1
|
Li Q, Yang Z, Zang R, Liu S, Yu L, Wang J, Wang C, Wang X, Sun S. Clinical features and genetic analysis of 15 Chinese children with dent disease. Ren Fail 2024; 46:2349133. [PMID: 38726999 PMCID: PMC11089919 DOI: 10.1080/0886022x.2024.2349133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/19/2024] [Indexed: 05/15/2024] Open
Abstract
OBJECTIVE The clinical characteristics, genetic mutation spectrum, treatment strategies and prognoses of 15 children with Dent disease were retrospectively analyzed to improve pediatricians' awareness of and attention to this disease. METHODS We analyzed the clinical and laboratory data of 15 Chinese children with Dent disease who were diagnosed and treated at our hospital between January 2017 and May 2023 and evaluated the expression of the CLCN5 and OCRL1 genes. RESULTS All 15 patients were male and complained of proteinuria, and the incidence of low-molecular-weight proteinuria (LMWP) was 100.0% in both Dent disease 1 (DD1) and Dent disease 2 (DD2) patients. The incidence of hypercalciuria was 58.3% (7/12) and 66.7% (2/3) in DD1 and DD2 patients, respectively. Nephrocalcinosis and nephrolithiasis were found in 16.7% (2/12) and 8.3% (1/12) of DD1 patients, respectively. Renal biopsy revealed focal segmental glomerulosclerosis (FSGS) in 1 patient, minimal change lesion in 5 patients, and small focal acute tubular injury in 1 patient. A total of 11 mutations in the CLCN5 gene were detected, including 3 missense mutations (25.0%, c.1756C > T, c.1166T > G, and c.1618G > A), 5 frameshift mutations (41.7%, c.407delT, c.1702_c.1703insC, c.137delC, c.665_666delGGinsC, and c.2200delG), and 3 nonsense mutations (25.0%, c.776G > A, c.1609C > T, and c.1152G > A). There was no significant difference in age or clinical phenotype among patients with different mutation types (p > 0.05). All three mutations in the OCRL1 gene were missense mutations (c.1477C > T, c.952C > T, and c.198A > G). CONCLUSION Pediatric Dent disease is often misdiagnosed. Protein electrophoresis and genetic testing can help to provide an early and correct diagnosis.
Collapse
Affiliation(s)
- Qian Li
- Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
- Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, P.R. China
| | - Zhenle Yang
- Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
- Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, P.R. China
| | - Ruixian Zang
- Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
- Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, P.R. China
| | - Suwen Liu
- Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
- Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, P.R. China
| | - Lichun Yu
- Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
- Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, P.R. China
| | - Jing Wang
- Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
- Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, P.R. China
| | - Cong Wang
- Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
- Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, P.R. China
| | - Xiaoyuan Wang
- Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
- Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, P.R. China
| | - Shuzhen Sun
- Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
- Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, P.R. China
| |
Collapse
|
2
|
Sakhi IB, De Combiens E, Frachon N, Durussel F, Brideau G, Nemazanyy I, Frère P, Thévenod F, Lee WK, Zeng Q, Klein C, Lourdel S, Bignon Y. A novel transgenic mouse model highlights molecular disruptions involved in the pathogenesis of Dent disease 1. Gene 2024; 928:148766. [PMID: 39019097 DOI: 10.1016/j.gene.2024.148766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Dent disease (DD) is a hereditary renal disorder characterized by low molecular weight (LMW) proteinuria and progressive renal failure. Inactivating mutations of the CLCN5 gene encoding the 2Cl-/H+exchanger ClC-5 have been identified in patients with DD type 1. ClC-5 is essentially expressed in proximal tubules (PT) where it is thought to play a role in maintaining an efficient endocytosis of LMW proteins. However, the exact pathological roles of ClC-5 in progressive dysfunctions observed in DD type 1 are still unclear. To address this issue, we designed a mouse model carrying the most representative type of ClC-5 missense mutations found in DD patients. These mice showed a characteristic DD type 1 phenotype accompanied by altered endo-lysosomal system and autophagy functions. With ageing, KI mice showed increased renal fibrosis, apoptosis and major changes in cell metabolic functions as already suggested in previous DD models. Furthermore, we made the interesting new discovery that the Lipocalin-2-24p3R pathway might be involved in the progression of the disease. These results suggest a crosstalk between the proximal and distal nephron in the pathogenesis mechanisms involved in DD with an initial PT impairment followed by the Lipocalin-2 internalisation and 24p3R overexpression in more distal segments of the nephron. This first animal model of DD carrying a pathogenic mutation of Clcn5 and our findings pave the way aimed at exploring therapeutic strategies to limit the consequences of ClC-5 disruption in patients with DD type 1 developing chronic kidney disease.
Collapse
Affiliation(s)
- Imene Bouchra Sakhi
- University of Zurich - Institute of Anatomy, Zurich CH-8057, Switzerland; Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France; CNRS EMR8228, Paris F-75006, France.
| | - Elise De Combiens
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France; CNRS EMR8228, Paris F-75006, France
| | - Nadia Frachon
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France; CNRS EMR8228, Paris F-75006, France
| | - Fanny Durussel
- Department of Biomedical Sciences, University of Lausanne, Switzerland
| | - Gaelle Brideau
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France; CNRS EMR8228, Paris F-75006, France
| | - Ivan Nemazanyy
- Platform for Metabolic Analyses, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR 3633, Paris, France
| | - Perrine Frère
- Sorbonne Université, INSERM, Unité mixte de Recherche 1155, Kidney Research Centre, AP-HP, Hôpital Tenon, Paris, France
| | - Frank Thévenod
- Institute for Physiology, Pathophysiology and Toxicology, Center for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany; Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Wing-Kee Lee
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Qinghe Zeng
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France; Laboratoire d'Informatique Paris Descartes (LIPADE), Université Paris Cité, Paris, France
| | - Christophe Klein
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France
| | - Stéphane Lourdel
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France; CNRS EMR8228, Paris F-75006, France
| | - Yohan Bignon
- Department of Biomedical Sciences, University of Lausanne, Switzerland.
| |
Collapse
|
3
|
Wang Y, Xu L, Zhang Y, Fu H, Gao L, Guan Y, Gu W, Sun J, Chen X, Yang F, Lai E, Wang J, Jin Y, Kou Z, Qiu X, Mao J, Hu L. Dent disease 1-linked novel CLCN5 mutations result in aberrant location and reduced ion currents. Int J Biol Macromol 2024; 257:128564. [PMID: 38061527 DOI: 10.1016/j.ijbiomac.2023.128564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/12/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Dent disease is a rare renal tubular disease with X-linked recessive inheritance characterized by low molecular weight proteinuria (LMWP), hypercalciuria, and nephrocalcinosis. Mutations disrupting the 2Cl-/1H+ exchange activity of chloride voltage-gated channel 5 (CLCN5) have been causally linked to the most common form, Dent disease 1 (DD1), although the pathophysiological mechanisms remain unclear. Here, we conducted the whole exome capture sequencing and bioinformatics analysis within our DD1 cohort to identify two novel causal mutations in CLCN5 (c.749 G > A, p. G250D, c.829 A > C, p. T277P). Molecular dynamics simulations of ClC-5 homology model suggested that these mutations potentially may induce structural changes, destabilizing ClC-5. Overexpression of variants in vitro revealed aberrant subcellular localization in the endoplasmic reticulum (ER), significant accumulation of insoluble aggregates, and disrupted ion transport function in voltage clamp recordings. Moreover, human kidney-2 (HK-2) cells overexpressing either G250D or T277P displayed higher cell-substrate adhesion, migration capability but reduced endocytic function, as well as substantially altered transcriptomic profiles with G250D resulting in stronger deleterious effects. These cumulative findings supported pathogenic role of these ClC-5 mutations in DD1 and suggested a cellular mechanism for disrupted renal function in Dent disease patients, as well as a potential target for diagnostic biomarker or therapeutic strategy development.
Collapse
Affiliation(s)
- Yan Wang
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Lizhen Xu
- Department of Biophysics, and Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ying Zhang
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Haidong Fu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Langping Gao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yuelin Guan
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Weizhong Gu
- Department of Pathology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jingmiao Sun
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiangjun Chen
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310020, China
| | - Fan Yang
- Department of Biophysics, and Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - EnYin Lai
- Department of Physiology School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Wang
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yanyan Jin
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Ziqi Kou
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Xingyu Qiu
- Department of Physiology School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhua Mao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Lidan Hu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
4
|
Gu J, Geng M, Qi M, Wang L, Zhang Y, Gao J. The role of lysosomal membrane proteins in glucose and lipid metabolism. FASEB J 2021; 35:e21848. [PMID: 34582051 DOI: 10.1096/fj.202002602r] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 07/11/2021] [Accepted: 07/26/2021] [Indexed: 11/11/2022]
Abstract
Lysosomes have long been regarded as the "garbage dump" of the cell. More recently, however, researchers have revealed novel roles for lysosomal membranes in autophagy, ion transport, nutrition sensing, and membrane fusion and repair. With active research into lysosomal membrane proteins (LMP), increasing evidence has become available showing that LMPs are inextricably linked to glucose and lipid metabolism, and this relationship represents mutual influence and regulation. In this review, we summarize the roles of LMPs in relation to glucose and lipid metabolism, and describe their roles in glucose transport, glycolysis, cholesterol transport, and lipophagy. The role of transport proteins can be traced back to the original discoveries of GLUT8, NPC1, and NPC2, which were all found to have significant roles in the pathways involved in glucose and lipid metabolism. CLC-5 and SIDT2-knockout animals show serious phenotypic disorders of metabolism, and V-ATPase and LAMP-2 have been found to interact with proteins related to glucose and lipid metabolism. These findings all emphasize the critical role of LMPs in glycolipid metabolism and help to strengthen our understanding of the independent and close relationship between LMPs and glycolipid metabolism.
Collapse
Affiliation(s)
- Jing Gu
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Institute of Endocrine and Metabolic Diseases, Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Anhui Province Key Laboratory of Biological Macro-Molecules Research (Wannan Medical College), Wannan Medical College, Wuhu, China
| | - Mengya Geng
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Institute of Endocrine and Metabolic Diseases, Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Anhui Province Key Laboratory of Biological Macro-Molecules Research (Wannan Medical College), Wannan Medical College, Wuhu, China
- School of Clinical Medicine, Wannan Medical College, Wuhu, China
| | - Mengxiang Qi
- Anhui Province Key Laboratory of Biological Macro-Molecules Research (Wannan Medical College), Wannan Medical College, Wuhu, China
- School of Clinical Medicine, Wannan Medical College, Wuhu, China
| | - Lizhuo Wang
- Anhui Province Key Laboratory of Biological Macro-Molecules Research (Wannan Medical College), Wannan Medical College, Wuhu, China
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, China
| | - Yao Zhang
- Anhui Province Key Laboratory of Biological Macro-Molecules Research (Wannan Medical College), Wannan Medical College, Wuhu, China
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, China
| | - Jialin Gao
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Institute of Endocrine and Metabolic Diseases, Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Anhui Province Key Laboratory of Biological Macro-Molecules Research (Wannan Medical College), Wannan Medical College, Wuhu, China
| |
Collapse
|
5
|
Durán M, Burballa C, Cantero-Recasens G, Butnaru CM, Malhotra V, Ariceta G, Sarró E, Meseguer A. Novel Dent disease 1 cellular models reveal biological processes underlying ClC-5 loss-of-function. Hum Mol Genet 2021; 30:1413-1428. [PMID: 33987651 PMCID: PMC8283206 DOI: 10.1093/hmg/ddab131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 01/04/2023] Open
Abstract
Dent disease 1 (DD1) is a rare X-linked renal proximal tubulopathy characterized by low molecular weight proteinuria and variable degree of hypercalciuria, nephrocalcinosis and/or nephrolithiasis, progressing to chronic kidney disease. Although mutations in the electrogenic Cl-/H+ antiporter ClC-5, which impair endocytic uptake in proximal tubule cells, cause the disease, there is poor genotype-phenotype correlation and their contribution to proximal tubule dysfunction remains unclear. To further discover the mechanisms linking ClC-5 loss-of-function to proximal tubule dysfunction, we have generated novel DD1 cellular models depleted of ClC-5 and carrying ClC-5 mutants p.(Val523del), p.(Glu527Asp) and p.(Ile524Lys) using the human proximal tubule-derived RPTEC/TERT1 cell line. Our DD1 cellular models exhibit impaired albumin endocytosis, increased substrate adhesion and decreased collective migration, correlating with a less differentiated epithelial phenotype. Despite sharing functional features, these DD1 cell models exhibit different gene expression profiles, being p.(Val523del) ClC-5 the mutation showing the largest differences. Gene set enrichment analysis pointed to kidney development, anion homeostasis, organic acid transport, extracellular matrix organization and cell-migration biological processes as the most likely involved in DD1 pathophysiology. In conclusion, our results revealed the pathways linking ClC-5 mutations with tubular dysfunction and, importantly, provide new cellular models to further study DD1 pathophysiology.
Collapse
Affiliation(s)
- Mónica Durán
- Renal Physiopathology Group, Vall d'Hebron Research Institute (VHIR)-CIBBIM Nanomedicine, Barcelona, Spain
| | - Carla Burballa
- Renal Physiopathology Group, Vall d'Hebron Research Institute (VHIR)-CIBBIM Nanomedicine, Barcelona, Spain
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Gerard Cantero-Recasens
- Renal Physiopathology Group, Vall d'Hebron Research Institute (VHIR)-CIBBIM Nanomedicine, Barcelona, Spain
| | - Cristian M Butnaru
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Vivek Malhotra
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Gema Ariceta
- Renal Physiopathology Group, Vall d'Hebron Research Institute (VHIR)-CIBBIM Nanomedicine, Barcelona, Spain
- Pediatric Nephrology Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Eduard Sarró
- Renal Physiopathology Group, Vall d'Hebron Research Institute (VHIR)-CIBBIM Nanomedicine, Barcelona, Spain
| | - Anna Meseguer
- Renal Physiopathology Group, Vall d'Hebron Research Institute (VHIR)-CIBBIM Nanomedicine, Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Medicina, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III-FEDER, Madrid, Spain
| |
Collapse
|
6
|
Mansilla MA, Sompallae RR, Nishimura CJ, Kwitek AE, Kimble MJ, Freese ME, Campbell CA, Smith RJ, Thomas CP. Targeted broad-based genetic testing by next-generation sequencing informs diagnosis and facilitates management in patients with kidney diseases. Nephrol Dial Transplant 2021; 36:295-305. [PMID: 31738409 PMCID: PMC7834596 DOI: 10.1093/ndt/gfz173] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/23/2019] [Indexed: 12/15/2022] Open
Abstract
Background The clinical diagnosis of genetic renal diseases may be limited by the overlapping spectrum of manifestations between diseases or by the advancement of disease where clues to the original process are absent. The objective of this study was to determine whether genetic testing informs diagnosis and facilitates management of kidney disease patients. Methods We developed a comprehensive genetic testing panel (KidneySeq) to evaluate patients with various phenotypes including cystic diseases, congenital anomalies of the kidney and urinary tract (CAKUT), tubulointerstitial diseases, transport disorders and glomerular diseases. We evaluated this panel in 127 consecutive patients ranging in age from newborns to 81 years who had samples sent in for genetic testing. Results The performance of the sequencing pipeline for single-nucleotide variants was validated using CEPH (Centre de’Etude du Polymorphism) controls and for indels using Genome-in-a-Bottle. To test the reliability of the copy number variant (CNV) analysis, positive samples were re-sequenced and analyzed. For patient samples, a multidisciplinary review board interpreted genetic results in the context of clinical data. A genetic diagnosis was made in 54 (43%) patients and ranged from 54% for CAKUT, 53% for ciliopathies/tubulointerstitial diseases, 45% for transport disorders to 33% for glomerulopathies. Pathogenic and likely pathogenic variants included 46% missense, 11% nonsense, 6% splice site variants, 23% insertion–deletions and 14% CNVs. In 13 cases, the genetic result changed the clinical diagnosis. Conclusion Broad genetic testing should be considered in the evaluation of renal patients as it complements other tests and provides insight into the underlying disease and its management.
Collapse
Affiliation(s)
- M Adela Mansilla
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA, USA
| | | | - Carla J Nishimura
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA, USA
| | - Anne E Kwitek
- Physiology, Medical College of Wisconsin, Iowa City, IA, USA
| | - Mycah J Kimble
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA, USA
| | | | - Colleen A Campbell
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA, USA
| | - Richard J Smith
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA, USA.,Internal Medicine, University of Iowa, Iowa City, IA, USA.,Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Christie P Thomas
- Internal Medicine, University of Iowa, Iowa City, IA, USA.,Pediatrics, University of Iowa, Iowa City, IA, USA.,Veterans Affairs Medical Center, Iowa City, IA, USA
| |
Collapse
|
7
|
Sakhi I, Bignon Y, Frachon N, Hureaux M, Arévalo B, González W, Vargas-Poussou R, Lourdel S. Diversity of functional alterations of the ClC-5 exchanger in the region of the proton glutamate in patients with Dent disease 1. Hum Mutat 2021; 42:537-550. [PMID: 33600050 DOI: 10.1002/humu.24184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/04/2021] [Accepted: 02/14/2021] [Indexed: 01/21/2023]
Abstract
Mutations in the CLCN5 gene encoding the 2Cl- /1H+ exchanger ClC-5 are associated with Dent disease 1, an inherited renal disorder characterized by low-molecular-weight (LMW) proteinuria and hypercalciuria. In the kidney, ClC-5 is mostly localized in proximal tubule cells, where it is thought to play a key role in the endocytosis of LMW proteins. Here, we investigated the consequences of eight previously reported pathogenic missense mutations of ClC-5 surrounding the "proton glutamate" that serves as a crucial H+ -binding site for the exchanger. A complete loss of function was observed for a group of mutants that were either retained in the endoplasmic reticulum of HEK293T cells or unstainable at plasma membrane due to proteasomal degradation. In contrast, the currents measured for the second group of mutations in Xenopus laevis oocytes were reduced. Molecular dynamics simulations performed on a ClC-5 homology model demonstrated that such mutations might alter ClC-5 protonation by interfering with the water pathway. Analysis of clinical data from patients harboring these mutations demonstrated no phenotype/genotype correlation. This study reveals that mutations clustered in a crucial region of ClC-5 have diverse molecular consequences in patients with Dent disease 1, ranging from altered expression to defects in transport.
Collapse
Affiliation(s)
- Imène Sakhi
- Laboratoire Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.,CNRS ERL 8228, Paris, France
| | - Yohan Bignon
- Centre Universitaire des Saints Pères, INSERM, Université Paris Descartes, Paris, France
| | - Nadia Frachon
- Laboratoire Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.,CNRS ERL 8228, Paris, France
| | - Marguerite Hureaux
- Département de génétique, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Bárbara Arévalo
- Center for Bioinformatics and Molecular Simulations (CBSM), Universidad de Talca, Talca, Chile
| | - Wendy González
- Center for Bioinformatics and Molecular Simulations (CBSM), Universidad de Talca, Talca, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, Talca, Chile
| | - Rosa Vargas-Poussou
- Laboratoire Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.,CNRS ERL 8228, Paris, France.,Département de génétique, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Stéphane Lourdel
- Laboratoire Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.,CNRS ERL 8228, Paris, France
| |
Collapse
|
8
|
Abstract
Extracellular acidification is a well-known driver of tumorigenesis that has been extensively studied. In contrast, the role of endosomal pH is novel and relatively unexplored. There is emerging evidence from a growing number of studies showing that the pH of endosomal compartments controls proliferation, migration, stemness, and sensitivity to chemoradiation therapy in a variety of tumors. Endosomes are a crucial hub, mediating cellular communication with the external environment. By finely regulating the sorting and trafficking of vesicular cargo for degradation or recycling, endosomal pH determines the fate of plasma membrane proteins, lipids, and extracellular signals including growth factor receptors and their ligands. Several critical regulators of endosomal pH have been identified, including multiple isoforms of the family of electroneutral Na+/H+ exchangers (NHE) such as NHE6 and NHE9. Recent studies have shed light on molecular mechanisms linking endosomal pH to cancer malignancy. Manipulating endosomal pH by epigenetic reprogramming, small molecules, or nanoparticles may offer promising new options in cancer therapy. In this review, we summarize evidence linking endosomal pH to cancer, with a focus on the role of endosomal Na+/H+ exchangers and how they affect the prognosis of cancer patients, and also suggest how regulation of endosomal pH may be exploited to develop new cancer therapies.
Collapse
|
9
|
Liu J, Sadeh TT, Lippiat JD, Thakker RV, Black GC, Manson F. Small molecules restore the function of mutant CLC5 associated with Dent disease. J Cell Mol Med 2020; 25:1319-1322. [PMID: 33200471 PMCID: PMC7812281 DOI: 10.1111/jcmm.16091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 11/30/2022] Open
Abstract
Dent disease type 1 is caused by mutations in the CLCN5 gene that encodes CLC5, a 2Cl−/H+ exchanger. The CLC5 mutants that have been functionally analysed constitute three major classes based on protein expression, cellular localization and channel function. We tested two small molecules, 4‐phenylbutyrate (4PBA) and its analogue 2‐naphthoxyacetic acid (2‐NOAA), for their effect on mutant CLC5 function and expression by whole‐cell patch‐clamp and Western blot, respectively. The expression and function of non‐Class I CLC5 mutants that have reduced function could be restored by either treatment. Cell viability was reduced in cells treated with 2‐NOAA. 4PBA is a FDA‐approved drug for the treatment of urea cycle disorders and offers a potential therapy for Dent disease.
Collapse
Affiliation(s)
- Jingshu Liu
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Tal T Sadeh
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jonathan D Lippiat
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Rajesh V Thakker
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology &Metabolism (OCDEM), Churchill Hospital, University of Oxford, Oxford, UK
| | - Graeme C Black
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, Manchester University NHS Foundation Trust, St Mary's Hospital, Manchester, UK
| | - Forbes Manson
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
10
|
Gianesello L, Del Prete D, Anglani F, Calò LA. Genetics and phenotypic heterogeneity of Dent disease: the dark side of the moon. Hum Genet 2020; 140:401-421. [PMID: 32860533 PMCID: PMC7889681 DOI: 10.1007/s00439-020-02219-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/20/2020] [Indexed: 12/18/2022]
Abstract
Dent disease is a rare genetic proximal tubulopathy which is under-recognized. Its phenotypic heterogeneity has led to several different classifications of the same disorder, but it is now widely accepted that the triad of symptoms low-molecular-weight proteinuria, hypercalciuria and nephrocalcinosis/nephrolithiasis are pathognomonic of Dent disease. Although mutations on the CLCN5 and OCRL genes are known to cause Dent disease, no such mutations are found in about 25–35% of cases, making diagnosis more challenging. This review outlines current knowledge regarding Dent disease from another perspective. Starting from the history of Dent disease, and reviewing the clinical details of patients with and without a genetic characterization, we discuss the phenotypic and genetic heterogeneity that typifies this disease. We focus particularly on all those confounding clinical signs and symptoms that can lead to a misdiagnosis. We also try to shed light on a concealed aspect of Dent disease. Although it is a proximal tubulopathy, its misdiagnosis may lead to patients undergoing kidney biopsy. In fact, some individuals with Dent disease have high-grade proteinuria, with or without hematuria, as in the clinical setting of glomerulopathy, or chronic kidney disease of uncertain origin. Although glomerular damage is frequently documented in Dent disease patients’ biopsies, there is currently no reliable evidence of renal biopsy being of either diagnostic or prognostic value. We review published histopathology reports of tubular and glomerular damage in these patients, and discuss current knowledge regarding the role of CLCN5 and OCRL genes in glomerular function.
Collapse
Affiliation(s)
- Lisa Gianesello
- Nephrology, Dialysis and Transplantation Unit, Kidney Histomorphology and Molecular Biology Laboratory, Department of Medicine-DIMED, University of Padua, Via Giustiniani n° 2, 35128, Padua, Italy
| | - Dorella Del Prete
- Nephrology, Dialysis and Transplantation Unit, Kidney Histomorphology and Molecular Biology Laboratory, Department of Medicine-DIMED, University of Padua, Via Giustiniani n° 2, 35128, Padua, Italy
| | - Franca Anglani
- Nephrology, Dialysis and Transplantation Unit, Kidney Histomorphology and Molecular Biology Laboratory, Department of Medicine-DIMED, University of Padua, Via Giustiniani n° 2, 35128, Padua, Italy.
| | - Lorenzo A Calò
- Nephrology, Dialysis and Transplantation Unit, Kidney Histomorphology and Molecular Biology Laboratory, Department of Medicine-DIMED, University of Padua, Via Giustiniani n° 2, 35128, Padua, Italy
| |
Collapse
|
11
|
Chavan TS, Cheng RC, Jiang T, Mathews II, Stein RA, Koehl A, Mchaourab HS, Tajkhorshid E, Maduke M. A CLC-ec1 mutant reveals global conformational change and suggests a unifying mechanism for the CLC Cl -/H + transport cycle. eLife 2020; 9:53479. [PMID: 32310757 PMCID: PMC7253180 DOI: 10.7554/elife.53479] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 04/18/2020] [Indexed: 12/16/2022] Open
Abstract
Among coupled exchangers, CLCs uniquely catalyze the exchange of oppositely charged ions (Cl– for H+). Transport-cycle models to describe and explain this unusual mechanism have been proposed based on known CLC structures. While the proposed models harmonize with many experimental findings, gaps and inconsistencies in our understanding have remained. One limitation has been that global conformational change – which occurs in all conventional transporter mechanisms – has not been observed in any high-resolution structure. Here, we describe the 2.6 Å structure of a CLC mutant designed to mimic the fully H+-loaded transporter. This structure reveals a global conformational change to improve accessibility for the Cl– substrate from the extracellular side and new conformations for two key glutamate residues. Together with DEER measurements, MD simulations, and functional studies, this new structure provides evidence for a unified model of H+/Cl– transport that reconciles existing data on all CLC-type proteins. Cells are shielded from harmful molecules and other threats by a thin, flexible layer called the membrane. However, this barrier also prevents chloride, sodium, protons and other ions from moving in or out of the cell. Channels and transporters are two types of membrane proteins that form passageways for these charged particles. Channels let ions flow freely from one side of the membrane to the other. To do so, these proteins change their three-dimensional shape to open or close as needed. On the other hand, transporters actively pump ions across the membrane to allow the charged particles to accumulate on one side. The shape changes needed for that type of movement are different: the transporters have to open a passageway on one side of the membrane while closing it on the other side, alternating openings to one side or the other. In general, channels and transporters are not related to each other, but one exception is a group called CLCs proteins. Present in many organisms, this family contains a mixture of channels and transporters. For example, humans have nine CLC proteins: four are channels that allow chloride ions in and out, and five are ‘exchange transporters’ that make protons and chloride ions cross the membrane in opposite directions. These proteins let one type of charged particle move freely across the membrane, which generates energy that the transporter then uses to actively pump the other ion in the direction needed by the cell. Yet, the exact three-dimensional changes required for CLC transporters and channels to perform their roles are still unknown. To investigate this question, Chavan, Cheng et al. harnessed a technique called X-ray crystallography, which allows scientists to look at biological molecules at the level of the atom. This was paired with other methods to examine a CLC mutant that adopts the shape of a normal CLC transporter when it is loaded with a proton. The experiments revealed how various elements in the transporter move relative to each other to adopt a structure that allows protons and chloride ions to enter the protein from opposite sides of the membrane, using separate pathways. While obtained on a bacterial CLC, these results can be applied to other CLC channels and transporters (including those in humans), shedding light on how this family transports charged particles across membranes. From bone diseases to certain types of seizures, many human conditions are associated with poorly functioning CLCs. Understanding the way these structures change their shapes to perform their roles could help to design new therapies for these health problems.
Collapse
Affiliation(s)
- Tanmay S Chavan
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Ricky C Cheng
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Tao Jiang
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Irimpan I Mathews
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, United States
| | - Richard A Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, United States
| | - Antoine Koehl
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, United States
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Merritt Maduke
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
12
|
Gianesello L, Del Prete D, Ceol M, Priante G, Calò LA, Anglani F. From protein uptake to Dent disease: An overview of the CLCN5 gene. Gene 2020; 747:144662. [PMID: 32289351 DOI: 10.1016/j.gene.2020.144662] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
Proteinuria is a well-known risk factor, not only for renal disorders, but also for several other problems such as cardiovascular diseases and overall mortality. In the kidney, the chloride channel Cl-/H+ exchanger ClC-5 encoded by the CLCN5 gene is actively involved in preventing protein loss. This action becomes evident in patients suffering from the rare proximal tubulopathy Dent disease because they carry a defective ClC-5 due to CLCN5 mutations. In fact, proteinuria is the distinctive clinical sign of Dent disease, and mainly involves the loss of low-molecular-weight proteins. The identification of CLCN5 disease-causing mutations has greatly improved our understanding of ClC-5 function and of the ClC-5-related physiological processes in the kidney. This review outlines current knowledge regarding the CLCN5 gene and its protein product, providing an update on ClC-5 function in tubular and glomerular cells, and focusing on its relationship with proteinuria and Dent disease.
Collapse
Affiliation(s)
- Lisa Gianesello
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| | - Dorella Del Prete
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| | - Monica Ceol
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| | - Giovanna Priante
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| | - Lorenzo Arcangelo Calò
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| | - Franca Anglani
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| |
Collapse
|
13
|
Gianesello L, Ceol M, Bertoldi L, Terrin L, Priante G, Murer L, Peruzzi L, Giordano M, Paglialonga F, Cantaluppi V, Musetti C, Valle G, Del Prete D, Anglani F. Genetic Analyses in Dent Disease and Characterization of CLCN5 Mutations in Kidney Biopsies. Int J Mol Sci 2020; 21:ijms21020516. [PMID: 31947599 PMCID: PMC7014080 DOI: 10.3390/ijms21020516] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 11/16/2022] Open
Abstract
Dent disease (DD), an X-linked renal tubulopathy, is mainly caused by loss-of-function mutations in CLCN5 (DD1) and OCRL genes. CLCN5 encodes the ClC-5 antiporter that in proximal tubules (PT) participates in the receptor-mediated endocytosis of low molecular weight proteins. Few studies have analyzed the PT expression of ClC-5 and of megalin and cubilin receptors in DD1 kidney biopsies. About 25% of DD cases lack mutations in either CLCN5 or OCRL genes (DD3), and no other disease genes have been discovered so far. Sanger sequencing was used for CLCN5 gene analysis in 158 unrelated males clinically suspected of having DD. The tubular expression of ClC-5, megalin, and cubilin was assessed by immunolabeling in 10 DD1 kidney biopsies. Whole exome sequencing (WES) was performed in eight DD3 patients. Twenty-three novel CLCN5 mutations were identified. ClC-5, megalin, and cubilin were significantly lower in DD1 than in control biopsies. The tubular expression of ClC-5 when detected was irrespective of the type of mutation. In four DD3 patients, WES revealed 12 potentially pathogenic variants in three novel genes (SLC17A1, SLC9A3, and PDZK1), and in three genes known to be associated with monogenic forms of renal proximal tubulopathies (SLC3A, LRP2, and CUBN). The supposed third Dent disease-causing gene was not discovered.
Collapse
Affiliation(s)
- Lisa Gianesello
- Laboratory of Histomorphology and Molecular Biology of the Kidney, Clinical Nephrology, Department of Medicine—DIMED, University of Padua, 35128 Padua, Italy; (L.G.); (M.C.); (L.T.); (G.P.); (D.D.P.)
| | - Monica Ceol
- Laboratory of Histomorphology and Molecular Biology of the Kidney, Clinical Nephrology, Department of Medicine—DIMED, University of Padua, 35128 Padua, Italy; (L.G.); (M.C.); (L.T.); (G.P.); (D.D.P.)
| | - Loris Bertoldi
- CRIBI Biotechnology Centre, University of Padua, 35131 Padua, Italy; (L.B.); (G.V.)
| | - Liliana Terrin
- Laboratory of Histomorphology and Molecular Biology of the Kidney, Clinical Nephrology, Department of Medicine—DIMED, University of Padua, 35128 Padua, Italy; (L.G.); (M.C.); (L.T.); (G.P.); (D.D.P.)
| | - Giovanna Priante
- Laboratory of Histomorphology and Molecular Biology of the Kidney, Clinical Nephrology, Department of Medicine—DIMED, University of Padua, 35128 Padua, Italy; (L.G.); (M.C.); (L.T.); (G.P.); (D.D.P.)
| | - Luisa Murer
- Pediatric Nephrology, Dialysis and Transplant Unit, Department of Women’s and Children’s Health, Padua University Hospital, 35128 Padua, Italy;
| | - Licia Peruzzi
- Pediatric Nephrology Unit, Regina Margherita Children’s Hospital, 10126 CDSS Turin, Italy;
| | - Mario Giordano
- Pediatric Nephrology Unit, University Hospital, P.O. Giovanni XXIII, 70126 Bari, Italy;
| | - Fabio Paglialonga
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS, Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (V.C.); (C.M.)
| | - Claudio Musetti
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (V.C.); (C.M.)
| | - Giorgio Valle
- CRIBI Biotechnology Centre, University of Padua, 35131 Padua, Italy; (L.B.); (G.V.)
| | - Dorella Del Prete
- Laboratory of Histomorphology and Molecular Biology of the Kidney, Clinical Nephrology, Department of Medicine—DIMED, University of Padua, 35128 Padua, Italy; (L.G.); (M.C.); (L.T.); (G.P.); (D.D.P.)
| | - Franca Anglani
- Laboratory of Histomorphology and Molecular Biology of the Kidney, Clinical Nephrology, Department of Medicine—DIMED, University of Padua, 35128 Padua, Italy; (L.G.); (M.C.); (L.T.); (G.P.); (D.D.P.)
- CRIBI Biotechnology Centre, University of Padua, 35131 Padua, Italy; (L.B.); (G.V.)
- Correspondence: ; Tel.: +39-049-8212-155
| | | |
Collapse
|
14
|
Jentsch TJ, Pusch M. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease. Physiol Rev 2018; 98:1493-1590. [DOI: 10.1152/physrev.00047.2017] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CLC anion transporters are found in all phyla and form a gene family of eight members in mammals. Two CLC proteins, each of which completely contains an ion translocation parthway, assemble to homo- or heteromeric dimers that sometimes require accessory β-subunits for function. CLC proteins come in two flavors: anion channels and anion/proton exchangers. Structures of these two CLC protein classes are surprisingly similar. Extensive structure-function analysis identified residues involved in ion permeation, anion-proton coupling and gating and led to attractive biophysical models. In mammals, ClC-1, -2, -Ka/-Kb are plasma membrane Cl−channels, whereas ClC-3 through ClC-7 are 2Cl−/H+-exchangers in endolysosomal membranes. Biological roles of CLCs were mostly studied in mammals, but also in plants and model organisms like yeast and Caenorhabditis elegans. CLC Cl−channels have roles in the control of electrical excitability, extra- and intracellular ion homeostasis, and transepithelial transport, whereas anion/proton exchangers influence vesicular ion composition and impinge on endocytosis and lysosomal function. The surprisingly diverse roles of CLCs are highlighted by human and mouse disorders elicited by mutations in their genes. These pathologies include neurodegeneration, leukodystrophy, mental retardation, deafness, blindness, myotonia, hyperaldosteronism, renal salt loss, proteinuria, kidney stones, male infertility, and osteopetrosis. In this review, emphasis is laid on biophysical structure-function analysis and on the cell biological and organismal roles of mammalian CLCs and their role in disease.
Collapse
Affiliation(s)
- Thomas J. Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Michael Pusch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| |
Collapse
|
15
|
Bignon Y, Alekov A, Frachon N, Lahuna O, Jean-Baptiste Doh-Egueli C, Deschênes G, Vargas-Poussou R, Lourdel S. A novel CLCN5 pathogenic mutation supports Dent disease with normal endosomal acidification. Hum Mutat 2018; 39:1139-1149. [PMID: 29791050 DOI: 10.1002/humu.23556] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/23/2018] [Accepted: 05/19/2018] [Indexed: 12/13/2022]
Abstract
Dent disease is an X-linked recessive renal tubular disorder characterized by low-molecular-weight proteinuria, hypercalciuria, nephrolithiasis, nephrocalcinosis, and progressive renal failure. Inactivating mutations of CLCN5, the gene encoding the 2Cl- /H+ exchanger ClC-5, have been reported in patients with Dent disease 1. In vivo studies in mice harboring an artificial mutation in the "gating glutamate" of ClC-5 (c.632A > C, p.Glu211Ala) and mathematical modeling suggest that endosomal chloride concentration could be an important parameter in endocytosis, rather than acidification as earlier hypothesized. Here, we described a novel pathogenic mutation affecting the "gating glutamate" of ClC-5 (c.632A>G, p.Glu211Gly) and investigated its molecular consequences. In HEK293T cells, the p.Glu211Gly ClC-5 mutant displayed unaltered N-glycosylation and normal plasma membrane and early endosomes localizations. In Xenopus laevis oocytes and HEK293T cells, we found that contrasting with wild-type ClC-5, the mutation abolished the outward rectification, the sensitivity to extracellular H+ and converted ClC-5 into a Cl- channel. Investigation of endosomal acidification in HEK293T cells using the pH-sensitive pHluorin2 probe showed that the luminal pH of cells expressing a wild-type or p.Glu211Gly ClC-5 was not significantly different. Our study further confirms that impaired acidification of endosomes is not the only parameter leading to defective endocytosis in Dent disease 1.
Collapse
Affiliation(s)
- Yohan Bignon
- Sorbonne Université, Université Paris-Descartes, INSERM, CNRS, Paris, France
| | - Alexi Alekov
- Institut für Neurophysiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Nadia Frachon
- Sorbonne Université, Université Paris-Descartes, INSERM, CNRS, Paris, France
| | | | | | - Georges Deschênes
- Assistance Publique-Hôpitaux de Paris, Hôpital Robert Debré, Service de Néphrologie Pédiatrique, Paris, France.,Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
| | - Rosa Vargas-Poussou
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Département de génétique, Paris, France.,Université Paris-Descartes, Faculté de Médecine, Paris, France
| | - Stéphane Lourdel
- Sorbonne Université, Université Paris-Descartes, INSERM, CNRS, Paris, France
| |
Collapse
|
16
|
Tang X, Brown MR, Cogal AG, Gauvin D, Harris PC, Lieske JC, Romero MF, Chang MH. Functional and transport analyses of CLCN5 genetic changes identified in Dent disease patients. Physiol Rep 2016; 4:4/8/e12776. [PMID: 27117801 PMCID: PMC4848727 DOI: 10.14814/phy2.12776] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 03/29/2016] [Indexed: 12/18/2022] Open
Abstract
Dent disease type 1, an X‐linked inherited kidney disease is caused by mutations in electrogenic Cl−/H+ exchanger, ClC‐5. We functionally studied the most frequent mutation (S244L) and two mutations recently identified in RKSC patients, Q629X and R345W. We also studied T657S, which has a high minor‐allele frequency (0.23%) in the African‐American population, was published previously as pathogenic to cause Dent disease. The transport properties of CLC‐5 were electrophysiologically characterized. WT and ClC‐5 mutant currents were inhibited by pH 5.5, but not affected by an alkaline extracellular solution (pH 8.5). The T657S and R345W mutations showed the same anion selectivity sequence as WT ClC‐5 (SCN−>NO3−≈Cl−>Br−>I−). However, the S244L and Q629X mutations abolished this anion conductance sequence. Cell surface CLC‐5 expression was quantified using extracellular HA‐tagged CLC‐5 and a chemiluminescent immunoassay. Cellular localization of eGFP‐tagged CLC‐5 proteins was also examined in HEK293 cells with organelle‐specific fluorescent probes. Functional defects of R345W and Q629X mutations were caused by the trafficking of the protein to the plasma membrane since proteins were mostly retained in the endoplasmic reticulum, and mutations showed positive correlations between surface expression and transport function. In contrast, although the S244L transport function was significantly lower than WT, cell surface, early endosome, and endoplasmic reticulum expression was equal to that of WT CLC‐5. Function and trafficking of T657S was equivalent to the WT CLC‐5 suggesting this is a benign variant rather than pathogenic. These studies demonstrate the useful information that can be gained by detailed functional studies of mutations predicted to be pathogenic.
Collapse
Affiliation(s)
- Xiaojing Tang
- O'Brien Urology Research Center, Mayo Clinic College of Medicine, Rochester, Minnesota Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota Division of Nephrology, Shanghai Changzheng Hospital Second Military Medical University, Shanghai, China
| | - Matthew R Brown
- O'Brien Urology Research Center, Mayo Clinic College of Medicine, Rochester, Minnesota Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota Wayne State University, Detroit, Michigan
| | - Andrea G Cogal
- Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Daniel Gauvin
- O'Brien Urology Research Center, Mayo Clinic College of Medicine, Rochester, Minnesota Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Peter C Harris
- Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - John C Lieske
- O'Brien Urology Research Center, Mayo Clinic College of Medicine, Rochester, Minnesota Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Michael F Romero
- O'Brien Urology Research Center, Mayo Clinic College of Medicine, Rochester, Minnesota Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Min-Hwang Chang
- O'Brien Urology Research Center, Mayo Clinic College of Medicine, Rochester, Minnesota Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
17
|
Li F, Yue Z, Xu T, Chen M, Zhong L, Liu T, Jing X, Deng J, Hu B, Liu Y, Wang H, Lai KN, Sun L, Liu J, Maxwell PH, Wang Y. Dent Disease in Chinese Children and Findings from Heterozygous Mothers: Phenotypic Heterogeneity, Fetal Growth, and 10 Novel Mutations. J Pediatr 2016; 174:204-210.e1. [PMID: 27174143 PMCID: PMC7611024 DOI: 10.1016/j.jpeds.2016.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 03/21/2016] [Accepted: 04/05/2016] [Indexed: 01/14/2023]
Abstract
OBJECTIVE To characterize the phenotypes of Dent disease in Chinese children and their heterozygous mothers and to establish genetic diagnoses. STUDY DESIGN Using a modified protocol, we screened 1288 individuals with proteinuria. A diagnosis of Dent disease was established in 19 boys from 16 families by the presence of loss of function/deleterious mutations in CLCN5 or OCRL1. We also analyzed 16 available patients' mothers and examined their pregnancy records. RESULTS We detected 14 loss of function/deleterious mutations of CLCN5 in 15 boys and 2 mutations of OCRL1 in 4 boys. Of the patients, 16 of 19 had been wrongly diagnosed with other diseases and 11 of 19 had incorrect or unnecessary treatment. None of the patients, but 6 of 14 mothers, had nephrocalcinosis or nephrolithiasis at diagnosis. Of the patients, 8 of 14 with Dent disease 1 were large for gestational age (>90th percentile); 8 of 15 (53.3%) had rickets. We also present predicted structural changes for 4 mutant proteins. CONCLUSIONS Pediatric Dent disease often is misdiagnosed; genetic testing achieves a correct diagnosis. Nephrocalcinosis or nephrolithiasis may not be sensitive diagnostic criteria. We identified 10 novel mutations in CLCN5 and OCRL1. The possibility that altered CLCN5 function could affect fetal growth and a possible link between a high rate of rickets and low calcium intake are discussed.
Collapse
Affiliation(s)
- Fucheng Li
- Department of Medical Genetics, Genome Research Center, Zhongshan School of Medicine, Sun Yat-sen University
| | - Zhihui Yue
- Children’s Kidney Disease Center, Department of Pediatrics, First Affiliated Hospital, Sun Yat-sen University
| | - Tingting Xu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences
| | - Minghui Chen
- Center for Reproductive Medicine, Sun Yat-sen University
| | - Liangying Zhong
- Department of Clinical Laboratory, First Affiliated Hospital, Sun Yat-sen University
| | - Ting Liu
- Children’s Kidney Disease Center, Department of Pediatrics, First Affiliated Hospital, Sun Yat-sen University
| | - Xiangyi Jing
- Prenatal Diagnosis Center, Guangzhou Women and Children’s Medical Center, Guangzhou, Guangdong Province, China
| | - Jia Deng
- Reproductive Center, Changsha Hospital for Maternal & Children Health Care, Changsha, Hunan Province, China
| | - Bin Hu
- Department of Medical Genetics, Genome Research Center, Zhongshan School of Medicine, Sun Yat-sen University
| | - Yuling Liu
- Department of Pediatrics, Boai Hospital, Zhongshan
| | - Haiyan Wang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Kar N. Lai
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| | - Liangzhong Sun
- Children’s Kidney Disease Center, Department of Pediatrics, First Affiliated Hospital, Sun Yat-sen University
| | - Jinsong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences
| | - Patrick H. Maxwell
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Yiming Wang
- Xinhua College, Sun Yat-sen University, Guangzhou, Guangdong Province, China; Beijing Genomics Institute (BGI) in Shenzhen, Guangdong Province, China.
| |
Collapse
|
18
|
Satoh N, Yamada H, Yamazaki O, Suzuki M, Nakamura M, Suzuki A, Ashida A, Yamamoto D, Kaku Y, Sekine T, Seki G, Horita S. A pure chloride channel mutant of CLC-5 causes Dent's disease via insufficient V-ATPase activation. Pflugers Arch 2016; 468:1183-1196. [PMID: 27044412 DOI: 10.1007/s00424-016-1808-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 02/02/2016] [Accepted: 03/08/2016] [Indexed: 01/22/2023]
Abstract
Dent's disease is characterized by defective endocytosis in renal proximal tubules (PTs) and caused by mutations in the 2Cl(-)/H(+) exchanger, CLC-5. However, the pathological role of endosomal acidification in endocytosis has recently come into question. To clarify the mechanism of pathogenesis for Dent's disease, we examined the effects of a novel gating glutamate mutation, E211Q, on CLC-5 functions and endosomal acidification. In Xenopus oocytes, wild-type (WT) CLC-5 showed outward-rectifying currents that were inhibited by extracellular acidosis, but E211Q and an artificial pure Cl(-) channel mutant, E211A, showed linear currents that were insensitive to extracellular acidosis. Moreover, depolarizing pulse trains induced a robust reduction in the surface pH of oocytes expressing WT CLC-5 but not E211Q or E211A, indicating that the E211Q mutant functions as a pure Cl(-) channel similar to E211A. In HEK293 cells, E211A and E211Q stimulated endosomal acidification and hypotonicity-inducible vacuolar-type H(+)-ATPase (V-ATPase) activation at the plasma membrane. However, the stimulatory effects of these mutants were reduced compared with WT CLC-5. Furthermore, gene silencing experiments confirmed the functional coupling between V-ATPase and CLC-5 at the plasma membrane of isolated mouse PTs. These results reveal for the first time that the conversion of CLC-5 from a 2Cl(-)/H(+) exchanger into a Cl(-) channel induces Dent's disease in humans. In addition, defective endosomal acidification as a result of insufficient V-ATPase activation may still be important in the pathogenesis of Dent's disease.
Collapse
Affiliation(s)
- Nobuhiko Satoh
- Department of Internal Medicine, Faculty of Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hideomi Yamada
- Department of Internal Medicine, Faculty of Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Osamu Yamazaki
- Apheresis and Dialysis Center, General Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Masashi Suzuki
- Department of Internal Medicine, Faculty of Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Motonobu Nakamura
- Department of Internal Medicine, Faculty of Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Atsushi Suzuki
- Department of Internal Medicine, Faculty of Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Akira Ashida
- Department of Pediatrics, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Daisuke Yamamoto
- Biomedical Computation Center, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Yoshitsugu Kaku
- Department of Nephrology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Takashi Sekine
- Department of Pediatrics, Ohashi Medical Center, Toho University, Meguro-ku, Tokyo, Japan
| | | | - Shoko Horita
- Department of Internal Medicine, Faculty of Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
19
|
Alekov AK. Mutations associated with Dent's disease affect gating and voltage dependence of the human anion/proton exchanger ClC-5. Front Physiol 2015; 6:159. [PMID: 26042048 PMCID: PMC4436585 DOI: 10.3389/fphys.2015.00159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 04/30/2015] [Indexed: 11/13/2022] Open
Abstract
Dent's disease is associated with impaired renal endocytosis and endosomal acidification. It is linked to mutations in the membrane chloride/proton exchanger ClC-5; however, a direct link between localization in the protein and functional phenotype of the mutants has not been established until now. Here, two Dent's disease mutations, G212A and E267A, were investigated using heterologous expression in HEK293T cells, patch-clamp measurements and confocal imaging. WT and mutant ClC-5 exhibited mixed cell membrane and vesicular distribution. Reduced ion currents were measured for both mutants and both exhibited reduced capability to support endosomal acidification. Functionally, mutation G212A was capable of mediating anion/proton antiport but dramatically shifted the activation of ClC-5 toward more depolarized potentials. The shift can be explained by impeded movements of the neighboring gating glutamate Gluext, a residue that confers major part of the voltage dependence of ClC-5 and serves as a gate at the extracellular entrance of the anion transport pathway. Cell surface abundance of E267A was reduced by ~50% but also dramatically increased gating currents were detected for this mutant and accordingly reduced probability to undergoing cycles associated with electrogenic ion transport. Structurally, the gating alternations correlate to the proximity of E267A to the proton glutamate Gluin that serves as intracellular gate in the proton transport pathway and regulates the open probability of ClC-5. Remarkably, two other mammalian isoforms, ClC-3 and ClC-4, also differ from ClC-5 in gating characteristics affected by the here investigated disease-causing mutations. This evolutionary specialization, together with the functional defects arising from mutations G212A and E267A, demonstrate that the complex gating behavior exhibited by most of the mammalian CLC transporters is an important determinant of their cellular function.
Collapse
Affiliation(s)
- Alexi K Alekov
- Institut für Neurophysiologie, Medizinische Hochschule Hannover Hannover, Germany
| |
Collapse
|
20
|
Pusch M, Zifarelli G. ClC-5: Physiological role and biophysical mechanisms. Cell Calcium 2014; 58:57-66. [PMID: 25443653 DOI: 10.1016/j.ceca.2014.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/19/2014] [Accepted: 09/20/2014] [Indexed: 01/05/2023]
Abstract
Cl(-) transport in animal cells has fundamental physiological roles and it is mediated by a variety of protein families, one of them being the CLC family of ion channels and transporters. Besides their physiological relevance, CLC proteins show peculiar biophysical properties. This review will focus on a member of the CLC protein family, the endosomal Cl(-)/H(+) antiporter ClC-5. ClC-5 mutations cause Dent's disease, a renal syndrome due to defective protein reabsorption in the proximal tubule. This established the critical function of ClC-5 for endocytosis. However, our understanding of ClC-5's molecular role in endosomes and of its biophysical properties has proved elusive in spite of important progress achieved in the last two decades. Early models in which ClC-5 would provide a shunt conductance to enable efficient endosomal acidification conflicted with the antiport activity of ClC-5 that has more recently emerged. Currently, the physiological role of ClC-5 is hotly debated and its biophysical properties are still not fully understood.
Collapse
Affiliation(s)
- Michael Pusch
- Istituto di Biofisica, CNR, Via De Marini 6, 16149 Genoa, Italy
| | | |
Collapse
|
21
|
Ludwig M, Levtchenko E, Bökenkamp A. Clinical utility gene card for: Dent disease (Dent-1 and Dent-2). Eur J Hum Genet 2014; 22:ejhg201433. [PMID: 24619144 DOI: 10.1038/ejhg.2014.33] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Michael Ludwig
- Institute for Clinical Chemistry and Clinical Pharmacology, Bonn University Medical Center, Bonn, Germany
| | - Elena Levtchenko
- Department of Pediatric Nephrology and Growth and Regeneration, University Hospitals Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Arend Bökenkamp
- Department of Pediatric Nephrology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Stauber T, Weinert S, Jentsch TJ. Cell biology and physiology of CLC chloride channels and transporters. Compr Physiol 2013; 2:1701-44. [PMID: 23723021 DOI: 10.1002/cphy.c110038] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proteins of the CLC gene family assemble to homo- or sometimes heterodimers and either function as Cl(-) channels or as Cl(-)/H(+)-exchangers. CLC proteins are present in all phyla. Detailed structural information is available from crystal structures of bacterial and algal CLCs. Mammals express nine CLC genes, four of which encode Cl(-) channels and five 2Cl(-)/H(+)-exchangers. Two accessory β-subunits are known: (1) barttin and (2) Ostm1. ClC-Ka and ClC-Kb Cl(-) channels need barttin, whereas Ostm1 is required for the function of the lysosomal ClC-7 2Cl(-)/H(+)-exchanger. ClC-1, -2, -Ka and -Kb Cl(-) channels reside in the plasma membrane and function in the control of electrical excitability of muscles or neurons, in extra- and intracellular ion homeostasis, and in transepithelial transport. The mainly endosomal/lysosomal Cl(-)/H(+)-exchangers ClC-3 to ClC-7 may facilitate vesicular acidification by shunting currents of proton pumps and increase vesicular Cl(-) concentration. ClC-3 is also present on synaptic vesicles, whereas ClC-4 and -5 can reach the plasma membrane to some extent. ClC-7/Ostm1 is coinserted with the vesicular H(+)-ATPase into the acid-secreting ruffled border membrane of osteoclasts. Mice or humans lacking ClC-7 or Ostm1 display osteopetrosis and lysosomal storage disease. Disruption of the endosomal ClC-5 Cl(-)/H(+)-exchanger leads to proteinuria and Dent's disease. Mouse models in which ClC-5 or ClC-7 is converted to uncoupled Cl(-) conductors suggest an important role of vesicular Cl(-) accumulation in these pathologies. The important functions of CLC Cl(-) channels were also revealed by human diseases and mouse models, with phenotypes including myotonia, renal loss of salt and water, deafness, blindness, leukodystrophy, and male infertility.
Collapse
Affiliation(s)
- Tobias Stauber
- Leibniz-Institut für Molekulare Pharmakologie FMP and Max-Delbrück-Centrum für Molekulare Medizin MDC, Berlin, Germany
| | | | | |
Collapse
|
23
|
Sekine T, Komoda F, Miura K, Takita J, Shimadzu M, Matsuyama T, Ashida A, Igarashi T. Japanese Dent disease has a wider clinical spectrum than Dent disease in Europe/USA: genetic and clinical studies of 86 unrelated patients with low-molecular-weight proteinuria. Nephrol Dial Transplant 2013; 29:376-84. [PMID: 24081861 DOI: 10.1093/ndt/gft394] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Dent disease is an X-linked disorder characterized by low-molecular-weight (LMW) proteinuria, hypercalciuria, nephrocalcinosis, urolithiasis and renal dysfunction. Dent disease is caused by mutations in at least two genes, i.e. CLCN5 and OCRL1, and its genetic background and phenotypes are common among European countries and the USA. However, only few studies on Dent disease in Japan, which was originally called 'low-molecular-weight proteinuric disease', have been reported thus far. In this study, we analysed genetic background and clinical phenotype and laboratory data of 86 unrelated Japanese Dent disease patients. The results demonstrated that the genetic basis of Japanese Dent disease was nearly identical to those of Dent disease in other countries. Of 86 unrelated Japanese Dent patients, 61 possessed mutations in CLCN5 (Dent-1), of which 27 were novel mutations; 11 showed mutations in OCRL1 (Dent-2), six of which were novel, and the remaining 14 patients showed no mutations in CLCN5 or OCRL1 (Dent-NI). Despite the similarity in genetic background, hypercalciuria was detected in only 51%, rickets in 2% and nephrocalcinosis in 35%. Although the patients were relatively young, six patients (8%) showed apparent renal dysfunction. Japanese Dent disease has a wider clinical spectrum than Dent disease in Europe and the USA.
Collapse
Affiliation(s)
- Takashi Sekine
- Department of Pediatrics, Ohashi Hospital, Toho University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Conformational defects underlie proteasomal degradation of Dent's disease-causing mutants of ClC-5. Biochem J 2013; 452:391-400. [PMID: 23566014 DOI: 10.1042/bj20121848] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mutations in the CLCN5 (chloride channel, voltage-sensitive 5) gene cause Dent's disease because they reduce the functional expression of the ClC-5 chloride/proton transporter in the recycling endosomes of proximal tubule epithelial cells. The majority (60%) of these disease-causing mutations in ClC-5 are misprocessed and retained in the ER (endoplasmic reticulum). Importantly, the structural basis for misprocessing and the cellular destiny of such ClC-5 mutants have yet to be defined. A ClC-5 monomer comprises a short N-terminal region, an extensive membrane domain and a large C-terminal domain. The recent crystal structure of a eukaryotic ClC (chloride channel) transporter revealed the intimate interaction between the membrane domain and the C-terminal region. Therefore we hypothesized that intramolecular interactions may be perturbed in certain mutants. In the present study we examined two misprocessed mutants: C221R located in the membrane domain and R718X, which truncates the C-terminal domain. Both mutants exhibited enhanced protease susceptibility relative to the normal protein in limited proteolysis studies, providing direct evidence that they are misfolded. Interestingly, the membrane-localized mutation C221R led to enhanced protease susceptibility of the cytosolic N-terminal region, and the C-terminal truncation mutation R718X led to enhanced protease susceptibility of both the cytosolic C-terminal and the membrane domain. Together, these studies support the idea that certain misprocessing mutations alter intramolecular interactions within the full-length ClC-5 protein. Further, we found that these misfolded mutants are polyubiquitinated and targeted for proteasomal degradation in the OK (opossum kidney) renal epithelial cells, thereby ensuring that they do not elicit the unfolded protein response.
Collapse
|
25
|
Fervenza FC. A patient with nephrotic-range proteinuria and focal global glomerulosclerosis. Clin J Am Soc Nephrol 2013; 8:1979-87. [PMID: 23886564 DOI: 10.2215/cjn.03400313] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A young male is evaluated for nephrotic-range proteinuria, hypercalciuria, and an elevated serum creatinine. A renal biopsy is performed and shows focal global glomerulosclerosis. The absence of nephrotic syndrome suggest that glomerulosclerosis was a secondary process. Further analysis of the proteinuria showed it to be due mainly to low-molecular weight proteins. The case illustrates the crucial role of electron microscopy as well as evaluation of the identity of the proteinuria that accompanies a biopsy finding of focal and global or focal and segmental glomerulosclerosis.
Collapse
Affiliation(s)
- Fernando C Fervenza
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
26
|
Guzman RE, Grieschat M, Fahlke C, Alekov AK. ClC-3 is an intracellular chloride/proton exchanger with large voltage-dependent nonlinear capacitance. ACS Chem Neurosci 2013; 4:994-1003. [PMID: 23509947 DOI: 10.1021/cn400032z] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The chloride/proton exchangers ClC-3, ClC-4 and ClC-5 are localized in distinct intracellular compartments and regulate their luminal acidity. We used electrophysiology combined with fluorescence pH measurements to compare the functions of these three transporters. Since the expression of WT ClC-3 in the surface membrane was negligible, we removed an N-terminal retention signal for standard electrophysiological characterization of this isoform. This construct (ClC-313-19A) mediated outwardly rectifying coupled Cl(-)/H(+) antiport resembling the properties of ClC-4 and ClC-5. In addition, ClC-3 exhibited large electric capacitance, exceeding the nonlinear capacitances of ClC-4 and ClC-5. Mutations of the proton glutamate, a conserved residue at the internal side of the protein, decreased ion transport but increased nonlinear capacitances in all three isoforms. This suggests that nonlinear capacitances in mammalian ClC transporters are regulated in a similar manner. However, the voltage dependence and the amplitudes of these capacitances differed strongly between the investigated isoforms. Our results indicate that ClC-3 is specialized in mainly performing incomplete capacitive nontransporting cycles, that ClC-4 is an effective coupled transporter, and that ClC-5 displays an intermediate phenotype. Mathematical modeling showed that such functional differences would allow differential regulation of luminal acidification and chloride concentration in intracellular compartments.
Collapse
Affiliation(s)
- Raul E. Guzman
- Institut für Neurophysiologie, Medizinische Hochschule Hannover, D-30625 Hannover, Germany
- Institute of Complex Systems, Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Matthias Grieschat
- Institut für Neurophysiologie, Medizinische Hochschule Hannover, D-30625 Hannover, Germany
| | - Christoph Fahlke
- Institut für Neurophysiologie, Medizinische Hochschule Hannover, D-30625 Hannover, Germany
- Institute of Complex Systems, Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Alexi K. Alekov
- Institut für Neurophysiologie, Medizinische Hochschule Hannover, D-30625 Hannover, Germany
| |
Collapse
|
27
|
Receptor-mediated endocytosis and endosomal acidification is impaired in proximal tubule epithelial cells of Dent disease patients. Proc Natl Acad Sci U S A 2013; 110:7014-9. [PMID: 23572577 DOI: 10.1073/pnas.1302063110] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Receptor-mediated endocytosis, involving megalin and cubilin, mediates renal proximal-tubular reabsorption and is decreased in Dent disease because of mutations of the chloride/proton antiporter, chloride channel-5 (CLC-5), resulting in low-molecular-weight proteinuria, hypercalciuria, nephrolithiasis, and renal failure. To facilitate studies of receptor-mediated endocytosis and the role of CLC-5, we established conditionally immortalized proximal-tubular epithelial cell lines (ciPTECs) from three patients with CLC-5 mutations (30:insH, R637X, and del132-241) and a normal male. Confocal microscopy using the tight junction marker zona occludens-1 (ZO-1) and end-binding protein-1 (EB-1), which is specific for the plus end of microtubules demonstrated that the ciPTECs polarized. Receptor-mediated endocytic uptake of fluorescent albumin and transferrin in 30:insH and R637X ciPTECs was significantly decreased, compared with normal ciPTECs, and could be further reduced by competition with 10-fold excess of unlabeled albumin and transferrin, whereas in the del132-241 ciPTEC, receptor-mediated endocytic uptake was abolished. Investigation of endosomal acidification by live-cell imaging of pHluorin-VAMP2 (vesicle-associated membrane protein-2), a pH-sensitive-GFP construct, revealed that the endosomal pH in normal and 30:insH ciPTECs was similar, whereas in del132-241 and R637X ciPTECs, it was significantly more alkaline, indicating defective acidification in these ciPTECs. The addition of bafilomycin-A1, a V-ATPase inhibitor, raised the pH significantly in all ciPTECs, demonstrating that the differences in acidification were not due to alterations in the V-ATPase, but instead to abnormalities of CLC-5. Thus, our studies, which have established human Dent disease ciPTECs that will facilitate studies of mechanisms in renal reabsorption, demonstrate that Dent disease-causing CLC-5 mutations have differing effects on endosomal acidification and receptor-mediated endocytosis that may not be coupled.
Collapse
|
28
|
Ochoa-de la Paz LD, Espino-Saldaña AE, Arellano-Ostoa R, Reyes JP, Miledi R, Martinez-Torres A. Characterization of an outward rectifying chloride current of Xenopus tropicalis oocytes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1743-53. [PMID: 23524227 DOI: 10.1016/j.bbamem.2013.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 03/08/2013] [Accepted: 03/13/2013] [Indexed: 12/19/2022]
Abstract
Here, we describe an outward rectifying current in Xenopus tropicalis oocytes that we have called xtClC-or. The current has two components; the major component is voltage activated and independent of intracellular or extracellular Ca(2+), whereas the second is a smaller component that is Ca(2+) dependent. The properties of the Ca(2+)-independent current, such as voltage dependence and outward rectification, resemble those of ClC anion channels/transporters. This current is sensitive to NPPB and NFA, insensitive to 9AC and DIDS, and showed a whole-cell conductance sequence of SCN(-)>I(-)>Br(-)>CI(-). RT-PCR revealed the expression in oocytes of ClC-2 to ClC-7, and major reductions of current amplitudes were observed when a ClC-5 antisense oligonucleotide was injected into oocytes. The Ca(2+)-dependent component was abated after injection of 10mM BAPTA or EGTA, whereas 10mMMg(2+) inhibited the current to 26±3.1%. This component was blocked by 9-AC, NFA, and NPPB, whereas DIDS did not elicit any evident effect. The ion sequence selectivity was SCN=I(-)>Br(-)>Cl(-). To try to determine the molecular identity that gives rise to this component we assessed by RT-PCR the expression of the Ca(2+)-dependent Cl(-) channel TMEM16A, which was found to be present in the oocytes. However, injection of antisense TMEM16A oligonucleotides did not inhibit the transient outward current. This result fits well with the electrophysiological data. Together, these results suggest that ClC-5 is a major, but not the sole channel responsible for this outwardly rectifying Cl(-) current.
Collapse
Affiliation(s)
- Lenin David Ochoa-de la Paz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus UNAM Juriquilla, Mexico
| | | | | | | | | | | |
Collapse
|
29
|
Lippiat JD, Smith AJ. The CLC-5 2Cl(-)/H(+) exchange transporter in endosomal function and Dent's disease. Front Physiol 2012; 3:449. [PMID: 23226131 PMCID: PMC3510460 DOI: 10.3389/fphys.2012.00449] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 11/09/2012] [Indexed: 01/25/2023] Open
Abstract
CLC-5 plays a critical role in the process of endocytosis in the proximal tubule of the kidney and mutations that alter protein function are the cause of Dent's I disease. In this X-linked disorder impaired reabsorption results in the wasting of calcium and low molecular weight protein to the urine, kidney stones, and progressive renal failure. Several different ion-transporting and protein clustering roles have been proposed as the physiological function of CLC-5 in endosomal membranes. At the time of its discovery, nearly 20 years ago, it was understandably assumed to be a chloride channel similar to known members of the CLC family, such as CLC-1, suggesting that chloride transport by CLC-5 was critical for endosomal function. Since then CLC-5 was found instead to be a 2Cl−/H+ exchange transporter with voltage-dependent activity. Recent studies have determined that it is this coupled exchange of protons for chloride, and not just chloride transport, which is critical for endosomal and kidney function. This review discusses the recent ideas that describe how CLC-5 might function in endosomal membranes, the aspects that we still do not understand, and where controversies remain.
Collapse
Affiliation(s)
- Jonathan D Lippiat
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds Leeds, UK
| | | |
Collapse
|
30
|
Affiliation(s)
- Ivana Y Kuo
- Departments of †Pharmacology and ‡Cellular and Molecular Physiology School of Medicine, Yale University , 333 Cedar Street, New Haven, Connecticut 06520
| | | |
Collapse
|
31
|
Timmis A, Jones C, Paize F. An unusual DMSA scan: answer. Pediatr Nephrol 2012; 27:225-7. [PMID: 21656025 DOI: 10.1007/s00467-011-1914-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 04/28/2011] [Accepted: 04/29/2011] [Indexed: 11/30/2022]
Affiliation(s)
- Alison Timmis
- Alder Hey Children's NHS Foundation Trust, Eaton Road, Liverpool, L12 2AP, UK.
| | | | | |
Collapse
|
32
|
Grieschat M, Alekov AK. Glutamate 268 regulates transport probability of the anion/proton exchanger ClC-5. J Biol Chem 2012; 287:8101-9. [PMID: 22267722 DOI: 10.1074/jbc.m111.298265] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Cl(-)/H(+) exchange mediated by ClC transporters can be uncoupled by external SCN(-) and mutations of the proton glutamate, a conserved residue at the internal side of the protein. We show here for the mammalian ClC transporter ClC-5 that acidic internal pH led to a greater increase in currents upon exchanging extracellular Cl(-) for SCN(-). However, transport uncoupling, unitary current amplitudes, and the voltage dependence of the depolarization-induced activation were not altered by low pH values. Therefore, it is likely that an additional gating process regulates ClC-5 transport. Higher internal [H(+)] and the proton glutamate mutant E268H altered the ratio between ClC-5 transport and nonlinear capacitance, indicating that the gating charge movements in ClC-5 arise from incomplete transport cycles and that internal protons increase the transport probability of ClC-5. This was substantiated by site-directed sulfhydryl modification of the proton glutamate mutant E268C. The mutation exhibited small transport currents together with prominent gating charge movements. The charge restoration using a negatively charged sulfhydryl reagent reinstated also the WT phenotype. Neutralization of the charge of the gating glutamate 211 by the E211C mutation abolished the effect of internal protons, showing that the increased transport probability of ClC-5 results from protonation of this residue. S168P (a mutation that decreases the anion affinity of the central binding site) reduced also the internal pH dependence of ClC-5. These results support the idea that protonation of the gating glutamate 211 at the central anion-binding site of ClC-5 is mediated by the proton glutamate 268.
Collapse
Affiliation(s)
- Matthias Grieschat
- Institut für Neurophysiologie, Medizinische Hochschule Hannover, D-30625 Hannover, Germany
| | | |
Collapse
|
33
|
ClC-5 mutations associated with Dent's disease: a major role of the dimer interface. Pflugers Arch 2011; 463:247-56. [PMID: 22083641 DOI: 10.1007/s00424-011-1052-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 10/23/2011] [Accepted: 10/24/2011] [Indexed: 12/30/2022]
Abstract
Dent's disease is an X-linked recessive disorder affecting the proximal tubules. Mutations in the 2Cl(-)/H(+) exchanger ClC-5 gene CLCN5 are frequently associated with Dent's disease. Functional characterization of mutations of CLCN5 have helped to elucidate the physiopathology of Dent's disease and provided evidence that several different mechanisms underlie the ClC-5 dysfunction in Dent's disease. Modeling studies indicate that many CLCN5 mutations are located at the interface between the monomers of ClC-5, demonstrating that this protein region plays an important role in Dent's disease. On the basis of functional data, CLCN5 mutations can be divided into three different classes. Class 1 mutations impair processing and folding, and as a result, the ClC-5 mutants are retained within the endoplasmic reticulum and targeted for degradation by quality control mechanisms. Class 2 mutations induce a delay in protein processing and reduce the stability of ClC-5. As a consequence, the cell surface expression and currents of the ClC-5 mutants are lower. Class 3 mutations do not alter the trafficking of ClC-5 to the cell surface and early endosomes but induce altered electrical activity. Here, we discuss the functional consequences of the three classes of CLCN5 mutations on ClC-5 structure and function.
Collapse
|
34
|
Beara-Lasic L, Edvardsson VO, Palsson R, Lieske JC, Goldfarb DS, Milliner DS. Genetic Causes of Kidney Stones and Kidney Failure. Clin Rev Bone Miner Metab 2011. [DOI: 10.1007/s12018-011-9113-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
35
|
Claverie-Martín F, Ramos-Trujillo E, García-Nieto V. Dent's disease: clinical features and molecular basis. Pediatr Nephrol 2011; 26:693-704. [PMID: 20936522 DOI: 10.1007/s00467-010-1657-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 08/27/2010] [Accepted: 09/06/2010] [Indexed: 02/08/2023]
Abstract
Dent's disease is an X-linked recessive renal tubulopathy characterized by low-molecular-weight proteinuria (LMWP), hypercalciuria, nephrocalcinosis, nephrolithiasis, and progressive renal failure. LMWP is the most constant feature, while the other clinical manifestations show wide variability. Patients also present variable manifestations of proximal tubule dysfunctions, such as aminoaciduria, glucosuria, hyperphosphaturia, kaliuresis, and uricosuria, consistent with renal Fanconi syndrome. Dent's disease affects mainly male children, and female carriers are generally asymptomatic. In two-thirds of patients, the disease is caused by mutations in the CLCN5 gene, which encodes the electrogenic chloride/proton exchanger ClC-5. A few patients have mutations in OCRL1, the gene associated with the oculocerebrorenal syndrome of Lowe, which encodes a phosphatidylinositol-4,5-biphosphate-5-phosphatase (OCRL1). Both ClC-5 and OCRL1 are involved in the endocytic pathway for reabsorption of LMW proteins in the proximal tubule. This review will provide an overview of the important phenotypic characteristics of Dent's disease and summarize the molecular data that have significantly increased our comprehension of the mechanisms causing this disease.
Collapse
Affiliation(s)
- Félix Claverie-Martín
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.
| | | | | |
Collapse
|
36
|
Grand T, L'Hoste S, Mordasini D, Defontaine N, Keck M, Pennaforte T, Genete M, Laghmani K, Teulon J, Lourdel S. Heterogeneity in the processing of
CLCN5
mutants related to Dent disease. Hum Mutat 2011; 32:476-83. [PMID: 21305656 DOI: 10.1002/humu.21467] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Teddy Grand
- UPMC Univ Paris 06, UMR_S 872, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
- INSERM, UMR_S 872, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
- CNRS, ERL 7226, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
| | - Sébastien L'Hoste
- UPMC Univ Paris 06, UMR_S 872, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
- INSERM, UMR_S 872, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
- CNRS, ERL 7226, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
| | - David Mordasini
- UPMC Univ Paris 06, UMR_S 872, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
- INSERM, UMR_S 872, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
- CNRS, ERL 7226, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
| | - Nadia Defontaine
- UPMC Univ Paris 06, UMR_S 872, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
- INSERM, UMR_S 872, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
- CNRS, ERL 7226, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
| | - Mathilde Keck
- UPMC Univ Paris 06, UMR_S 872, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
- INSERM, UMR_S 872, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
- CNRS, ERL 7226, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
| | - Thomas Pennaforte
- UPMC Univ Paris 06, UMR_S 872, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
- INSERM, UMR_S 872, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
- CNRS, ERL 7226, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
| | - Mathieu Genete
- UPMC Univ Paris 06, UMR_S 872, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
- INSERM, UMR_S 872, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
- CNRS, ERL 7226, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
| | - Kamel Laghmani
- UPMC Univ Paris 06, UMR_S 872, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
- INSERM, UMR_S 872, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
- CNRS, ERL 7226, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
| | - Jacques Teulon
- UPMC Univ Paris 06, UMR_S 872, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
- INSERM, UMR_S 872, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
- CNRS, ERL 7226, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
| | - Stéphane Lourdel
- UPMC Univ Paris 06, UMR_S 872, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
- INSERM, UMR_S 872, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
- CNRS, ERL 7226, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
| |
Collapse
|
37
|
Novel techniques and newer markers for the evaluation of “proximal tubular dysfunction”. Int Urol Nephrol 2011; 43:1107-15. [DOI: 10.1007/s11255-011-9914-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Accepted: 02/07/2011] [Indexed: 10/18/2022]
|
38
|
Bogdanović R, Draaken M, Toromanović A, Dordević M, Stajić N, Ludwig M. A novel CLCN5 mutation in a boy with Bartter-like syndrome and partial growth hormone deficiency. Pediatr Nephrol 2010; 25:2363-8. [PMID: 20680351 DOI: 10.1007/s00467-010-1615-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 07/07/2010] [Indexed: 10/19/2022]
Abstract
Dent disease is an X-linked recessive disorder affecting the proximal tubule and is characterized by low-molecular-weight proteinuria (LMWP), hypercalciuria, nephrocalcinosis/nephrolithiasis with a variable number of features of Fanconi syndrome. It is most often associated with mutations in CLCN5, which encodes the endosomal electrogenic chloride/proton exchanger ClC-5. Renal acidification abnormalities are only rarely seen in Dent disease, whereas the hypokalemic metabolic alkalosis associated with hyperreninemic hyperaldosteronism (Bartter-like syndrome) has been reported in only one patient so far. We report on a 5-year-old boy with Dent disease caused by mutation in CLCN5 gene, c.1073G>A, who presented with hypokalemic metabolic alkalosis and hyperreninemic hyperaldosteronism persisting over the entire follow-up. No mutations were found in NKCC2, ROMK, NCCT, or ClC-Kb genes. In addition, the patient exhibited growth failure associated with partial growth hormone (GH) deficiency. Coexistence of Bartter-like syndrome features with LMWP should prompt a clinician to search for Dent disease. The Bartter syndrome phenotype seen in Dent disease patients may represent a distinct form of Bartter syndrome, the exact mechanism of which has yet to be fully elucidated. Growth delay that persists in spite of appropriate therapy should raise suspicion of other causes, such as GH deficiency.
Collapse
Affiliation(s)
- Radovan Bogdanović
- The Institute of Mother and Child Healthcare of Serbia Dr Vukan Cupić, 8 Radoja Dakica Street, 11070, Belgrade, Serbia.
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Dent's disease is a renal tubular disorder characterized by manifestations of proximal tubule dysfunction, including low-molecular-weight proteinuria, hypercalciuria, nephrolithiasis, nephrocalcinosis, and progressive renal failure. These features are generally found in males only, and may be present in early childhood, whereas female carriers may show a milder phenotype. Prevalence is unknown; the disorder has been reported in around 250 families to date. Complications such as rickets or osteomalacia may occur. The disease is caused by mutations in either the CLCN5 (Dent disease 1) or OCRL1 (Dent disease 2) genes that are located on chromosome Xp11.22 and Xq25, respectively. CLCN5 encodes the electrogenic Cl⁻/H(+) exchanger ClC-5, which belongs to the CLC family of Cl⁻ channels/transporters. OCRL1 encodes a phosphatidylinositol bisphosphate (PIP₂) 5-phosphatase and mutations are also associated with Lowe Syndrome. The phenotype of Dent's disease is explained by the predominant expression of ClC-5 in the proximal tubule segments of the kidney. No genotype-phenotype correlation has been described thus far, and there is considerable intra-familial variability in disease severity. A few patients with Dent's disease do not harbour mutations in CLCN5 and OCRL1, pointing to the involvement of other genes. Diagnosis is based on the presence of all three of the following criteria: low-molecular-weight proteinuria, hypercalciuria and at least one of the following: nephrocalcinosis, kidney stones, hematuria, hypophosphatemia or renal insufficiency. Molecular genetic testing confirms the diagnosis. The differential diagnosis includes other causes of generalized dysfunction of the proximal tubules (renal Fanconi syndrome), hereditary, acquired, or caused by exogenous substances. Antenatal diagnosis and pre-implantation genetic testing is not advised. The care of patients with Dent's disease is supportive, focusing on the treatment of hypercalciuria and the prevention of nephrolithiasis. The vital prognosis is good in the majority of patients. Progression to end-stage renal failure occurs between the 3rd and 5th decades of life in 30-80% of affected males.
Collapse
Affiliation(s)
- Olivier Devuyst
- Division of Nephrology, Université catholique de Louvain Medical School, Brussels, Belgium.
| | | |
Collapse
|
40
|
Smith AJ, Lippiat JD. Direct endosomal acidification by the outwardly rectifying CLC-5 Cl(-)/H(+) exchanger. J Physiol 2010; 588:2033-45. [PMID: 20421284 PMCID: PMC2911210 DOI: 10.1113/jphysiol.2010.188540] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 04/23/2010] [Indexed: 01/27/2023] Open
Abstract
The voltage-gated Cl(-) channel (CLC) family comprises cell surface Cl(-) channels and intracellular Cl(-)/H(+) exchangers. CLCs in organelle membranes are thought to assist acidification by providing a passive chloride conductance that electrically counterbalances H(+) accumulation. Following recent descriptions of Cl(-)/H(+) exchange activity in endosomal CLCs we have re-evaluated their role. We expressed human CLC-5 in HEK293 cells, recorded currents under a range of Cl(-) and H(+) gradients by whole-cell patch clamp, and examined the contribution of CLC-5 to endosomal acidification using a targeted pH-sensitive fluorescent protein. We found that CLC-5 only conducted outward currents, corresponding to Cl(-) flux into the cytoplasm and H(+) from the cytoplasm. Inward currents were never observed, despite the range of intracellular and extracellular Cl(-) concentrations and pH used. Endosomal acidification in HEK293 cells was prevented by 25 microm bafilomycin-A1, an inhibitor of vacuolar-type H(+)-ATPase (v-ATPase), which actively pumps H(+) into the endosomal lumen. Overexpression of CLC-5 in HEK293 cells conferred an additional bafilomycin-insensitive component to endosomal acidification. This effect was abolished by making mutations in CLC-5 that remove H(+) transport, which result in either no current (E268A) or bidirectional Cl(-) flux (E211A). Endosomal acidification in a proximal tubule cell line was partially sensitive to inhibition of v-ATPase by bafilomycin-A1. Furthermore, in the presence of bafilomycin-A1, acidification was significantly reduced and nearly fully ablated by partial and near-complete knockdown of endogenous CLC-5 by siRNA. These data suggest that CLC-5 is directly involved in endosomal acidification by exchanging endosomal Cl(-) for H(+).
Collapse
Affiliation(s)
- Andrew J Smith
- Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | |
Collapse
|
41
|
Smith AJ, Lippiat JD. Voltage-dependent charge movement associated with activation of the CLC-5 2Cl-/1H+ exchanger. FASEB J 2010; 24:3696-705. [PMID: 20501796 PMCID: PMC2996913 DOI: 10.1096/fj.09-150649] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The family of CLC proteins comprises both Cl− channels and Cl−/H+ exchange transporters with varying degrees of voltage dependence. The human CLC-5 is an electrogenic voltage-dependent 2Cl−/1H+ exchanger that gives rise to strongly outwardly rectifying currents when expressed. We conducted whole-cell recordings from HEK293 cells transiently transfected with either wild-type CLC-5 or a permeation-deficient mutant, E268A. With E268A CLC-5 we recorded transient voltage-dependent currents that represent the gating currents associated with CLC-5 activation and had kinetics that could be described by voltage-dependent forward and reverse transition rates. In extracellular solutions rich in Cl− or Br−, CLC-5 exhibited a gating charge of 1.3, but this was reduced to 0.9 in solutions comprising the impermeant anions aspartate, methanesulfonate, sulfate, or HEPES. Extracellular ion depletion by local perfusion with isotonic mannitol failed to reduce the gating charge further. Lowering intracellular pH from 7.4 to 5.4 did not shift the voltage-dependence of the gating currents, but reducing and increasing intracellular Cl− shifted the charge-voltage relationship to more negative and positive potentials, respectively. Our data suggest that voltage sensing is an intrinsic property of the CLC-5 protein and that permeant anions, particularly Cl−, modulate a voltage-dependent transition to an activated state from which Cl−/H+ exchange can occur.—Smith, A. J., Lippiat, J. D. Voltage-dependent charge movement associated with activation of the CLC-5 2Cl−/1H+ exchanger.
Collapse
Affiliation(s)
- Andrew J Smith
- Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | | |
Collapse
|
42
|
ClC transporters: discoveries and challenges in defining the mechanisms underlying function and regulation of ClC-5. Pflugers Arch 2010; 460:543-57. [PMID: 20049483 DOI: 10.1007/s00424-009-0769-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 11/27/2009] [Accepted: 11/30/2009] [Indexed: 02/03/2023]
Abstract
The involvement of several members of the chloride channel (ClC) family of membrane proteins in human disease highlights the need to define the mechanisms underlying their function and the consequences of disease-causing mutations. Despite the utility of high-resolution structural models, our understanding of the molecular basis for function of the chloride channels and transporters in the family remains incomplete. In this review, we focus on recent discoveries regarding molecular mechanisms underlying the regulated chloride:proton antiporter activity of ClC-5, the protein mutated in the Dent's disease-a kidney disease presenting with proteinuria and renal failure in severe cases. We discuss the putative role of ClC-5 in receptor-mediated endocytosis and protein uptake by the proximal renal tubule and the possible molecular and cellular consequences of disease-causing mutations. However, validation of these models will require future study of the intrinsic function of this transporter, in situ, in the membranes of recycling endosomes in proximal tubule epithelial cells.
Collapse
|
43
|
Dent's disease manifesting as focal glomerulosclerosis: Is it the tip of the iceberg? Pediatr Nephrol 2009; 24:2369-73. [PMID: 19806368 DOI: 10.1007/s00467-009-1299-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 07/27/2009] [Accepted: 07/28/2009] [Indexed: 10/20/2022]
Abstract
Dent's disease is an X-linked proximal tubulopathy. It often manifests in childhood with symptoms of Fanconi syndrome and low-molecular-weight proteinuria. We describe four boys from three unrelated families whose only presenting symptoms of Dent's disease were nephrotic-range proteinuria and histological findings of focal segmental and/or global glomerulosclerosis. In all families, a causal mutation in the CLCN5 gene, encoding a voltage-gated chloride transporter and chloride-proton exchanger, was identified. All three mutations are pathogenic: two are novel (p.Asp727fs and p.Trp122X), and one is a recurrent mutation, p.R648X. Given the atypical phenotype of these patients with Dent's disease, it is possible that this clinical entity is markedly underdiagnosed and that our report represents only the tip of the iceberg. The diagnosis of Dent's disease should be considered in all patients with nephrotic-range proteinuria without hypoalbuminemia or edema. Establishing the diagnosis of Dent's disease will prevent the administration of unnecessary immunosuppressive medications with their undesirable side effects.
Collapse
|
44
|
Novel CLCN5 mutations in patients with Dent’s disease result in altered ion currents or impaired exchanger processing. Kidney Int 2009; 76:999-1005. [DOI: 10.1038/ki.2009.305] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|