1
|
Packer M, Wilcox CS, Testani JM. Critical Analysis of the Effects of SGLT2 Inhibitors on Renal Tubular Sodium, Water and Chloride Homeostasis and Their Role in Influencing Heart Failure Outcomes. Circulation 2023; 148:354-372. [PMID: 37486998 PMCID: PMC10358443 DOI: 10.1161/circulationaha.123.064346] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/25/2023] [Indexed: 07/26/2023]
Abstract
SGLT2 (sodium-glucose cotransporter 2) inhibitors interfere with the reabsorption of glucose and sodium in the early proximal renal tubule, but the magnitude and duration of any ensuing natriuretic or diuretic effect are the result of an interplay between the degree of upregulation of SGLT2 and sodium-hydrogen exchanger 3, the extent to which downstream compensatory tubular mechanisms are activated, and (potentially) the volume set point in individual patients. A comprehensive review and synthesis of available studies reveals several renal response patterns with substantial variation across studies and clinical settings. However, the common observation is an absence of a large acute or chronic diuresis or natriuresis with these agents, either when given alone or combined with other diuretics. This limited response results from the fact that renal compensation to these drugs is rapid and nearly complete within a few days or weeks, preventing progressive volume losses. Nevertheless, the finding that fractional excretion of glucose and lithium (the latter being a marker of proximal sodium reabsorption) persists during long-term treatment with SGLT2 inhibitors indicates that pharmacological tolerance to the effects of these drugs at the level of the proximal tubule does not meaningfully occur. This persistent proximal tubular effect of SGLT2 inhibitors can be hypothesized to produce a durable improvement in the internal set point for volume homeostasis, which may become clinically important during times of fluid expansion. However, it is difficult to know whether a treatment-related change in the volume set point actually occurs or contributes to the effect of these drugs to reduce the risk of major heart failure events. SGLT2 inhibitors exert cardioprotective effects by a direct effect on cardiomyocytes that is independent of the presence of or binding to SGLT2 or the actions of these drugs on the proximal renal tubule. Nevertheless, changes in the volume set point mediated by SGLT2 inhibitors might potentially act cooperatively with the direct favorable molecular and cellular effects of these drugs on cardiomyocytes to mediate their benefits on the development and clinical course of heart failure.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Dallas, TX (M.P.)
- Imperial College London, United Kingdom (M.P.)
| | - Christopher S. Wilcox
- Division of Nephrology and Hypertension, Kidney, and Vascular Research Center, Georgetown University, Washington, DC (C.S.W.)
| | - Jeffrey M. Testani
- Section of Cardiovascular Medicine, Yale University, New Haven, CT (J.M.T.)
| |
Collapse
|
2
|
Walsh PA. Infusion of an acidified ethanolic—dextrose solution enhances urinary ammonium excretion and increases acid resilience in non—mechanically ventilated acidotic rabbits. Front Physiol 2022; 13:860042. [PMID: 36311228 PMCID: PMC9597196 DOI: 10.3389/fphys.2022.860042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
Hitherto, the rabbit has long been known to have a very poor tolerance to non—volatile acid. In this study, we tested the hypothesis that acid resilience in the acidotic rabbit can be increased by enhancing the plasma availability of a naturally occurring volatile fatty acid, namely acetate. To ascertain the relative merits of the respiratory and renal systems in contributing to that resilience, we conducted our studies in non—ventilated and mechanically ventilated acidotic animals. Using ethanol as a feeder of acetate, and to counteract the antidiuretic effects of surgical interventions, we induced acidosis in anaesthetised rabbits, by intravenously infusing an acidified ethanolic dextrose solution. We observed very potent respiratory regulation of arterial blood pH coupled with a notable renal response by way of a 25-fold increase in urinary ammonium excretion in the non—ventilated group. In contrast, arterial blood pH plummeted much more rapidly in the mechanically—ventilated animals, but the compensated renal response was enormous, in the form of an 85 -fold increase in urinary ammonium output. Despite this significant adaptive renal response, the non -mechanically ventilated group of rabbits showed the greater acid resilience. This was attributed to an acetate stimulated flux through a series of metabolic pathways, generating supplementary buffer in the form of bicarbonate and ammonia, complemented by a robust respiratory response.
Collapse
|
3
|
Abdulnour‐Nakhoul S, Hering‐Smith K, Hamm LL, Nakhoul NL. Effects of chronic hypercapnia on ammonium transport in the mouse kidney. Physiol Rep 2019; 7:e14221. [PMID: 31456326 PMCID: PMC6712239 DOI: 10.14814/phy2.14221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 11/24/2022] Open
Abstract
Hypercapnia and subsequent respiratory acidosis are serious complications in many patients with respiratory disorders. The acute response to hypercapnia is buffering of H+ by hemoglobin and cellular proteins but this effect is limited. The chronic response is renal compensation that increases HCO3- reabsorption, and stimulates urinary excretion of titratable acids (TA) and NH4+ . However, the main effective pathway is the excretion of NH4+ in the collecting duct. Our hypothesis is that, the renal NH3 /NH4+ transporters, Rhbg and Rhcg, in the collecting duct mediate this response. The effect of hypercapnia on these transporters is unknown. We conducted in vivo experiments on mice subjected to chronic hypercapnia. One group breathed 8% CO2 and the other breathed normal air as control (0.04% CO2 ). After 3 days, the mice were euthanized and kidneys, blood, and urine samples were collected. We used immunohistochemistry and Western blot analysis to determine the effects of high CO2 on localization and expression of the Rh proteins, carbonic anhydrase IV, and pendrin. In hypercapnic animals, there was a significant increase in urinary NH4+ excretion but no change in TA. Western blot analysis showed a significant increase in cortical expression of Rhbg (43%) but not of Rhcg. Expression of CA-IV was increased but pendrin was reduced. These data suggest that hypercapnia leads to compensatory upregulation of Rhbg that contributes to excretion of NH3 /NH4+ in the kidney. These studies are the first to show a link among hypercapnia, NH4+ excretion, and Rh expression.
Collapse
Affiliation(s)
- Solange Abdulnour‐Nakhoul
- Section of Nephrology, Departments of Medicine and PhysiologyTulane University School of MedicineNew OrleansLouisiana
| | - Kathleen Hering‐Smith
- Section of Nephrology, Departments of Medicine and PhysiologyTulane University School of MedicineNew OrleansLouisiana
| | - L. Lee Hamm
- Section of Nephrology, Departments of Medicine and PhysiologyTulane University School of MedicineNew OrleansLouisiana
| | - Nazih L. Nakhoul
- Section of Nephrology, Departments of Medicine and PhysiologyTulane University School of MedicineNew OrleansLouisiana
| |
Collapse
|
4
|
Abstract
Acid-base homeostasis is critical to maintenance of normal health. Renal ammonia excretion is the quantitatively predominant component of renal net acid excretion, both under basal conditions and in response to acid-base disturbances. Although titratable acid excretion also contributes to renal net acid excretion, the quantitative contribution of titratable acid excretion is less than that of ammonia under basal conditions and is only a minor component of the adaptive response to acid-base disturbances. In contrast to other urinary solutes, ammonia is produced in the kidney and then is selectively transported either into the urine or the renal vein. The proportion of ammonia that the kidney produces that is excreted in the urine varies dramatically in response to physiological stimuli, and only urinary ammonia excretion contributes to acid-base homeostasis. As a result, selective and regulated renal ammonia transport by renal epithelial cells is central to acid-base homeostasis. Both molecular forms of ammonia, NH3 and NH4+, are transported by specific proteins, and regulation of these transport processes determines the eventual fate of the ammonia produced. In this review, we discuss these issues, and then discuss in detail the specific proteins involved in renal epithelial cell ammonia transport.
Collapse
Affiliation(s)
- I David Weiner
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida; and Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Jill W Verlander
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida; and Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| |
Collapse
|
5
|
Abstract
The H(+) concentration in human blood is kept within very narrow limits, ~40 nmol/L, despite the fact that dietary metabolism generates acid and base loads that are added to the systemic circulation throughout the life of mammals. One of the primary functions of the kidney is to maintain the constancy of systemic acid-base chemistry. The kidney has evolved the capacity to regulate blood acidity by performing three key functions: (i) reabsorb HCO3(-) that is filtered through the glomeruli to prevent its excretion in the urine; (ii) generate a sufficient quantity of new HCO3(-) to compensate for the loss of HCO3(-) resulting from dietary metabolic H(+) loads and loss of HCO3(-) in the urea cycle; and (iii) excrete HCO3(-) (or metabolizable organic anions) following a systemic base load. The ability of the kidney to perform these functions requires that various cell types throughout the nephron respond to changes in acid-base chemistry by modulating specific ion transport and/or metabolic processes in a coordinated fashion such that the urine and renal vein chemistry is altered appropriately. The purpose of the article is to provide the interested reader with a broad review of a field that began historically ~60 years ago with whole animal studies, and has evolved to where we are currently addressing questions related to kidney acid-base regulation at the single protein structure/function level.
Collapse
Affiliation(s)
- Ira Kurtz
- Division of Nephrology, David Geffen School of Medicine, Los Angeles, CA; Brain Research Institute, UCLA, Los Angeles, CA
| |
Collapse
|
6
|
Abstract
The kidney plays a fundamental role in maintaining body salt and fluid balance and blood pressure homeostasis through the actions of its proximal and distal tubular segments of nephrons. However, proximal tubules are well recognized to exert a more prominent role than distal counterparts. Proximal tubules are responsible for reabsorbing approximately 65% of filtered load and most, if not all, of filtered amino acids, glucose, solutes, and low molecular weight proteins. Proximal tubules also play a key role in regulating acid-base balance by reabsorbing approximately 80% of filtered bicarbonate. The purpose of this review article is to provide a comprehensive overview of new insights and perspectives into current understanding of proximal tubules of nephrons, with an emphasis on the ultrastructure, molecular biology, cellular and integrative physiology, and the underlying signaling transduction mechanisms. The review is divided into three closely related sections. The first section focuses on the classification of nephrons and recent perspectives on the potential role of nephron numbers in human health and diseases. The second section reviews recent research on the structural and biochemical basis of proximal tubular function. The final section provides a comprehensive overview of new insights and perspectives in the physiological regulation of proximal tubular transport by vasoactive hormones. In the latter section, attention is particularly paid to new insights and perspectives learnt from recent cloning of transporters, development of transgenic animals with knockout or knockin of a particular gene of interest, and mapping of signaling pathways using microarrays and/or physiological proteomic approaches.
Collapse
Affiliation(s)
- Jia L Zhuo
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA.
| | | |
Collapse
|
7
|
Abstract
Renal ammonia metabolism and transport mediates a central role in acid-base homeostasis. In contrast to most renal solutes, the majority of renal ammonia excretion derives from intrarenal production, not from glomerular filtration. Renal ammoniagenesis predominantly results from glutamine metabolism, which produces 2 NH4(+) and 2 HCO3(-) for each glutamine metabolized. The proximal tubule is the primary site for ammoniagenesis, but there is evidence for ammoniagenesis by most renal epithelial cells. Ammonia produced in the kidney is either excreted into the urine or returned to the systemic circulation through the renal veins. Ammonia excreted in the urine promotes acid excretion; ammonia returned to the systemic circulation is metabolized in the liver in a HCO3(-)-consuming process, resulting in no net benefit to acid-base homeostasis. Highly regulated ammonia transport by renal epithelial cells determines the proportion of ammonia excreted in the urine versus returned to the systemic circulation. The traditional paradigm of ammonia transport involving passive NH3 diffusion, protonation in the lumen and NH4(+) trapping due to an inability to cross plasma membranes is being replaced by the recognition of limited plasma membrane NH3 permeability in combination with the presence of specific NH3-transporting and NH4(+)-transporting proteins in specific renal epithelial cells. Ammonia production and transport are regulated by a variety of factors, including extracellular pH and K(+), and by several hormones, such as mineralocorticoids, glucocorticoids and angiotensin II. This coordinated process of regulated ammonia production and transport is critical for the effective maintenance of acid-base homeostasis.
Collapse
Affiliation(s)
- I David Weiner
- Nephrology and Hypertension Section, NF/SGVHS, Gainesville, Florida, USA.
| | | |
Collapse
|
8
|
Park J, Lai L, Samuel M, Wax D, Bruno RS, French R, Prather RS, Yang X, Tian XC. Altered gene expression profiles in the brain, kidney, and lung of one-month-old cloned pigs. Cell Reprogram 2011; 13:215-23. [PMID: 21453050 DOI: 10.1089/cell.2010.0088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although numerous mammalian species have been successfully cloned by somatic cell nuclear transfer (SCNT), little is known about gene expression of cloned pigs by SCNT. In the present study, expression profiles of 1-month-old cloned pigs generated from fetal fibroblasts (n = 5) were compared to those of age-matched controls (n = 5) using a 13K oligonucleotide microarray. The brain, kidney, and lung were chosen for microarray analysis to represent tissues from endoderm, mesoderm, and ectoderm in origin. In clones, 179 and 154 genes were differentially expressed in the kidney and the lung, respectively (fold change >2, p < 0.05, false discovery rate = 0.05), whereas only seven genes were differentially expressed in the brain of clones. Functional analysis of the differentially expressed genes revealed that they were enriched in diabetic nephropathy in the kidney, delayed alveologenesis as well as downregulated MAPK signaling pathways in the lung, which was accompanied with collapsed alveoli in the histological examination of the lung. To evaluate whether the gene expression anomalies are associated with changes in DNA methylation, global concentration of the methylated cytosine was measured in lung DNA by HPLC. Clones were significantly hypermethylated (5.72%) compared to the controls (4.13%). Bisulfite-pyrosequencing analyses of the promoter regions of differentially expressed genes, MYC and Period 1 (PER1), however, did not show any differences in the degree of DNA methylation between controls and clones. Together, these findings demonstrate that cloned pigs have altered gene expression that may potentially cause organ dysfunction.
Collapse
Affiliation(s)
- Joonghoon Park
- Center for Regenerative Biology, Department of Animal Science, University of Connecticut, Storrs, 06269, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Gilmour KM, Collier CL, Dey CJ, Perry SF. Roles of cortisol and carbonic anhydrase in acid-base compensation in rainbow trout, Oncorhynchus mykiss. J Comp Physiol B 2010; 181:501-15. [PMID: 21136263 DOI: 10.1007/s00360-010-0540-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/09/2010] [Accepted: 11/17/2010] [Indexed: 02/06/2023]
Abstract
Fish compensate for acid-base disturbances primarily by modulating the branchial excretion of acid-base equivalents, with a supporting role played by adjustment of urinary acid excretion. The present study used metabolic acid-base disturbances in rainbow trout, Oncorhynchus mykiss, to evaluate the role played by cortisol in stimulating compensatory responses. Trout infused with acid (an iso-osmotic solution of 70 mmol L(-1) HCl), base (140 mmol L(-1) NaHCO(3)) or saline (140 mmol L(-1) NaCl) for 24 h exhibited significant elevation of circulating cortisol concentrations. Acid infusion significantly increased both branchial (by 328 μmol kg(-1) h(-1)) and urinary (by 5.9 μmol kg(-1) h(-1)) net acid excretion, compensatory responses that were eliminated by pre-treatment of trout with the cortisol synthesis inhibitor metyrapone (2-methyl-1,2-di-3-pyridyl-1-propanone). The significant decrease in net acid excretion (equivalent to enhanced base excretion) of 203 μmol kg(-1) h(-1) detected in base-infused trout was unaffected by metyrapone treatment. Acid- and base-infusions also were associated with significant changes in the relative mRNA expression of branchial and renal cytosolic carbonic anhydrase (tCAc) and renal membrane-linked CA IV (tCA IV). Cortisol treatment caused changes in CA gene expression that tended to parallel those observed with acid but not base infusion. For example, significant increases in renal relative tCA IV mRNA expression were detected in both acid-infused (~2x) and cortisol-treated (~10x) trout, whereas tCA IV mRNA expression was significantly reduced (~5x) in base-infused fish. Despite changes in CA gene expression in acid- or base-infused fish, neither acid nor base infusion affected CAc protein levels in the gill, but both caused significant increases in branchial CA activity. Cortisol treatment similarly increased branchial CA activity in the absence of an effect on branchial CAc protein expression. Taken together, these findings provide support for the hypothesis that in rainbow trout, cortisol is involved in mediating acid-base compensatory responses to a metabolic acidosis, and that cortisol exerts its effects at least in part through modulation of CA.
Collapse
Affiliation(s)
- K M Gilmour
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada.
| | | | | | | |
Collapse
|
10
|
Abstract
SUMMARY
Carbonic anhydrase (CA) is the zinc metalloenzyme that catalyses the reversible reactions of CO2 with water. CA plays a crucial role in systemic acid–base regulation in fish by providing acid–base equivalents for exchange with the environment. Unlike air-breathing vertebrates, which frequently utilize alterations of breathing (respiratory compensation) to regulate acid–base status, acid–base balance in fish relies almost entirely upon the direct exchange of acid–base equivalents with the environment (metabolic compensation). The gill is the critical site of metabolic compensation, with the kidney playing a supporting role. At the gill, cytosolic CA catalyses the hydration of CO2 to H+ and HCO3– for export to the water. In the kidney, cytosolic and membrane-bound CA isoforms have been implicated in HCO3– reabsorption and urine acidification. In this review, the CA isoforms that have been identified to date in fish will be discussed together with their tissue localizations and roles in systemic acid–base regulation.
Collapse
Affiliation(s)
- K. M. Gilmour
- Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, ON, Canada
| | - S. F. Perry
- Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
11
|
Gilmour KM, Euverman RM, Esbaugh AJ, Kenney L, Chew SF, Ip YK, Perry SF. Mechanisms of acid–base regulation in the African lungfishProtopterus annectens. J Exp Biol 2007; 210:1944-59. [PMID: 17515420 DOI: 10.1242/jeb.02776] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYAfrican lungfish Protopterus annectens utilized both respiratory and metabolic compensation to restore arterial pH to control levels following the imposition of a metabolic acidosis or alkalosis. Acid infusion (3 mmol kg–1 NH4Cl) to lower arterial pH by 0.24 units increased both pulmonary (by 1.8-fold) and branchial (by 1.7-fold) ventilation frequencies significantly, contributing to 4.8-fold and 1.9-fold increases in,respectively, aerial and aquatic CO2 excretion. This respiratory compensation appeared to be the main mechanism behind the restoration of arterial pH, because even though net acid excretion(JnetH+) increased following acid infusion in 7 of 11 fish, the mean increase in net acid excretion, 184.5±118.5μmol H+ kg–1 h–1 (mean± s.e.m., N=11), was not significantly different from zero. Base infusion (3 mmol kg–1 NaHCO3) to increase arterial pH by 0.29 units halved branchial ventilation frequency, although pulmonary ventilation frequency was unaffected. Correspondingly, aquatic CO2 excretion also fell significantly (by 3.7-fold) while aerial CO2 excretion was unaffected. Metabolic compensation consisting of negative net acid excretion (net base excretion) accompanied this respiratory compensation, with JnetH+ decreasing from 88.5±75.6 to –337.9±199.4 μmol H+kg–1 h–1 (N=8). Partitioning of net acid excretion into renal and extra-renal (assumed to be branchial and/or cutaneous) components revealed that under control conditions, net acid excretion occurred primarily by extra-renal routes. Finally, several genes that are involved in the exchange of acid–base equivalents between the animal and its environment (carbonic anhydrase, V-type H+-ATPase and Na+/HCO –3 cotransporter) were cloned, and their branchial and renal mRNA expressions were examined prior to and following acid or base infusion. In no case was mRNA expression significantly altered by metabolic acid–base disturbance. These findings suggest that lungfish, like tetrapods, alter ventilation to compensate for metabolic acid–base disturbances, a mechanism that is not employed by water-breathing fish. Like fish and amphibians, however, extra-renal routes play a key role in metabolic compensation.
Collapse
Affiliation(s)
- K M Gilmour
- Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, ON, Canada.
| | | | | | | | | | | | | |
Collapse
|
12
|
Schwartz GJ, Kittelberger AM, Watkins RH, O'Reilly MA. Carbonic anhydrase XII mRNA encodes a hydratase that is differentially expressed along the rabbit nephron. Am J Physiol Renal Physiol 2003; 284:F399-410. [PMID: 12388401 DOI: 10.1152/ajprenal.00370.2001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Membrane-bound carbonic anhydrase (CA) facilitates acidification in the kidney. Although most hydratase activity is considered due to CA IV, some in the basolateral membranes could be attributed to CA XII. Indeed, CA IV is glycosylphosphatidylinositol anchored, connoting apical polarization, but CA IV immunoreactivity has been detected on basolateral membranes of proximal tubules. Herein, we determined whether CA XII mRNA was expressed in acidifying segments of the rabbit nephron. The open reading frame of CA XII was sequenced from a rabbit kidney cortex cDNA library; it was 83% identical to human CA XII and coded for a 355-amino acid single-pass transmembrane protein. Northern blot analysis revealed an abundant 4.5-kb message in kidney cortex, medulla, and colon. By in situ hybridization, CA XII mRNA was expressed by proximal convoluted and straight tubules, cortical and medullary collecting ducts, and papillary epithelium. By RT-PCR, CA XII mRNA was abundantly expressed in cortical and medullary collecting ducts and thick ascending limb of Henle's loop; it was also expressed in proximal convoluted and straight tubules but not in glomeruli or S3 segments. FLAG-CA XII of approximately 40 kDa expressed in Escherichia coli showed hydratase activity that was inhibited by 0.1 mM acetazolamide. Unlike CA IV, expressed CA XII activity was inhibited by 1% SDS, suggesting insufficient disulfide linkages to stabilize the molecule. Western blotting of expressed CA XII with two anti-rabbit CA IV peptide antibodies showed no cross-reactivity. Our findings indicate that CA XII may contribute to the membrane CA activity of proximal tubules and collecting ducts.
Collapse
Affiliation(s)
- George J Schwartz
- Department of Pediatrics, University of Rochester School of Medicine, Rochester, New York 14642, USA.
| | | | | | | |
Collapse
|
13
|
Dudas PL, Renfro JL. Transepithelial sulfate transport by avian renal proximal tubule epithelium in primary culture. Am J Physiol Regul Integr Comp Physiol 2002; 283:R1354-61. [PMID: 12388445 DOI: 10.1152/ajpregu.00475.2002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanisms and control of transepithelial inorganic sulfate (Si) transport by primary cultures of chick renal proximal tubule monolayers in Ussing chambers were determined. The competitive anion, S2 O 3 2- (5 mM), reduced both unidirectional reabsorptive and secretory fluxes and net Si reabsorption with no effect on electrophysiological properties. The carbonic anhydrase (CA) inhibitor ethoxzolamide decreased net Si reabsorption approximately 45%. CAII protein and activity were detected in isolated chick proximal tubules by immunoblots and biochemical assay, respectively. Cortisol reduced net Si reabsorption up to approximately 50% in a concentration-dependent manner. Thyroid hormone increased net Si reabsorption threefold in 24 h, and parathyroid hormone (PTH) acutely stimulated net Si reabsorption approximately 45%. These data indicate that CA participates in avian proximal tubule active transepithelial Si reabsorption, which cortisol directly inhibits and T3 and PTH directly stimulate.
Collapse
Affiliation(s)
- Paul L Dudas
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269, USA
| | | |
Collapse
|
14
|
Winkler CA, Kittelberger AM, Watkins RH, Maniscalco WM, Schwartz GJ. Maturation of carbonic anhydrase IV expression in rabbit kidney. Am J Physiol Renal Physiol 2001; 280:F895-903. [PMID: 11292633 DOI: 10.1152/ajprenal.2001.280.5.f895] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Carbonic anhydrase (CA) IV facilitates renal acidification by catalyzing the dehydration of luminal H(2)CO(3). CA IV is expressed in proximal tubules, medullary collecting ducts, and A-intercalated cells of the mature rabbit kidney (Schwartz GJ, Kittelberger AM, Barnhart DA, and Vijayakumar S. Am J Physiol 278: F894-F904, 2000). In view of the maturation of HCO transport in the proximal tubule and collecting duct, the ontogeny of CA IV expression was examined. During the first 2 wk, CA IV mRNA was expressed in maturing cortex and medulla at ~20% of adult levels. The maturational increase was gradual in cortex over 3-5 wk of age but surged in the medulla, so that mRNA levels appeared higher than those in the adult medulla. In situ hybridization showed very little CA IV mRNA at 5 days, with increases in deep cortex and medullary collecting ducts by 21 days. Expression of CA IV protein in the cortex and medulla was minimal at 3 days of age but then apparent in the juxtamedullary region, A-intercalated cells and medullary collecting ducts by 18 days; there was little labeling of the proximal straight tubules of the medullary rays. Thus CA IV expression may be regulated to accommodate the maturational increase in HCO absorption in the proximal tubule. In the medullary collecting duct, there is a more robust maturation of CA IV mRNA and protein, commensurate with the high rate of HCO absorption in the neonatal segment.
Collapse
Affiliation(s)
- C A Winkler
- Department of Pediatrics, University of Rochester School of Medicine, 601 Elmwood Ave., Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
15
|
Bagnis C, Marshansky V, Breton S, Brown D. Remodeling the cellular profile of collecting ducts by chronic carbonic anhydrase inhibition. Am J Physiol Renal Physiol 2001; 280:F437-48. [PMID: 11181405 DOI: 10.1152/ajprenal.2001.280.3.f437] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Factors regulating the differentiated phenotype of principal cells (PC) and A- and B-intercalated cells (IC) in kidney collecting ducts are poorly understood. However, we have shown previously that carbonic anhydrase II (CAII)-deficient mice have no IC in their medullary collecting ducts, suggesting a potential role for this enzyme in determining the cellular composition of this tubule segment. We now report that the cellular profile of the collecting ducts of adult rats can be remodeled by inhibiting CA activity in rats by using osmotic pumps containing acetazolamide. The 31-kDa subunit of the vacuolar H(+)-ATPase, the sodium/hydrogen exchanger regulatory factor NHE-RF, and the anion exchanger AE1 were used to identify IC subtypes by immunofluorescence staining, while aquaporin 2 and aquaporin 4 were used to identify PC. In the cortical collecting ducts of animals treated with acetazolamide for 2 wk, the percentage of B-IC decreased significantly (18 +/- 2 vs. 36 +/- 4%, P < 0.01) whereas the percentage of A-IC increased (82 +/- 2 vs. 64 +/- 4%, P < 0.01) with no change in the percentage of total IC in the epithelium. In some treated rats, B-IC were virtually undetectable. In the inner stripe of the outer medulla, the percentage of IC increased in treated animals (48 +/- 2 vs. 37 +/- 3%, P < 0.05) and the percentage of PC decreased (52 +/- 2 vs. 63 +/- 3%, P < 0.05). Moreover, IC appeared bulkier, protruded into the lumen, and showed a significant increase in the length of their apical (20.8 +/- 0.5 vs. 14.6 +/- 0.4 microm, P < 0.05) and basolateral membranes (25.8 +/- 0.4 vs. 23.8 +/- 0.5 microm, P < 0.05) compared with control rats. In the inner medullary collecting ducts of treated animals, the number of IC in the proximal third of the papilla was reduced compared with controls (11 +/- 4 vs. 40 +/- 11 IC/mm(2), P < 0.05). These data suggest that CA activity plays an important role in determining the differentiated phenotype of medullary collecting duct epithelial cells and that the cellular profile of collecting ducts can be remodeled even in adult rats. The relative depletion of cortical B-IC and the relative increase in number and hyperplasia of A-IC in the medulla may be adaptive processes that would tend to correct or stabilize the metabolic acidosis that would otherwise ensue following systemic carbonic anhydrase inhibition.
Collapse
Affiliation(s)
- C Bagnis
- Program in Membrane Biology, Massachusetts General Hospital, Boston, Massachusetts 02120, USA.
| | | | | | | |
Collapse
|
16
|
Rosen O, Suarez C, Schuster VL, Brion LP. Expression of carbonic anhydrase IV in mouse placenta. Am J Physiol Regul Integr Comp Physiol 2001; 280:R365-75. [PMID: 11208563 DOI: 10.1152/ajpregu.2001.280.2.r365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Carbonic anhydrase (CA) facilitates acid-base transport in several tissues. Acidosis upregulates membrane-bound SDS-resistant hydratase activity in various tissues and CA IV mRNA in rabbit kidney. This study was designed to assess whether the expression of membrane-bound CA IV isozyme in mouse placenta is regulated developmentally and by maternal ammonium chloride loading at the end of pregnancy. For this purpose we used Northern blot analysis, Western blots of microsomal membranes, and immunocytochemistry. The expression of CA IV mRNA on Northern blots tripled from day 11 to day 15 and then remained stable until the end of pregnancy. Expression of CA IV immunoreactive protein on Western blot tripled from day 11 to day 15 and decreased almost to baseline by day 19. Strong staining for CA IV was detected by immunocytochemistry in labyrinthine trophoblast, in the endodermal layer of the yolk sac (both intra- and extraplacental) and in the uterine epithelium. Weak staining was observed in most fetal endothelial cells at 11 days but not later in gestation. Maternal acidosis did not upregulate the expression of CA IV mRNA or CA IV immunoreactive protein. Thus CA IV expression in mouse placenta is developmentally regulated. Maternal acidosis during the last quarter of pregnancy does not upregulate CA IV mRNA or CA IV immunoreactive protein.
Collapse
Affiliation(s)
- O Rosen
- Department of Pediatrics, Division of Neonatology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
17
|
Schwartz GJ, Kittelberger AM, Barnhart DA, Vijayakumar S. Carbonic anhydrase IV is expressed in H(+)-secreting cells of rabbit kidney. Am J Physiol Renal Physiol 2000; 278:F894-904. [PMID: 10836977 DOI: 10.1152/ajprenal.2000.278.6.f894] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Carbonic anhydrase (CA) IV is a membrane-bound enzyme that catalyzes the dehydration of carbonic acid to CO(2) and water. Using peptides from each end of the deduced rabbit CA IV amino acid sequence, we generated a goat anti-rabbit CA IV antibody, which was used for immunoblotting and immunohistochemical analysis. CA IV was expressed in a variety of organs including spleen, heart, lung, skeletal muscle, colon, and kidney. Rabbit kidney CA IV had two N-glycosylation sites and was sialated, the apparent molecular mass increasing by at least 11 to approximately 45 kDa in the cortex. Medullary CA IV was much more heavily glycosylated than CA IV from cortex or any other organ, such modifications increasing the molecular mass by at least 20 kDa. CA IV was expressed on the apical and basolateral membranes of proximal tubules with expression levels on the order of S2 > S1 > S3 = 0. Because CA IV is believed to be anchored to the apical membrane by glycosylphosphatidylinositol, the presence of basolateral CA IV suggests an alternative mechanism. CA IV was localized on the apical membranes of outer medullary collecting duct cells of the inner stripe and inner medullary collecting duct cells, as well as on alpha-intercalated cells. However, CA IV was not expressed by beta-intercalated cells, glomeruli, distal tubule, or Henle's loop cells. Thus CA IV was expressed by H(+)-secreting cells of the rabbit kidney, suggesting an important role for CA IV in urinary acidification.
Collapse
Affiliation(s)
- G J Schwartz
- Departments of Pediatrics and Medicine, University of Rochester School of Medicine, NY 14642, USA.
| | | | | | | |
Collapse
|