1
|
Sedaka R, Huang J, Yamaguchi S, Lovelady C, Hsu JS, Shinde S, Kasztan M, Crossman DK, Saigusa T. Accelerated cystogenesis by dietary protein load is dependent on, but not initiated by kidney macrophages. Front Med (Lausanne) 2023; 10:1173674. [PMID: 37538309 PMCID: PMC10394241 DOI: 10.3389/fmed.2023.1173674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/03/2023] [Indexed: 08/05/2023] Open
Abstract
Background Disease severity of autosomal dominant polycystic kidney disease (ADPKD) is influenced by diet. Dietary protein, a recognized cyst-accelerating factor, is catabolized into amino acids (AA) and delivered to the kidney leading to renal hypertrophy. Injury-induced hypertrophic signaling in ADPKD results in increased macrophage (MФ) activation and inflammation followed by cyst growth. We hypothesize that the cystogenesis-prompting effects of HP diet are caused by increased delivery of specific AA to the kidney, ultimately stimulating MФs to promote cyst progression. Methods Pkd1flox/flox mice with and without Cre (CAGG-ER) were given tamoxifen to induce global gene deletion (Pkd1KO). Pkd1KO mice were fed either a low (LP; 6%), normal (NP; 18%), or high (HP; 60%) protein diet for 1 week (early) or 6 weeks (chronic). Mice were then euthanized and tissues were used for histology, immunofluorescence and various biochemical assays. One week fed kidney tissue was cell sorted to isolate tubular epithelial cells for RNA sequencing. Results Chronic dietary protein load in Pkd1KO mice increased kidney weight, number of kidney infiltrating and resident MФs, chemokines, cytokines and cystic index compared to LP diet fed mice. Accelerated cyst growth induced by chronic HP were attenuated by liposomal clodronate-mediated MФ depletion. Early HP diet fed Pkd1KO mice had larger cystic kidneys compared to NP or LP fed counterparts, but without increases in the number of kidney MФs, cytokines, or markers of tubular injury. RNA sequencing of tubular epithelial cells in HP compared to NP or LP diet group revealed increased expression of sodium-glutamine transporter Snat3, chloride channel Clcnka, and gluconeogenesis marker Pepck1, accompanied by increased excretion of urinary ammonia, a byproduct of glutamine. Early glutamine supplementation in Pkd1KO mice lead to kidney hypertrophy. Conclusion Chronic dietary protein load-induced renal hypertrophy and accelerated cyst growth in Pkd1KO mice is dependent on both infiltrating and resident MФ recruitment and subsequent inflammatory response. Early cyst expansion by HP diet, however, is relient on increased delivery of glutamine to kidney epithelial cells, driving downstream metabolic changes prior to inflammatory provocation.
Collapse
Affiliation(s)
- Randee Sedaka
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jifeng Huang
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Shinobu Yamaguchi
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Caleb Lovelady
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jung-Shan Hsu
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sejal Shinde
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Malgorzata Kasztan
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - David K. Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Takamitsu Saigusa
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
2
|
Verlander JW, Lee HW, Wall SM, Harris AN, Weiner ID. The proximal tubule through an NBCe1-dependent mechanism regulates collecting duct phenotypic and remodeling responses to acidosis. Am J Physiol Renal Physiol 2023; 324:F12-F29. [PMID: 36264886 PMCID: PMC9762982 DOI: 10.1152/ajprenal.00175.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 02/04/2023] Open
Abstract
The renal response to acid-base disturbances involves phenotypic and remodeling changes in the collecting duct. This study examines whether the proximal tubule controls these responses. We examined mice with genetic deletion of proteins present only in the proximal tubule, either the A variant or both A and B variants of isoform 1 of the electrogenic Na+-bicarbonate cotransporter (NBCe1). Both knockout (KO) mice have spontaneous metabolic acidosis. We then determined the collecting duct phenotypic responses to this acidosis and the remodeling responses to exogenous acid loading. Despite the spontaneous acidosis in NBCe1-A KO mice, type A intercalated cells in the inner stripe of the outer medullary collecting duct (OMCDis) exhibited decreased height and reduced expression of H+-ATPase, anion exchanger 1, Rhesus B glycoprotein, and Rhesus C glycoprotein. Combined kidney-specific NBCe1-A/B deletion induced similar changes. Ultrastructural imaging showed decreased apical plasma membrane and increased vesicular H+-ATPase in OMCDis type A intercalated cell in NBCe1-A KO mice. Next, we examined the collecting duct remodeling response to acidosis. In wild-type mice, acid loading increased the proportion of type A intercalated cells in the connecting tubule (CNT) and OMCDis, and it decreased the proportion of non-A, non-B intercalated cells in the connecting tubule, and type B intercalated cells in the cortical collecting duct (CCD). These changes were absent in NBCe1-A KO mice. We conclude that the collecting duct phenotypic and remodeling responses depend on proximal tubule-dependent signaling mechanisms blocked by constitutive deletion of proximal tubule NBCe1 proteins.NEW & NOTEWORTHY This study shows that the proximal tubule regulates collecting duct phenotypic and remodeling responses to acidosis.
Collapse
Affiliation(s)
- Jill W Verlander
- Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Hyun-Wook Lee
- Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Susan M Wall
- Renal Division, Emory University, Atlanta, Georgia
| | - Autumn N Harris
- Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
- Deparment of Small Animal Clinical Science, University of Florida College of Veterinary Medicine, Gainesville, Florida
| | - I David Weiner
- Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
- Nephrology and Hypertension Section, Gainesville Veterans Administration Medical Center, Gainesville, Florida
| |
Collapse
|
3
|
Bhutia YD, Mathew M, Sivaprakasam S, Ramachandran S, Ganapathy V. Unconventional Functions of Amino Acid Transporters: Role in Macropinocytosis (SLC38A5/SLC38A3) and Diet-Induced Obesity/Metabolic Syndrome (SLC6A19/SLC6A14/SLC6A6). Biomolecules 2022; 12:biom12020235. [PMID: 35204736 PMCID: PMC8961558 DOI: 10.3390/biom12020235] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
Amino acid transporters are expressed in mammalian cells not only in the plasma membrane but also in intracellular membranes. The conventional function of these transporters is to transfer their amino acid substrates across the lipid bilayer; the direction of the transfer is dictated by the combined gradients for the amino acid substrates and the co-transported ions (Na+, H+, K+ or Cl−) across the membrane. In cases of electrogenic transporters, the membrane potential also contributes to the direction of the amino acid transfer. In addition to this expected traditional function, several unconventional functions are known for some of these amino acid transporters. This includes their role in intracellular signaling, regulation of acid–base balance, and entry of viruses into cells. Such functions expand the biological roles of these transporters beyond the logical amino acid homeostasis. In recent years, two additional unconventional biochemical/metabolic processes regulated by certain amino acid transporters have come to be recognized: macropinocytosis and obesity. This adds to the repertoire of biological processes that are controlled and regulated by amino acid transporters in health and disease. In the present review, we highlight the unusual involvement of selective amino acid transporters in macropinocytosis (SLC38A5/SLC38A3) and diet-induced obesity/metabolic syndrome (SLC6A19/SLC6A14/SLC6A6).
Collapse
|
4
|
Brunetto MA, Halfen DP, Risolia LW, Pedrinelli V, Caragelasco DS, Vendramini THA, de Carvalho Balieiro JC, Pontieri CFF, Jeremias JT, Ruberti B, Kogika MM. Evaluation of Serum and Urine Amino Acids in Dogs with Chronic Kidney Disease and Healthy Dogs Fed a Renal Diet. Metabolites 2021; 11:metabo11120844. [PMID: 34940602 PMCID: PMC8708899 DOI: 10.3390/metabo11120844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/27/2021] [Indexed: 12/03/2022] Open
Abstract
This observational study aimed to evaluate serum and urinary amino acid (AA) concentrations in healthy dogs and dogs with chronic kidney disease (CKD) fed a commercial therapeutic renal diet with reduced protein and phosphorus levels. Ten dogs with CKD stages 3 or 4 composed the study group and received the renal diet for 180 days (RG T180). A control group (CG T30) composed of seven healthy dogs was fed a renal diet for 30 days. When comparing serum AA between RG T180 and CG T30, histidine, isoleucine, leucine, lysine, phenylalanine, tryptophan, cysteine, citrulline, ornithine, taurine, branched-chain amino acids (BCAA), and total essential amino acids (EAA) were higher in RG T180. Meanwhile, arginine, asparagine, aspartate, glutamine, serine, and tyrosine were higher in CG T30. Serum phenylalanine, tryptophan, and hydroxyproline were higher in RG T0 (dogs with CKD before consuming a renal diet) when compared to RG T180. In addition, the serum ratios of arginine/citrulline, tyrosine/phenylalanine, and serine/glycine were higher in CG T30 than in RG T180. Concerning urinary AA concentrations in CKD dogs, isoleucine, phenylalanine, tryptophan, aspartate, cysteine, and BCAA were higher in RG T180. In urine, the total EAA/total non-essential AA ratio in RG T180 was higher than in CG T30 as well as tyrosine/phenylalanine ratio higher in CG T30. In conclusion, the combination of renal diet and conservative treatment over 6 months in dogs with CKD stages 3 or 4 affected the AAs metabolism when compared to healthy adult dogs.
Collapse
Affiliation(s)
- Marcio Antonio Brunetto
- Pet Nutrology Research Center, Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Jardim Elite, Pirassununga 13635-900, Brazil; (T.H.A.V.); (J.C.d.C.B.)
- Veterinary Nutrology Service, Veterinary Teaching Hospital, School of Veterinary Medicine and Animal Science, University of São Paulo, Cidade Universitária, São Paulo 05508-270, Brazil; (D.P.H.); (L.W.R.); (V.P.)
- Correspondence: ; Tel.: +55-19-3565-4226
| | - Doris Pereira Halfen
- Veterinary Nutrology Service, Veterinary Teaching Hospital, School of Veterinary Medicine and Animal Science, University of São Paulo, Cidade Universitária, São Paulo 05508-270, Brazil; (D.P.H.); (L.W.R.); (V.P.)
| | - Larissa Wunsche Risolia
- Veterinary Nutrology Service, Veterinary Teaching Hospital, School of Veterinary Medicine and Animal Science, University of São Paulo, Cidade Universitária, São Paulo 05508-270, Brazil; (D.P.H.); (L.W.R.); (V.P.)
| | - Vivian Pedrinelli
- Veterinary Nutrology Service, Veterinary Teaching Hospital, School of Veterinary Medicine and Animal Science, University of São Paulo, Cidade Universitária, São Paulo 05508-270, Brazil; (D.P.H.); (L.W.R.); (V.P.)
| | - Douglas Segalla Caragelasco
- Small Animal Internal Medicine Service, Veterinary Teaching Hospital, School of Veterinary Medicine and Animal Science, University of São Paulo, Cidade Universitária, São Paulo 05508-270, Brazil; (D.S.C.); (B.R.); (M.M.K.)
| | - Thiago Henrique Annibale Vendramini
- Pet Nutrology Research Center, Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Jardim Elite, Pirassununga 13635-900, Brazil; (T.H.A.V.); (J.C.d.C.B.)
| | - Julio César de Carvalho Balieiro
- Pet Nutrology Research Center, Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Jardim Elite, Pirassununga 13635-900, Brazil; (T.H.A.V.); (J.C.d.C.B.)
| | - Cristiana Fonseca Ferreira Pontieri
- Nutrition Development Center, Grandfood Industry and Commerce LTDA (Premier Pet®), Dourado, São Paulo 13590-000, Brazil; (C.F.F.P.); (J.T.J.)
| | - Juliana Toloi Jeremias
- Nutrition Development Center, Grandfood Industry and Commerce LTDA (Premier Pet®), Dourado, São Paulo 13590-000, Brazil; (C.F.F.P.); (J.T.J.)
| | - Bruna Ruberti
- Small Animal Internal Medicine Service, Veterinary Teaching Hospital, School of Veterinary Medicine and Animal Science, University of São Paulo, Cidade Universitária, São Paulo 05508-270, Brazil; (D.S.C.); (B.R.); (M.M.K.)
| | - Marcia Mery Kogika
- Small Animal Internal Medicine Service, Veterinary Teaching Hospital, School of Veterinary Medicine and Animal Science, University of São Paulo, Cidade Universitária, São Paulo 05508-270, Brazil; (D.S.C.); (B.R.); (M.M.K.)
| |
Collapse
|
5
|
Healthy and Chronic Kidney Disease (CKD) Dogs Have Differences in Serum Metabolomics and Renal Diet May Have Slowed Disease Progression. Metabolites 2021; 11:metabo11110782. [PMID: 34822440 PMCID: PMC8623449 DOI: 10.3390/metabo11110782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022] Open
Abstract
Chronic kidney disease (CKD) is highly prevalent in dogs, and metabolomics investigation has been recently introduced for a better understanding of the role of diet in CKD. This study aimed to compare the serum metabolomic profile of healthy dogs (CG) and dogs with CKD (CKD-T0 and CKD-T6) to evaluate whether the diet would affect metabolites. Six dogs (5 females; 1 male; 7.47 ± 2.31 years old) with CKD stage 3 or 4 (IRIS) were included. CG consisted of 10 healthy female dogs (5.89 ± 2.57 years old) fed a maintenance diet. Serum metabolites were analyzed by 1H nuclear magnetic resonance (1H NMR) spectra. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were performed to assess differences in metabolomic profiles between groups and before (CKD-T0) and after renal diet (CKD-T6). Data analysis was performed on SIMCA-P software. Dogs with CKD showed an altered metabolic profile with increased urea, creatinine, creatine, citrate, and lipids. Lactate, branched-chain amino acids (BCAAs), and glutamine were decreased in the CKD group. However, after 6 months of diet, the metabolite profiles of CKD-T0 and CKD-T6 were similar. Metabolomics profile may be useful to evaluate and recognize metabolic dysfunction and progression of CKD, and the diet may have helped maintain and retard the progression of CKD.
Collapse
|
6
|
Alam P, Amlal S, Thakar CV, Amlal H. Acetazolamide causes renal [Formula: see text] wasting but inhibits ammoniagenesis and prevents the correction of metabolic acidosis by the kidney. Am J Physiol Renal Physiol 2020; 319:F366-F379. [PMID: 32657159 PMCID: PMC7509283 DOI: 10.1152/ajprenal.00501.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 11/22/2022] Open
Abstract
Carbonic anhydrase (CAII) binds to the electrogenic basolateral Na+-[Formula: see text] cotransporter (NBCe1) and facilitates [Formula: see text] reabsorption across the proximal tubule. However, whether the inhibition of CAII with acetazolamide (ACTZ) alters NBCe1 activity and interferes with the ammoniagenesis pathway remains elusive. To address this issue, we compared the renal adaptation of rats treated with ACTZ to NH4Cl loading for up to 2 wk. The results indicated that ACTZ-treated rats exhibited a sustained metabolic acidosis for up to 2 wk, whereas in NH4Cl-loaded rats, metabolic acidosis was corrected within 2 wk of treatment. [Formula: see text] excretion increased by 10-fold in NH4Cl-loaded rats but only slightly (1.7-fold) in ACTZ-treated rats during the first week despite a similar degree of acidosis. Immunoblot experiments showed that the protein abundance of glutaminase (4-fold), glutamate dehydrogenase (6-fold), and SN1 (8-fold) increased significantly in NH4Cl-loaded rats but remained unchanged in ACTZ-treated rats. Na+/H+ exchanger 3 and NBCe1 proteins were upregulated in response to NH4Cl loading but not ACTZ treatment and were rather sharply downregulated after 2 wk of ACTZ treatment. ACTZ causes renal [Formula: see text] wasting and induces metabolic acidosis but inhibits the upregulation of glutamine transporter and ammoniagenic enzymes and thus suppresses ammonia synthesis and secretion in the proximal tubule, which prevented the correction of acidosis. This effect is likely mediated through the inhibition of the CA-NBCe1 metabolon complex, which results in cell alkalinization. During chronic ACTZ treatment, the downregulation of both NBCe1 and Na+/H+ exchanger 3, along with the inhibition of ammoniagenesis and [Formula: see text] generation, contributes to the maintenance of metabolic acidosis.
Collapse
Affiliation(s)
- Perwez Alam
- Division of Nephrology and Kidney C.A.R.E, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Sihame Amlal
- Division of Nephrology and Kidney C.A.R.E, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Charuhas V Thakar
- Division of Nephrology and Kidney C.A.R.E, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Hassane Amlal
- Division of Nephrology and Kidney C.A.R.E, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
7
|
Abstract
Acid-base balance is critical for normal life. Acute and chronic disturbances impact cellular energy metabolism, endocrine signaling, ion channel activity, neuronal activity, and cardiovascular functions such as cardiac contractility and vascular blood flow. Maintenance and adaptation of acid-base homeostasis are mostly controlled by respiration and kidney. The kidney contributes to acid-base balance by reabsorbing filtered bicarbonate, regenerating bicarbonate through ammoniagenesis and generation of protons, and by excreting acid. This review focuses on acid-base disorders caused by renal processes, both inherited and acquired. Distinct rare inherited monogenic diseases affecting acid-base handling in the proximal tubule and collecting duct have been identified. In the proximal tubule, mutations of solute carrier 4A4 (SLC4A4) (electrogenic Na+/HCO3--cotransporter Na+/bicarbonate cotransporter e1 [NBCe1]) and other genes such as CLCN5 (Cl-/H+-antiporter), SLC2A2 (GLUT2 glucose transporter), or EHHADH (enoyl-CoA, hydratase/3-hydroxyacyl CoA dehydrogenase) causing more generalized proximal tubule dysfunction can cause proximal renal tubular acidosis resulting from bicarbonate wasting and reduced ammoniagenesis. Mutations in adenosine triphosphate ATP6V1 (B1 H+-ATPase subunit), ATPV0A4 (a4 H+-ATPase subunit), SLC4A1 (anion exchanger 1), and FOXI1 (forkhead transcription factor) cause distal renal tubular acidosis type I. Carbonic anhydrase II mutations affect several nephron segments and give rise to a mixed proximal and distal phenotype. Finally, mutations in genes affecting aldosterone synthesis, signaling, or downstream targets can lead to hyperkalemic variants of renal tubular acidosis (type IV). More common forms of renal acidosis are found in patients with advanced stages of chronic kidney disease and are owing, at least in part, to a reduced capacity for ammoniagenesis.
Collapse
Affiliation(s)
- Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland; National Center for Competence in Research Kidney, Switzerland.
| | - Pedro H Imenez Silva
- Institute of Physiology, University of Zurich, Zurich, Switzerland; National Center for Competence in Research Kidney, Switzerland
| | - Soline Bourgeois
- Institute of Physiology, University of Zurich, Zurich, Switzerland; National Center for Competence in Research Kidney, Switzerland
| |
Collapse
|
8
|
Lee HW, Harris AN, Romero MF, Welling PA, Wingo CS, Verlander JW, Weiner ID. NBCe1-A is required for the renal ammonia and K + response to hypokalemia. Am J Physiol Renal Physiol 2019; 318:F402-F421. [PMID: 31841393 DOI: 10.1152/ajprenal.00481.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Hypokalemia increases ammonia excretion and decreases K+ excretion. The present study examined the role of the proximal tubule protein NBCe1-A in these responses. We studied mice with Na+-bicarbonate cotransporter electrogenic, isoform 1, splice variant A (NBCe1-A) deletion [knockout (KO) mice] and their wild-type (WT) littermates were provided either K+ control or K+-free diet. We also used tissue sections to determine the effect of extracellular ammonia on NaCl cotransporter (NCC) phosphorylation. The K+-free diet significantly increased proximal tubule NBCe1-A and ammonia excretion in WT mice, and NBCe1-A deletion blunted the ammonia excretion response. NBCe1-A deletion inhibited the ammoniagenic/ammonia recycling enzyme response in the cortical proximal tubule (PT), where NBCe1-A is present in WT mice. In the outer medulla, where NBCe1-A is not present, the PT ammonia metabolism response was accentuated by NBCe1-A deletion. KO mice developed more severe hypokalemia and had greater urinary K+ excretion during the K+-free diet than did WT mice. This was associated with blunting of the hypokalemia-induced change in NCC phosphorylation. NBCe1-A KO mice have systemic metabolic acidosis, but experimentally induced metabolic acidosis did not alter NCC phosphorylation. Although KO mice have impaired ammonia metabolism, experiments in tissue sections showed that lack of ammonia does impair NCC phosphorylation. Finally, urinary aldosterone was greater in KO mice than in WT mice, but neither expression of epithelial Na+ channel α-, β-, and γ-subunits nor of H+-K+-ATPase α1- or α2-subunits correlated with changes in urinary K+. We conclude that NBCe1-A is critical for the effect of diet-induced hypokalemia to increase cortical proximal tubule ammonia generation and for the expected decrease in urinary K+ excretion.
Collapse
Affiliation(s)
- Hyun-Wook Lee
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Autumn N Harris
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Michael F Romero
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Paul A Welling
- Nephrology Division, Departments of Medicine and Physiology, Johns Hopkins Medical School, Baltimore, Maryland
| | - Charles S Wingo
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida.,Nephrology and Hypertension Section, Gainesville Veterans Affairs Medical Center, Gainesville, Florida
| | - Jill W Verlander
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - I David Weiner
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida.,Nephrology and Hypertension Section, Gainesville Veterans Affairs Medical Center, Gainesville, Florida
| |
Collapse
|
9
|
Harris AN, Lee HW, Fang L, Verlander JW, Weiner ID. Differences in acidosis-stimulated renal ammonia metabolism in the male and female kidney. Am J Physiol Renal Physiol 2019; 317:F890-F905. [PMID: 31390234 DOI: 10.1152/ajprenal.00244.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Renal ammonia excretion is a critical component of acid-base homeostasis, and changes in ammonia excretion are the predominant component of increased net acid excretion in response to metabolic acidosis. We recently reported substantial sex-dependent differences in basal ammonia metabolism that correlate with sex-dependent differences in renal structure and expression of key proteins involved in ammonia metabolism. The purpose of the present study was to investigate the effect of sex on the renal ammonia response to an exogenous acid load. We studied 4-mo-old C57BL/6 mice. Ammonia excretion, which was less in male mice under basal conditions, increased in response to acid loading to a greater extent in male mice, such that maximal ammonia excretion did not differ between the sexes. Fundamental structural sex differences in the nonacid-loaded kidney persisted after acid loading, with less cortical proximal tubule volume density in the female kidney than in the male kidney, whereas collecting duct volume density was greater in the female kidney. To further investigate sex-dependent differences in the response to acid loading, we examined the expression of proteins involved in ammonia metabolism. The change in expression of phosphoenolpyruvate carboxykinase and Rh family B glycoprotein with acid loading was greater in male mice than in female mice, whereas Na+-K+-2Cl- cotransporter and inner stripe of the outer medulla intercalated cell Rh family C glycoprotein expression were significantly greater in female mice than in male mice. There was no significant sex difference in glutamine synthetase, Na+/H+ exchanger isoform 3, or electrogenic Na+-bicarbonate cotransporter 1 variant A protein expression in response to acid loading. We conclude that substantial sex-dependent differences in the renal ammonia response to acid loading enable a similar maximum ammonia excretion response.
Collapse
Affiliation(s)
- Autumn N Harris
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, Florida.,Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Hyun-Wook Lee
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Lijuan Fang
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Jill W Verlander
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - I David Weiner
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida.,Nephrology and Hypertension Section, Gainesville Veterans Administration Medical Center, Gainesville, Florida
| |
Collapse
|
10
|
Lahtinen A, Puttonen S, Vanttola P, Viitasalo K, Sulkava S, Pervjakova N, Joensuu A, Salo P, Toivola A, Härmä M, Milani L, Perola M, Paunio T. A distinctive DNA methylation pattern in insufficient sleep. Sci Rep 2019; 9:1193. [PMID: 30718923 PMCID: PMC6362278 DOI: 10.1038/s41598-018-38009-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022] Open
Abstract
Short sleep duration or insomnia may lead to an increased risk of various psychiatric and cardio-metabolic conditions. Since DNA methylation plays a critical role in the regulation of gene expression, studies of differentially methylated positions (DMPs) might be valuable for understanding the mechanisms underlying insomnia. We performed a cross-sectional genome-wide analysis of DNA methylation in relation to self-reported insufficient sleep in individuals from a community-based sample (79 men, aged 39.3 ± 7.3), and in relation to shift work disorder in an occupational cohort (26 men, aged 44.9 ± 9.0). The analysis of DNA methylation data revealed that genes corresponding to selected DMPs form a distinctive pathway: "Nervous System Development" (FDR P value < 0.05). We found that 78% of the DMPs were hypomethylated in cases in both cohorts, suggesting that insufficient sleep may be associated with loss of DNA methylation. A karyoplot revealed clusters of DMPs at various chromosomal regions, including 12 DMPs on chromosome 17, previously associated with Smith-Magenis syndrome, a rare condition comprising disturbed sleep and inverse circadian rhythm. Our findings give novel insights into the DNA methylation patterns associated with sleep loss, possibly modifying processes related to neuroplasticity and neurodegeneration. Future prospective studies are needed to confirm the observed associations.
Collapse
Affiliation(s)
- Alexandra Lahtinen
- Department of Public Health Solutions, Genomics and Biomarkers Unit, National Institute for Health and Welfare, PO Box 30, FI-00271, Helsinki, Finland.
- Department of Psychiatry, University of Helsinki and Helsinki University Central Hospital, PO Box 590, FIN-00029, HUS, Helsinki, Finland.
| | - Sampsa Puttonen
- Work Ability and Working Career, Finnish Institute of Occupational Health, PO Box 40, FI-00032, Työterveyslaitos, Helsinki, Finland
| | - Päivi Vanttola
- Work Ability and Working Career, Finnish Institute of Occupational Health, PO Box 40, FI-00032, Työterveyslaitos, Helsinki, Finland
| | | | - Sonja Sulkava
- Department of Public Health Solutions, Genomics and Biomarkers Unit, National Institute for Health and Welfare, PO Box 30, FI-00271, Helsinki, Finland
- Department of Psychiatry, University of Helsinki and Helsinki University Central Hospital, PO Box 590, FIN-00029, HUS, Helsinki, Finland
| | - Natalia Pervjakova
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, 51010, Estonia
| | - Anni Joensuu
- Department of Public Health Solutions, Genomics and Biomarkers Unit, National Institute for Health and Welfare, PO Box 30, FI-00271, Helsinki, Finland
- Diabetes and Obesity Research Program, University of Helsinki, PO Box 63, FI-00014, Helsinki, Finland
| | - Perttu Salo
- Department of Public Health Solutions, Genomics and Biomarkers Unit, National Institute for Health and Welfare, PO Box 30, FI-00271, Helsinki, Finland
| | - Auli Toivola
- Department of Public Health Solutions, Genomics and Biomarkers Unit, National Institute for Health and Welfare, PO Box 30, FI-00271, Helsinki, Finland
| | - Mikko Härmä
- Work Ability and Working Career, Finnish Institute of Occupational Health, PO Box 40, FI-00032, Työterveyslaitos, Helsinki, Finland
| | - Lili Milani
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, 51010, Estonia
| | - Markus Perola
- Department of Public Health Solutions, Genomics and Biomarkers Unit, National Institute for Health and Welfare, PO Box 30, FI-00271, Helsinki, Finland
- Diabetes and Obesity Research Program, University of Helsinki, PO Box 63, FI-00014, Helsinki, Finland
| | - Tiina Paunio
- Department of Public Health Solutions, Genomics and Biomarkers Unit, National Institute for Health and Welfare, PO Box 30, FI-00271, Helsinki, Finland.
- Department of Psychiatry, University of Helsinki and Helsinki University Central Hospital, PO Box 590, FIN-00029, HUS, Helsinki, Finland.
| |
Collapse
|
11
|
D'Aquila P, Crocco P, De Rango F, Indiveri C, Bellizzi D, Rose G, Passarino G. A Genetic Variant of ASCT2 Hampers In Vitro RNA Splicing and Correlates with Human Longevity. Rejuvenation Res 2018; 21:193-199. [DOI: 10.1089/rej.2017.1948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Patrizia D'Aquila
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende, Italy
| | - Paolina Crocco
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende, Italy
| | - Francesco De Rango
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende, Italy
| | - Cesare Indiveri
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende, Italy
| | - Dina Bellizzi
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende, Italy
| | - Giuseppina Rose
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende, Italy
| |
Collapse
|
12
|
Lister A, Bourgeois S, Imenez Silva PH, Rubio-Aliaga I, Marbet P, Walsh J, Shelton LM, Keller B, Verrey F, Devuyst O, Giesbertz P, Daniel H, Goldring CE, Copple IM, Wagner CA, Odermatt A. NRF2 regulates the glutamine transporter Slc38a3 (SNAT3) in kidney in response to metabolic acidosis. Sci Rep 2018; 8:5629. [PMID: 29618784 PMCID: PMC5884861 DOI: 10.1038/s41598-018-24000-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 03/19/2018] [Indexed: 12/28/2022] Open
Abstract
Expression of the glutamine transporter SNAT3 increases in kidney during metabolic acidosis, suggesting a role during ammoniagenesis. Microarray analysis of Nrf2 knock-out (KO) mouse kidney identified Snat3 as the most significantly down-regulated transcript compared to wild-type (WT). We hypothesized that in the absence of NRF2 the kidney would be unable to induce SNAT3 under conditions of metabolic acidosis and therefore reduce the availability of glutamine for ammoniagenesis. Metabolic acidosis was induced for 7 days in WT and Nrf2 KO mice. Nrf2 KO mice failed to induce Snat3 mRNA and protein expression during metabolic acidosis. However, there were no differences in blood pH, bicarbonate, pCO2, chloride and calcium or urinary pH, ammonium and phosphate levels. Normal induction of ammoniagenic enzymes was observed whereas several amino acid transporters showed differential regulation. Moreover, Nrf2 KO mice during acidosis showed increased expression of renal markers of oxidative stress and injury and NRF2 activity was increased during metabolic acidosis in WT kidney. We conclude that NRF2 is required to adapt the levels of SNAT3 in response to metabolic acidosis. In the absence of NRF2 and SNAT3, the kidney does not have any major acid handling defect; however, increased oxidative stress and renal injury may occur.
Collapse
Affiliation(s)
- Adam Lister
- Department of Pharmaceutical Sciences, Division of Molecular and Systems Toxicology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.,National Center for Competence in Research Kidney.CH, Zürich, Switzerland
| | - Soline Bourgeois
- Institute of Physiology, Zürich Centre for Integrative Human Physiology, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.,National Center for Competence in Research Kidney.CH, Zürich, Switzerland
| | - Pedro H Imenez Silva
- Institute of Physiology, Zürich Centre for Integrative Human Physiology, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.,National Center for Competence in Research Kidney.CH, Zürich, Switzerland
| | - Isabel Rubio-Aliaga
- Institute of Physiology, Zürich Centre for Integrative Human Physiology, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.,National Center for Competence in Research Kidney.CH, Zürich, Switzerland
| | - Philippe Marbet
- Department of Pharmaceutical Sciences, Division of Molecular and Systems Toxicology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.,National Center for Competence in Research Kidney.CH, Zürich, Switzerland
| | - Joanne Walsh
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, L69 3GE, UK
| | - Luke M Shelton
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, L69 3GE, UK
| | - Bettina Keller
- Institute of Physiology, Zürich Centre for Integrative Human Physiology, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Francois Verrey
- Institute of Physiology, Zürich Centre for Integrative Human Physiology, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.,National Center for Competence in Research Kidney.CH, Zürich, Switzerland
| | - Olivier Devuyst
- Institute of Physiology, Zürich Centre for Integrative Human Physiology, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.,National Center for Competence in Research Kidney.CH, Zürich, Switzerland
| | - Pieter Giesbertz
- Department of Biochemistry, ZIEL Research Center of Nutrition and Food Sciences, Technische Universität München, Freising, Germany
| | - Hannelore Daniel
- Department of Biochemistry, ZIEL Research Center of Nutrition and Food Sciences, Technische Universität München, Freising, Germany
| | - Christopher E Goldring
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, L69 3GE, UK
| | - Ian M Copple
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, L69 3GE, UK
| | - Carsten A Wagner
- Institute of Physiology, Zürich Centre for Integrative Human Physiology, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland. .,National Center for Competence in Research Kidney.CH, Zürich, Switzerland.
| | - Alex Odermatt
- Department of Pharmaceutical Sciences, Division of Molecular and Systems Toxicology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland. .,National Center for Competence in Research Kidney.CH, Zürich, Switzerland.
| |
Collapse
|
13
|
Weiner ID. Roles of renal ammonia metabolism other than in acid-base homeostasis. Pediatr Nephrol 2017; 32:933-942. [PMID: 27169421 PMCID: PMC5107182 DOI: 10.1007/s00467-016-3401-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 02/06/2023]
Abstract
The importance of renal ammonia metabolism in acid-base homeostasis is well known. However, the effects of renal ammonia metabolism other than in acid-base homeostasis are not as widely recognized. First, ammonia differs from almost all other solutes in the urine in that it does not result from arterial delivery. Instead, ammonia is produced by the kidney, and only a portion of the ammonia produced is excreted in the urine, with the remainder returned to the systemic circulation through the renal veins. In normal individuals, systemic ammonia addition is metabolized efficiently by the liver, but in patients with either acute or chronic liver disease, conditions that increase the addition of ammonia of renal origin to the systemic circulation can result in precipitation and/or worsening of hyperammonemia. Second, ammonia appears to serve as an intrarenal paracrine signaling molecule. Hypokalemia increases proximal tubule ammonia production and secretion as well as reabsorption in the thick ascending limb of the loop of Henle, thereby increasing delivery to the renal interstitium and the collecting duct. In the collecting duct, ammonia decreases potassium secretion and stimulates potassium reabsorption, thereby decreasing urinary potassium excretion and enabling feedback correction of the initiating hypokalemia. Finally, the stimulation of renal ammonia metabolism by hypokalemia may contribute to the development of metabolic alkalosis, which in turn can stimulate NaCl reabsorption and contribute to the intravascular volume expansion, increased blood pressure and diuretic resistance that can develop with hypokalemia. The evidence supporting these novel non-acid-base roles of renal ammonia metabolism is discussed in this review.
Collapse
Affiliation(s)
- I David Weiner
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, PO Box 100224, Gainesville, FL, 32610-0224, USA.
- Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA.
| |
Collapse
|
14
|
Abstract
Acid-base homeostasis is critical to maintenance of normal health. Renal ammonia excretion is the quantitatively predominant component of renal net acid excretion, both under basal conditions and in response to acid-base disturbances. Although titratable acid excretion also contributes to renal net acid excretion, the quantitative contribution of titratable acid excretion is less than that of ammonia under basal conditions and is only a minor component of the adaptive response to acid-base disturbances. In contrast to other urinary solutes, ammonia is produced in the kidney and then is selectively transported either into the urine or the renal vein. The proportion of ammonia that the kidney produces that is excreted in the urine varies dramatically in response to physiological stimuli, and only urinary ammonia excretion contributes to acid-base homeostasis. As a result, selective and regulated renal ammonia transport by renal epithelial cells is central to acid-base homeostasis. Both molecular forms of ammonia, NH3 and NH4+, are transported by specific proteins, and regulation of these transport processes determines the eventual fate of the ammonia produced. In this review, we discuss these issues, and then discuss in detail the specific proteins involved in renal epithelial cell ammonia transport.
Collapse
Affiliation(s)
- I David Weiner
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida; and Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Jill W Verlander
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida; and Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| |
Collapse
|
15
|
Rubio-Aliaga I, Wagner CA. Regulation and function of the SLC38A3/SNAT3 glutamine transporter. Channels (Austin) 2016; 10:440-52. [PMID: 27362266 DOI: 10.1080/19336950.2016.1207024] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Isabel Rubio-Aliaga
- a Institute of Physiology, the National Center for Competence in Research NCCR Kidney, University of Zurich , Zurich , Switzerland
| | - Carsten A Wagner
- a Institute of Physiology, the National Center for Competence in Research NCCR Kidney, University of Zurich , Zurich , Switzerland
| |
Collapse
|
16
|
Lee HW, Osis G, Handlogten ME, Lamers WH, Chaudhry FA, Verlander JW, Weiner ID. Proximal tubule-specific glutamine synthetase deletion alters basal and acidosis-stimulated ammonia metabolism. Am J Physiol Renal Physiol 2016; 310:F1229-42. [PMID: 27009341 PMCID: PMC4935770 DOI: 10.1152/ajprenal.00547.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/13/2016] [Indexed: 02/07/2023] Open
Abstract
Glutamine synthetase (GS) catalyzes the recycling of NH4 (+) with glutamate to form glutamine. GS is highly expressed in the renal proximal tubule (PT), suggesting ammonia recycling via GS could decrease net ammoniagenesis and thereby limit ammonia available for net acid excretion. The purpose of the present study was to determine the role of PT GS in ammonia metabolism under basal conditions and during metabolic acidosis. We generated mice with PT-specific GS deletion (PT-GS-KO) using Cre-loxP techniques. Under basal conditions, PT-GS-KO increased urinary ammonia excretion significantly. Increased ammonia excretion occurred despite decreased expression of key proteins involved in renal ammonia generation. After the induction of metabolic acidosis, the ability to increase ammonia excretion was impaired significantly by PT-GS-KO. The blunted increase in ammonia excretion occurred despite greater expression of multiple components of ammonia generation, including SN1 (Slc38a3), phosphate-dependent glutaminase, phosphoenolpyruvate carboxykinase, and Na(+)-coupled electrogenic bicarbonate cotransporter. We conclude that 1) GS-mediated ammonia recycling in the PT contributes to both basal and acidosis-stimulated ammonia metabolism and 2) adaptive changes in other proteins involved in ammonia metabolism occur in response to PT-GS-KO and cause an underestimation of the role of PT GS expression.
Collapse
Affiliation(s)
- Hyun-Wook Lee
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Gunars Osis
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Mary E Handlogten
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Wouter H Lamers
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Farrukh A Chaudhry
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; and
| | - Jill W Verlander
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - I David Weiner
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida; Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| |
Collapse
|
17
|
The developmental effects of pentachlorophenol on zebrafish embryos during segmentation: A systematic view. Sci Rep 2016; 6:25929. [PMID: 27181905 PMCID: PMC4867433 DOI: 10.1038/srep25929] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/25/2016] [Indexed: 11/26/2022] Open
Abstract
Pentachlorophenol (PCP) is a typical toxicant and prevailing pollutant whose toxicity has been broadly investigated. However, previous studies did not specifically investigate the underlying mechanisms of its developmental toxicity. Here, we chose zebrafish embryos as the model, exposed them to 2 different concentrations of PCP, and sequenced their entire transcriptomes at 10 and 24 hours post-fertilization (hpf). The sequencing analysis revealed that high concentrations of PCP elicited systematic responses at both time points. By combining the enrichment terms with single genes, the results were further analyzed using three categories: metabolism, transporters, and organogenesis. Hyperactive glycolysis was the most outstanding feature of the transcriptome at 10 hpf. The entire system seemed to be hypoxic, although hypoxia-inducible factor-1α (HIF1α) may have been suppressed by the upregulation of prolyl hydroxylase domain enzymes (PHDs). At 24 hpf, PCP primarily affected somitogenesis and lens formation probably resulting from the disruption of embryonic body plan at earlier stages. The proposed underlying toxicological mechanism of PCP was based on the crosstalk between each clue. Our study attempted to describe the developmental toxicity of environmental pollutants from a systematic view. Meanwhile, some features of gene expression profiling could serve as markers of human health or ecological risk.
Collapse
|
18
|
Loss of function mutation of the Slc38a3 glutamine transporter reveals its critical role for amino acid metabolism in the liver, brain, and kidney. Pflugers Arch 2015; 468:213-27. [PMID: 26490457 DOI: 10.1007/s00424-015-1742-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 09/29/2015] [Accepted: 10/02/2015] [Indexed: 01/10/2023]
Abstract
Glutamine, the most abundant amino acid in mammals, is critical for cell and organ functions. Its metabolism depends on the ability of cells to take up or release glutamine by transporters located in the plasma membrane. Several solute carrier (SLC) families transport glutamine, but the SLC38 family has been thought to be mostly responsible for glutamine transport. We demonstrate that despite the large number of glutamine transporters, the loss of Snat3/Slc38a3 glutamine transporter has a major impact on the function of organs expressing it. Snat3 mutant mice were generated by N-ethyl-N-nitrosurea (ENU) mutagenesis and showed stunted growth, altered amino acid levels, hypoglycemia, and died around 20 days after birth. Hepatic concentrations of glutamine, glutamate, leucine, phenylalanine, and tryptophan were highly reduced paralleled by downregulation of the mTOR pathway possibly linking reduced amino acid availability to impaired growth and glucose homeostasis. Snat3-deficient mice had altered urea levels paralleled by dysregulation of the urea cycle, gluconeogenesis, and glutamine synthesis. Mice were ataxic with higher glutamine but reduced glutamate and gamma-aminobutyric acid (GABA) levels in brain consistent with a major role of Snat3 in the glutamine-glutamate cycle. Renal ammonium excretion was lower, and the expression of enzymes and amino acid transporters involved in ammoniagenesis were altered. Thus, SNAT3 is a glutamine transporter required for amino acid homeostasis and determines critical functions in various organs. Despite the large number of glutamine transporters, loss of Snat3 cannot be compensated, suggesting that this transporter is a major route of glutamine transport in the liver, brain, and kidney.
Collapse
|
19
|
Weiner ID, Mitch WE, Sands JM. Urea and Ammonia Metabolism and the Control of Renal Nitrogen Excretion. Clin J Am Soc Nephrol 2015; 10:1444-58. [PMID: 25078422 PMCID: PMC4527031 DOI: 10.2215/cjn.10311013] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Renal nitrogen metabolism primarily involves urea and ammonia metabolism, and is essential to normal health. Urea is the largest circulating pool of nitrogen, excluding nitrogen in circulating proteins, and its production changes in parallel to the degradation of dietary and endogenous proteins. In addition to serving as a way to excrete nitrogen, urea transport, mediated through specific urea transport proteins, mediates a central role in the urine concentrating mechanism. Renal ammonia excretion, although often considered only in the context of acid-base homeostasis, accounts for approximately 10% of total renal nitrogen excretion under basal conditions, but can increase substantially in a variety of clinical conditions. Because renal ammonia metabolism requires intrarenal ammoniagenesis from glutamine, changes in factors regulating renal ammonia metabolism can have important effects on glutamine in addition to nitrogen balance. This review covers aspects of protein metabolism and the control of the two major molecules involved in renal nitrogen excretion: urea and ammonia. Both urea and ammonia transport can be altered by glucocorticoids and hypokalemia, two conditions that also affect protein metabolism. Clinical conditions associated with altered urine concentrating ability or water homeostasis can result in changes in urea excretion and urea transporters. Clinical conditions associated with altered ammonia excretion can have important effects on nitrogen balance.
Collapse
Affiliation(s)
- I David Weiner
- Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida; Division of Nephrology, Hypertension, and Transplantation, University of Florida College of Medicine, Gainesville, Florida;
| | - William E Mitch
- Nephrology Division, Baylor College of Medicine, Houston, Texas; and
| | - Jeff M Sands
- Nephrology Division, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
20
|
Grimm PR, Lazo-Fernandez Y, Delpire E, Wall SM, Dorsey SG, Weinman EJ, Coleman R, Wade JB, Welling PA. Integrated compensatory network is activated in the absence of NCC phosphorylation. J Clin Invest 2015; 125:2136-50. [PMID: 25893600 DOI: 10.1172/jci78558] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 02/09/2015] [Indexed: 12/11/2022] Open
Abstract
Thiazide diuretics are used to treat hypertension; however, compensatory processes in the kidney can limit antihypertensive responses to this class of drugs. Here, we evaluated compensatory pathways in SPAK kinase-deficient mice, which are unable to activate the thiazide-sensitive sodium chloride cotransporter NCC (encoded by Slc12a3). Global transcriptional profiling, combined with biochemical, cell biological, and physiological phenotyping, identified the gene expression signature of the response and revealed how it establishes an adaptive physiology. Salt reabsorption pathways were created by the coordinate induction of a multigene transport system, involving solute carriers (encoded by Slc26a4, Slc4a8, and Slc4a9), carbonic anhydrase isoforms, and V-type H⁺-ATPase subunits in pendrin-positive intercalated cells (PP-ICs) and ENaC subunits in principal cells (PCs). A distal nephron remodeling process and induction of jagged 1/NOTCH signaling, which expands the cortical connecting tubule with PCs and replaces acid-secreting α-ICs with PP-ICs, were partly responsible for the compensation. Salt reabsorption was also activated by induction of an α-ketoglutarate (α-KG) paracrine signaling system. Coordinate regulation of a multigene α-KG synthesis and transport pathway resulted in α-KG secretion into pro-urine, as the α-KG-activated GPCR (Oxgr1) increased on the PP-IC apical surface, allowing paracrine delivery of α-KG to stimulate salt transport. Identification of the integrated compensatory NaCl reabsorption mechanisms provides insight into thiazide diuretic efficacy.
Collapse
|
21
|
Bürki R, Mohebbi N, Bettoni C, Wang X, Serra AL, Wagner CA. Impaired expression of key molecules of ammoniagenesis underlies renal acidosis in a rat model of chronic kidney disease. Nephrol Dial Transplant 2014; 30:770-81. [PMID: 25523450 DOI: 10.1093/ndt/gfu384] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/19/2014] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Advanced chronic kidney disease (CKD) is associated with the development of renal metabolic acidosis. Metabolic acidosis per se may represent a trigger for progression of CKD. Renal acidosis of CKD is characterized by low urinary ammonium excretion with preserved urinary acidification indicating a defect in renal ammoniagenesis, ammonia excretion or both. The underlying molecular mechanisms, however, have not been addressed to date. METHODS We examined the Han:SPRD rat model and used a combination of metabolic studies, mRNA and protein analysis of renal molecules involved in acid-base handling. RESULTS We demonstrate that rats with reduced kidney function as evident from lower creatinine clearance, lower haematocrit, higher plasma blood urea nitrogen, creatinine, phosphate and potassium had metabolic acidosis that could be aggravated by HCl acid loading. Urinary ammonium excretion was highly reduced whereas urinary pH was more acidic in CKD compared with control animals. The abundance of key enzymes and transporters of proximal tubular ammoniagenesis (phosphate-dependent glutaminase, PEPCK and SNAT3) and bicarbonate transport (NBCe1) was reduced in CKD compared with control animals. In the collecting duct, normal expression of the B1 H(+)-ATPase subunit is in agreement with low urinary pH. In contrast, the RhCG ammonia transporter, critical for the final secretion of ammonia into urine was strongly down-regulated in CKD animals. CONCLUSION In the Han:SPRD rat model for CKD, key molecules required for renal ammoniagenesis and ammonia excretion are highly down-regulated providing a possible molecular explanation for the development and maintenance of renal acidosis in CKD patients.
Collapse
Affiliation(s)
- Remy Bürki
- Institute of Physiology and ZIHP, University of Zurich, Zurich, Switzerland
| | - Nilufar Mohebbi
- Institute of Physiology and ZIHP, University of Zurich, Zurich, Switzerland Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Carla Bettoni
- Institute of Physiology and ZIHP, University of Zurich, Zurich, Switzerland
| | - Xueqi Wang
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland Department of Nephrology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Andreas L Serra
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Carsten A Wagner
- Institute of Physiology and ZIHP, University of Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Pochini L, Scalise M, Galluccio M, Indiveri C. Membrane transporters for the special amino acid glutamine: structure/function relationships and relevance to human health. Front Chem 2014; 2:61. [PMID: 25157349 PMCID: PMC4127817 DOI: 10.3389/fchem.2014.00061] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 07/16/2014] [Indexed: 12/26/2022] Open
Abstract
Glutamine together with glucose is essential for body's homeostasis. It is the most abundant amino acid and is involved in many biosynthetic, regulatory and energy production processes. Several membrane transporters which differ in transport modes, ensure glutamine homeostasis by coordinating its absorption, reabsorption and delivery to tissues. These transporters belong to different protein families, are redundant and ubiquitous. Their classification, originally based on functional properties, has recently been associated with the SLC nomenclature. Function of glutamine transporters is studied in cells over-expressing the transporters or, more recently in proteoliposomes harboring the proteins extracted from animal tissues or over-expressed in microorganisms. The role of the glutamine transporters is linked to their transport modes and coupling with Na+ and H+. Most transporters share specificity for other neutral or cationic amino acids. Na+-dependent co-transporters efficiently accumulate glutamine while antiporters regulate the pools of glutamine and other amino acids. The most acknowledged glutamine transporters belong to the SLC1, 6, 7, and 38 families. The members involved in the homeostasis are the co-transporters B0AT1 and the SNAT members 1, 2, 3, 5, and 7; the antiporters ASCT2, LAT1 and 2. The last two are associated to the ancillary CD98 protein. Some information on regulation of the glutamine transporters exist, which, however, need to be deepened. No information at all is available on structures, besides some homology models obtained using similar bacterial transporters as templates. Some models of rat and human glutamine transporters highlight very similar structures between the orthologs. Moreover the presence of glycosylation and/or phosphorylation sites located at the extracellular or intracellular faces has been predicted. ASCT2 and LAT1 are over-expressed in several cancers, thus representing potential targets for pharmacological intervention.
Collapse
Affiliation(s)
- Lorena Pochini
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria Arcavacata di Rende, Italy
| | - Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria Arcavacata di Rende, Italy
| | - Michele Galluccio
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria Arcavacata di Rende, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria Arcavacata di Rende, Italy
| |
Collapse
|
23
|
Balkrishna S, Bröer A, Welford SM, Hatzoglou M, Bröer S. Expression of glutamine transporter Slc38a3 (SNAT3) during acidosis is mediated by a different mechanism than tissue-specific expression. Cell Physiol Biochem 2014; 33:1591-606. [PMID: 24854847 PMCID: PMC4424794 DOI: 10.1159/000358722] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2014] [Indexed: 02/04/2023] Open
Abstract
Background Despite homeostatic pH regulation, systemic and cellular pH changes take place and strongly influence metabolic processes. Transcription of the glutamine transporter SNAT3 (Slc38a3) for instance is highly up-regulated in the kidney during metabolic acidosis to provide glutamine for ammonia production. Methods Slc38a3 promoter activity and messenger RNA stability were measured in cultured cells in response to different extracellular pH values. Results Up-regulation of SNAT3 mRNA was mediated both by the stabilization of its mRNA and by the up-regulation of gene transcription. Stabilisation of the mRNA involved a pH-response element, while enhanced transcription made use of a second pH-sensitive Sp1 binding site in addition to a constitutive Sp1 binding site. Transcriptional regulation dominated the early response to acidosis, while mRNA stability was more important for chronic adaptation. Tissue-specific expression of SNAT3, by contrast, appeared to be controlled by promoter methylation and histone modifications. Conclusions Regulation of SNAT3 gene expression by extracellular pH involves post-transcriptional and transcriptional mechanisms, the latter being distinct from the mechanisms that control the tissue-specific expression of the gene.
Collapse
Affiliation(s)
- Sarojini Balkrishna
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | | | | | | | | |
Collapse
|
24
|
Weiner ID, Verlander JW. Ammonia transport in the kidney by Rhesus glycoproteins. Am J Physiol Renal Physiol 2014; 306:F1107-20. [PMID: 24647713 PMCID: PMC4024734 DOI: 10.1152/ajprenal.00013.2014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/14/2014] [Indexed: 12/26/2022] Open
Abstract
Renal ammonia metabolism is a fundamental element of acid-base homeostasis, comprising a major component of both basal and physiologically altered renal net acid excretion. Over the past several years, a fundamental change in our understanding of the mechanisms of renal epithelial cell ammonia transport has occurred, replacing the previous model which was based upon diffusion equilibrium for NH3 and trapping of NH4(+) with a new model in which specific and regulated transport of both NH3 and NH4(+) across renal epithelial cell membranes via specific membrane proteins is required for normal ammonia metabolism. A major advance has been the recognition that members of a recently recognized transporter family, the Rhesus glycoprotein family, mediate critical roles in renal and extrarenal ammonia transport. The erythroid-specific Rhesus glycoprotein, Rh A Glycoprotein (Rhag), was the first Rhesus glycoprotein recognized as an ammonia-specific transporter. Subsequently, the nonerythroid Rh glycoproteins, Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg), were cloned and identified as ammonia transporters. They are expressed in specific cell populations and membrane domains in distal renal epithelial cells, where they facilitate ammonia secretion. In this review, we discuss the distribution of Rhbg and Rhcg in the kidney, the regulation of their expression and activity in physiological disturbances, the effects of genetic deletion on renal ammonia metabolism, and the molecular mechanisms of Rh glycoprotein-mediated ammonia transport.
Collapse
Affiliation(s)
- I David Weiner
- Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville Florida; and Division of Nephrology, Hypertension, and Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Jill W Verlander
- Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville Florida; and
| |
Collapse
|
25
|
Bounoure L, Ruffoni D, Müller R, Kuhn GA, Bourgeois S, Devuyst O, Wagner CA. The role of the renal ammonia transporter Rhcg in metabolic responses to dietary protein. J Am Soc Nephrol 2014; 25:2040-52. [PMID: 24652796 DOI: 10.1681/asn.2013050466] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
High dietary protein imposes a metabolic acid load requiring excretion and buffering by the kidney. Impaired acid excretion in CKD, with potential metabolic acidosis, may contribute to the progression of CKD. Here, we investigated the renal adaptive response of acid excretory pathways in mice to high-protein diets containing normal or low amounts of acid-producing sulfur amino acids (SAA) and examined how this adaption requires the RhCG ammonia transporter. Diets rich in SAA stimulated expression of enzymes and transporters involved in mediating NH4 (+) reabsorption in the thick ascending limb of the loop of Henle. The SAA-rich diet increased diuresis paralleled by downregulation of aquaporin-2 (AQP2) water channels. The absence of Rhcg transiently reduced NH4 (+) excretion, stimulated the ammoniagenic pathway more strongly, and further enhanced diuresis by exacerbating the downregulation of the Na(+)/K(+)/2Cl(-) cotransporter (NKCC2) and AQP2, with less phosphorylation of AQP2 at serine 256. The high protein acid load affected bone turnover, as indicated by higher Ca(2+) and deoxypyridinoline excretion, phenomena exaggerated in the absence of Rhcg. In animals receiving a high-protein diet with low SAA content, the kidney excreted alkaline urine, with low levels of NH4 (+) and no change in bone metabolism. Thus, the acid load associated with high-protein diets causes a concerted response of various nephron segments to excrete acid, mostly in the form of NH4 (+), that requires Rhcg. Furthermore, bone metabolism is altered by a high-protein acidogenic diet, presumably to buffer the acid load.
Collapse
Affiliation(s)
- Lisa Bounoure
- Institute of Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; and
| | - Davide Ruffoni
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | | | - Soline Bourgeois
- Institute of Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; and
| | - Olivier Devuyst
- Institute of Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; and
| | - Carsten A Wagner
- Institute of Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; and
| |
Collapse
|
26
|
|
27
|
The SLC38 family of sodium-amino acid co-transporters. Pflugers Arch 2013; 466:155-72. [PMID: 24193407 DOI: 10.1007/s00424-013-1393-y] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/16/2013] [Accepted: 10/20/2013] [Indexed: 12/13/2022]
Abstract
Transporters of the SLC38 family are found in all cell types of the body. They mediate Na(+)-dependent net uptake and efflux of small neutral amino acids. As a result they are particularly expressed in cells that grow actively, or in cells that carry out significant amino acid metabolism, such as liver, kidney and brain. SLC38 transporters occur in membranes that face intercellular space or blood vessels, but do not occur in the apical membrane of absorptive epithelia. In the placenta, they play a significant role in the transfer of amino acids to the foetus. Members of the SLC38 family are highly regulated in response to amino acid depletion, hypertonicity and hormonal stimuli. SLC38 transporters play an important role in amino acid signalling and have been proposed to act as transceptors independent of their transport function. The structure of SLC38 transporters is characterised by the 5 + 5 inverted repeat fold, which is observed in a wide variety of transport proteins.
Collapse
|
28
|
Nissen-Meyer LSH, Chaudhry FA. Protein Kinase C Phosphorylates the System N Glutamine Transporter SN1 (Slc38a3) and Regulates Its Membrane Trafficking and Degradation. Front Endocrinol (Lausanne) 2013; 4:138. [PMID: 24106489 PMCID: PMC3788335 DOI: 10.3389/fendo.2013.00138] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/16/2013] [Indexed: 01/11/2023] Open
Abstract
The system N transporter SN1 (also known as SNAT3) is enriched on perisynaptic astroglial cell membranes. SN1 mediates electroneutral and bidirectional glutamine transport, and regulates the intracellular as well as the extracellular concentrations of glutamine. We hypothesize that SN1 participates in the glutamate/γ-aminobutyric acid (GABA)-glutamine cycle and regulates the amount of glutamine supplied to the neurons for replenishment of the neurotransmitter pools of glutamate and GABA. We also hypothesize that its activity on the plasma membrane is regulated by protein kinase C (PKC)-mediated phosphorylation and that SN1 activity has an impact on synaptic plasticity. This review discusses reports on the regulation of SN1 by PKC and presents a consolidated model for regulation and degradation of SN1 and the subsequent functional implications. As SN1 function is likely also regulated by PKC-mediated phosphorylation in peripheral organs, the same mechanisms may, thus, have impact on e.g., pH regulation in the kidney, urea formation in the liver, and insulin secretion in the pancreas.
Collapse
Affiliation(s)
- Lise Sofie H. Nissen-Meyer
- The Biotechnology Centre, University of Oslo, Oslo, Norway
- The Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- *Correspondence: Lise Sofie H. Nissen-Meyer and Farrukh Abbas Chaudhry, The Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110 Blindern, 0317 Oslo, Norway e-mail: ;
| | - Farrukh Abbas Chaudhry
- The Biotechnology Centre, University of Oslo, Oslo, Norway
- The Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- *Correspondence: Lise Sofie H. Nissen-Meyer and Farrukh Abbas Chaudhry, The Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110 Blindern, 0317 Oslo, Norway e-mail: ;
| |
Collapse
|
29
|
Increasing fruits and vegetables in midlife women: a feasibility study. Nutr Res 2013; 33:543-51. [DOI: 10.1016/j.nutres.2013.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 02/07/2023]
|
30
|
Verlander JW, Chu D, Lee HW, Handlogten ME, Weiner ID. Expression of glutamine synthetase in the mouse kidney: localization in multiple epithelial cell types and differential regulation by hypokalemia. Am J Physiol Renal Physiol 2013; 305:F701-13. [PMID: 23804452 DOI: 10.1152/ajprenal.00030.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Renal glutamine synthetase catalyzes the reaction of NH4+ with glutamate, forming glutamine and decreasing the ammonia available for net acid excretion. The purpose of the present study was to determine glutamine synthetase's specific cellular expression in the mouse kidney and its regulation by hypokalemia, a common cause of altered renal ammonia metabolism. Glutamine synthetase mRNA and protein were present in the renal cortex and in both the outer and inner stripes of the outer medulla. Immunohistochemistry showed glutamine synthetase expression throughout the entire proximal tubule and in nonproximal tubule cells. Double immunolabel with cell-specific markers demonstrated glutamine synthetase expression in type A intercalated cells, non-A, non-B intercalated cells, and distal convoluted tubule cells, but not in principal cells, type B intercalated cells, or connecting segment cells. Hypokalemia induced by feeding a nominally K+ -free diet for 12 days decreased glutamine synthetase expression throughout the entire proximal tubule and in the distal convoluted tubule and simultaneously increased glutamine synthetase expression in type A intercalated cells in both the cortical and outer medullary collecting duct. We conclude that glutamine synthetase is widely and specifically expressed in renal epithelial cells and that the regulation of expression differs in specific cell populations. Glutamine synthetase is likely to mediate an important role in renal ammonia metabolism.
Collapse
Affiliation(s)
- Jill W Verlander
- Division of Nephrology, Hypertension and Transplantation, Univ. of Florida College of Medicine, PO Box 100224, Gainesville, FL 32610, USA.
| | | | | | | | | |
Collapse
|
31
|
Scialla JJ, Anderson CAM. Dietary acid load: a novel nutritional target in chronic kidney disease? Adv Chronic Kidney Dis 2013; 20:141-9. [PMID: 23439373 PMCID: PMC3604792 DOI: 10.1053/j.ackd.2012.11.001] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 11/06/2012] [Accepted: 11/12/2012] [Indexed: 02/07/2023]
Abstract
Nonvolatile acid is produced from the metabolism of organic sulfur in dietary protein and the production of organic anions during the combustion of neutral foods. Organic anion salts that are found primarily in plant foods are directly absorbed in the gastrointestinal tract and yield bicarbonate. The difference between endogenously produced nonvolatile acid and absorbed alkali precursors yields the dietary acid load, technically known as the net endogenous acid production, and must be excreted by the kidney to maintain acid-base balance. Although typically 1 mEq/kg/day, dietary acid load is lower with greater intake of fruits and vegetables. In the setting of CKD, a high dietary acid load invokes adaptive mechanisms to increase acid excretion despite reduced nephron number, such as increased per nephron ammoniagenesis and augmented distal acid excretion mediated by the renin-angiotensin system and endothelin-1. These adaptations may promote kidney injury. Additionally, high dietary acid loads produce low-grade, subclinical acidosis that may result in bone and muscle loss. Early studies suggest that lowering the dietary acid load can improve subclinical acidosis, preserve bone and muscle, and slow the decline of glomerular filtration rate in animal models and humans. Studies focusing on hard clinical outcomes are needed.
Collapse
Affiliation(s)
- Julia J Scialla
- Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | | |
Collapse
|
32
|
Bishop JM, Lee HW, Handlogten ME, Han KH, Verlander JW, Weiner ID. Intercalated cell-specific Rh B glycoprotein deletion diminishes renal ammonia excretion response to hypokalemia. Am J Physiol Renal Physiol 2013; 304:F422-31. [PMID: 23220726 PMCID: PMC3566498 DOI: 10.1152/ajprenal.00301.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 12/04/2012] [Indexed: 11/22/2022] Open
Abstract
The ammonia transporter family member, Rh B Glycoprotein (Rhbg), is an ammonia-specific transporter heavily expressed in the kidney and is necessary for the normal increase in ammonia excretion in response to metabolic acidosis. Hypokalemia is a common clinical condition in which there is increased renal ammonia excretion despite the absence of metabolic acidosis. The purpose of this study was to examine Rhbg's role in this response through the use of mice with intercalated cell-specific Rhbg deletion (IC-Rhbg-KO). Hypokalemia induced by feeding a K(+)-free diet increased urinary ammonia excretion significantly. In mice with intact Rhbg expression, hypokalemia increased Rhbg protein expression in intercalated cells in the cortical collecting duct (CCD) and in the outer medullary collecting duct (OMCD). Deletion of Rhbg from intercalated cells inhibited hypokalemia-induced changes in urinary total ammonia excretion significantly and completely prevented hypokalemia-induced increases in urinary ammonia concentration, but did not alter urinary pH. We conclude that hypokalemia increases Rhbg expression in intercalated cells in the cortex and outer medulla and that intercalated cell Rhbg expression is necessary for the normal increase in renal ammonia excretion in response to hypokalemia.
Collapse
Affiliation(s)
- Jesse M Bishop
- Division of Nephrology, Hypertension, and Transplantation, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Renal ammonia metabolism and transport mediates a central role in acid-base homeostasis. In contrast to most renal solutes, the majority of renal ammonia excretion derives from intrarenal production, not from glomerular filtration. Renal ammoniagenesis predominantly results from glutamine metabolism, which produces 2 NH4(+) and 2 HCO3(-) for each glutamine metabolized. The proximal tubule is the primary site for ammoniagenesis, but there is evidence for ammoniagenesis by most renal epithelial cells. Ammonia produced in the kidney is either excreted into the urine or returned to the systemic circulation through the renal veins. Ammonia excreted in the urine promotes acid excretion; ammonia returned to the systemic circulation is metabolized in the liver in a HCO3(-)-consuming process, resulting in no net benefit to acid-base homeostasis. Highly regulated ammonia transport by renal epithelial cells determines the proportion of ammonia excreted in the urine versus returned to the systemic circulation. The traditional paradigm of ammonia transport involving passive NH3 diffusion, protonation in the lumen and NH4(+) trapping due to an inability to cross plasma membranes is being replaced by the recognition of limited plasma membrane NH3 permeability in combination with the presence of specific NH3-transporting and NH4(+)-transporting proteins in specific renal epithelial cells. Ammonia production and transport are regulated by a variety of factors, including extracellular pH and K(+), and by several hormones, such as mineralocorticoids, glucocorticoids and angiotensin II. This coordinated process of regulated ammonia production and transport is critical for the effective maintenance of acid-base homeostasis.
Collapse
Affiliation(s)
- I David Weiner
- Nephrology and Hypertension Section, NF/SGVHS, Gainesville, Florida, USA.
| | | |
Collapse
|
34
|
Lee HW, Verlander JW, Bishop JM, Handlogten ME, Han KH, Weiner ID. Renal ammonia excretion in response to hypokalemia: effect of collecting duct-specific Rh C glycoprotein deletion. Am J Physiol Renal Physiol 2012. [PMID: 23195675 DOI: 10.1152/ajprenal.00300.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The Rhesus factor protein, Rh C glycoprotein (Rhcg), is an ammonia transporter whose expression in the collecting duct is necessary for normal ammonia excretion both in basal conditions and in response to metabolic acidosis. Hypokalemia is a common clinical condition associated with increased renal ammonia excretion. In contrast to basal conditions and metabolic acidosis, increased ammonia excretion during hypokalemia can lead to an acid-base disorder, metabolic alkalosis, rather than maintenance of acid-base homeostasis. The purpose of the current studies was to determine Rhcg's role in hypokalemia-stimulated renal ammonia excretion through the use of mice with collecting duct-specific Rhcg deletion (CD-Rhcg-KO). In mice with intact Rhcg expression, a K(+)-free diet increased urinary ammonia excretion and urine alkalinization and concurrently increased Rhcg expression in the collecting duct in the outer medulla. Immunohistochemistry and immunogold electron microscopy showed hypokalemia increased both apical and basolateral Rhcg expression. In CD-Rhcg-KO, a K(+)-free diet increased urinary ammonia excretion and caused urine alkalinization, and the magnitude of these changes did not differ from mice with intact Rhcg expression. In mice on a K(+)-free diet, CD-Rhcg-KO increased phosphate-dependent glutaminase (PDG) expression in the outer medulla. We conclude that hypokalemia increases collecting duct Rhcg expression, that this likely contributes to the hypokalemia-stimulated increase in urinary ammonia excretion, and that adaptive increases in PDG expression can compensate for the absence of collecting duct Rhcg.
Collapse
Affiliation(s)
- Hyun-Wook Lee
- Division of Nephrology, Hypertension, and Transplantation, University of Florida College of Medicine, Gainesville, FL, USA
| | | | | | | | | | | |
Collapse
|
35
|
Lier N, Gresko N, Chiara M, Loffing-Cueni D, Loffing J. Immunofluorescent localization of the Rab-GAP protein TBC1D4 (AS160) in mouse kidney. Histochem Cell Biol 2012; 138:101-12. [DOI: 10.1007/s00418-012-0944-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2012] [Indexed: 10/28/2022]
|
36
|
Iversen NK, Malte H, Baatrup E, Wang T. The normal acid-base status of mice. Respir Physiol Neurobiol 2011; 180:252-7. [PMID: 22172772 DOI: 10.1016/j.resp.2011.11.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 11/24/2011] [Accepted: 11/29/2011] [Indexed: 11/18/2022]
Abstract
Rodent models are commonly used for various physiological studies including acid-base regulation. Despite the widespread use of especially genetic modified mice, little attention have been made to characterise the normal acid-base status in these animals in order to reveal proper control values. Furthermore, several studies report blood gas values obtained in anaesthetised animals. We, therefore, decided to characterise blood CO(2) binding characteristic of mouse blood in vitro and to characterise normal acid-base status in conscious BALBc mice. In vitro CO(2) dissociation curves, performed on whole blood equilibrated to various PCO₂ levels in rotating tonometers, revealed a typical mammalian pK' (pK'=7.816-0.234 × pH (r=0.34)) and a non-bicarbonate buffer capacity (16.1 ± 2.6 slyke). To measure arterial acid-base status, small blood samples were taken from undisturbed mice with indwelling catheters in the carotid artery. In these animals, pH was 7.391 ± 0.026, plasma [HCO(3)(-)] 18.4 ± 0.83 mM, PCO₂ 30.3 ± 2.1 mm Hg and lactate concentration 4.6 ± 0.7 mM. Our study, therefore, shows that mice have an arterial pH that resembles other mammals, although arterial PCO₂ tends to be lower than in larger mammals. However, pH from arterial blood sampled from mice anaesthetised with isoflurane was significantly lower (pH 7.239 ± 0.021), while plasma [HCO(3)(-)] was 18.5 ± 1.4 mM, PCO₂ 41.9 ± 2.9 mm Hg and lactate concentration 4.48 ± 0.67 mM. Furthermore, we measured metabolism and ventilation (V(E)) in order to determine the ventilation requirements (VE/VO₂) to answer whether small mammals tend to hyperventilate. We recommend, therefore, that studies on acid-base regulation in mice should be based on samples taken for indwelling catheters rather than cardiac puncture of terminally anaesthetised mice.
Collapse
Affiliation(s)
- Nina K Iversen
- Zoophysiology, Department of Bioscience, Aarhus University, Denmark.
| | | | | | | |
Collapse
|
37
|
Abu Hossain S, Chaudhry FA, Zahedi K, Siddiqui F, Amlal H. Cellular and molecular basis of increased ammoniagenesis in potassium deprivation. Am J Physiol Renal Physiol 2011; 301:F969-78. [PMID: 21795646 DOI: 10.1152/ajprenal.00010.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypokalemia is associated with increased ammoniagenesis and stimulation of net acid excretion by the kidney in both humans and experimental animals. The molecular mechanisms underlying these effects remain unknown. Toward this end, rats were placed in metabolic cages and fed a control or K(+)-deficient diet (KD) for up to 6 days. Rats subjected to KD showed normal acid-base status and serum electrolytes composition. Interestingly, urinary NH(4)(+) excretion increased significantly and correlated with a parallel decrease in urine K(+) excretion in KD vs. control animals. Molecular studies showed a specific upregulation of the glutamine transporter SN1, which correlated with the upregulation of glutaminase (GA), glutamate dehydrogenase (GDH), and phosphoenolpyruvate carboxykinase. These effects occurred as early as day 2 of KD. Rats subjected to a combined KD and 280 mM NH(4)Cl loading (to induce metabolic acidosis) for 2 days showed an additive increase in NH(4)(+) excretion along with an additive increment in the expression levels of ammoniagenic enzymes GA and GDH compared with KD or NH(4)Cl loading alone. The incubation of cultured proximal tubule cells NRK 52E or LLC-PK(1) in low-K(+) medium did not affect NH(4)(+) production and did not alter the expression of SN1, GA, or GDH in NRK cells. These results demonstrate that K(+) deprivation stimulates ammoniagenesis through a coordinated upregulation of glutamine transporter SN1 and ammoniagenesis enzymes. This effect is developed before the onset of hypokalemia. The signaling pathway mediating these events is likely independent of KD-induced intracellular acidosis. Finally, the correlation between increased NH(4)(+) production and decreased K(+) excretion indicate that NH(4)(+) synthesis and transport likely play an important role in renal K(+) conservation during hypokalemia.
Collapse
Affiliation(s)
- Shaikh Abu Hossain
- Center on Genetics of Transport and Epithelial Biology and Department of Medicine, University of Cincinnati, Cincinnati, Ohio 45267-0585, USA
| | | | | | | | | |
Collapse
|
38
|
Han KH, Lee HW, Handlogten ME, Bishop JM, Levi M, Kim J, Verlander JW, Weiner ID. Effect of hypokalemia on renal expression of the ammonia transporter family members, Rh B Glycoprotein and Rh C Glycoprotein, in the rat kidney. Am J Physiol Renal Physiol 2011; 301:F823-32. [PMID: 21753075 DOI: 10.1152/ajprenal.00266.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypokalemia is a common electrolyte disorder that increases renal ammonia metabolism and can cause the development of an acid-base disorder, metabolic alkalosis. The ammonia transporter family members, Rh B glycoprotein (Rhbg) and Rh C glycoprotein (Rhcg), are expressed in the distal nephron and collecting duct and mediate critical roles in acid-base homeostasis by facilitating ammonia secretion. In the current studies, the effect of hypokalemia on renal Rhbg and Rhcg expression was examined. Normal Sprague-Dawley rats received either K(+)-free or control diets for 2 wk. Rats receiving the K(+)-deficient diet developed hypokalemia and metabolic alkalosis associated with significant increases in both urinary ammonia excretion and urine pH. Rhcg expression increased in the outer medullary collecting duct (OMCD). In OMCD intercalated cells, hypokalemia resulted in more discrete apical Rhcg expression and a marked increase in apical plasma membrane immunolabel. In principal cells, in the OMCD, hypokalemia increased both apical and basolateral Rhcg immunolabel intensity. Cortical Rhcg expression was not detectably altered by immunohistochemistry, although there was a slight decrease in total expression by immunoblot analysis. Rhbg protein expression was decreased slightly in the cortex and not detectably altered in the outer medulla. We conclude that in rat OMCD, hypokalemia increases Rhcg expression, causes more polarized apical expression in intercalated cells, and increases both apical and basolateral expression in the principal cell. Increased plasma membrane Rhcg expression in response to hypokalemia in the rat, particularly in the OMCD, likely contributes to the increased ammonia excretion and thereby to the development of metabolic alkalosis.
Collapse
Affiliation(s)
- Ki-Hwan Han
- Anatomy Department, Ewha Womans University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Ruderisch N, Virgintino D, Makrides V, Verrey F. Differential axial localization along the mouse brain vascular tree of luminal sodium-dependent glutamine transporters Snat1 and Snat3. J Cereb Blood Flow Metab 2011; 31:1637-47. [PMID: 21364602 PMCID: PMC3137466 DOI: 10.1038/jcbfm.2011.21] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A specialized brain vasculature is key for establishing and maintaining brain interstitial fluid homeostasis, which for most amino acids (AAs) are ∼10% plasma levels. Indeed, regulation of AA homeostasis seems critical for normal central nervous system functions, and disturbances in brain levels have both direct and indirect roles in several neuropathologies. One mechanism contributing to the plasma to brain AA gradients involves polarized expression of solute carrier (SLC) family transporters on blood-brain barrier (BBB) endothelial cells. Of particular interest is the localization of sodium-dependent transporters that can actively move substrates against their concentration gradient. In this study, the in vivo endothelial membrane localization of the sodium-dependent glutamine transporters Snat3 (Slc38a3) and Snat1 (Slc38a1) was investigated in the mouse brain microvasculature using immunofluorescent colocalization with cellular markers. In addition, luminal membrane expression was probed by in vivo biotinylation. A portion of both Snat3 and Snat1 vascular expressions was localized on luminal membranes. Importantly, Snat1 expression was restricted to larger cortical microvessels, whereas Snat3 was additionally expressed on BBB capillary membranes. This differential expression of system A (Snat1) versus system N (Snat3) transporters suggests distinct roles for Snats in the cerebral vasculature and is consistent with Snat3 involvement in net transendothelial BBB AA transport.
Collapse
Affiliation(s)
- Nadine Ruderisch
- Institute of Physiology and Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
40
|
Wagner CA, Devuyst O, Belge H, Bourgeois S, Houillier P. The rhesus protein RhCG: a new perspective in ammonium transport and distal urinary acidification. Kidney Int 2011; 79:154-61. [DOI: 10.1038/ki.2010.386] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
41
|
Chen G, Yang Y, Fröhlich O, Klein JD, Sands JM. Suppression subtractive hybridization analysis of low-protein diet- and vitamin D-induced gene expression from rat kidney inner medullary base. Physiol Genomics 2010; 41:203-11. [PMID: 20197420 DOI: 10.1152/physiolgenomics.00129.2009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Protein restriction and hypercalcemia result in a urinary concentrating defect in rats and humans. Previous tubular perfusion studies show that there is an increased active urea transport activity in the initial inner medullary (IM) collecting duct in low-protein diet (LPD) and vitamin D (Vit D) animal models. To investigate the possible mechanisms that cause the urinary concentrating defect and to clone the new active urea transporter, we employed a modified two-tester suppression subtractive hybridization (ttSSH) approach and examined gene expression induced by LPD and Vit D in kidney IM base. Approximately 600 clones from the subtracted library were randomly selected; 150 clones were further confirmed to be the true positive genes by slot blot hybridization with subtracted probes from LPD and Vit D and sent for DNA sequencing. We identified 10 channel/transporter genes that were upregulated in IM base in LPD and Vit D animal models; 8 were confirmed by real-time PCR. These genes include aquaporin 2 (AQP2), two-pore calcium channel protein 2, brain-specific organic cation transporter, Na(+)- and H(+)-coupled glutamine transporter, and solute carrier family 25. Nine genes are totally new, and twelve are uncharacterized hypothetical proteins. Among them, four genes were shown to be new transmembrane proteins as judged by Kyte-Doolittle hydrophobic plot analysis. ttSSH provides a useful method to identify new genes from two conditioned populations.
Collapse
|