic responses, and transcriptional regulation. However, excess ROS can be pathological, and contribute to the development and progression of chronic diseases. Despite evidence linking elevated levels of ROS to CKD development and progression, the use of low-molecular-weight antioxidants to remove ROS has not been successful in preventing or slowing disease progression. More recent advances have enabled evaluation of the molecular interactions between specific ROS and their targets in redox signalling pathways. Such studies may pave the way for the development of sophisticated treatments that allow the selective control of specific ROS-mediated signalling pathways.
Collapse
Affiliation(s)
- Seiji Kishi
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Hajime Nagasu
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Kengo Kidokoro
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Naoki Kashihara
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan.
| |
Collapse
|
8
|
Yasuoka Y, Izumi Y, Fukuyama T, Oshima T, Yamazaki T, Uematsu T, Kobayashi N, Nanami M, Shimada Y, Nagaba Y, Mukoyama M, Sands JM, Takahashi N, Kawahara K, Nonoguchi H. Tubular Endogenous Erythropoietin Protects Renal Function against Ischemic Reperfusion Injury. Int J Mol Sci 2024; 25:1223. [PMID: 38279224 PMCID: PMC10816907 DOI: 10.3390/ijms25021223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
Many large-scale studies show that exogenous erythropoietin, erythropoiesis-stimulating agents, lack any renoprotective effects. We investigated the effects of endogenous erythropoietin on renal function in kidney ischemic reperfusion injury (IRI) using the prolyl hydroxylase domain (PHD) inhibitor, Roxadustat (ROX). Four h of hypoxia (7% O2) and 4 h treatment by ROX prior to IRI did not improve renal function. In contrast, 24-72 h pretreatment by ROX significantly improved the decline of renal function caused by IRI. Hypoxia and 4 h ROX increased interstitial cells-derived Epo production by 75- and 6-fold, respectively, before IRI, and worked similarly to exogenous Epo. ROX treatment for 24-72 h increased Epo production during IRI by 9-fold. Immunohistochemistry revealed that 24 h ROX treatment induced Epo production in proximal and distal tubules and worked similarly to endogenous Epo. Our data show that tubular endogenous Epo production induced by 24-72 h ROX treatment results in renoprotection but peritubular exogenous Epo production by interstitial cells induced by hypoxia and 4 h ROX treatment did not. Stimulation of tubular, but not peritubular, Epo production may link to renoprotection.
Collapse
Affiliation(s)
- Yukiko Yasuoka
- Department of Physiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan; (Y.Y.); (T.O.); (K.K.)
| | - Yuichiro Izumi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Kumamoto, Japan; (Y.I.); (M.M.)
| | - Takashi Fukuyama
- Division of Biomedical Research, Kitasato University Medical Center, 6-100 Arai, Kitamoto 364-8501, Saitama, Japan; (T.F.); (T.Y.); (T.U.); (N.K.)
| | - Tomomi Oshima
- Department of Physiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan; (Y.Y.); (T.O.); (K.K.)
| | - Taiga Yamazaki
- Division of Biomedical Research, Kitasato University Medical Center, 6-100 Arai, Kitamoto 364-8501, Saitama, Japan; (T.F.); (T.Y.); (T.U.); (N.K.)
| | - Takayuki Uematsu
- Division of Biomedical Research, Kitasato University Medical Center, 6-100 Arai, Kitamoto 364-8501, Saitama, Japan; (T.F.); (T.Y.); (T.U.); (N.K.)
| | - Noritada Kobayashi
- Division of Biomedical Research, Kitasato University Medical Center, 6-100 Arai, Kitamoto 364-8501, Saitama, Japan; (T.F.); (T.Y.); (T.U.); (N.K.)
| | - Masayoshi Nanami
- Division of Kidney and Dialysis, Department of Internal Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Hyogo, Japan;
| | - Yoshitaka Shimada
- Division of Internal Medicine, Kitasato University Medical Center, 6-100 Arai, Kitamoto 364-8501, Saitama, Japan; (Y.S.); (Y.N.)
| | - Yasushi Nagaba
- Division of Internal Medicine, Kitasato University Medical Center, 6-100 Arai, Kitamoto 364-8501, Saitama, Japan; (Y.S.); (Y.N.)
| | - Masashi Mukoyama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Kumamoto, Japan; (Y.I.); (M.M.)
| | - Jeff M. Sands
- Renal Division, Department of Medicine, Emory University School of Medicine, 1639 Pierce Drive, WMB Room 3313, Atlanta, GA 30322, USA;
| | - Noriko Takahashi
- Department of Physiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan; (Y.Y.); (T.O.); (K.K.)
| | - Katsumasa Kawahara
- Department of Physiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan; (Y.Y.); (T.O.); (K.K.)
| | - Hiroshi Nonoguchi
- Division of Internal Medicine, Kitasato University Medical Center, 6-100 Arai, Kitamoto 364-8501, Saitama, Japan; (Y.S.); (Y.N.)
| |
Collapse
|
9
|
Tiwari R, Sharma R, Rajendran G, Borkowski GS, An SY, Schonfeld M, O’Sullivan J, Schipma MJ, Zhou Y, Courbon G, David V, Quaggin SE, Thorp E, Chandel NS, Kapitsinou PP. Post-ischemic inactivation of HIF prolyl hydroxylases in endothelium promotes maladaptive kidney repair by inducing glycolysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560700. [PMID: 37873349 PMCID: PMC10592920 DOI: 10.1101/2023.10.03.560700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Ischemic acute kidney injury (AKI) is common in hospitalized patients and increases the risk for chronic kidney disease (CKD). Impaired endothelial cell (EC) functions are thought to contribute in AKI to CKD transition, but the underlying mechanisms remain unclear. Here, we identify a critical role for endothelial oxygen sensing prolyl hydroxylase domain (PHD) enzymes 1-3 in regulating post-ischemic kidney repair. In renal endothelium, we observed compartment-specific differences in the expression of the three PHD isoforms in both mice and humans. We found that post-ischemic concurrent inactivation of endothelial PHD1, PHD2, and PHD3 but not PHD2 alone promoted maladaptive kidney repair characterized by exacerbated tissue injury, fibrosis, and inflammation. Single-cell RNA-seq analysis of the post-ischemic endothelial PHD1, PHD2 and PHD3 deficient (PHDTiEC) kidney revealed an endothelial glycolytic transcriptional signature, also observed in human kidneys with severe AKI. This metabolic program was coupled to upregulation of the SLC16A3 gene encoding the lactate exporter monocarboxylate transporter 4 (MCT4). Strikingly, treatment with the MCT4 inhibitor syrosingopine restored adaptive kidney repair in PHDTiEC mice. Mechanistically, MCT4 inhibition suppressed pro-inflammatory EC activation reducing monocyte-endothelial cell interaction. Our findings suggest avenues for halting AKI to CKD transition based on selectively targeting the endothelial hypoxia-driven glycolysis/MCT4 axis.
Collapse
Affiliation(s)
- Ratnakar Tiwari
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rajni Sharma
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ganeshkumar Rajendran
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Gabriella S. Borkowski
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Si Young An
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Michael Schonfeld
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - James O’Sullivan
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Matthew J. Schipma
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Yalu Zhou
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Guillaume Courbon
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Valentin David
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Susan E. Quaggin
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Edward Thorp
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Navdeep S. Chandel
- Robert H. Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Pinelopi P. Kapitsinou
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
10
|
Ku E, Del Vecchio L, Eckardt KU, Haase VH, Johansen KL, Nangaku M, Tangri N, Waikar SS, Więcek A, Cheung M, Jadoul M, Winkelmayer WC, Wheeler DC. Novel anemia therapies in chronic kidney disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int 2023; 104:655-680. [PMID: 37236424 DOI: 10.1016/j.kint.2023.05.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
Anemia is common in patients with chronic kidney disease and is associated with a high burden of morbidity and adverse clinical outcomes. In 2012, Kidney Disease: Improving Global Outcomes (KDIGO) published a guideline for the diagnosis and management of anemia in chronic kidney disease. Since then, new data from studies assessing established and emerging therapies for the treatment of anemia and iron deficiency have become available. Beginning in 2019, KDIGO planned 2 Controversies Conferences to review the new evidence and its potential impact on the management of anemia in clinical practice. Here, we report on the second of these conferences held virtually in December 2021, which focused on a new class of agents-the hypoxia-inducible factor-prolyl hydroxylase inhibitors (HIF-PHIs). This report provides a review of the consensus points and controversies from this second conference and highlights areas that warrant prioritization for future research.
Collapse
Affiliation(s)
- Elaine Ku
- Division of Nephrology, Department of Medicine, University of California San Francisco, San Francisco, California, USA; Division of Pediatric Nephrology, Department of Pediatrics, University of California San Francisco, San Francisco, California, USA; Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA.
| | - Lucia Del Vecchio
- Department of Nephrology and Dialysis, Sant'Anna Hospital, ASST Lariana, Como, Italy
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Volker H Haase
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Kirsten L Johansen
- Division of Nephrology, Hennepin Healthcare, Minneapolis, Minnesota, USA; Division of Nephrology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Navdeep Tangri
- Chronic Disease Innovation Centre, Seven Oaks General Hospital, Winnipeg, Manitoba, Canada; Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sushrut S Waikar
- Section of Nephrology, Department of Medicine, Boston Medical Center and Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Andrzej Więcek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Katowice, Poland
| | - Michael Cheung
- Kidney Disease: Improving Global Outcomes (KDIGO), Brussels, Belgium
| | - Michel Jadoul
- Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Wolfgang C Winkelmayer
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - David C Wheeler
- Department of Renal Medicine, University College London, London, UK.
| |
Collapse
|
11
|
Naas S, Schiffer M, Schödel J. Hypoxia and renal fibrosis. Am J Physiol Cell Physiol 2023; 325:C999-C1016. [PMID: 37661918 DOI: 10.1152/ajpcell.00201.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
Renal fibrosis is the final stage of most progressive kidney diseases. Chronic kidney disease (CKD) is associated with high comorbidity and mortality. Thus, preventing fibrosis and thereby preserving kidney function increases the quality of life and prolongs the survival of patients with CKD. Many processes such as inflammation or metabolic stress modulate the progression of kidney fibrosis. Hypoxia has also been implicated in the pathogenesis of renal fibrosis, and oxygen sensing in the kidney is of outstanding importance for the body. The dysregulation of oxygen sensing in the diseased kidney is best exemplified by the loss of stimulation of erythropoietin production from interstitial cells in the fibrotic kidney despite anemia. Furthermore, hypoxia is present in acute or chronic kidney diseases and may affect all cell types present in the kidney including tubular and glomerular cells as well as resident immune cells. Pro- and antifibrotic effects of the transcription factors hypoxia-inducible factors 1 and 2 have been described in a plethora of animal models of acute and chronic kidney diseases, but recent advances in sequencing technologies now allow for novel and deeper insights into the role of hypoxia and its cell type-specific effects on the progression of renal fibrosis, especially in humans. Here, we review existing literature on how hypoxia impacts the development and progression of renal fibrosis.
Collapse
Affiliation(s)
- Stephanie Naas
- Department of Nephrology and Hypertension, Uniklinikum Erlangen und Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mario Schiffer
- Department of Nephrology and Hypertension, Uniklinikum Erlangen und Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes Schödel
- Department of Nephrology and Hypertension, Uniklinikum Erlangen und Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
12
|
Lok SWY, Yiu WH, Zou Y, Xue R, Li H, Ma J, Chen J, Chan LYY, Lai KN, Tang SCW. Tubulovascular protection from protease-activated receptor-1 depletion during AKI-to-CKD transition. Nephrol Dial Transplant 2023; 38:2232-2247. [PMID: 36914214 DOI: 10.1093/ndt/gfad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Thromboembolic events are prevalent in chronic kidney disease (CKD) patients due to increased thrombin generation leading to a hypercoagulable state. We previously demonstrated that inhibition of protease-activated receptor-1 (PAR-1) by vorapaxar reduces kidney fibrosis. METHODS We used an animal model of unilateral ischemia-reperfusion injury-induced CKD to explore the tubulovascular crosstalk mechanisms of PAR-1 in acute kidney injury (AKI)-to-CKD transition. RESULTS During the early phase of AKI, PAR-1-deficient mice exhibited reduced kidney inflammation, vascular injury, and preserved endothelial integrity and capillary permeability. During the transition phase to CKD, PAR-1 deficiency preserved kidney function and diminished tubulointerstitial fibrosis via downregulated transforming growth factor-β/Smad signaling. Maladaptive repair in the microvasculature after AKI further exacerbated focal hypoxia with capillary rarefaction, which was rescued by stabilization of hypoxia-inducible factor and increased tubular vascular endothelial growth factor A in PAR-1-deficient mice. Chronic inflammation was also prevented with reduced kidney infiltration by both M1- and M2-polarized macrophages. In thrombin-induced human dermal microvascular endothelial cells (HDMECs), PAR-1 mediated vascular injury through activation of NF-κB and ERK MAPK pathways. Gene silencing of PAR-1 exerted microvascular protection via a tubulovascular crosstalk mechanism during hypoxia in HDMECs. Finally, pharmacologic blockade of PAR-1 with vorapaxar improved kidney morphology, promoted vascular regenerative capacity, and reduced inflammation and fibrosis depending on the time of initiation. CONCLUSIONS Our findings elucidate a detrimental role of PAR-1 in vascular dysfunction and profibrotic responses upon tissue injury during AKI-to-CKD transition and provide an attractive therapeutic strategy for post-injury repair in AKI.
Collapse
Affiliation(s)
- Sarah W Y Lok
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Wai Han Yiu
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Yixin Zou
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Rui Xue
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Hongyu Li
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Jingyuan Ma
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Jiaoyi Chen
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Loretta Y Y Chan
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Kar Neng Lai
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Sydney C W Tang
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| |
Collapse
|
13
|
Yamazaki T, Mimura I, Kurata Y, Tanaka T, Nangaku M. Dznep, a histone modification inhibitor, inhibits HIF1α binding to TIMP2 gene and suppresses TIMP2 expression under hypoxia. Physiol Rep 2023; 11:e15810. [PMID: 37710084 PMCID: PMC10502026 DOI: 10.14814/phy2.15810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Epidemiological studies have shown that patients who recovered from acute kidney injury (AKI) may subsequently develop chronic kidney disease (CKD). AKI is primarily caused by renal hypoxia, and it causes epigenetic alterations, known as hypoxic memory. 3-Deazaneplanocin A (Dznep), an inhibitor of histone modification, suppresses renal fibrosis and the expression of tissue inhibitor of metalloproteinases-2 (TIMP2), a profibrotic factor, in mouse ischemia-reperfusion models. The current study investigated the epigenetic regulation of TIMP2 in human kidney 2 (HK-2) cells. The expression of TIMP2 was upregulated in HK-2 cells under hypoxic conditions and was suppressed by Dznep. ChIP-qPCR showed that Dznep reduced the amount of H3K4me3 at the promoter region of the TIMP2 gene under hypoxic condition. Formaldehyde-assisted isolation of regulatory elements-qPCR of the TIMP2 gene showed that Dznep reduced open chromatin area. In addition, based on ChIP-qPCR of hypoxia-inducible factor 1 alpha (HIF1α), Dznep inhibited the binding of HIF1α to the TIMP2 gene under hypoxic conditions. The reporter assays for the binding region of HIF1α showed enhanced transcriptional activity by hypoxia. Dznep suppresses the expression of TIMP2 under hypoxic conditions by inhibiting the binding of HIF1α to the TIMP2 gene.
Collapse
Affiliation(s)
- Tomotaka Yamazaki
- Division of Nephrology and EndocrinologyThe University of Tokyo Graduate School of MedicineTokyoJapan
| | - Imari Mimura
- Division of Nephrology and EndocrinologyThe University of Tokyo Graduate School of MedicineTokyoJapan
| | - Yu Kurata
- Division of Nephrology and EndocrinologyThe University of Tokyo Graduate School of MedicineTokyoJapan
| | - Tetsuhiro Tanaka
- Department of Nephrology, Rheumatology and EndocrinologyTohoku University Graduate School of MedicineSendaiJapan
| | - Masaomi Nangaku
- Division of Nephrology and EndocrinologyThe University of Tokyo Graduate School of MedicineTokyoJapan
| |
Collapse
|
14
|
Nagashima R, Ishikawa H, Kuno Y, Kohda C, Iyoda M. HIF-PHD inhibitor regulates the function of group2 innate lymphoid cells and polarization of M2 macrophages. Sci Rep 2023; 13:1867. [PMID: 36725898 PMCID: PMC9892566 DOI: 10.1038/s41598-023-29161-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/31/2023] [Indexed: 02/03/2023] Open
Abstract
Hypoxia-inducible factor-prolyl hydroxylase (HIF-PHD) inhibitors are therapeutic agents for renal anemia that work through HIF2-mediated upregulation of erythropoietin (EPO) and have also been reported to suppress renal fibrosis. Group 2 innate lymphoid cells (ILC2s) have been proven to be involved in the pathogenesis of fibrosis in various organs, including the kidney. However, the relationship between the HIF pathway, renal fibrosis, and kidney ILC2s remains unclear. In the present study, we found that HIF activation by HIF-PHD inhibitors suppressed type 2 cytokine production from kidney ILC2s. The enhanced HIF pathway downregulated the IL-33 receptor ST2L on ILC2s, and phosphorylation of downstream p38 MAPK was attenuated. M2 macrophages that promote renal fibrosis were polarized by ILC2 supernatants, but reduced cytokine production from ILC2s treated with HIF-PHD inhibitors suppressed this polarization. Our findings suggest that HIF-PHD inhibitors are potential therapeutic agents for renal fibrosis that are mediated by the alteration of ILC2 function.
Collapse
Affiliation(s)
- Ryuichi Nagashima
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, Japan.
| | - Hiroki Ishikawa
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, Japan
| | - Yoshihiro Kuno
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, Japan.,Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Chikara Kohda
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, Japan
| | - Masayuki Iyoda
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, Japan.,Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
15
|
Li J, Gong X. Bibliometric and visualization analysis of kidney repair associated with acute kidney injury from 2002 to 2022. Front Pharmacol 2023; 14:1101036. [PMID: 37153766 PMCID: PMC10157647 DOI: 10.3389/fphar.2023.1101036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/12/2023] [Indexed: 05/10/2023] Open
Abstract
Background: Renal repair is closely related to the prognosis of acute kidney injury (AKI) and has attracted increasing attention in the research field. However, there is a lack of a comprehensive bibliometric analysis in this research area. This study aims at exploring the current status and hotspots of renal repair research in AKI from the perspective of bibliometrics. Methods: Studies published between 2002 and 2022 related to kidney repair after AKI were collected from Web of Science core collection (WoSCC) database. Bibliometric measurement and knowledge graph analysis to predict the latest research trends in the field were performed using bibliometrics software CiteSpace and VOSviewer. Results: The number of documents related to kidney repair after AKI has steadily increased over 20 years. The United States and China contribute more than 60% of documents and are the main drivers of research in this field. Harvard University is the most active academic institution that contributes the most documents. Humphreys BD and Bonventre JV are the most prolific authors and co-cited authors in the field. The American Journal of Physiology-Renal Physiology and Journal of the American Society of Nephrology are the most popular journals in the field with the greatest number of documents. "exosome", "macrophage polarization", "fibroblast", and" aki-ckd transition" are high-frequency keywords in this field in recent years. Extracellular vesicles (including exosomes), macrophage polarization, cell cycle arrest, hippo pathway, and sox9 are current research hotspots and potential targets in this field. Conclusion: This is the first comprehensive bibliometric study on the knowledge structure and development trend of AKI-related renal repair research in recent years. The results of the study comprehensively summarize and identify research frontiers in AKI-related renal repair.
Collapse
|
16
|
Repeated Episodes of Ischemia/Reperfusion Induce Heme-Oxygenase-1 (HO-1) and Anti-Inflammatory Responses and Protects against Chronic Kidney Disease. Int J Mol Sci 2022; 23:ijms232314573. [PMID: 36498913 PMCID: PMC9739146 DOI: 10.3390/ijms232314573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
Preconditioning episodes of ischemia/reperfusion (IR) induce protection against acute kidney injury (AKI), however their long-term effect still unknown. We evaluated AKI to chronic kidney disease (CKD) transition, after three-mild or three-severe episodes of IR. AKI was induced by single bilateral IR (1IR), or three episodes of IR separated by 10-day intervals (3IR) of mild (20 min) or severe (45 min) ischemia. Sham-operated rats served as controls. During 9-months, the 1IR group (20 or 45 min) developed CKD evidenced by progressive proteinuria and renal fibrosis. In contrast, the long-term adverse effects of AKI were markedly ameliorated in the 3IR group. The acute response in 3IR, contrasted with the 1IR group, that was characterized by an increment in heme oxygenase-1 (HO-1) and an anti-inflammatory response mediated by a NFkB-p65 phosphorylation and IL-6 decrease, together with an increase in TGF-β, and IL-10 expression, as well as in M2-macrophages. In addition, three episodes of IR downregulated endoplasmic reticulum (ER) stress markers expression, CHOP and BiP. Thus, repeated episodes of IR with 10-day intervals induced long-term renal protection accompanied with HO-1 overexpression and M2-macrophages increase.
Collapse
|
17
|
Li ZL, Wang B, Wen Y, Wu QL, Lv LL, Liu BC. Disturbance of Hypoxia Response and Its Implications in Kidney Diseases. Antioxid Redox Signal 2022; 37:936-955. [PMID: 35044244 DOI: 10.1089/ars.2021.0271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: The disturbance of the hypoxia response system is closely related to human diseases, because it is essential for the maintenance of homeostasis. Given the significant role of the hypoxia response system in human health, therapeutic applications targeting prolyl hydroxylase-hypoxia-inducible factor (HIF) signaling have been attempted. Thus, systemically reviewing the hypoxia response-based therapeutic strategies is of great significance. Recent Advances: Disturbance of the hypoxia response is a characteristic feature of various diseases. Targeting the hypoxia response system is, thus, a promising therapeutic strategy. Interestingly, several compounds and drugs are currently under clinical trials, and some have already been approved for use in the treatment of certain human diseases. Critical Issues: We summarize the molecular mechanisms of the hypoxia response system and address the potential therapeutic implications in kidney diseases. Given that the effects of hypoxia response in kidney diseases are likely to depend on the pathological context, specific cell types, and the differences in the activation pattern of HIF isoforms, the precise application is critical for the treatment of kidney diseases. Although HIF-PHIs (HIF-PHD inhibitors) have been proven to be effective and well tolerated in chronic kidney disease patients with anemia, the potential on-target consequence of HIF activation and some outstanding questions warrant further consideration. Future Direction: The mechanism of the hypoxia response system disturbance remains unclear. Elucidation of the molecular mechanism of hypoxia response and its precise effects on kidney diseases warrants clarification. Considering the complexity of the hypoxia response system and multiple biological processes controlled by HIF signaling, the development of more specific inhibitors is highly warranted. Antioxid. Redox Signal. 37, 936-955.
Collapse
Affiliation(s)
- Zuo-Lin Li
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bin Wang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Yi Wen
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Qiu-Li Wu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| |
Collapse
|
18
|
Wang Z, Zhang C. From AKI to CKD: Maladaptive Repair and the Underlying Mechanisms. Int J Mol Sci 2022; 23:ijms231810880. [PMID: 36142787 PMCID: PMC9504835 DOI: 10.3390/ijms231810880] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 12/03/2022] Open
Abstract
Acute kidney injury (AKI) is defined as a pathological condition in which the glomerular filtration rate decreases rapidly over a short period of time, resulting in changes in the physiological function and tissue structure of the kidney. An increasing amount of evidence indicates that there is an inseparable relationship between acute kidney injury and chronic kidney disease (CKD). With the progress in research in this area, researchers have found that the recovery of AKI may also result in the occurrence of CKD due to its own maladaptation and other potential mechanisms, which involve endothelial cell injury, inflammatory reactions, progression to fibrosis and other pathways that promote the progress of the disease. Based on these findings, this review summarizes the occurrence and potential mechanisms of maladaptive repair in the progression of AKI to CKD and explores possible treatment strategies in this process so as to provide a reference for the inhibition of the progression of AKI to CKD.
Collapse
|
19
|
Bondi CD, Rush BM, Hartman HL, Wang J, Al-Bataineh MM, Hughey RP, Tan RJ. Suppression of NRF2 Activity by HIF-1α Promotes Fibrosis after Ischemic Acute Kidney Injury. Antioxidants (Basel) 2022; 11:1810. [PMID: 36139884 PMCID: PMC9495756 DOI: 10.3390/antiox11091810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 01/26/2023] Open
Abstract
Acute kidney injury (AKI) is a rapid decline in renal function and can occur after ischemia/reperfusion injury (IRI) to the tubular epithelia. The nuclear factor erythroid-2-related factor 2 (NRF2) pathway protects against AKI and AKI-to-chronic kidney disease (CKD) progression, but we previously demonstrated that severe IRI maladaptively reduced NRF2 activity in mice. To understand the mechanism of this response, we subjected C57BL/6J mice to unilateral kidney IRI with ischemia times that were titrated to induce mild to severe injury. Mild IRI increased NRF2 activity and was associated with renal recovery, whereas severe IRI decreased NRF2 activity and led to progressive CKD. Due to these effects of ischemia, we tested the hypothesis that hypoxia-inducible factor-1α (HIF-1α) mediates NRF2 activity. To mimic mild and severe ischemia, we activated HIF-1α in HK-2 cells in nutrient-replete or nutrient-deficient conditions. HIF-1α activation in nutrient-replete conditions enhanced NRF2 nuclear localization and activity. However, in nutrient-deficient conditions, HIF-1α activation suppressed NRF2 nuclear localization and activity. Nuclear localization was rescued with HIF-1α siRNA knockdown. Our results suggest that severe ischemic AKI leads to HIF-1α-mediated suppression of NRF2, leading to AKI-to-CKD progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Roderick J. Tan
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 152671, USA
| |
Collapse
|
20
|
Zhu X, Jiang L, Wei X, Long M, Du Y. Roxadustat: Not just for anemia. Front Pharmacol 2022; 13:971795. [PMID: 36105189 PMCID: PMC9465375 DOI: 10.3389/fphar.2022.971795] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Roxadustat is a recently approved hypoxia-inducible factor prolyl hydroxylase inhibitor that has demonstrated favorable safety and efficacy in the treatment of renal anemia. Recent studies found it also has potential for the treatment of other hypoxia-related diseases. Although clinical studies have not yet found significant adverse or off-target effects of roxadustat, clinicians must be vigilant about these possible effects. Hypoxia-inducible factor regulates the expression of many genes and physiological processes in response to a decreased level of oxygen, but its role in the pathogenesis of different diseases is complex and controversial. In addition to increasing the expression of hypoxia-inducible factor, roxadustat also has some effects that may be HIF-independent, indicating some potential off-target effects. This article reviews the pharmacological characteristics of roxadustat, its current status in the treatment of renal anemia, and its possible effects on other pathological mechanisms.
Collapse
Affiliation(s)
- Xiaoyu Zhu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Lili Jiang
- Physical Examination Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xuejiao Wei
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Mengtuan Long
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yujun Du
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Yujun Du,
| |
Collapse
|
21
|
Kobayashi H, Davidoff O, Pujari-Palmer S, Drevin M, Haase VH. EPO synthesis induced by HIF-PHD inhibition is dependent on myofibroblast transdifferentiation and colocalizes with non-injured nephron segments in murine kidney fibrosis. Acta Physiol (Oxf) 2022; 235:e13826. [PMID: 35491502 PMCID: PMC9329237 DOI: 10.1111/apha.13826] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/14/2022] [Accepted: 04/28/2022] [Indexed: 12/22/2022]
Abstract
AIM Erythropoietin (EPO) is regulated by hypoxia-inducible factor (HIF)-2. In the kidney, it is produced by cortico-medullary perivascular interstitial cells, which transdifferentiate into collagen-producing myofibroblasts in response to injury. Inhibitors of prolyl hydroxylase domain (PHD) dioxygenases (HIF-PHIs) activate HIF-2 and stimulate kidney and liver EPO synthesis in patients with anemia of chronic kidney disease (CKD). We examined whether HIF-PHIs can reactivate EPO synthesis in interstitial cells that have undergone myofibroblast transdifferentiation in established kidney fibrosis. METHODS We investigated Epo transcription in myofibroblasts and characterized the histological distribution of kidney Epo transcripts by RNA in situ hybridization combined with immunofluorescence in mice with adenine nephropathy (AN) treated with HIF-PHI molidustat. Lectin absorption chromatography was used to assess liver-derived EPO. In addition, we examined kidney Epo transcription in Phd2 knockout mice with obstructive nephropathy. RESULTS In AN, molidustat-induced Epo transcripts were not found in areas of fibrosis and did not colocalize with interstitial cells that expressed α-smooth muscle actin, a marker of myofibroblast transdifferentiation. Epo transcription was associated with megalin-expressing, kidney injury molecule 1-negative nephron segments and contingent on residual renal function. Liver-derived EPO did not contribute to serum EPO in molidustat-treated mice. Epo transcription was not associated with myofibroblasts in Phd2 knockout mice with obstructive nephropathy. CONCLUSIONS Our studies suggest that HIF-PHIs do not reactivate Epo transcription in interstitial myofibroblasts and that their efficacy in inducing kidney EPO in CKD is dependent on the degree of myofibroblast formation, the preservation of renal parenchyma and the level of residual renal function.
Collapse
Affiliation(s)
- Hanako Kobayashi
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Medical and Research Services, Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Olena Davidoff
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Medical and Research Services, Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | | | | | - Volker H Haase
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Medical and Research Services, Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- Department of Molecular Physiology & Biophysics and Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
22
|
Mima A, Horii Y. Treatment of Renal Anemia in Patients With Hemodialysis Using Hypoxia-inducible Factor (HIF) Stabilizer, Roxadustat: A Short-term Clinical Study. In Vivo 2022; 36:1785-1789. [PMID: 35738640 DOI: 10.21873/invivo.12892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/18/2022]
Abstract
BACKGROUND/AIM Renal anemia is a major complication in patients with chronic kidney disease (CKD) and hemodialysis, increasing morbidity and mortality. Roxadustat is a novel oral hypoxia-inducible factor (HIF) prolyl hydroxylase inhibitor (PHI), which is administrated for renal anemia. Different from erythropoiesis-stimulating agents (ESAs), Roxadustat could increase erythropoietin physiologically, improving the therapeutic effects. It has not been so long since Roxadustat was approved by the European Commission (EC). Thus, only a few studies have reported on the treatment of renal anemia using Roxadustat. PATIENTS AND METHODS In this study, we evaluated the efficacy of Roxadustat in patients undergoing hemodialysis (HD). Nine patients under HD (72±10 years old) were enrolled in this study. Patients received Roxadustat first time or changed from ESAs (5-10 mg, 3 times a week after HD). Observation period was 5.3±2.9 months. RESULTS Roxadustat treatment effectively increased and maintained hemoglobin levels. Levels of ferritin and C-reactive protein tended to decrease, but the difference was not statistically significant. No significant adverse effects were observed in all patients during the study. CONCLUSION Roxadustat is effective and relatively tolerant for treating renal anemia in patients subjected to hemodialysis.
Collapse
Affiliation(s)
- Akira Mima
- Department of Nephrology, Osaka Medical and Pharmaceutical University, Osaka, Japan;
| | | |
Collapse
|
23
|
Ding ZY, Tang TT, Li ZL, Cao JY, Lv LL, Wen Y, Wang B, Liu BC. Therapeutic Effect of Extracellular Vesicles Derived from HIF Prolyl Hydroxylase Domain Enzyme Inhibitor-Treated Cells on Renal Ischemia/Reperfusion Injury. KIDNEY DISEASES (BASEL, SWITZERLAND) 2022; 8:206-216. [PMID: 35702708 PMCID: PMC9149557 DOI: 10.1159/000522584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 01/24/2022] [Indexed: 06/08/2023]
Abstract
INTRODUCTION Acute kidney injury (AKI) is a major public health problem worldwide. However, there is no definitive therapies to treat established AKI. In this study, we used FG-4592 to induce hypoxia inducible factor (HIF) expression in cells and then explored whether the extracellular vesicles (EVs) secreted by HIF-upregulated cells could alleviate ischemia/reperfusion injury (IRI)-induced AKI. METHODS FG-4592/HK2-EVs and FG-4592/HEK293-EVs were prepared by treating HK2 or HEK293 cells with FG-4592 for 24 h, respectively. HK2 cells under hypoxia were treated with FG-4592/HK2-EVs or FG-4592/HEK293-EVs to observe the therapeutic effect of EVs on H/R-induced apoptosis and inflammation. Mice were treated with FG-4592/HEK293-EVs after IRI to observe whether FG-4592/HEK293-EVs treatment could alleviate ischemic AKI. RESULTS The expression of HIF was induced by FG-4592 in a dose-dependent manner in HK2 and HEK293 cells under normoxia. In vitro, FG-4592/HK2-EVs and FG-4592/HEK293-EVs inhibited apoptosis and inflammation induced by H/R. In vivo, treatment with FG-4592/HEK293-EVs significantly ameliorated renal tubular injury and inflammation caused by IRI. In addition, the expression of HIF-1α in cells and kidneys was significantly downregulated by FG-4592/HK2-EVs and FG-4592/HEK293-EVs treatment. CONCLUSION This study demonstrated that EVs derived from HK2 or HEK293 cells after FG-4592 treatment could alleviate renal tubular injury and inflammation, suggesting a novel therapeutic role of FG-4592/EVs in the treatment of AKI.
Collapse
|
24
|
Xu Z, Wang C, He Y, Mao X, Zhang MZ, Hou YP, Li B. Hypoxia-Inducible Factor Protects Against Acute Kidney Injury via the Wnt/β-Catenin Signaling Pathway. Am J Physiol Renal Physiol 2022; 322:F611-F624. [PMID: 35403451 DOI: 10.1152/ajprenal.00023.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Promoting adaptive repair (AR) in acute kidney injury (AKI) is an effective strategy to preventprogression from AKI to chronic kidney disease (CKD). However, the mechanisms involved in renal repair after AKI remain unclear. In this study, we investigated the role of hypoxia-inducible factor (HIF), an important regulator of ischemic and hypoxic injury, in AKI during the repair phase. We established mouse models of ischemia-reperfusion injury (IRI)-induced AKI with AR or maladaptive repair (MAR). We found that after injury, the activation of HIF in the AR group was rapid, while in the MAR group, HIF activation was relatively delayed, and its expression was significantly lower than that in the AR group during the early repair phase. To further investigate the mechanism of HIF, we regulated the expression of HIF-1α and HIF-2α in HK-2 cells and EA.hy926 cells, respectively. Silencing HIF expression reduced proliferation and increased apoptosis in cells injured by hypoxia/reoxygenation (H/R). Self-healing ability was further reduced due to the downregulation of HIF. Moreover, HIF overexpression had the opposite effect. HIF increased the expression of β-catenin and its downstream target genes. Activation of Wnt/β-catenin by the small molecule activator SKL2001 mitigated the damaging effect of HIF knockdown, while blocking β-catenin with the inhibitor IWR-1-endo reduced the protective effects of HIF. In conclusion, HIF, which is highly expressed in the early stage after AKI, promotes renal repair by interacting with the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- ZhiHui Xu
- Department of Nephrology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chang Wang
- Department of Nephrology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Nephrology, Institute of Nephrology, 2nd Affiliated Hospital of Hainan Medical University, Haikou, China
| | - YiXin He
- Department of Nephrology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - XinYue Mao
- Department of Nephrology, Institute of Nephrology, 2nd Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Man-Zhu Zhang
- Department of Nephrology, Institute of Nephrology, 2nd Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yan-Pei Hou
- Department of Nephrology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bing Li
- Department of Nephrology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Nephrology, Institute of Nephrology, 2nd Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
25
|
Li W, Xiang Z, Xing Y, Li S, Shi S. Mitochondria bridge HIF signaling and ferroptosis blockage in acute kidney injury. Cell Death Dis 2022; 13:308. [PMID: 35387983 PMCID: PMC8986825 DOI: 10.1038/s41419-022-04770-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/15/2022] [Accepted: 03/25/2022] [Indexed: 11/09/2022]
Abstract
AbstractFerroptosis, a form of regulated cell death, plays an important role in acute kidney injury (AKI). Previous studies have shown that prolyl hydroxylase domain protein (PHD) inhibitors that activate HIF signaling provide strong protection against AKI, which is characterized by marked cell death. However, the relationship between PHD inhibition/HIF signaling and ferroptosis in AKI has not been elucidated. Here, we review recent studies to explore the issue. First, we will review the literature concerning the functions of HIF in promoting mitophagy, suppressing mitochondrial respiration and modulating redox homeostasis. Second, we will describe the current understanding of ferroptosis and its role in AKI, particularly from the perspective of mitochondrial dysfunction. Finally, we will discuss the possibility that mitochondria link PHD inhibition/HIF signaling and ferroptosis in AKI. In conclusion, we propose that HIF may protect renal cells against ferroptosis in AKI by reducing mitochondrial oxidative stress and damage.
Collapse
|
26
|
Tiwari R, Kapitsinou PP. Role of Endothelial Prolyl-4-Hydroxylase Domain Protein/Hypoxia-Inducible Factor Axis in Acute Kidney Injury. Nephron Clin Pract 2022; 146:243-248. [PMID: 34515168 PMCID: PMC8885783 DOI: 10.1159/000518632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/21/2021] [Indexed: 01/03/2023] Open
Abstract
Ischemia reperfusion injury (IRI) results from a cessation or restriction of blood supply to an organ followed by reestablishment of perfusion and reoxygenation. In the kidney, IRI due to transplantation, cardiac surgery with cardiopulmonary bypass, and other major vascular surgeries contributes to acute kidney injury (AKI), a clinical condition associated with significant morbidity and mortality in hospitalized patients. In the postischemic kidney, endothelial damage promotes inflammatory responses and leads to persistent hypoxia of the renal tubular epithelium. Like other cell types, endothelial cells respond to low oxygen tension by multiple hypoxic signaling mechanisms. Key mediators of adaptation to hypoxia are hypoxia-inducible factors (HIF)-1 and -2, transcription factors whose activity is negatively regulated by prolyl-hydroxylase domain proteins 1 to 3 (PHD1 to PHD3). The PHD/HIF axis controls several processes determining injury outcome, including ATP generation, cell survival, proliferation, and angiogenesis. Here, we discuss recent advances in our understanding of the endothelial-derived PHD/HIF signaling and its effects on postischemic AKI.
Collapse
Affiliation(s)
- Ratnakar Tiwari
- Department of Medicine and Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Pinelopi P. Kapitsinou
- Department of Medicine and Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL.,Address correspondence and Lead contact: Dr. Pinelopi P. Kapitsinou, Division of Nephrology and Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, 303 East Superior Street, SQBRC 8-408, Chicago, IL 60611.
| |
Collapse
|
27
|
Luiz RDS, Rampaso RR, Dos Santos AAC, Convento MB, Barbosa DA, da Fonseca CD, de Oliveira AS, Caires A, Furlan A, Schor N, Borges FT. BM-MSC-derived small extracellular vesicles (sEV) from trained animals presented nephroprotective potential in unilateralureteral obstruction model. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200187. [PMID: 34925478 PMCID: PMC8650265 DOI: 10.1590/1678-9199-jvatitd-2020-0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/21/2021] [Indexed: 12/03/2022] Open
Abstract
Background: The efficacy of bone marrow mesenchymal stromal cells (BM-MSC) and its extracellular vesicles has been demonstrated for a broad spectrum of indications, including kidney diseases. However, BM-MSC donor characteristics and their potential are not usually considered. Therefore, the present work aims to evaluate the nephroprotective capacity of sEV secreted by BM-MSC from trained rats inunilateral ureteral obstruction (UUO) model. Methods: BM-MSC was characterized by their differentiation potential and immunophenotypic markers. The sEV were isolated by ultracentrifugation and characterized by nanoparticle tracking analysis and western blot. Its miRNA cargo was examined by quantitative PCR analysis for miR-26a, 126a, and 296. Wistar rats were submitted to UUO procedure and concomitantly treated with sEV secreted by BM-MSC from the untrained andtrained rats. The kidney tissue from all groups was evaluated for fibrosis mediators (transforming growth factor beta1 and collagen), CD34-angiogenesis marker, and hypoxia-inducible factor 1 alpha (HIF-1α). Results: Treadmill training stimulated in BM-MSC the production of sEV loaded with pro-angiogenic miR-296. The treatment with this sEVin UUO-rats was able to attenuate collagen accumulation and increase CD34 and HIF-1α in the kidney tissue when compared to untrained ones. Tubular proximal cells under hypoxia and exposed to BM-MSC sEV demonstrate accumulation in HIF-1α and NFR-2 (nuclear factor erythroid 2-related factor 2), possibly to mediate the response to hypoxia and oxidative stress, under these conditions. Conclusion: The BM-MSC sEV from trained animals presented an increased nephroprotective potential compared to untrained vesicles by carrying 296-angiomiR and contributing to angiogenesis in UUO model.
Collapse
Affiliation(s)
- Rafael da Silva Luiz
- Nephrology Division, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Rodolfo Rosseto Rampaso
- Nephrology Division, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Alef Aragão Carneiro Dos Santos
- Interdisciplinary Program in Health Sciences, Institute of Physical Activity and Sport Sciences, Cruzeiro do Sul University, São Paulo, SP, Brazil
| | - Marcia Bastos Convento
- Nephrology Division, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Dulce Aparecida Barbosa
- Paulista School of Nursing, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | | - Andréia Silva de Oliveira
- Nephrology Division, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Agnaldo Caires
- Nephrology Division, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Andrei Furlan
- Nephrology Division, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Nestor Schor
- Nephrology Division, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Fernanda Teixeira Borges
- Nephrology Division, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil.,Interdisciplinary Program in Health Sciences, Institute of Physical Activity and Sport Sciences, Cruzeiro do Sul University, São Paulo, SP, Brazil
| |
Collapse
|
28
|
Hypoxic preconditioning in renal ischaemia-reperfusion injury: a review in pre-clinical models. Clin Sci (Lond) 2021; 135:2607-2618. [PMID: 34878507 DOI: 10.1042/cs20210615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/14/2021] [Accepted: 10/29/2021] [Indexed: 12/17/2022]
Abstract
Ischaemia-reperfusion injury (IRI) is a major cause of acute kidney injury (AKI) and chronic kidney disease, which consists of cellular damage and renal dysfunction. AKI is a major complication that is of particular concern after cardiac surgery and to a lesser degree following organ transplantation in the immediate post-transplantation period, leading to delayed graft function. Because effective therapies are still unavailable, several recent studies have explored the potential benefit of hypoxic preconditioning (HPC) on IRI. HPC refers to the acquisition of increased organ tolerance to subsequent ischaemic or severe hypoxic injury, and experimental evidences suggest a potential benefit of HPC. There are three experimental forms of HPC, and, for better clarity, we named them as follows: physical HPC, HPC via treated-cell administration and stabilised hypoxia-inducible factor (HIF)-1α HPC, or mimicked HPC. The purpose of this review is to present the latest developments in the literature on HPC in the context of renal IRI in pre-clinical models. The data we compiled suggest that preconditional activation of hypoxia pathways protects against renal IRI, suggesting that HPC could be used in the treatment of renal IRI in transplantation.
Collapse
|
29
|
Mima A. Hypoxia-inducible factor-prolyl hydroxylase inhibitors for renal anemia in chronic kidney disease: Advantages and disadvantages. Eur J Pharmacol 2021; 912:174583. [PMID: 34678238 DOI: 10.1016/j.ejphar.2021.174583] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 12/17/2022]
Abstract
Anemia is a common feature and complication of chronic kidney disease (CKD). Erythropoiesis-stimulating agents (ESAs) and recombinant human erythropoietin have been used widely in renal anemia treatment. Recently, hypoxia-inducible factor-prolyl hydroxylase domain inhibitors (HIF-PHIs) that may improve the treatment of renal anemia patients were launched. Previous studies indicated that HIF-PHIs may decrease hepcidin levels and modulate iron metabolism, thereby increasing total iron-binding capacity and reducing the need for iron supplementation. Furthermore, HIF-PHIs can reduce inflammation and oxidative stress in CKD. Recombinant erythropoietin has become a routine treatment for patients with CKD and end-stage renal disease with relatively few adverse effects. However, higher doses of recombinant erythropoietin have been demonstrated to be an independent predictor of mortality in patients under hemodialysis. Phase III clinical trials of HIF-PHIs in patients with anemia and dialysis-dependent CKD have shown their efficacy and safety in both non-dialysis and dialysis CKD patients. However, HIFα binds to specific hypoxia-response elements in the vascular endothelial growth factor or retinoic acid-related orphan receptor gamma t (RORγt) promoter, which may be involved in the progression of cancer, psoriasis, and rheumatoid arthritis. In this paper, we have summarized the mechanism, clinical application, and clinical trials of HIF-PHIs in the treatment of renal anemia and aimed to provide an overview of the new drugs in clinical practice, as well as reconsider the advantages and disadvantages of HIF-PHIs and ESAs. Presently, there are not enough clinical studies examining the effects of long-term administration of HIF-PHIs. Therefore, further studies will be needed.
Collapse
Affiliation(s)
- Akira Mima
- Department of Nephrology, Osaka Medical and Pharmaceutical University, Osaka, Japan.
| |
Collapse
|
30
|
Contribution of Oxidative Stress to HIF-1-Mediated Profibrotic Changes during the Kidney Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6114132. [PMID: 34712385 PMCID: PMC8548138 DOI: 10.1155/2021/6114132] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/09/2021] [Indexed: 12/01/2022]
Abstract
Hypoxia and oxidative stress are the common causes of various types of kidney injury. During recent years, the studies on hypoxia inducible factor- (HIF-) 1 attract more and more attention, which can not only mediate hypoxia adaptation but also contribute to profibrotic changes. Through analyzing related literatures, we found that oxidative stress can regulate the expression and activity of HIF-1α through some signaling molecules, such as prolyl hydroxylase domain-containing protein (PHD), PI-3K, and microRNA. And oxidative stress can take part in inflammation, epithelial-mesenchymal transition, and extracellular matrix deposition mediated by HIF-1 via interacting with classical NF-κB and TGF-β signaling pathways. Therefore, based on previous literatures, this review summarizes the contribution of oxidative stress to HIF-1-mediated profibrotic changes during the kidney damage, in order to further understand the role of oxidative stress in renal fibrosis.
Collapse
|
31
|
Amatruda M, Gembillo G, Giuffrida AE, Santoro D, Conti G. The Aggressive Diabetic Kidney Disease in Youth-Onset Type 2 Diabetes: Pathogenetic Mechanisms and Potential Therapies. ACTA ACUST UNITED AC 2021; 57:medicina57090868. [PMID: 34577791 PMCID: PMC8467670 DOI: 10.3390/medicina57090868] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 02/07/2023]
Abstract
Youth-onset Type 2 Diabetes Mellitus (T2DM) represents a major burden worldwide. In the last decades, the prevalence of T2DM became higher than that of Type 1 Diabetes Mellitus (T1DM), helped by the increasing rate of childhood obesity. The highest prevalence rates of youth-onset T2DM are recorded in China (520 cases/100,000) and in the United States (212 cases/100,000), and the numbers are still increasing. T2DM young people present a strong hereditary component, often unmasked by social and environmental risk factors. These patients are affected by multiple coexisting risk factors, including obesity, hyperglycemia, dyslipidemia, insulin resistance, hypertension, and inflammation. Juvenile T2DM nephropathy occurs earlier in life compared to T1DM-related nephropathy in children or T2DM-related nephropathy in adult. Diabetic kidney disease (DKD) is T2DM major long term microvascular complication. This review summarizes the main mechanisms involved in the pathogenesis of the DKD in young population and the recent evolution of treatment, in order to reduce the risk of DKD progression.
Collapse
Affiliation(s)
- Michela Amatruda
- Unit of Pediatric Nephrology with Dialysis, AOU Policlinic G Martino, University of Messina, 98125 Messina, Italy;
| | - Guido Gembillo
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (G.G.); (A.E.G.); (D.S.)
- Department of Biomedical and Dental Sciences and Morpho-functional Imaging, University of Messina, 98125 Messina, Italy
| | - Alfio Edoardo Giuffrida
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (G.G.); (A.E.G.); (D.S.)
| | - Domenico Santoro
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (G.G.); (A.E.G.); (D.S.)
| | - Giovanni Conti
- Unit of Pediatric Nephrology with Dialysis, AOU Policlinic G Martino, University of Messina, 98125 Messina, Italy;
- Correspondence:
| |
Collapse
|
32
|
Involvement of Tricarboxylic Acid Cycle Metabolites in Kidney Diseases. Biomolecules 2021; 11:biom11091259. [PMID: 34572472 PMCID: PMC8465464 DOI: 10.3390/biom11091259] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 02/08/2023] Open
Abstract
Mitochondria are complex organelles that orchestrate several functions in the cell. The primary function recognized is energy production; however, other functions involve the communication with the rest of the cell through reactive oxygen species (ROS), calcium influx, mitochondrial DNA (mtDNA), adenosine triphosphate (ATP) levels, cytochrome c release, and also through tricarboxylic acid (TCA) metabolites. Kidney function highly depends on mitochondria; hence mitochondrial dysfunction is associated with kidney diseases. In addition to oxidative phosphorylation impairment, other mitochondrial abnormalities have been described in kidney diseases, such as induction of mitophagy, intrinsic pathway of apoptosis, and releasing molecules to communicate to the rest of the cell. The TCA cycle is a metabolic pathway whose primary function is to generate electrons to feed the electron transport system (ETS) to drives energy production. However, TCA cycle metabolites can also release from mitochondria or produced in the cytosol to exert different functions and modify cell behavior. Here we review the involvement of some of the functions of TCA metabolites in kidney diseases.
Collapse
|
33
|
Torosyan R, Huang S, Bommi PV, Tiwari R, An SY, Schonfeld M, Rajendran G, Kavanaugh MA, Gibbs B, Truax AD, Bohney S, Calcutt MW, Kerr EW, Leonardi R, Gao P, Chandel NS, Kapitsinou PP. Hypoxic preconditioning protects against ischemic kidney injury through the IDO1/kynurenine pathway. Cell Rep 2021; 36:109547. [PMID: 34407414 PMCID: PMC8487442 DOI: 10.1016/j.celrep.2021.109547] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 05/06/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Prolonged cellular hypoxia leads to energetic failure and death. However, sublethal hypoxia can trigger an adaptive response called hypoxic preconditioning. While prolyl-hydroxylase (PHD) enzymes and hypoxia-inducible factors (HIFs) have been identified as key elements of oxygen-sensing machinery, the mechanisms by which hypoxic preconditioning protects against insults remain unclear. Here, we perform serum metabolomic profiling to assess alterations induced by two potent cytoprotective approaches, hypoxic preconditioning and pharmacologic PHD inhibition. We discover that both approaches increase serum kynurenine levels and enhance kynurenine biotransformation, leading to preservation of NAD+ in the post-ischemic kidney. Furthermore, we show that indoleamine 2,3-dioxygenase 1 (Ido1) deficiency abolishes the systemic increase of kynurenine and the subsequent renoprotection generated by hypoxic preconditioning and PHD inhibition. Importantly, exogenous administration of kynurenine restores the hypoxic preconditioning in the context of Ido1 deficiency. Collectively, our findings demonstrate a critical role of the IDO1-kynurenine axis in mediating hypoxic preconditioning.
Collapse
Affiliation(s)
- Rafael Torosyan
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Shengping Huang
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Prashant V Bommi
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ratnakar Tiwari
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Si Young An
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Michael Schonfeld
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ganeshkumar Rajendran
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Matthew A Kavanaugh
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Benjamin Gibbs
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | | | | | - M Wade Calcutt
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Evan W Kerr
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA
| | - Roberta Leonardi
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA
| | - Peng Gao
- Robert H. Lurie Cancer Center Metabolomics Core, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Navdeep S Chandel
- Robert H. Lurie Cancer Center Metabolomics Core, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Medicine and Robert H. Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Pinelopi P Kapitsinou
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Medicine and Robert H. Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
34
|
A small-molecule inhibitor of hypoxia-inducible factor prolyl hydroxylase improves obesity, nephropathy and cardiomyopathy in obese ZSF1 rats. PLoS One 2021; 16:e0255022. [PMID: 34339435 PMCID: PMC8328318 DOI: 10.1371/journal.pone.0255022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 07/08/2021] [Indexed: 12/18/2022] Open
Abstract
Prolyl hydroxylase (PH) enzymes control the degradation of hypoxia-inducible factor (HIF), a transcription factor known to regulate erythropoiesis, angiogenesis, glucose metabolism, cell proliferation, and apoptosis. HIF-PH inhibitors (HIF-PHIs) correct anemia in patients with renal disease and in animal models of anemia and kidney disease. However, the effects of HIF-PHIs on comorbidities associated with kidney disease remain largely unknown. We evaluated the effects of the HIF-PHI FG-2216 in obese ZSF1 (Ob-ZSF1) rats, an established model of kidney failure with metabolic syndrome. Following unilateral nephrectomy (Nx) at 8 weeks of age, rats were treated with 40 mg/kg FG-2216 or vehicle by oral gavage three times per week for up to 18 weeks. FG-2216 corrected blood hemoglobin levels and improved kidney function and histopathology in Nx-Ob-ZSF1 rats by increasing the glomerular filtration rate, decreasing proteinuria, and reducing peritubular fibrosis, tubular damage, glomerulosclerosis and mesangial expansion. FG-2216 increased renal glucose excretion and decreased body weight, fat pad weight, and serum cholesterol in Nx-Ob-ZSF1 rats. Additionally, FG-2216 corrected hypertension, improved diastolic and systolic heart function, and reduced cardiac hypertrophy and fibrosis. In conclusion, the HIF-PHI FG-2216 improved renal and cardiovascular outcomes, and reduced obesity in a rat model of kidney disease with metabolic syndrome. Thus, in addition to correcting anemia, HIF-PHIs may provide renal and cardiac protection to patients suffering from kidney disease with metabolic syndrome.
Collapse
|
35
|
Hirota K. HIF-α Prolyl Hydroxylase Inhibitors and Their Implications for Biomedicine: A Comprehensive Review. Biomedicines 2021; 9:biomedicines9050468. [PMID: 33923349 PMCID: PMC8146675 DOI: 10.3390/biomedicines9050468] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
Oxygen is essential for the maintenance of the body. Living organisms have evolved systems to secure an oxygen environment to be proper. Hypoxia-inducible factor (HIF) plays an essential role in this process; it is a transcription factor that mediates erythropoietin (EPO) induction at the transcriptional level under hypoxic environment. After successful cDNA cloning in 1995, a line of studies were conducted for elucidating the molecular mechanism of HIF activation in response to hypoxia. In 2001, cDNA cloning of dioxygenases acting on prolines and asparagine residues, which play essential roles in this process, was reported. HIF-prolyl hydroxylases (PHs) are molecules that constitute the core molecular mechanism of detecting a decrease in the partial pressure of oxygen, or hypoxia, in the cells; they can be called oxygen sensors. In this review, I discuss the process of molecular cloning of HIF and HIF-PH, which explains hypoxia-induced EPO expression; the development of HIF-PH inhibitors that artificially or exogenously activate HIF by inhibiting HIF-PH; and the significance and implications of medical intervention using HIF-PH inhibitors.
Collapse
Affiliation(s)
- Kiichi Hirota
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| |
Collapse
|
36
|
Pan SY, Tsai PZ, Chou YH, Chang YT, Chang FC, Chiu YL, Chiang WC, Hsu T, Chen YM, Chu TS, Lin SL. Kidney pericyte hypoxia-inducible factor regulates erythropoiesis but not kidney fibrosis. Kidney Int 2021; 99:1354-1368. [PMID: 33812664 DOI: 10.1016/j.kint.2021.01.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/03/2021] [Accepted: 01/13/2021] [Indexed: 12/15/2022]
Abstract
Prolyl hydroxylase domain enzyme (PHD) inhibitors are effective in the treatment of chronic kidney disease (CKD)-associated anemia by stabilizing hypoxia inducible factor (HIF), thereby increasing erythropoietin and consequently erythropoiesis. However, concern for CKD progression needs to be addressed in clinical trials. Although pre-clinical studies showed an anti-inflammatory effect in kidney disease models, the effect of PHD inhibitors on kidney fibrosis was inconsistent probably because the effects of HIF are cell type and context dependent. The major kidney erythropoietin-producing cells are pericytes that produce erythropoietin through HIF-2α-dependent gene transcription. The concern for the impact of HIF in pericytes on kidney fibrosis arises from the fact that pericytes are the major precursor cells of myofibroblasts in CKD. Since cells expressing Gli1 fulfill the morphologic and anatomic criteria for pericytes, we induced Gli1+ cell-specific HIF stabilization or knockout to study the impact of HIF in pericytes on kidney pathology of mice with or without fibrotic injury induced by unilateral ureteral obstruction. Compared with the littermate controls, mice with pericyte-specific HIF stabilization due to von Hippel-Lindau protein or PHD2 knockout showed increased serum erythropoietin and polycythemia rather than a discernible difference in kidney fibrosis. Compared with Gli1+ pericytes sorted from littermate controls, Gli1+ pericytes sorted from PHD2 knockout mice showed increased erythropoietin gene expression rather than discernible changes in Col1a1 or Acta2 expression. Furthermore, pericyte-specific knockout of HIF-1α or HIF-2α did not affect kidney fibrosis. Thus, our study supports the absence of negative effects of PHD inhibitors on kidney fibrosis of mice despite HIF stabilization in pericytes.
Collapse
Affiliation(s)
- Szu-Yu Pan
- Division of Nephrology, Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Zhen Tsai
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Hsiang Chou
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital Jin-Shan Branch, New Taipei City, Taiwan
| | - Yu-Ting Chang
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fan-Chi Chang
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen-Ling Chiu
- Division of Nephrology, Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Graduate Program in Biomedical Informatics, Department of Computer Science and Engineering, College of Informatics, Yuan Ze University, Taoyuan, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wen-Chih Chiang
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tien Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan
| | - Yung-Ming Chen
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tzong-Shinn Chu
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shuei-Liong Lin
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
37
|
Transcriptome Analysis Reveals the AhR, Smad2/3, and HIF-1α Pathways as the Mechanism of Ochratoxin A Toxicity in Kidney Cells. Toxins (Basel) 2021; 13:toxins13030190. [PMID: 33800744 PMCID: PMC7999264 DOI: 10.3390/toxins13030190] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/25/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin occurring in foods consumed by humans. Recently, there has been growing global concern regarding OTA toxicity. The main target organ of OTA is the kidney, but the mechanism underlying renal toxicity is not well known. In this study, human-derived proximal tubular epithelial cells, HK-2 cells, were used for RNA-sequencing (RNA-seq) and transcriptome analysis. In total, 3193 differentially expressed genes were identified upon treatment with 200 nM OTA in HK-2 cells; of these, 2224 were upregulated and 969 were downregulated. Transcriptome analysis revealed that OTA significantly affects hypoxia, epithelial-mesenchymal transition (EMT), apoptosis, and xenobiotic metabolism pathways in kidney cells. Quantitative real-time PCR analysis showed gene expression patterns similar to RNA-seq analysis. Expression of EMT markers (E-cadherin and fibronectin), apoptosis markers (caspase-3 and Bax), and kidney injury molecule-1 (KIM-1) was suppressed by inhibiting AhR expression using siRNA, and the related transcription factors, Smad2/3, and HIF-1α were downregulated. Smad2/3 suppression with siRNA could inhibit fibronetcin, caspase-3, Bax, and KIM-1 expression. Fibronetcin, caspase-3, Bax, and KIM-1 expression could be increased with HIF-1α suppression with siRNA. Taken together, these findings suggest that OTA-mediated kidney toxicity via the AhR-Smad2/3-HIF-1α signaling pathways leads to induction of EMT, apoptosis, and kidney injury.
Collapse
|
38
|
Han M, Li S, Xie H, Liu Q, Wang A, Hu S, Zhao X, Kong Y, Wang W, Li C. Activation of TGR5 restores AQP2 expression via the HIF pathway in renal ischemia-reperfusion injury. Am J Physiol Renal Physiol 2021; 320:F308-F321. [PMID: 33427060 DOI: 10.1152/ajprenal.00577.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/22/2020] [Indexed: 12/28/2022] Open
Abstract
Renal ischemia-reperfusion (I/R) injury is associated with markedly reduced protein expression of aquaporins (AQPs). Membrane G protein-coupled bile acid receptor-1 (TGR5) has shown protective roles in some kidney diseases. The purpose of the current study was to investigate whether activation of TGR5 prevented the decreased protein expression of AQPs in rodents with renal I/R injury and potential mechanisms. TGR5 agonist lithocholic acid (LCA) treatment reduced polyuria after renal I/R injury in rats. LCA prevented the decreased abundance of AQP2 protein and upregulated hypoxia-inducible factor (HIF)-1α protein expression, which were associated with decreased protein abundance of NF-κB p65 and IL-1β. After renal I/R, mice with tgr5 gene deficiency exhibited further decreases in AQP2 and HIF-1α protein abundance and increases of IL-1β and NF-κB p65 protein expression compared with wild-type mice. In primary cultured inner medullary collecting duct cells with hypoxia/reoxygenation, LCA induced markedly increased protein expression of AQP2 and HIF-1α, which were partially prevented by the PKA inhibitor H89. FG4592, a prolyl-4-hydroxylase domain-containing protein inhibitor, increased HIF-1α and AQP2 protein abundance in association with decreased NF-κB p65 protein expression in inner medullary collecting duct cells with hypoxia/reoxygenation. In conclusion, TGR5 stimulation by LCA prevented downregulation of renal AQPs in kidney with I/R injury, likely through activating HIF-1α signaling and suppressing inflammatory responses.NEW & NOTEWORTHY Stimulation of the membrane G protein-coupled bile acid receptor TGR5 by lithocholic acid (LCA) reduced polyuria in rats with renal ischemia-reperfusion (I/R) injury. LCA increased abundance of aquaporin-2 (AQP2) protein and upregulated hypoxia-inducible factor (HIF)-1α protein expression in association with decreased NF-κB p65 and IL-1β. After I/R, mice with tgr5 gene deficiency exhibited more severe decreases in AQP2 and HIF-1α protein abundance and inflammatory responses. TGR5 activation exhibits a protective role in acute renal injury induced by I/R.
Collapse
Affiliation(s)
- Mengke Han
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Suchun Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Haixia Xie
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qiaojuan Liu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ani Wang
- Cardiovascular Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Shan Hu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaoduo Zhao
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yonglun Kong
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weidong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Nephrology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chunling Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
39
|
Terker AS, Sasaki K, Arroyo JP, Niu A, Wang S, Fan X, Zhang Y, Nwosisi S, Zhang MZ, Harris RC. Activation of hypoxia-sensing pathways promotes renal ischemic preconditioning following myocardial infarction. Am J Physiol Renal Physiol 2021; 320:F569-F577. [PMID: 33522414 DOI: 10.1152/ajprenal.00476.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ischemic heart disease is the leading cause of death worldwide and is frequently comorbid with chronic kidney disease. Physiological communication is known to occur between the heart and the kidney. Although primary dysfunction in either organ can induce dysfunction in the other, a clinical entity known as cardiorenal syndrome, mechanistic details are lacking. Here, we used a model of experimental myocardial infarction (MI) to test effects of chronic cardiac ischemia on acute and chronic kidney injury. Surprisingly, chronic cardiac damage protected animals from subsequent acute ischemic renal injury, an effect that was accompanied by evidence of chronic kidney hypoxia. The protection observed post-MI was similar to protection observed in a separate group of healthy animals housed in ambient hypoxic conditions prior to kidney injury, suggesting a common mechanism. There was evidence that chronic cardiac injury activates renal hypoxia-sensing pathways. Increased renal abundance of several glycolytic enzymes following MI suggested that a shift toward glycolysis may confer renal ischemic preconditioning. In contrast, effects on chronic renal injury followed a different pattern, with post-MI animals displaying worsened chronic renal injury and fibrosis. These data show that although chronic cardiac injury following MI protected against acute kidney injury via activation of hypoxia-sensing pathways, it worsened chronic kidney injury. The results further our understanding of cardiorenal signaling mechanisms and have implications for the treatment of heart failure patients with associated renal disease.NEW & NOTEWORTHY Experimental myocardial infarction (MI) protects from subsequent ischemic acute kidney injury but worsens chronic kidney injury. Observed protection from ischemic acute kidney injury after MI was accompanied by chronic kidney hypoxia and increased renal abundance of hypoxia-inducible transcripts. These data support the idea that MI confers protection from renal ischemic injury via chronic renal hypoxia and activation of downstream hypoxia-inducible signaling pathways.
Collapse
Affiliation(s)
- Andrew S Terker
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt Center for Kidney Disease, Nashville, Tennessee
| | - Kensuke Sasaki
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt Center for Kidney Disease, Nashville, Tennessee
| | - Juan Pablo Arroyo
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt Center for Kidney Disease, Nashville, Tennessee
| | - Aolei Niu
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt Center for Kidney Disease, Nashville, Tennessee
| | - Suwan Wang
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt Center for Kidney Disease, Nashville, Tennessee
| | - Xiaofeng Fan
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt Center for Kidney Disease, Nashville, Tennessee
| | - Yahua Zhang
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt Center for Kidney Disease, Nashville, Tennessee
| | - Sochinweichi Nwosisi
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt Center for Kidney Disease, Nashville, Tennessee
| | - Ming-Zhi Zhang
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt Center for Kidney Disease, Nashville, Tennessee
| | - Raymond C Harris
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt Center for Kidney Disease, Nashville, Tennessee.,Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
| |
Collapse
|
40
|
HIF in Nephrotoxicity during Cisplatin Chemotherapy: Regulation, Function and Therapeutic Potential. Cancers (Basel) 2021; 13:cancers13020180. [PMID: 33430279 PMCID: PMC7825709 DOI: 10.3390/cancers13020180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/27/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Cisplatin is a widely used chemotherapy drug, but its use and efficacy are limited by its nephrotoxicity. HIF has protective effects against kidney injury during cisplatin chemotherapy, but it may attenuate the anti-cancer effect of cisplatin. In this review, we describe the role and regulation of HIF in cisplatin-induced nephrotoxicity and highlight the therapeutic potential of targeting HIF in chemotherapy. Abstract Cisplatin is a highly effective, broad-spectrum chemotherapeutic drug, yet its clinical use and efficacy are limited by its side effects. Particularly, cancer patients receiving cisplatin chemotherapy have high incidence of kidney problems. Hypoxia-inducible factor (HIF) is the “master” transcription factor that is induced under hypoxia to trans-activate various genes for adaptation to the low oxygen condition. Numerous studies have reported that HIF activation protects against AKI and promotes kidney recovery in experimental models of cisplatin-induced acute kidney injury (AKI). In contrast, little is known about the effects of HIF on chronic kidney problems following cisplatin chemotherapy. Prolyl hydroxylase (PHD) inhibitors are potent HIF inducers that recently entered clinical use. By inducing HIF, PHD inhibitors may protect kidneys during cisplatin chemotherapy. However, HIF activation by PHD inhibitors may reduce the anti-cancer effect of cisplatin in tumors. Future studies should test PHD inhibitors in tumor-bearing animal models to verify their effects in kidneys and tumors.
Collapse
|
41
|
Pan SY, Chiang WC, Chen YM. The journey from erythropoietin to 2019 Nobel Prize: Focus on hypoxia-inducible factors in the kidney. J Formos Med Assoc 2021; 120:60-67. [DOI: 10.1016/j.jfma.2020.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/19/2022] Open
|
42
|
Yamazaki T, Mimura I, Tanaka T, Nangaku M. Treatment of Diabetic Kidney Disease: Current and Future. Diabetes Metab J 2021; 45:11-26. [PMID: 33508907 PMCID: PMC7850867 DOI: 10.4093/dmj.2020.0217] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetic kidney disease (DKD) is the major cause of end-stage kidney disease. However, only renin-angiotensin system inhibitor with multidisciplinary treatments is effective for DKD. In 2019, sodium-glucose cotransporter 2 (SGLT2) inhibitor showed efficacy against DKD in Canagliflozin and Renal Events in Diabetes with Established Nephropathy Clinical Evaluation (CREDENCE) trial, adding a new treatment option. However, the progression of DKD has not been completely controlled. The patients with transient exposure to hyperglycemia develop diabetic complications, including DKD, even after normalization of their blood glucose. Temporary hyperglycemia causes advanced glycation end product (AGE) accumulations and epigenetic changes as metabolic memory. The drugs that improve metabolic memory are awaited, and AGE inhibitors and histone modification inhibitors are the focus of clinical and basic research. In addition, incretin-related drugs showed a renoprotective ability in many clinical trials, and these trials with renal outcome as their primary endpoint are currently ongoing. Hypoxia-inducible factor prolyl hydroxylase inhibitors recently approved for renal anemia may be renoprotective since they improve tubulointerstitial hypoxia. Furthermore, NF-E2-related factor 2 activators improved the glomerular filtration rate of DKD patients in Bardoxolone Methyl Treatment: Renal Function in chronic kidney disease/Type 2 Diabetes (BEAM) trial and Phase II Study of Bardoxolone Methyl in Patients with Chronic Kidney Disease and Type 2 Diabetes (TSUBAKI) trial. Thus, following SGLT2 inhibitor, numerous novel drugs could be utilized in treating DKD. Future studies are expected to provide new insights.
Collapse
Affiliation(s)
- Tomotaka Yamazaki
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Imari Mimura
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tetsuhiro Tanaka
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
- Corresponding author: Tetsuhiro Tanaka https://orcid.org/0000-0002-2238-4215 Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan E-mail:
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
43
|
Schaub JA, Venkatachalam MA, Weinberg JM. Proximal Tubular Oxidative Metabolism in Acute Kidney Injury and the Transition to CKD. KIDNEY360 2020; 2:355-364. [PMID: 35373028 PMCID: PMC8740982 DOI: 10.34067/kid.0004772020] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/22/2020] [Indexed: 02/04/2023]
Abstract
The proximal tubule relies on oxidative mitochondrial metabolism to meet its energy needs and has limited capacity for glycolysis, which makes it uniquely susceptible to damage during AKI, especially after ischemia and anoxia. Under these conditions, mitochondrial ATP production is initially decreased by several mechanisms, including fatty acid-induced uncoupling and inhibition of respiration related to changes in the shape and volume of mitochondria. Glycolysis is initially insufficient as a source of ATP to protect the cells and mitochondrial function, but supplementation of tricarboxylic acid cycle intermediates augments anaerobic ATP production, and improves recovery of mitochondrial oxidative metabolism. Incomplete recovery is characterized by defects of respiratory enzymes and lipid metabolism. During the transition to CKD, tubular cells atrophy but maintain high expression of glycolytic enzymes, and there is decreased fatty acid oxidation. These metabolic changes may be amenable to a number of therapeutic interventions.
Collapse
Affiliation(s)
- Jennifer A. Schaub
- Nephrology Division, Department of Medicine, University of Michigan, Ann Arbor, Michigan
| | | | - Joel M. Weinberg
- Nephrology Division, Department of Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
44
|
Zou J, Yang J, Zhu X, Zhong J, Elshaer A, Matsusaka T, Pastan I, Haase VH, Yang HC, Fogo AB. Stabilization of hypoxia-inducible factor ameliorates glomerular injury sensitization after tubulointerstitial injury. Kidney Int 2020; 99:620-631. [PMID: 33137336 DOI: 10.1016/j.kint.2020.09.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/24/2022]
Abstract
Previously, we found that mild tubulointerstitial injury sensitizes glomeruli to subsequent injury. Here, we evaluated whether stabilization of hypoxia-inducible factor-α (HIF-α), a key regulator of tissue response to hypoxia, ameliorates tubulointerstitial injury and impact on subsequent glomerular injury. Nep25 mice, which express the human CD25 receptor on podocytes under control of the nephrin promotor and develop glomerulosclerosis when a specific toxin is administered were used. Tubulointerstitial injury, evident by week two, was induced by folic acid, and mice were treated with an HIF stabilizer, dimethyloxalylglycine or vehicle from week three to six. Uninephrectomy at week six assessed tubulointerstitial fibrosis. Glomerular injury was induced by podocyte toxin at week seven, and mice were sacrificed ten days later. At week six tubular injury markers normalized but with patchy collagen I and interstitial fibrosis. Pimonidazole staining, a hypoxia marker, was increased by folic acid treatment compared to vehicle while dimethyloxalylglycine stimulated HIF-2α expression and attenuated tubulointerstitial hypoxia. The hematocrit was increased by dimethyloxalylglycine along with downstream effectors of HIF. Tubular epithelial cell injury, inflammation and interstitial fibrosis were improved after dimethyloxalylglycine, with further reduced mortality, interstitial fibrosis, and glomerulosclerosis induced by specific podocyte injury. Thus, our findings indicate that hypoxia contributes to tubular injury and consequent sensitization of glomeruli to injury. Hence, restoring HIFs may blunt this adverse crosstalk of tubules to glomeruli.
Collapse
Affiliation(s)
- Jun Zou
- Division of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jaewon Yang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Division of Nephrology, Yonsei University Wonju College of Medicine, Wonju, Gangwon, South Korea
| | - Xiaoye Zhu
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Division of Nephrology, Huashan Hospital, Wudan University, Shanghai, China
| | - Jianyong Zhong
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Division of Pediatric Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ahmed Elshaer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Taiji Matsusaka
- Institute of Medical Science, Tokai University, Isehara, Japan
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Volker H Haase
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Medicine and Research Services, Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Hai-Chun Yang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Division of Pediatric Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Agnes B Fogo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Division of Pediatric Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| |
Collapse
|
45
|
Sugahara M, Tanaka T, Nangaku M. Hypoxia-Inducible Factor and Oxygen Biology in the Kidney. ACTA ACUST UNITED AC 2020; 1:1021-1031. [DOI: 10.34067/kid.0001302020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/21/2020] [Indexed: 12/19/2022]
Abstract
Kidney tissue hypoxia is detected in various kidney diseases and is considered to play an important role in the pathophysiology of both AKI and CKD. Because of the characteristic vascular architecture and high energy demand to drive tubular solute transport, the renal medulla is especially prone to hypoxia. Injured kidneys often present capillary rarefaction, inflammation, and fibrosis, which contribute to sustained kidney hypoxia, forming a vicious cycle promoting progressive CKD. Hypoxia-inducible factor (HIF), a transcription factor responsible for cellular adaptation to hypoxia, is generally considered to protect against AKI. On the contrary, consequences of sustained HIF activation in CKD may be either protective, neutral, or detrimental. The kidney outcomes seem to be affected by various factors, such as cell types in which HIF is activated/inhibited, disease models, balance between two HIF isoforms, and time and methods of intervention. This suggests multifaceted functions of HIF and highlights the importance of understanding its role within each specific context. Prolyl-hydroxylase domain (PHD) inhibitors, which act as HIF stabilizers, have been developed to treat anemia of CKD. Although many preclinical studies demonstrated renoprotective effects of PHD inhibitors in CKD models, there may be some situations in which they lead to deleterious effects. Further studies are needed to identify patients who would gain additional benefits from PHD inhibitors and those who may need to avoid them.
Collapse
|
46
|
Faivre A, Scholz CC, de Seigneux S. Hypoxia in chronic kidney disease: towards a paradigm shift? Nephrol Dial Transplant 2020; 36:1782-1790. [PMID: 33895835 DOI: 10.1093/ndt/gfaa091] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Indexed: 11/15/2022] Open
Abstract
Chronic kidney disease (CKD) is defined as an alteration of kidney structure and/or function lasting for >3 months [1]. CKD affects 10% of the general adult population and is responsible for large healthcare costs [2]. Since the end of the last century, the role of hypoxia in CKD progression has controversially been discussed. To date, there is evidence of the presence of hypoxia in late-stage renal disease, but we lack time-course evidence, stage correlation and also spatial co-localization with fibrotic lesions to ensure its causative role. The classical view of hypoxia in CKD progression is that it is caused by peritubular capillary alterations, renal anaemia and increased oxygen consumption regardless of the primary injury. In this classical view, hypoxia is assumed to further induce pro-fibrotic and pro-inflammatory responses, as well as oxidative stress, leading to CKD worsening as part of a vicious circle. However, recent investigations tend to question this paradigm, and both the presence of hypoxia and its role in CKD progression are still not clearly demonstrated. Hypoxia-inducible factor (HIF) is the main transcriptional regulator of the hypoxia response. Genetic HIF modulation leads to variable effects on CKD progression in different murine models. In contrast, pharmacological modulation of the HIF pathway [i.e. by HIF hydroxylase inhibitors (HIs)] appears to be generally protective against fibrosis progression experimentally. We here review the existing literature on the role of hypoxia, the HIF pathway and HIF HIs in CKD progression and summarize the evidence that supports or rejects the hypoxia hypothesis, respectively.
Collapse
Affiliation(s)
- Anna Faivre
- Department of Cell physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Carsten C Scholz
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Centre of Competence in Research "Kidney.CH", Zurich, Switzerland
| | - Sophie de Seigneux
- Department of Cell physiology and Metabolism, University of Geneva, Geneva, Switzerland.,National Centre of Competence in Research "Kidney.CH", Zurich, Switzerland.,Department of Medicine, Service of Nephrology, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
47
|
Gao L, Zhong X, Jin J, Li J, Meng XM. Potential targeted therapy and diagnosis based on novel insight into growth factors, receptors, and downstream effectors in acute kidney injury and acute kidney injury-chronic kidney disease progression. Signal Transduct Target Ther 2020; 5:9. [PMID: 32296020 PMCID: PMC7018831 DOI: 10.1038/s41392-020-0106-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/01/2019] [Accepted: 12/17/2019] [Indexed: 02/08/2023] Open
Abstract
Acute kidney injury (AKI) is defined as a rapid decline in renal function and is characterized by excessive renal inflammation and programmed death of resident cells. AKI shows high morbidity and mortality, and severe or repeated AKI can transition to chronic kidney disease (CKD) or even end-stage renal disease (ESRD); however, very few effective and specific therapies are available, except for supportive treatment. Growth factors, such as epidermal growth factor (EGF), insulin-like growth factor (IGF), and transforming growth factor-β (TGF-β), are significantly altered in AKI models and have been suggested to play critical roles in the repair process of AKI because of their roles in cell regeneration and renal repair. In recent years, a series of studies have shown evidence that growth factors, receptors, and downstream effectors may be highly involved in the mechanism of AKI and may function in the early stage of AKI in response to stimuli by regulating inflammation and programmed cell death. Moreover, certain growth factors or correlated proteins act as biomarkers for AKI due to their sensitivity and specificity. Furthermore, growth factors originating from mesenchymal stem cells (MSCs) via paracrine signaling or extracellular vesicles recruit leukocytes or repair intrinsic cells and may participate in AKI repair or the AKI-CKD transition. In addition, growth factor-modified MSCs show superior therapeutic potential compared to that of unmodified controls. In this review, we summarized the current therapeutic and diagnostic strategies targeting growth factors to treat AKI in clinical trials. We also evaluated the possibilities of other growth factor-correlated molecules as therapeutic targets in the treatment of AKI and the AKI-CKD transition.
Collapse
Affiliation(s)
- Li Gao
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 230032, Hefei, China
| | - Xiang Zhong
- Department of Nephrology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, 610072, Chengdu, Sichuan, China
| | - Juan Jin
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, 230032, Hefei, China
| | - Jun Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 230032, Hefei, China
| | - Xiao-Ming Meng
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 230032, Hefei, China.
| |
Collapse
|
48
|
Wang Z, Zhang W. The crosstalk between hypoxia-inducible factor-1α and microRNAs in acute kidney injury. Exp Biol Med (Maywood) 2020; 245:427-436. [PMID: 31996035 DOI: 10.1177/1535370220902696] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acute kidney injury (AKI) is a common critical clinical disease that is characterized by a rapid decline in renal function and reduced urine output. Ischemia and hypoxia are dominant pathophysiological changes in AKI that are induced by many factors, and the role of the “master” regulator hypoxia-inducible factor-1α (HIF-1α) is well recognized in AKI-related studies. MicroRNAs have been found to act as critical regulators of AKI pathophysiological process. More studies now have reported mutual interactions between HIF-1α and microRNAs in AKI. Therefore, in this brief review, we look into the mutual regulatory mechanisms between HIF-1α and microRNAs and discuss their function in the process of AKI. Recent studies demonstrated that HIF-1α is involved in the regulation of multiple functional microRNAs in AKI, and in turn, the level of HIF-1α is regulated by specific microRNAs. However, the role of the interactions between HIF-1α and microRNAs in AKI are controversial, and whether interventions targeting relevant mechanisms could achieve clinical benefits is not clear. Much work remains to further explore the value of targeting the HIF-1α-microRNA pathway in AKI treatment. Impact statement At first, we have discussed the role of hypoxia-inducible factor-1α (HIF-1α) and microRNAs in the acute kidney injury (AKI) pathophysiology. Then we have summarized the interactions between HIF-1α and microRNAs reported by AKI-related studies and concluded their regulatory effects in AKI process. Finally, we have made a vision of HIF-1α/microRNAs pathway’s potential as the intervention target in AKI. The mini review provides a systematic understanding of the crosstalk between HIF-1α and microRNAs in AKI and their effects on AKI pathophysiology and treatment.
Collapse
Affiliation(s)
- Zhiyu Wang
- Division of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wen Zhang
- Division of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
49
|
Pretreatment with Roxadustat (FG-4592) Attenuates Folic Acid-Induced Kidney Injury through Antiferroptosis via Akt/GSK-3 β/Nrf2 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6286984. [PMID: 32051732 PMCID: PMC6995323 DOI: 10.1155/2020/6286984] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/29/2019] [Accepted: 12/12/2019] [Indexed: 12/13/2022]
Abstract
Folic acid- (FA-) induced kidney injury is characterized by the tubule damage due to the disturbance of the antioxidant system and subsequent interstitial fibrosis. FG-4592 is an inhibitor of prolyl hydroxylase of hypoxia-inducible factor (HIF), an antioxidant factor. The present study investigated the protective role of FG-4592 pretreatment at the early stage of the kidney injury and long-term impact on the progression of renal fibrosis. FG-4592 was administrated two days before FA injection in mice. On the second day after FA injection, the mice with FG-4592 pretreatment showed an improved renal function, compared with those without FG-4592 pretreatment, indicated by biochemical and histological parameters; meanwhile, the cellular content of iron, malondialdehyde, and 4-hydroxynonenal histologically decreased, implying the suppression of iron accumulation and lipid peroxidation. Simultaneously, upregulation of HIF-1α was found, along with Nrf2 activation, which was reflected by increased nuclear translocation and high-expression of downstream proteins, including heme-oxygenase1, glutathione peroxidase4, and cystine/glutamate transporter, as well as ferroportin. Correspondingly, the elevated levels of antioxidative enzymes and glutathione, as well as reduced iron accumulation, were observed, suggesting a lower risk of occurrence of ferroptosis with FG-4592 pretreatment. This was confirmed by reversed pathological parameters and improved renal function in FA-treated mice with the administration of ferrostatin-1, a specific ferroptosis inhibitor. Furthermore, a signal pathway study indicated that Nrf2 activation was associated with increased phosphorylation of Akt and GSK-3β, verified by the use of an inhibitor of the PI3K that phosphorylates Akt. Moreover, FG-4592 pretreatment also decreased macrophage infiltration and expression of inflammatory factors TNF-α and IL-1β. On the 14th day after FA injection, FG-4592 pretreatment decreased collagen deposition and expression of fibrosis biomarkers. These findings suggest that the protective role of FG-4592 pretreatment is achieved mainly by decreasing ferroptosis at the early stage of FA-induced kidney injury via Akt/GSK-3β-mediated Nrf2 activation, which retards the fibrosis progression.
Collapse
|
50
|
Zhao L, Han F, Wang J, Chen J. Current understanding of the administration of mesenchymal stem cells in acute kidney injury to chronic kidney disease transition: a review with a focus on preclinical models. Stem Cell Res Ther 2019; 10:385. [PMID: 31843011 PMCID: PMC6916462 DOI: 10.1186/s13287-019-1507-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/03/2019] [Accepted: 11/22/2019] [Indexed: 12/11/2022] Open
Abstract
Incomplete recovery from acute kidney injury (AKI) can result in long-term functional deficits and has been recognized as a major contributor to chronic kidney disease (CKD), which is termed the AKI-CKD transition. Currently, an effective intervention for this disorder is still lacking. Principally, therapeutic strategies targeting the AKI-CKD transition can be divided into those reducing the severity of AKI or promoting the regenerative process towards beneficially adaptive repair pathways. Considering the fact that mesenchymal stem cells (MSCs) have the potential to address both aspects, therapeutic regimens based on MSCs have a promising future. In light of this information, we focus on the currently available evidence associated with MSC therapy involved in the treatment of the AKI-CKD transition and the underlying mechanisms. All of these discussions will contribute to the establishment of a reliable therapeutic strategy for patients with this problem, who can be easily ignored by physicians, and will lead to a better clinical outcome for them.
Collapse
Affiliation(s)
- Lingfei Zhao
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Fei Han
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Junni Wang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Jianghua Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China. .,Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.
| |
Collapse
|