1
|
Ayasse N, Berg P, Svendsen SL, Rousing AQ, Sørensen MV, Fedosova NU, Leipziger J. Trimethoprim inhibits renal H +-K +-ATPase in states of K + depletion. Am J Physiol Renal Physiol 2024; 326:F143-F151. [PMID: 37942538 DOI: 10.1152/ajprenal.00273.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/23/2023] [Accepted: 11/06/2023] [Indexed: 11/10/2023] Open
Abstract
There is growing consensus that under physiological conditions, collecting duct H+ secretion is independent of epithelial Na+ channel (ENaC) activity. We have recently shown that the direct ENaC inhibitor benzamil acutely impairs H+ excretion by blocking renal H+-K+-ATPase. However, the question remains whether inhibition of ENaC per se causes alterations in renal H+ excretion. To revisit this question, we studied the effect of the antibiotic trimethoprim (TMP), which is well known to cause K+ retention by direct ENaC inhibition. The acute effect of TMP (5 µg/g body wt) was assessed in bladder-catheterized mice, allowing real-time measurement of urinary pH, electrolyte, and acid excretion. Dietary K+ depletion was used to increase renal H+-K+-ATPase activity. In addition, the effect of TMP was investigated in vitro using pig gastric H+-K+-ATPase-enriched membrane vesicles. TMP acutely increased natriuresis and decreased kaliuresis, confirming its ENaC-inhibiting property. Under control diet conditions, TMP had no effect on urinary pH or acid excretion. Interestingly, K+ depletion unmasked an acute urine alkalizing effect of TMP. This finding was corroborated by in vitro experiments showing that TMP inhibits H+-K+-ATPase activity, albeit at much higher concentrations than benzamil. In conclusion, under control diet conditions, TMP inhibited ENaC function without changing urinary H+ excretion. This finding further supports the hypothesis that the inhibition of ENaC per se does not impair H+ excretion in the collecting duct. Moreover, TMP-induced urinary alkalization in animals fed a low-K+ diet highlights the importance of renal H+-K+-ATPase-mediated H+ secretion in states of K+ depletion.NEW & NOTEWORTHY The antibiotic trimethoprim (TMP) often mediates K+ retention and metabolic acidosis. We suggest a revision of the underlying mechanism that causes metabolic acidosis. Our results indicate that TMP-induced metabolic acidosis is secondary to epithelial Na+ channel-dependent K+ retention. Under control dietary conditions, TMP does not per se inhibit collecting duct H+ secretion. These findings add further argument against a physiologically relevant voltage-dependent mechanism of collecting duct H+ excretion.
Collapse
Affiliation(s)
- Niklas Ayasse
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark
- Vth Department of Medicine, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Peder Berg
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark
| | - Samuel L Svendsen
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark
| | | | | | - Natalya U Fedosova
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark
| | - Jens Leipziger
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Lasaad S, Crambert G. Renal K + retention in physiological circumstances: focus on adaptation of the distal nephron and cross-talk with Na + transport systems. Front Physiol 2023; 14:1264296. [PMID: 37719462 PMCID: PMC10500064 DOI: 10.3389/fphys.2023.1264296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
Consumption of salt (NaCl) and potassium (K+) has been completely modified, switching from a rich-K+/low-NaCl diet in the hunter-gatherer population to the opposite in the modern, westernized population. The ability to conserve K+ is crucial to maintain the plasma K+ concentration in a physiological range when dietary K+ intake is decreased. Moreover, a chronic reduction in the K+ intake is correlated with an increased blood pressure, an effect worsened by a high-Na+ diet. The renal adaptation to a low-K+ diet in order to maintain the plasma K+ level in the normal range is complex and interconnected with the mechanisms of the Na+ balance. In this short review, we will recapitulate the general mechanisms allowing the plasma K+ value to remain in the normal range, when there is a necessity to retain K+ (response to low-K+ diet and adaptation to gestation), by focusing on the processes occurring in the most distal part of the nephron. We will particularly outline the mechanisms of K+ reabsorption and discuss the consequences of its absence on the Na+ transport systems and the regulation of the extracellular compartment volume and blood pressure.
Collapse
Affiliation(s)
- Samia Lasaad
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université Paris Cité, Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
- CNRS EMR 8228—Unité Métabolisme et Physiologie Rénale, Paris, France
| | - Gilles Crambert
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université Paris Cité, Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
- CNRS EMR 8228—Unité Métabolisme et Physiologie Rénale, Paris, France
| |
Collapse
|
3
|
Pham TD, Elengickal AJ, Verlander JW, Al-Qusairi L, Chen C, Abood DC, King SA, Loffing J, Welling PA, Wall SM. Pendrin-null mice develop severe hypokalemia following dietary Na + and K + restriction: role of ENaC. Am J Physiol Renal Physiol 2022; 322:F486-F497. [PMID: 35224991 PMCID: PMC8977139 DOI: 10.1152/ajprenal.00378.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pendrin is an intercalated cell Cl-/[Formula: see text] exchanger thought to participate in K+-sparing NaCl absorption. However, its role in K+ homeostasis has not been clearly defined. We hypothesized that pendrin-null mice will develop hypokalemia with dietary K+ restriction. We further hypothesized that pendrin knockout (KO) mice mitigate urinary K+ loss by downregulating the epithelial Na+ channel (ENaC). Thus, we examined the role of ENaC in Na+ and K+ balance in pendrin KO and wild-type mice following dietary K+ restriction. To do so, we examined the relationship between Na+ and K+ balance and ENaC subunit abundance in K+-restricted pendrin-null and wild-type mice that were NaCl restricted or replete. Following a NaCl-replete, K+-restricted diet, K+ balance and serum K+ were similar in both groups. However, following a Na+, K+, and Cl--deficient diet, pendrin KO mice developed hypokalemia from increased K+ excretion. The fall in serum K+ observed in K+-restricted pendrin KO mice was enhanced with ENaC stimulation but eliminated with ENaC inhibition. The fall in serum K+ observed in K+-restricted pendrin KO mice was enhanced with ENaC stimulation but eliminated with ENaC inhibition. However, reducing ENaC activity also reduced blood pressure and increased apparent intravascular volume contraction, since KO mice had lower serum Na+, higher blood urea nitrogen and hemoglobin, greater weight loss, greater metabolic alkalosis, and greater NaCl excretion. We conclude that dietary Na+ and K+ restriction induces hypokalemia in pendrin KO mice. Pendrin-null mice limit renal K+ loss by downregulating ENaC. However, this ENaC downregulation occurs at the expense of intravascular volume.NEW & NOTEWORTHY Pendrin is an apical Cl-/[Formula: see text] exchanger that provides renal K+-sparing NaCl absorption. The pendrin-null kidney has an inability to fully conserve K+ and limits renal K+ loss by downregulating the epithelial Na+ channel (ENaC). However, with Na+ restriction, the need to reduce ENaC for K+ balance conflicts with the need to stimulate ENaC for intravascular volume. Therefore, NaCl restriction stimulates ENaC less in pendrin-null mice than in wild-type mice, which mitigates their kaliuresis and hypokalemia but exacerbates volume contraction.
Collapse
Affiliation(s)
- Truyen D Pham
- Department of Medicine, Division of Nephrology, Emory University School of Medicine, Atlanta, Georgia
| | - Anthony J Elengickal
- Department of Medicine, Division of Nephrology, Emory University School of Medicine, Atlanta, Georgia
| | - Jill W Verlander
- Department of Medicine, University of Florida, Gainesville, Florida
| | - Lama Al-Qusairi
- Departments of Medicine, Nephrology and Physiology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Chao Chen
- Department of Medicine, University of Florida, Gainesville, Florida
| | - Delaney C Abood
- Department of Medicine, Division of Nephrology, Emory University School of Medicine, Atlanta, Georgia
| | - Spencer A King
- Department of Medicine, Division of Nephrology, Emory University School of Medicine, Atlanta, Georgia
| | - Johannes Loffing
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Paul A Welling
- Departments of Medicine, Nephrology and Physiology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Susan M Wall
- Department of Medicine, Division of Nephrology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
4
|
Polidoro JZ, Luchi WM, Seguro AC, Malnic G, Girardi ACC. Paracrine and endocrine regulation of renal potassium secretion. Am J Physiol Renal Physiol 2022; 322:F360-F377. [DOI: 10.1152/ajprenal.00251.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The seminal studies conducted by Giebisch and colleagues in the 1960s paved the way for understanding the renal mechanisms involved in K+ homeostasis. It was demonstrated that differential handling of K+ in the distal segments of the nephron is crucial for proper K+ balance. Although aldosterone had been classically ascribed as the major ion transport regulator in the distal nephron, thereby contributing to K+ homeostasis, it became clear that aldosterone per se could not explain the kidney's ability to modulate kaliuresis in both acute and chronic settings. The existence of alternative kaliuretic and antikaliuretic mechanisms was suggested by physiological studies in the 1980s but only gained form and shape with the advent of molecular biology. It is now established that the kidneys recruit several endocrine and paracrine mechanisms for adequate kaliuretic response. These mechanisms include the direct effects of peritubular K+, a gut-kidney regulatory axis sensing dietary K+ levels, the kidney secretion of kallikrein during postprandial periods, the upregulation of angiotensin II receptors in the distal nephron during chronic changes in the K+ diet, and the local increase of prostaglandins by low K+ diet. This review discusses recent advances in the understanding of endocrine and paracrine mechanisms underlying the modulation of K+ secretion and how these mechanisms impact kaliuresis and K+ balance. We also highlight important unknowns about the regulation of renal K+ excretion under physiological circumstances.
Collapse
Affiliation(s)
- Juliano Z. Polidoro
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Weverton Machado Luchi
- Department of Internal Medicine, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
| | - Antonio Carlos Seguro
- Department of Nephrology (LIM 12), University of São Paulo Medical School, São Paulo, São Paulo, Brazil
| | - Gerhard Malnic
- Department of Physiology and Biophysics, University of São Paulo Medical School, São Paulo, Brazil
| | | |
Collapse
|
5
|
Tomilin V, Mamenko M, Zaika O, Wingo CS, Pochynyuk O. TRPV4 deletion protects against hypokalemia during systemic K + deficiency. Am J Physiol Renal Physiol 2019; 316:F948-F956. [PMID: 30838874 DOI: 10.1152/ajprenal.00043.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tight regulation of K+ balance is fundamental for normal physiology. Reduced dietary K+ intake, which is common in Western diets, often leads to hypokalemia and associated cardiovascular- and kidney-related pathologies. The distal nephron, and, specifically, the collecting duct (CD), is the major site of controlled K+ reabsorption via H+-K+-ATPase in the state of dietary K+ deficiency. We (Mamenko MV, Boukelmoune N, Tomilin VN, Zaika OL, Jensen VB, O'Neil RG, Pochynyuk OM. Kidney Int 91: 1398-1409, 2017) have previously demonstrated that the transient receptor potential vanilloid type 4 (TRPV4) Ca2+ channel, abundantly expressed in the CD, contributes to renal K+ handling by promoting flow-induced K+ secretion. Here, we investigated a potential role of TRPV4 in controlling H+-K+-ATPase-dependent K+ reabsorption in the CD. Treatment with a K+-deficient diet (<0.01% K+) for 7 days reduced serum K+ levels in wild-type (WT) mice from 4.3 ± 0.2 to 3.3 ± 0.2 mM but not in TRPV4-/- mice (4.3 ± 0.1 and 4.2 ± 0.3 mM, respectively). Furthermore, we detected a significant reduction in 24-h urinary K+ levels in TRPV4-/- compared with WT mice upon switching to K+-deficient diet. TRPV4-/- animals also had significantly more acidic urine on a low-K+ diet, but not on a regular (0.9% K+) or high-K+ (5% K+) diet, which is consistent with increased H+-K+-ATPase activity. Moreover, we detected a greatly accelerated H+-K+-ATPase-dependent intracellular pH extrusion in freshly isolated CDs from TRPV4-/- compared with WT mice fed a K+-deficient diet. Overall, our results demonstrate a novel kaliuretic role of TRPV4 by inhibiting H+-K+-ATPase-dependent K+ reabsorption in the CD. We propose that TRPV4 inhibition could be a novel strategy to manage certain hypokalemic states in clinical settings.
Collapse
Affiliation(s)
- Viktor Tomilin
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston , Houston, Texas
| | - Mykola Mamenko
- Department of Physiology, Medical College of Georgia, Augusta University , Augusta, Georgia
| | - Oleg Zaika
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston , Houston, Texas
| | - Charles S Wingo
- Division of Nephrology, Hypertension and Transplantation, Department of Medicine, University of Florida , Gainesville, Florida.,North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston , Houston, Texas
| |
Collapse
|
6
|
Nadal-Quirós M, Moore LC, Marcano M. Parameter estimation for mathematical models of a nongastric H+(Na+)-K(+)(NH4+)-ATPase. Am J Physiol Renal Physiol 2015; 309:F434-46. [PMID: 26109090 PMCID: PMC4556890 DOI: 10.1152/ajprenal.00539.2014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 06/18/2015] [Indexed: 11/22/2022] Open
Abstract
The role of nongastric H(+)-K(+)-ATPase (HKA) in ion homeostasis of macula densa (MD) cells is an open question. To begin to explore this issue, we developed two mathematical models that describe ion fluxes through a nongastric HKA. One model assumes a 1H(+):1K(+)-per-ATP stoichiometry; the other assumes a 2H(+):2K(+)-per-ATP stoichiometry. Both models include Na+ and NH4+ competitive binding with H+ and K+, respectively, a characteristic observed in vitro and in situ. Model rate constants were obtained by minimizing the distance between model and experimental outcomes. Both 1H(+)(1Na(+)):1K(+)(1NH4 (+))-per-ATP and 2H(+)(2Na(+)):2K(+)(2NH4 (+))-per-ATP models fit the experimental data well. Using both models, we simulated ion net fluxes as a function of cytosolic or luminal ion concentrations typical for the cortical thick ascending limb and MD region. We observed that (1) K+ and NH4+ flowed in the lumen-to-cytosol direction, (2) there was competitive behavior between luminal K+ and NH4+ and between cytosolic Na+ and H+, 3) ion fluxes were highly sensitive to changes in cytosolic Na+ or H+ concentrations, and 4) the transporter does mostly Na+ / K+ exchange under physiological conditions. These results support the concept that nongastric HKA may contribute to Na+ and pH homeostasis in MD cells. Furthermore, in both models, H+ flux reversed at a luminal pH that was <5.6. Such reversal led to Na+ / H+ exchange for a luminal pH of <2 and 4 in the 1:1-per-ATP and 2:2-per-ATP models, respectively. This suggests a novel role of nongastric HKA in cell Na+ homeostasis in the more acidic regions of the renal tubules.
Collapse
Affiliation(s)
| | - Leon C Moore
- Department of Physiology and Biophysics, State University of New York Health Science Center, Stony Brook, New York
| | - Mariano Marcano
- Department of Computer Science, University of Puerto Rico, Río Piedras, Puerto Rico
| |
Collapse
|
7
|
Abstract
H-K-ATPase type 2 (HKA2), also known as the "nongastric" or "colonic" H-K-ATPase, is broadly expressed, and its presence in the kidney has puzzled experts in the field of renal ion transport systems for many years. One of the most important and robust characteristics of this transporter is that it is strongly stimulated after dietary K(+) restriction. This result prompted many investigators to propose that it should play a role in allowing the kidney to efficiently retain K(+) under K(+) depletion. However, the apparent absence of a clear renal phenotype in HKA2-null mice has led to the idea that this transporter is an epiphenomenon. This review summarizes past and recent findings regarding the functional, structural and physiological characteristics of H-K-ATPase type 2. The findings discussed in this review suggest that, as in the famous story, the ugly duckling of the X-K-ATPase family is actually a swan.
Collapse
Affiliation(s)
- Gilles Crambert
- INSERM/UPMC Paris 6/CNRS, Centre de Recherche des Cordeliers Génomique, Physiologie et Physiopathologie Rénales, Equipe 3 U1138, ERL 8228, 15 rue de l'Ecole de Médecine, 75270 Paris Cedex, France.
| |
Collapse
|
8
|
Bishop JM, Lee HW, Handlogten ME, Han KH, Verlander JW, Weiner ID. Intercalated cell-specific Rh B glycoprotein deletion diminishes renal ammonia excretion response to hypokalemia. Am J Physiol Renal Physiol 2013; 304:F422-31. [PMID: 23220726 PMCID: PMC3566498 DOI: 10.1152/ajprenal.00301.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 12/04/2012] [Indexed: 11/22/2022] Open
Abstract
The ammonia transporter family member, Rh B Glycoprotein (Rhbg), is an ammonia-specific transporter heavily expressed in the kidney and is necessary for the normal increase in ammonia excretion in response to metabolic acidosis. Hypokalemia is a common clinical condition in which there is increased renal ammonia excretion despite the absence of metabolic acidosis. The purpose of this study was to examine Rhbg's role in this response through the use of mice with intercalated cell-specific Rhbg deletion (IC-Rhbg-KO). Hypokalemia induced by feeding a K(+)-free diet increased urinary ammonia excretion significantly. In mice with intact Rhbg expression, hypokalemia increased Rhbg protein expression in intercalated cells in the cortical collecting duct (CCD) and in the outer medullary collecting duct (OMCD). Deletion of Rhbg from intercalated cells inhibited hypokalemia-induced changes in urinary total ammonia excretion significantly and completely prevented hypokalemia-induced increases in urinary ammonia concentration, but did not alter urinary pH. We conclude that hypokalemia increases Rhbg expression in intercalated cells in the cortex and outer medulla and that intercalated cell Rhbg expression is necessary for the normal increase in renal ammonia excretion in response to hypokalemia.
Collapse
Affiliation(s)
- Jesse M Bishop
- Division of Nephrology, Hypertension, and Transplantation, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | | | | | | | | |
Collapse
|
9
|
Landau D, Biada J, Chen Y, Sood S, Yakar S, Leroith D, Segev Y, Rabkin R. A marked deficiency in circulating and renal IGF-I peptide does not inhibit compensatory renal enlargement in uninephrectomized mice. Growth Horm IGF Res 2011; 21:279-284. [PMID: 21862442 PMCID: PMC5488277 DOI: 10.1016/j.ghir.2011.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 07/07/2011] [Accepted: 07/26/2011] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Increase in kidney IGF-I levels due to its increased trapping from the circulation was hypothesized to be a key mediator of compensatory renal enlargement. We tested this hypothesis using genetically engineered mice with extremely low circulating IGF-I levels. DESIGN Both IGF-I deficient (ID) and normal (N) mice underwent a uninephrectomy (UNx) and sacrificed 2 or 9days later. RESULTS Initial body weight (BW) and kidney weight (KW) were significantly reduced in ID vs. N mice, while KW/BW ratios were similar. KW increased post-UNx to a comparable extent in ID and N mice (125±4 and 118±6% of pre-UNx KW, p<0.05 vs. C). Kidney IGF-I mRNA levels were similar in the ID and N mice and did not change post-UNx. Kidney IGF-I peptide levels pre-UNx were significantly lower in ID vs. N mice (25±5 vs. 305±39ng/g) and increased in both groups after UNx, remaining low in ID mice (45±4 in ID vs 561±64ng/g in N). IGF type 1 receptor phosphorylation was unchanged. CONCLUSION While a severe deficiency of circulating IGF-I impairs body growth, UNx induces a significant and proportional increase in renal mass in ID mice despite markedly decreased kidney IGF-I levels (>90% reduction) and no significant change in receptor phosphorylation. This all suggests that factors other than circulating and locally produced IGF-I are responsible for compensatory renal enlargement.
Collapse
Affiliation(s)
- Daniel Landau
- Department of Pediatrics, Soroka Medical Center, Ben Gurion University of the Negev, Beer Sheva, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Kim CS, Jung S, Jung TY, Jang WY, Sun HS, Ryu HH. Characterization of invading glioma cells using molecular analysis of leading-edge tissue. J Korean Neurosurg Soc 2011; 50:157-65. [PMID: 22102942 DOI: 10.3340/jkns.2011.50.3.157] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/16/2011] [Accepted: 09/05/2011] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE We have introduced a method of characterization of invading glioma cells by using molecular analysis of marginal invading tumor cells and molecular profiles of glioma tumor margin. METHODS Each of tumor core and marginal tissues was obtained in 22 glioma patients. Tumor core cells and marginal cells from each glial tumor were collected by laser capture microdissection or intraoperative microdissection under the operating microscope. Expression of MMP-2, MMP-9, CD44 and RHAMM mRNA by invading glioma cells compared with tumor core was confirmed by realtime-PCR of twenty-four glioma specimens. Clinical data also were reviewed for invasion and recurrence pattern of the gliomas radiologically and invasive rim pattern microscopically. RESULTS Overall results of the molecular analysis showed that relative overexpression of MMP-2, MMP-9 and RHAMM were noted at the invasive edge of human glioma specimens comparing to the tumor core but CD44 was highly expressed in the tumor core comparing to the margin. High marginal expression of MMP-2 and MMP-9 were noted in poorly ill-defined margin on the pathological finding. High marginal expression of CD44 and MMP-2 were demonstrated in the midline cross group on the radiological review, and that of RHAMM and MMP-2 were showed in the aggressive recurrence group. High expression of MMP-2 seems to be involved in the various invasion-related phenomenons. CONCLUSION Up-regulation of MMP-2, MMP-9, CD44 and RHAMM was noted in invasive edge of gliomas according to the various clinical situations.
Collapse
Affiliation(s)
- Cheol-Soo Kim
- Department of Neurosurgery, Chonnam National University Research Institute of Medical Sciences, the Brain Korea 21 Project, Chonnam National University Hwasun Hospital & Medical School, Gwangju, Korea
| | | | | | | | | | | |
Collapse
|
11
|
Codina J, Opyd TS, Powell ZB, Furdui CM, Petrovic S, Penn RB, DuBose TD. pH-dependent regulation of the α-subunit of H+-K+-ATPase (HKα2). Am J Physiol Renal Physiol 2011; 301:F536-43. [PMID: 21653633 PMCID: PMC3174558 DOI: 10.1152/ajprenal.00220.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 06/03/2011] [Indexed: 11/22/2022] Open
Abstract
The H(+)-K(+)-ATPase α-subunit (HKα(2)) participates importantly in systemic acid-base homeostasis and defends against metabolic acidosis. We have previously shown that HKα(2) plasma membrane expression is regulated by PKA (Codina J, Liu J, Bleyer AJ, Penn RB, DuBose TD Jr. J Am Soc Nephrol 17: 1833-1840, 2006) and in a separate study demonstrated that genetic ablation of the proton-sensing G(s)-coupled receptor GPR4 results in spontaneous metabolic acidosis (Sun X, Yang LV, Tiegs BC, Arend LJ, McGraw DW, Penn RB, Petrovic S. J Am Soc Nephrol 21: 1745-1755, 2010). In the present study, we investigated the ability of chronic acidosis and GPR4 to regulate HKα(2) expression in HEK-293 cells. Chronic acidosis was modeled in vitro by using multiple methods: reducing media pH by adjusting bicarbonate concentration, adding HCl, or by increasing the ambient concentration of CO(2). PKA activity and HKα(2) protein were monitored by immunoblot analysis, and HKα(2) mRNA, by real-time PCR. Chronic acidosis did not alter the expression of HKα(2) mRNA; however, PKA activity and HKα(2) protein abundance increased when media pH decreased from 7.4 to 6.8. Furthermore, this increase was independent of the method used to create chronic acidosis. Heterologous expression of GPR4 was sufficient to increase both basal and acid-stimulated PKA activity and similarly increase basal and acid-stimulated HKα(2) expression. Collectively, these results suggest that chronic acidosis and GPR4 increase HKα(2) protein by increasing PKA activity without altering HKα(2) mRNA abundance, implicating a regulatory role of pH-activated GPR4 in homeostatic regulation of HKα(2) and acid-base balance.
Collapse
Affiliation(s)
- Juan Codina
- Sections on Nephrology and Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Abu Hossain S, Chaudhry FA, Zahedi K, Siddiqui F, Amlal H. Cellular and molecular basis of increased ammoniagenesis in potassium deprivation. Am J Physiol Renal Physiol 2011; 301:F969-78. [PMID: 21795646 DOI: 10.1152/ajprenal.00010.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypokalemia is associated with increased ammoniagenesis and stimulation of net acid excretion by the kidney in both humans and experimental animals. The molecular mechanisms underlying these effects remain unknown. Toward this end, rats were placed in metabolic cages and fed a control or K(+)-deficient diet (KD) for up to 6 days. Rats subjected to KD showed normal acid-base status and serum electrolytes composition. Interestingly, urinary NH(4)(+) excretion increased significantly and correlated with a parallel decrease in urine K(+) excretion in KD vs. control animals. Molecular studies showed a specific upregulation of the glutamine transporter SN1, which correlated with the upregulation of glutaminase (GA), glutamate dehydrogenase (GDH), and phosphoenolpyruvate carboxykinase. These effects occurred as early as day 2 of KD. Rats subjected to a combined KD and 280 mM NH(4)Cl loading (to induce metabolic acidosis) for 2 days showed an additive increase in NH(4)(+) excretion along with an additive increment in the expression levels of ammoniagenic enzymes GA and GDH compared with KD or NH(4)Cl loading alone. The incubation of cultured proximal tubule cells NRK 52E or LLC-PK(1) in low-K(+) medium did not affect NH(4)(+) production and did not alter the expression of SN1, GA, or GDH in NRK cells. These results demonstrate that K(+) deprivation stimulates ammoniagenesis through a coordinated upregulation of glutamine transporter SN1 and ammoniagenesis enzymes. This effect is developed before the onset of hypokalemia. The signaling pathway mediating these events is likely independent of KD-induced intracellular acidosis. Finally, the correlation between increased NH(4)(+) production and decreased K(+) excretion indicate that NH(4)(+) synthesis and transport likely play an important role in renal K(+) conservation during hypokalemia.
Collapse
Affiliation(s)
- Shaikh Abu Hossain
- Center on Genetics of Transport and Epithelial Biology and Department of Medicine, University of Cincinnati, Cincinnati, Ohio 45267-0585, USA
| | | | | | | | | |
Collapse
|
13
|
Han KH, Lee HW, Handlogten ME, Bishop JM, Levi M, Kim J, Verlander JW, Weiner ID. Effect of hypokalemia on renal expression of the ammonia transporter family members, Rh B Glycoprotein and Rh C Glycoprotein, in the rat kidney. Am J Physiol Renal Physiol 2011; 301:F823-32. [PMID: 21753075 DOI: 10.1152/ajprenal.00266.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypokalemia is a common electrolyte disorder that increases renal ammonia metabolism and can cause the development of an acid-base disorder, metabolic alkalosis. The ammonia transporter family members, Rh B glycoprotein (Rhbg) and Rh C glycoprotein (Rhcg), are expressed in the distal nephron and collecting duct and mediate critical roles in acid-base homeostasis by facilitating ammonia secretion. In the current studies, the effect of hypokalemia on renal Rhbg and Rhcg expression was examined. Normal Sprague-Dawley rats received either K(+)-free or control diets for 2 wk. Rats receiving the K(+)-deficient diet developed hypokalemia and metabolic alkalosis associated with significant increases in both urinary ammonia excretion and urine pH. Rhcg expression increased in the outer medullary collecting duct (OMCD). In OMCD intercalated cells, hypokalemia resulted in more discrete apical Rhcg expression and a marked increase in apical plasma membrane immunolabel. In principal cells, in the OMCD, hypokalemia increased both apical and basolateral Rhcg immunolabel intensity. Cortical Rhcg expression was not detectably altered by immunohistochemistry, although there was a slight decrease in total expression by immunoblot analysis. Rhbg protein expression was decreased slightly in the cortex and not detectably altered in the outer medulla. We conclude that in rat OMCD, hypokalemia increases Rhcg expression, causes more polarized apical expression in intercalated cells, and increases both apical and basolateral expression in the principal cell. Increased plasma membrane Rhcg expression in response to hypokalemia in the rat, particularly in the OMCD, likely contributes to the increased ammonia excretion and thereby to the development of metabolic alkalosis.
Collapse
Affiliation(s)
- Ki-Hwan Han
- Anatomy Department, Ewha Womans University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Greenlee MM, Lynch IJ, Gumz ML, Cain BD, Wingo CS. Mineralocorticoids stimulate the activity and expression of renal H+,K+-ATPases. J Am Soc Nephrol 2010; 22:49-58. [PMID: 21164026 DOI: 10.1681/asn.2010030311] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
In the renal collecting duct, mineralocorticoids drive Na(+) reabsorption, K(+) secretion, and H(+) secretion through coordinated actions on apical and basolateral transporters. Whether mineralocorticoids act through H(+),K(+)-ATPases to maintain K(+) and acid-base homeostasis is unknown. Here, treatment of mice with the mineralocorticoid desoxycorticosterone pivalate (DOCP) resulted in weight gain, a decrease in blood [K(+)] and [Cl(-)], and an increase in blood [Na(+)] and [HCO(3)(-)]. DOCP treatment increased the rate of H(+),K(+)-ATPase-mediated H(+) secretion in intercalated cells of the inner cortical collecting duct. mRNA expression of the catalytic subunit HKα(1) did not significantly change, whereas HKα(2) mRNA expression dramatically increased in the outer and inner medulla of DOCP-treated mice. A high-K(+) diet abrogated this increase in renal HKα(2) expression, showing that DOCP-mediated stimulation of HKα(2) expression depends on dietary K(+) intake. DOCP treatment of mice lacking HKα(1) (HKα(1)(-/-)) resulted in greater urinary Na(+) retention than observed in either wild-type mice or mice lacking both HKα(1) and HKα(2) (HKα(1,2)(-/-)). DOCP-treated HKα(1,2)(-/-) mice exhibited a lower blood [HCO(3)(-)] and less Na(+) and K(+) retention than either wild-type or HKα(1)(-/-) mice. Taken together, these results indicate that H(+),K(+)-ATPases-especially the HKα(2)-containing H(+),K(+)-ATPases-play an important role in the effects of mineralocorticoids on K(+), acid-base, and Na(+) balance.
Collapse
Affiliation(s)
- Megan M Greenlee
- Research Service, North Florida/South Georgia Veterans Health System, 1601 SW Archer Road, Gainesville, FL 32608, USA
| | | | | | | | | |
Collapse
|
15
|
Lynch IJ, Greenlee MM, Gumz ML, Rudin A, Xia SL, Wingo CS. Heterogeneity of H-K-ATPase-mediated acid secretion along the mouse collecting duct. Am J Physiol Renal Physiol 2009; 298:F408-15. [PMID: 19923411 DOI: 10.1152/ajprenal.00333.2009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the collecting duct (CD), H-K-ATPases function in cation reabsorption and H secretion. This study evaluated H-K-ATPase-mediated H secretion along the mouse CD, measured as EIPA- and luminal bafilomycin A(1)-insensitive intracellular pH (pH(i)) recovery from acute H loading (NH(4)) using BCECF. pH(i) recovery was measured in 1) microperfused cortical, outer medullary, and inner medullary CDs (CCD, OMCD, and IMCD) from C57BL/6J mice fed a normal diet and 2) common murine CD cell lines. H-K-ATPase activity along the native, microperfused CD was greatest in the CCD, less in the OMCD, and least in the IMCD (0.10 +/- 0.02, 0.04 +/- 0.01, and 0.01 +/- 0.002 U/min, respectively). H-K-ATPase activity was 0.30 +/- 0.03 and 0.26 +/- 0.03 in A- and B-type ICs, respectively, and was sensitive to Sch-28080 or ouabain. pH(i) recovery was greatest in the OMCD(1) cell line (0.25 +/- 0.01) and less in mpkCCD(c14) (0.17 +/- 0.01), mIMCD-K2 (0.12 +/- 0.01), and mIMCD-3 (0.05 +/- 0.01) cells. EIPA inhibited the majority of pH(i) recovery in these cells (100%, 64%, 75%, and 80% in mpkCCD(c14), OMCD(1), mIMCD-K2, and mIMCD-3, respectively). In OMCD(1) cells, where EIPA-insensitive pH(i) recovery was greatest, H-K-ATPase activity was 0.10 +/- 0.01 and was significantly inhibited (80%) by Sch-28080. We conclude that 1) H-K-ATPase-mediated H secretion in the native mouse CD is greatest in the ICs of the CCD, 2) A- and B-type ICs possess HKalpha(1) and HKalpha(2) H-K-ATPase activity, and 3) the OMCD(1) cell line best exhibits H-K-ATPase.
Collapse
Affiliation(s)
- I Jeanette Lynch
- Research Service, North Florida/South Georgia Veterans Health System, Gainesville, Florida 32608, USA
| | | | | | | | | | | |
Collapse
|
16
|
Gil-Peña H, Garcia-Lopez E, Alvarez-Garcia O, Loredo V, Carbajo-Perez E, Ordoñez FA, Rodriguez-Suarez J, Santos F. Alterations of growth plate and abnormal insulin-like growth factor I metabolism in growth-retarded hypokalemic rats: effect of growth hormone treatment. Am J Physiol Renal Physiol 2009; 297:F639-45. [DOI: 10.1152/ajprenal.00188.2009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypokalemic tubular disorders may lead to growth retardation which is resistant to growth hormone (GH) treatment. The mechanism of these alterations is unknown. Weaning female rats were grouped ( n = 10) in control, potassium-depleted (KD), KD treated with intraperitoneal GH at 3.3 mg·kg−1·day−1 during the last week (KDGH), and control pair-fed with KD (CPF). After 2 wk, KD rats were growth retarded compared with CPF rats, the osseous front advance (±SD) being 67.07 ± 10.44 and 81.56 ± 12.70 μm/day, respectively. GH treatment did not accelerate growth rate. The tibial growth plate of KD rats had marked morphological alterations: lower heights of growth cartilage (228.26 ± 23.58 μm), hypertrophic zone (123.68 ± 13.49 μm), and terminal chondrocytes (20.8 ± 2.39 μm) than normokalemic CPF (264.21 ± 21.77, 153.18 ± 15.80, and 24.21 ± 5.86 μm). GH administration normalized these changes except for the distal chondrocyte height. Quantitative PCR of insulin-like growth factor I (IGF-I), IGF-I receptor, and GH receptor genes in KD growth plates showed downregulation of IGF-I and upregulation of IGF-I receptor mRNAs, without changes in their distribution as analyzed by immunohistochemistry and in situ hybridization. GH did not further modify IGF-I mRNA expression. KD rats had normal hepatic IGF-I mRNA levels and low serum IGF-I values. GH increased liver IGF-I mRNA, but circulating IGF-I levels remained reduced. This study discloses the structural and molecular alterations induced by potassium depletion on the growth plate and shows that the lack of response to GH administration is associated with persistence of the disturbed process of chondrocyte hypertrophy and depressed mRNA expression of local IGF-I in the growth plate.
Collapse
|
17
|
Gumz ML, Lynch IJ, Greenlee MM, Cain BD, Wingo CS. The renal H+-K+-ATPases: physiology, regulation, and structure. Am J Physiol Renal Physiol 2009; 298:F12-21. [PMID: 19640897 DOI: 10.1152/ajprenal.90723.2008] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The H(+)-K(+)-ATPases are ion pumps that use the energy of ATP hydrolysis to transport protons (H(+)) in exchange for potassium ions (K(+)). These enzymes consist of a catalytic alpha-subunit and a regulatory beta-subunit. There are two catalytic subunits present in the kidney, the gastric or HKalpha(1) isoform and the colonic or HKalpha(2) isoform. In this review we discuss new information on the physiological function, regulation, and structure of the renal H(+)-K(+)-ATPases. Evaluation of enzymatic functions along the nephron and collecting duct and studies in HKalpha(1) and HKalpha(2) knockout mice suggest that the H(+)-K(+)-ATPases may function to transport ions other than protons and potassium. These reports and recent studies in mice lacking both HKalpha(1) and HKalpha(2) suggest important roles for the renal H(+)-K(+)-ATPases in acid/base balance as well as potassium and sodium homeostasis. Molecular modeling studies based on the crystal structure of a related enzyme have made it possible to evaluate the structures of HKalpha(1) and HKalpha(2) and provide a means to study the specific cation transport properties of H(+)-K(+)-ATPases. Studies to characterize the cation specificity of these enzymes under different physiological conditions are necessary to fully understand the role of the H(+)-K(+) ATPases in renal physiology.
Collapse
Affiliation(s)
- Michelle L Gumz
- Research Service, North Florida/South Georgia Veterans Health System, Gainesville, Florida, USA
| | | | | | | | | |
Collapse
|
18
|
Zies DL, Gumz ML, Wingo CS, Cain BD. Characterization of the rabbit HKalpha2 gene promoter. ACTA ACUST UNITED AC 2006; 1759:443-50. [PMID: 17034876 PMCID: PMC1828607 DOI: 10.1016/j.bbaexp.2006.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 08/04/2006] [Accepted: 08/30/2006] [Indexed: 11/27/2022]
Abstract
The HKalpha2 gene directs synthesis of the HKalpha2 subunit of the H(+), K(+)-ATPase. In the kidney and colon, the gene is highly expressed and is thought to play a role in potassium (K(+)) conservation. The rabbit has been an important experimental system for physiological studies of ion transport in the kidney, so the rabbit HKalpha2 gene has been cloned and characterized. The genomic clones and the previously reported HKalpha2a and HKalpha2c subunit cDNAs provided a means to address several issues regarding the structure and expression of the HKalpha2 gene. First, the genomic organization established that the rabbit HKalpha2 gene was unambiguously homologous to the mouse HKalpha2 gene and the human ATP1AL1 gene. Second, the mapping of the transcription start site for the alternate transcript, HKalpha2c, confirmed that it was an authentic rabbit transcript. Finally, isolation of DNA from the 5' end of the HKalpha2 gene enabled us to initiate studies on its regulation in the rabbit cortical collecting duct. The promoter and two putative negative regulatory regions were identified and the effect of cell confluency on gene expression was studied.
Collapse
Affiliation(s)
- Deborah L. Zies
- Department of Biochemistry, University of Florida College of Medicine, 1600 SW Archer Road, Gainesville, FL 32610, USA
| | - Michelle L. Gumz
- Department of Biochemistry, University of Florida College of Medicine, 1600 SW Archer Road, Gainesville, FL 32610, USA
- Department of Veterans Affairs Medical Center, Gainesville, FL 32610
| | - Charles S. Wingo
- Department of Veterans Affairs Medical Center, Gainesville, FL 32610
| | - Brian D. Cain
- Department of Biochemistry, University of Florida College of Medicine, 1600 SW Archer Road, Gainesville, FL 32610, USA
- *To whom correspondence should be addressed: telephone 352-392-6473, e-mail:
| |
Collapse
|
19
|
Zheng W, Verlander JW, Lynch IJ, Cash M, Shao J, Stow LR, Cain BD, Weiner ID, Wall SM, Wingo CS. Cellular distribution of the potassium channel KCNQ1 in normal mouse kidney. Am J Physiol Renal Physiol 2006; 292:F456-66. [PMID: 16896189 DOI: 10.1152/ajprenal.00087.2006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mechanisms of K(+) secretion and absorption along the collecting duct are not understood fully. Because KCNQ1 participates in K(+) secretion within the inner ear and stomach, distribution of KCNQ1 in mouse kidney was studied using Northern and Western analyses, RT-PCR of isolated tubules, and immunohistochemistry. Northern blots demonstrated KCNQ1 transcripts in whole kidney. RT-PCR showed KCNQ1 mRNA in isolated distal convoluted tubule (DCT), connecting segment (CNT), collecting ducts (CD), and glomeruli. Immunoblots of kidney and stomach revealed a approximately 75-kDa protein, the expected mobility for KCNQ1. KCNQ1 was detected by immunohistochemistry throughout the distal nephron and CD. Thick ascending limbs exhibited weak basolateral immunolabel. In DCT and CNT cells, immunolabel was intense and basolateral, although KCNQ1 label was stronger in late than in early DCT. Initial collecting tubule and cortical CD KCNQ1 immunolabel was predominantly diffuse, but many cells exhibited discrete apical label. Double-labeling experiments demonstrated that principal cells, type B intercalated cells, and a few type A intercalated cells exhibited distinct apical KCNQ1 immunolabel. In inner medullary CD, principal cells exhibited distinct basolateral KCNQ1 immunolabel, whereas intercalated cells showed diffuse cytoplasmic staining. Thus KCNQ1 protein is widely distributed in mouse distal nephron and CD, with significant axial and cellular heterogeneity in location and intensity. These findings suggest that KCNQ1 has cell-specific roles in renal ion transport and may participate in K(+) secretion and/or absorption along the thick ascending limb, DCT, connecting tubule, and CD.
Collapse
Affiliation(s)
- Wencui Zheng
- North Florida/South Georgia Veterans Health System, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Pestov NB, Korneenko TV, Shakhparonov MI, Shull GE, Modyanov NN. Loss of acidification of anterior prostate fluids in Atp12a-null mutant mice indicates that nongastric H-K-ATPase functions as proton pump in vivo. Am J Physiol Cell Physiol 2006; 291:C366-74. [PMID: 16525125 DOI: 10.1152/ajpcell.00042.2006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The physiological functions of nongastric (colonic) H-K-ATPase (gene symbol Atp12a), unlike those of Na-K-ATPase and gastric H-K-ATPase, are poorly understood. It has been suggested that it pumps Na+ more efficiently than H+; however, so far, there is no direct evidence that it pumps H+ in vivo. Previously, we found that the nongastric H-K-ATPase alpha-subunit is expressed in apical membranes of rodent anterior prostate epithelium, in a complex with the Na-K-ATPase beta1-subunit. Here we report the effects of Atp12a gene ablation on polarization of the beta1-subunit and secretory function of the anterior prostate. In nongastric H-K-ATPase-deficient prostate, the Na-K-ATPase alpha-subunit resided exclusively in basolateral membranes; however, the beta1-subunit disappeared from apical membranes, demonstrating that beta1 is an authentic subunit of nongastric H-K-ATPase in vivo and that apical localization of beta1 in the prostate is completely dependent on its association with the nongastric H-K-ATPase alpha-subunit. A remarkable reduction in acidification of anterior prostate fluids was observed: pH 6.38 +/- 0.14 for wild-type mice and 6.96 +/- 0.10 for homozygous mutants. These results show that nongastric H-K-ATPase is required for acidification of luminal prostate fluids, thereby providing a strong in vivo correlate of previous functional expression studies demonstrating that it operates as a proton pump.
Collapse
Affiliation(s)
- Nikolay B Pestov
- Dept. of Physiology, Pharmacology, Metabolism, and Cardiovascular Sciences, Med. Univ. of Ohio, 3035 Arlington Ave., Toledo, OH 43614, USA
| | | | | | | | | |
Collapse
|
21
|
Dherbecourt O, Cheval L, Bloch-Faure M, Meneton P, Doucet A. Molecular identification of Sch28080-sensitive K-ATPase activities in the mouse kidney. Pflugers Arch 2005; 451:769-75. [PMID: 16208521 DOI: 10.1007/s00424-005-1508-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 07/07/2005] [Accepted: 08/17/2005] [Indexed: 10/25/2022]
Abstract
Rat collecting ducts display either an ouabain-insensitive or an ouabain-sensitive K-ATPase activity inhibited by Sch28080 according as animals are fed a normal or a potassium-depleted diet (types I and III K-ATPase, respectively). Two isoforms of H,K-ATPase have been cloned from rat gastric mucosa and colon, respectively. Gastric and colonic H,K-ATPase are expressed in the kidney, suggesting that they might account for types I and III K-ATPases. However, this hypothesis is not fully supported by segmental expression of gastric and colonic H,K-ATPase along the rat collecting duct, as well as by comparison of the pharmacological properties of gastric and colonic H,K-ATPase expressed in Xenopus ovocyte and types I and III K-ATPases in rat collecting ducts. The aim of the present work is to address directly the molecular origin of types I and III K-ATPases in the mouse collecting duct by measuring K-ATPase activities in collecting ducts of wild-type mice and mice genetically deficient in either gastric or colonic H,K-ATPase fed either a regular or a potassium-depleted diet. Like the rat, mouse collecting ducts display type I or III K-ATPase activity when fed a regular or a potassium-depleted diet, respectively. Type I K-ATPase activity is detected in colonic H,K-ATPase-deficient mice but not in gastric H,K-ATPase-deficient animals. Conversely, type III K-ATPase activity disappears in colonic H,K-ATPase-deficient but not in gastric H,K-ATPase-deficient mice. In conclusion, types I and III K-ATPases measured in collecting ducts of normal and potassium-depleted mice reflect the functional expression of gastric and colonic H,K-ATPase, respectively.
Collapse
Affiliation(s)
- Olivier Dherbecourt
- Laboratoire de Physiologie et Génomique Rénales, Unité Mixte de Recherche CNRS/UPMC 7134, IFR 58, Institut des Cordeliers, 15 Rue de l'Ecole de Médecine, 75270 Paris Cedex 6, France
| | | | | | | | | |
Collapse
|
22
|
Zhang W, Xia X, Zou L, Xu X, LeSage GD, Kone BC. In vivo expression profile of a H+-K+-ATPase alpha2-subunit promoter-reporter transgene. Am J Physiol Renal Physiol 2004; 286:F1171-7. [PMID: 14871878 DOI: 10.1152/ajprenal.00043.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Because little is known about the molecular basis of transcriptional regulation of the murine H(+)-K(+)-ATPase alpha(2) (HKalpha(2)) gene or other genes whose expression is restricted in part to the collecting duct, especially in vivo, we developed transgenic mice carrying an insertional HKalpha(2) promoter-reporter gene construct. In these mice, the region -7,264/+253 of the HKalpha(2) 5'-flanking region controls expression of the reporter gene enhanced green fluorescent protein (EGFP). Patterns of HKalpha(2)/EGFP transgene expression were examined by fluorescence microscopy and immunoblotting. Of 10 major organs examined, EGFP immunoreactivity was detected abundantly in the kidney, and to a far lesser extent, in the brain and lung. Within the kidney, EGFP fluorescence was detected exclusively in the collecting ducts of transgenic mice and colocalized with the cellular distribution of both endogenous HKalpha(2) and aquaporin-2, consistent with the known expression pattern of endogenous HKalpha(2) in principal cells. Surprisingly, no transgene expression was evident by immunoblotting or fluorescence microscopy in the distal colon, the site of the highest endogenous HKalpha(2) expression. Although previous studies of steady-state mRNA levels suggested differences in HKalpha(2) gene regulation in the kidney and colon, our results provide the first direct evidence of differential transcriptional control of the HKalpha(2) gene in these organs and suggest that regions outside the 5'-flanking region or other regulatory factors play a role in HKalpha(2) expression in the distal colon.
Collapse
Affiliation(s)
- Wenzheng Zhang
- Depts. of Internal Medicine, The Univ. of Texas Medical School at Houston, 6431 Fannin, MSB 4.148, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
23
|
Zhang W, Kone BC. NF-kappaB inhibits transcription of the H(+)-K(+)-ATPase alpha(2)-subunit gene: role of histone deacetylases. Am J Physiol Renal Physiol 2002; 283:F904-11. [PMID: 12372765 DOI: 10.1152/ajprenal.00156.2002] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The H(+)-K(+)-ATPase alpha(2) (HKalpha(2)) gene plays a central role in potassium homeostasis, yet little is known about its transcriptional control. We recently demonstrated that the proximal promoter confers basal transcriptional activity in mouse inner medullary collecting duct 3 cells. We sought to determine whether the kappaB DNA binding element at -104 to -94 influences basal HKalpha(2) gene transcription in these cells. Recombinant NF-kappaB p50 footprinted the region -116/-94 in vitro. Gel shift and supershift analysis revealed NF-kappaB p50- and p65-containing DNA-protein complexes in nuclear extracts of mouse inner medullary collecting duct 3 cells. A promoter-luciferase construct with a mutated -104/-94 NF-kappaB element exhibited higher activity than the wild-type promoter in transfection assays. Overexpression of NF-kappaB p50, p65, or their combination trans-repressed the HKalpha(2) promoter. The histone deacetylase (HDAC) inhibitor trichostatin A partially reversed NF-kappaB-mediated trans-repression of the HKalpha(2) promoter. HDAC6 overexpression inhibited HKalpha(2) promoter activity, and HDAC6 coimmunoprecipitated with NF-kappaB p50 and p65. These results suggest that HDAC6, recruited to the DNA protein complex, acts with NF-kappaB to suppress HKalpha(2) transcription and identify NF-kappaB p50 and p65 as novel binding partners for HDAC6.
Collapse
Affiliation(s)
- Wenzheng Zhang
- Departments of Internal Medicine and of Integrative Biology, Pharmacology, and Physiology, The University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | | |
Collapse
|
24
|
Wall SM, Fischer MP, Kim GH, Nguyen BM, Hassell KA. In rat inner medullary collecting duct, NH uptake by the Na,K-ATPase is increased during hypokalemia. Am J Physiol Renal Physiol 2002; 282:F91-102. [PMID: 11739117 DOI: 10.1152/ajprenal.0141.2001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In rat terminal inner medullary collecting duct (tIMCD), the Na,K-ATPase mediates NH uptake, which increases secretion of net H(+) equivalents. K(+) and NH compete for a common binding site on the Na,K-ATPase. Therefore, NH uptake should increase during hypokalemia because interstitial K(+) concentration is reduced. We asked whether upregulation of the Na,K-ATPase during hypokalemia also increases basolateral NH uptake. To induce hypokalemia, rats ate a diet with a low K(+) content. In tIMCD tubules from rats given 3 days of dietary K(+) restriction, Na,K-ATPase beta(1)-subunit (NK-beta(1)) protein expression increased although NK-alpha(1) protein expression and Na,K-ATPase activity were unchanged relative to K(+)-replete controls. However, after 7 days of K(+) restriction, both NK-alpha(1) and NK-beta(1) subunit protein expression and Na,K-ATPase activity increased. The magnitude of Na,K-ATPase-mediated NH uptake across the basolateral membrane (J) was determined in tIMCD tubules perfused in vitro from rats after 3 days of a normal or a K(+)-restricted diet. J was the same in tubules from rats on either diet when measured at the same extracellular K(+) concentration. However, in either treatment group, increasing K(+) concentration from 10 to 30 mM reduced J >60%. In conclusion, with 3 days of K(+) restriction, NH uptake by Na,K-ATPase is increased in the tIMCD primarily from the reduced interstitial K(+) concentration.
Collapse
Affiliation(s)
- Susan M Wall
- University of Texas, Medical School at Houston, Houston, Texas 77030, USA.
| | | | | | | | | |
Collapse
|
25
|
Verlander JW, Moudy RM, Campbell WG, Cain BD, Wingo CS. Immunohistochemical localization of H-K-ATPase alpha(2c)-subunit in rabbit kidney. Am J Physiol Renal Physiol 2001; 281:F357-65. [PMID: 11457728 DOI: 10.1152/ajprenal.2001.281.2.f357] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The rabbit kidney possesses mRNA for the H-K-ATPase alpha(1)-subunit (HKalpha(1)) and two splice variants of the H-K-ATPase alpha(2)-subunit (HKalpha(2)). The purpose of this study was to determine the specific distribution of one of these, the H-K-ATPase alpha(2c)-subunit isoform (HKalpha(2c)), in rabbit kidney by immunohistochemistry. Chicken polyclonal antibodies against a peptide based on the NH(2) terminus of HKalpha(2c) were used to detect HKalpha(2c) immunoreactivity in tissue sections. Immunohistochemical localization of HKalpha(2c) revealed intense apical immunoreactivity in a subpopulation of cells in the connecting segment, cortical collecting duct, and outer medullary collecting duct in both the outer and inner stripe. An additional population of cells exhibited a thin apical band of immunolabel. Immunohistochemical colocalization of HKalpha(2c) with carbonic anhydrase II, the Cl(-)/HCO exchanger AE1, and HKalpha(1) indicated that both type A and type B intercalated cells possessed intense apical HKalpha(2c) immunoreactivity, whereas principal cells and connecting segment cells had only a thin apical band of HKalpha(2c). Labeled cells were evident through the middle third of the inner medullary collecting duct in the majority of animals. Immunolabel was also present in papillary surface epithelial cells, cells in the cortical thick ascending limb of Henle's loop (cTAL), and the macula densa. Thus in the rabbit kidney, apical HKalpha(2c) is present and may contribute to acid secretion or potassium uptake throughout the connecting segment and collecting duct in both type A and type B intercalated cells, principal cells, and connecting segment cells, as well as in cells in papillary surface epithelium, cTAL, and macula densa.
Collapse
Affiliation(s)
- J W Verlander
- Nephrology and Hypertension, Department of Veterans Affairs Medical Center, Gainesville, Florida 32608-1197, USA
| | | | | | | | | |
Collapse
|
26
|
Fejes-Tóth G, Náray-Fejes-Tóth A. Immunohistochemical localization of colonic H-K-ATPase to the apical membrane of connecting tubule cells. Am J Physiol Renal Physiol 2001; 281:F318-25. [PMID: 11457724 DOI: 10.1152/ajprenal.2001.281.2.f318] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies indicate that the colonic H-K-ATPase mRNA is expressed as the distal nephron. However, the exact intrarenal localization of the colonic H-K-ATPase protein is still unclear. The goal of the present study was to determine the cellular and subcellular localization of the colonic H-K-ATPase protein in the rabbit kidney. We used three monoclonal antibodies (MAbs) directed against different epitopes of the rabbit colonic H-K-ATPase alpha-subunit (HKalpha(2)) to localize HKalpha(2) protein by immunofluorescence labeling of kidney sections and laser-scanning confocal microscopy. The specificity of the MAbs was confirmed by reaction with a single ~100-kDa band on Western blots of distal colon. Specific immunohistochemical reaction with the apical membrane of surface epithelial cells was observed with all three MAbs on distal colon sections. In rabbit kidney, immunofluorescence was detected only on the apical membrane of connecting tubule cells. Immunofluorescence was not detected in the cortical-, outer-, and inner-medullary collecting ducts. Furthermore, costaining with principal- and intercalated cell-specific MAbs and a MAb against the thick ascending limb suggests that these cell types express HKalpha(2) protein at levels that are below the detection limit with this method. We conclude that in the rabbit kidney, under normal dietary conditions, the HKalpha(2) protein is expressed in the apical membrane of connecting tubule cells.
Collapse
Affiliation(s)
- G Fejes-Tóth
- Department of Physiology, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA.
| | | |
Collapse
|
27
|
Abstract
The mammalian collecting duct plays a dominant role in regulating K(+) excretion by the nephron. The collecting duct exhibits axial and intrasegmental cell heterogeneity and is composed of at least two cell types: collecting duct cells (principal cells) and intercalated cells. Under normal circumstances, the collecting duct cell in the cortical collecting duct secretes K(+), whereas under K(+) depletion, the intercalated cell reabsorbs K(+). Assessment of the electrochemical driving forces and of membrane conductances for transcellular and paracellular electrolyte movement, the characterization of several ATPases, patch-clamp investigation, and cloning of the K(+) channel have provided important insights into the role of pumps and channels in those tubule cells that regulate K(+) secretion and reabsorption. This review summarizes K(+) transport properties in the mammalian collecting duct. Special emphasis is given to the mechanisms of how K(+) transport is regulated in the collecting duct.
Collapse
Affiliation(s)
- S Muto
- Department of Nephrology, Jichi Medical School, Minamikawachi, Tochigi, Japan.
| |
Collapse
|
28
|
Laroche-Joubert N, Marsy S, Doucet A. Cellular origin and hormonal regulation of K(+)-ATPase activities sensitive to Sch-28080 in rat collecting duct. Am J Physiol Renal Physiol 2000; 279:F1053-9. [PMID: 11097623 DOI: 10.1152/ajprenal.2000.279.6.f1053] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rat collecting ducts exhibit type I or type III K(+)-ATPase activities when animals are fed a normal (NK) or a K(+)-depleted diet (LK). This study aimed at determining functionally the cell origin of these two K(+)-ATPases. For this purpose, we searched for an effect on K(+)-ATPases of hormones that trigger cAMP production in a cell-specific fashion. The effects of 1-deamino-8-D-arginine vasopressin (dD-AVP), calcitonin, and isoproterenol in principal cells, alpha-intercalated cells, and beta-intercalated cells of cortical collecting duct (CCD), respectively, and of dD-AVP and glucagon in principal and alpha-intercalated cells of outer medullary collecting duct (OMCD), respectively, were examined. In CCDs, K(+)-ATPase was stimulated by calcitonin and isoproterenol in NK rats (type I K(+)-ATPase) and by dD-AVP in LK rats (type III K(+)-ATPase). In OMCDs, dD-AVP and glucagon stimulated type III but not type I K(+)-ATPase. These hormone effects were mimicked by the cAMP-permeant analog dibutyryl-cAMP. In conclusion, in NK rats, cAMP stimulates type I K(+)-ATPase activity in alpha- and beta-intercalated CCD cells, whereas in LK rats it stimulates type III K(+)-ATPase in principal cells of both CCD and OMCD and in OMCD intercalated cells.
Collapse
Affiliation(s)
- N Laroche-Joubert
- Laboratoire de Biologie Intégrée des Cellules Rénales, Service de Biologie Cellulaire, Commissariat à l'Energie Atomique, Saclay, Unité de Recherche Associée 1859, Centre National de la Recherche Scientifique, 91191 Gif-sur-Yvette Cedex, France
| | | | | |
Collapse
|
29
|
Meneton P, Schultheis PJ, Greeb J, Nieman ML, Liu LH, Clarke LL, Duffy JJ, Doetschman T, Lorenz JN, Shull GE. Increased sensitivity to K+ deprivation in colonic H,K-ATPase-deficient mice. J Clin Invest 1998; 101:536-42. [PMID: 9449685 PMCID: PMC508595 DOI: 10.1172/jci1720] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Previous studies using isolated tissues suggest that the colonic H, K-ATPase (cHKA), expressed in the colon and kidney, plays an important role in K+ conservation. To test the role of this pump in K+ homeostasis in vivo, we generated a cHKA-deficient mouse and analyzed its ability to retain K+ when fed a control or K+-free diet. When maintained on a control diet, homozygous mutant (cHKA-/-) mice exhibited no deficit in K+ homeostasis compared to wild-type (cHKA+/+ greater, similar mice. Although fecal K+ excretion in cHKA-/- mice was double that of cHKA+/+ mice, fecal K+ losses were low compared with urinary K+ excretion, which was similar in both groups. When maintained on a K+-free diet for 18 d, urinary K+ excretion dropped over 100-fold, and to similar levels, in both cHKA-/- and cHKA+/+ mice; fecal K+ excretion was reduced in both groups, but losses were fourfold greater in cHKA-/- than in cHKA+/+ mice. Because of the excess loss of K+ in the colon, cHKA-/- mice exhibited lower plasma and muscle K+ than cHKA+/+ mice. In addition, cHKA-/- mice lost twice as much body weight as cHKA+/+ mice. These results demonstrate that, during K+ deprivation, cHKA plays a critical role in the maintenance of K+ homeostasis in vivo.
Collapse
Affiliation(s)
- P Meneton
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|