1
|
Foti Randazzese S, Toscano F, Gambadauro A, La Rocca M, Altavilla G, Carlino M, Caminiti L, Ruggeri P, Manti S. Neuromodulators in Acute and Chronic Cough in Children: An Update from the Literature. Int J Mol Sci 2024; 25:11229. [PMID: 39457010 PMCID: PMC11508565 DOI: 10.3390/ijms252011229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Cough is one of the most common reasons leading to pediatric consultations, negatively impacting the quality of life of patients and caregivers. It is defined as a sudden and forceful expulsion of air from the lungs through the mouth, typically triggered by irritation or the stimulation of sensory nerves in the respiratory tract. This reflex is controlled by a neural pathway that includes sensory receptors, afferent nerves, the brainstem's cough center, efferent nerves, and the muscles involved in coughing. Based on its duration, cough in children may be classified as acute, lasting less than four weeks, and chronic, persisting for more than four weeks. Neuromodulators have shown promise in reducing the frequency and severity of cough by modulating the neural pathways involved in the cough reflex, although they require careful monitoring and patient selection to optimize the outcomes. This review aims to examine the rationale for using neuromodulators in the management of cough in children.
Collapse
Affiliation(s)
- Simone Foti Randazzese
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 1, 98124 Messina, Italy; (S.F.R.); (F.T.); (M.L.R.); (G.A.); (L.C.)
| | - Fabio Toscano
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 1, 98124 Messina, Italy; (S.F.R.); (F.T.); (M.L.R.); (G.A.); (L.C.)
| | - Antonella Gambadauro
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 1, 98124 Messina, Italy; (S.F.R.); (F.T.); (M.L.R.); (G.A.); (L.C.)
| | - Mariarosaria La Rocca
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 1, 98124 Messina, Italy; (S.F.R.); (F.T.); (M.L.R.); (G.A.); (L.C.)
| | - Giulia Altavilla
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 1, 98124 Messina, Italy; (S.F.R.); (F.T.); (M.L.R.); (G.A.); (L.C.)
| | - Mariagrazia Carlino
- Pediatric Unit, Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy;
| | - Lucia Caminiti
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 1, 98124 Messina, Italy; (S.F.R.); (F.T.); (M.L.R.); (G.A.); (L.C.)
| | - Paolo Ruggeri
- Pulmonology Unit, Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Via Consolare Valeria, 1, 98124 Messina, Italy;
| | - Sara Manti
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 1, 98124 Messina, Italy; (S.F.R.); (F.T.); (M.L.R.); (G.A.); (L.C.)
| |
Collapse
|
2
|
Plevkova J, Jakusova J, Brozmanova M, Biringerova Z, Buday T. Advancing cough research: Methodological insights into cough challenge in guinea pig models using double chamber vs whole-body plethysmography. Respir Physiol Neurobiol 2024; 327:104302. [PMID: 39019202 DOI: 10.1016/j.resp.2024.104302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/08/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
OBJECTIVE This study compares two methods of citric acid-induced cough in guinea pigs in whole-body plethysmography (WBP) and double chamber plethysmography (DCP) to evaluate their efficacy. METHODS Sixteen specific pathogen-free (SPF) and sixteen conventionally-bred (CON) animals were exposed to 0.4 M citric acid aerosol. They underwent cough provocation using both DCP and WBP methods. The number of coughs and latency to the first cough were recorded and analysed using statistical methods to determine significant differences between the two techniques. RESULTS WBP resulted in significantly higher cough counts (WBP vs. DCP: 13±9 vs 2±3 for SPF; 14±8 vs 5±5 for CON; p<0.0001) and shorter latency (WBP vs. DCP: 59±6 s vs 159±14 s for SPF; 77±4 s vs 112±12 s for CON; p<0.0001) compared to DCP in both groups. CONCLUSION Methodological differences substantially impact cough responses. WBP provides a more reliable and physiologically relevant methodology for cough assessment, suggesting the need for standardized protocols in cough research to enhance translational relevance.
Collapse
Affiliation(s)
- Jana Plevkova
- Department of Pathophysiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovakia; Centre for Medical Education Support, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovakia
| | - Janka Jakusova
- Department of Pathophysiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovakia
| | - Mariana Brozmanova
- Department of Pathophysiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovakia
| | - Zuzana Biringerova
- Centre for Medical Education Support, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovakia
| | - Tomas Buday
- Department of Pathophysiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovakia.
| |
Collapse
|
3
|
Deng L, Chen X, Ma P, Wu Y, Okoye CO, Du D, Deng Q. The combined effect of oxidative stress and TRPV1 on temperature-induced asthma: Evidence in a mouse model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123313. [PMID: 38185356 DOI: 10.1016/j.envpol.2024.123313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/17/2023] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
Temperature is one of the possible activators for asthma. As global warming continues, the health hazard of high temperatures is increasing. It is unclear, nevertheless, how high temperatures affect asthma. The research aims to examine how asthma is affected by high temperatures and underlying molecular mechanisms. The BALB/c mice were adopted in a model of asthma. The mice were exposed at 24 °C, 38 °C and 40 °C for 4h on weekdays from day 1 to day 30. After the experiment, the lung function was measured in vivo, and then serum protein, pulmonary inflammation and immunohistochemistry assay was assessed in vitro. As the temperature increased from 24 °C to 40 °C, there was a significant increase in serum protein, while there is no discernible difference in serum protein of OVA-sIgE and OVA-sIgG between the OVA (38 °C) group and OVA (24 °C) group. The immunohistochemistry assay showed a change in the pro-inflammatory cytokines. The histopathological analysis exhibited the change of airway structure after high-temperature exposure, especially for exposure at 40 °C. The results of signals protein showed a remarkable rise of TRPV1 for OVA+40 °C. Our results revealed that high temperatures may make asthmatic airway dysfunction severe, and the higher the temperature, the more serious asthma. The oxidative stress and TRPV1 receptor can be a potential drug target for asthma. It will provide a new tool for precision medicine in asthma.
Collapse
Affiliation(s)
- Linjing Deng
- School of Emergency Management, Jiangsu University, 212000, Zhenjiang, China; School of environment and safety engineering, Jiangsu University, 212000, Zhenjiang, China.
| | - Xunfeng Chen
- Biofuels Institute of Jiangsu university, Jiangsu University, 212000, Zhenjiang, China; School of environment and safety engineering, Jiangsu University, 212000, Zhenjiang, China
| | - Ping Ma
- Laboratory of Environment-Immunological and Neurological Diseases, Hubei University of Science and Technology, Xianning, 437100, China
| | - Yang Wu
- Laboratory of Environment-Immunological and Neurological Diseases, Hubei University of Science and Technology, Xianning, 437100, China
| | - Charles Obinwanne Okoye
- School of environment and safety engineering, Jiangsu University, 212000, Zhenjiang, China; Department of Zoology & Environmental Biology, University of Nigeria, Nsukka, 410001, Nigeria
| | - Daolin Du
- School of Emergency Management, Jiangsu University, 212000, Zhenjiang, China; School of environment and safety engineering, Jiangsu University, 212000, Zhenjiang, China
| | - Qihong Deng
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Novel capsaicin cough endpoints effectively discriminate between healthy controls and patients with refractory chronic cough. Respir Med 2023; 208:107142. [PMID: 36736541 DOI: 10.1016/j.rmed.2023.107142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
RATIONALE Chronic cough is a common problem, substantially affecting quality of life. Effective treatments and diagnostic clinical tools for refractory chronic cough are lacking which remains a diagnosis of exclusion. OBJECTIVES To investigate capsaicin evoked cough responses in healthy volunteers and refractory chronic cough patients and assess the discriminatory ability of novel endpoints. METHODS Dose-response capsaicin cough challenges were performed, and receiver operating characteristic curves constructed to evaluate the discriminatory value of novel endpoints; Emax (maximum number of coughs evoked by any capsaicin concentration) and ED50 (capsaicin concentration evoking at least half of Emax). MEASUREMENTS AND MAIN RESULTS Ninety-three healthy volunteers (median age 39yrs(IQR; 29-52), 47 females) and 51 refractory chronic cough patients (59yrs(53-67), 31 females) were studied. Emax was significantly higher in the patient group compared to healthy volunteers (p < 0.001) and ED50 was significantly lower (p = 0.001). Both parameters were influenced by gender; females had a higher Emax (p = 0.009) and more sensitive ED50 (p < 0.001) but there were no correlations with other patient demographics. There was a significant relationship between Emax and cough frequency in the patient group (p < 0.001). Emax effectively discriminated between the groups (AUC = 0.83, 95% CI; 0.75-0.90, p < 0.001) independently of ED50 which was less favourable (AUC = 0.66, 95% CI; 0.57-0.76, p = 0.002). Emax and ED50 were shown to be repeatable, and the dose-response method well tolerated. CONCLUSION Novel capsaicin dose-response endpoints effectively discriminate between healthy controls and refractory chronic cough patients, which may better represent pathophysiological mechanisms and show promise for development as a tool to identify patients with cough hyper-excitability. CLINICAL TRIAL REGISTRATION www.isrctn.com; ISRCTN23684347.
Collapse
|
5
|
Zhuang J, Gao X, Zhao L, Wei W, Xu F. Neurokinin 1 and 2 Receptors Are Involved in PEG 2- and Citric Acid-Induced Cough and Ventilatory Responses. Respir Physiol Neurobiol 2022; 306:103952. [PMID: 35905863 DOI: 10.1016/j.resp.2022.103952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/11/2022] [Accepted: 07/24/2022] [Indexed: 10/16/2022]
Abstract
Exposure to aerosolized citric acid (CA, 150mM) and prostaglandin E2 (PGE2, 0.43mM) for 10min in guinea pigs reportedly produces the distinct cough patterns (Type I vs. II) and ventilatory responses (long-lasting hyperventilation vs. brief tachypnea) even though triggering the same cough numbers. Type I and II coughs are primarily mediated by activation of TRPV1 and EP3 receptors (a PGE2 receptor) of vagal C-fibers respectively. Substance P (SP) and neurokinin A (NKA) released by vagal pulmonary sensory fibers peripherally are capable of affecting CA-induced cough and ventilation via preferentially activating neurokinin 1 and 2 receptors (NK1R and NK2R) respectively. This study aimed to define the impacts of CA- and PGE2-exposure on pulmonary SP and NKA levels and the roles of NK1R and NK2R in modulating CA- and PGE2-evoked cough and ventilatory responses. In unanesthetized guinea pigs, we determined: 1) pulmonary SP and NKA contents induced by the CA- or PGE2-exposure; 2) effects of CP-99994 and SR-48968 (a NK1R and a NK2R antagonist respectively) given by intraperitoneal injection (IP) or aerosol inhalation (IH) on the CA- and PGE2-evoked cough and ventilatory responses; and 3) immunocytochemical expressions of NK1R/NK2R in vagal C-neurons labeled by TRPV1 or EP3 receptors. We found that CA- and PGE2-exposure evoked Type I and II cough respectively associated with different degrees of increases in pulmonary SP and NKA. Applications of CP-99994 and SR-48968 via IP and IH efficiently suppressed the cough responses to CA with less impact on the cough response to PGE2. These antagonists inhibited or blocked the ventilatory response to CA and caused hypoventilation in response to PGE2. Moreover, NK1R and NK2R were always co-expressed in vagal C-neurons labeled by TRPV1 or EP3 receptors. These results suggest that SP and NKA endogenously released by CA- and PGE2-exposure play important roles in generating the cough and ventilatory responses to CA and PGE2, at least in part, via activation of NK1R and NK2R expressed in vagal C-neurons (pulmonary C-neurons).
Collapse
Affiliation(s)
- Jianguo Zhuang
- Pathophysiology Program, Lovelace Biomedical Research Institute, Albuquerque, NM 87108
| | - Xiuping Gao
- Pathophysiology Program, Lovelace Biomedical Research Institute, Albuquerque, NM 87108
| | - Lei Zhao
- Pathophysiology Program, Lovelace Biomedical Research Institute, Albuquerque, NM 87108; Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Wan Wei
- Pathophysiology Program, Lovelace Biomedical Research Institute, Albuquerque, NM 87108; Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Fadi Xu
- Pathophysiology Program, Lovelace Biomedical Research Institute, Albuquerque, NM 87108.
| |
Collapse
|
6
|
Romanova J, Rydlovskaya A, Mochalov S, Proskurina O, Gorokh Y, Nebolsin V. The Effect of Anti-Chemokine Oral Drug XC8 on Cough Triggered by The Agonists of TRPA1 But Not TRPV1 Channels in Guinea Pigs. Pulm Ther 2022; 8:105-122. [PMID: 35133638 PMCID: PMC8824739 DOI: 10.1007/s41030-022-00183-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/14/2022] [Indexed: 01/09/2023] Open
Abstract
Introduction Chronic cough heavily affects patients’ quality of life, and there are no effective licensed therapies available. Cough is a complication of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) infection, asthma, and other diseases. Patients with various diseases have a different profile of tussive responses to diverse cough triggers, thereby suggesting sundry mechanisms of neuronal dysfunctions. Previously, we demonstrated that the small molecule drug XC8 shows a clinical anti-asthmatic effect. The objective of the present study was to investigate the effect of XC8 on cough. Methods We studied the antitussive effect of XC8 on cough induced by agonists activating human transient receptor potential (TRP) cation channels TRPA1 or TRPV1 in guinea pigs. We checked the agonistic/antagonistic activity of XC8 on the human cation channels TRPA1, TRPV1, TRPM8, P2X purinoceptor 2 (P2X2), and human acid sensing ion channel 3 (hASIC3) in Fluorescent Imaging Plate Reader (FLIPR) assay. Results XC8 demonstrated clear antitussive activity and dose-dependently inhibited cough in guinea pigs induced by citric acid alone (up to 67.1%) or in combination with IFN-γ (up to 76.4%). XC8 suppressed cough reflexes induced by the repeated inhalation of citric acid (up to 80%) or by cinnamaldehyde (up to 60%). No activity of XC8 against cough evoked by capsaicin was revealed. No direct agonistic/antagonistic activity of XC8 on human TRPA1, TRPV1, TRPM8, P2X2, or hASIC3 was detected. Conclusions XC8 acts against cough evoked by the activation of TRPA1 (citric acid/cinnamaldehyde) but not TRPV1 (capsaicin) channels. XC8 inhibits the cough reflex and suppresses the cough potentiation by IFN-γ. XC8 might be of significant therapeutic value for patients suffering from chronic cough associated with inflammation.
Collapse
Affiliation(s)
- Julia Romanova
- Pharmenterprises LLC, 42 Bolshoj Blvd., Building 1, office 771, 772, Skolkovo Innovation Centre, Moscow, 121205, Russian Federation.
| | - Anastasia Rydlovskaya
- Pharmenterprises LLC, 42 Bolshoj Blvd., Building 1, office 771, 772, Skolkovo Innovation Centre, Moscow, 121205, Russian Federation
| | - Stepan Mochalov
- Pharmenterprises LLC, 42 Bolshoj Blvd., Building 1, office 771, 772, Skolkovo Innovation Centre, Moscow, 121205, Russian Federation
| | - Oxana Proskurina
- Pharmenterprises LLC, 42 Bolshoj Blvd., Building 1, office 771, 772, Skolkovo Innovation Centre, Moscow, 121205, Russian Federation
| | - Yulia Gorokh
- Pharmenterprises LLC, 42 Bolshoj Blvd., Building 1, office 771, 772, Skolkovo Innovation Centre, Moscow, 121205, Russian Federation
| | - Vladimir Nebolsin
- Pharmenterprises LLC, 42 Bolshoj Blvd., Building 1, office 771, 772, Skolkovo Innovation Centre, Moscow, 121205, Russian Federation
| |
Collapse
|
7
|
Koskela HO, Nurmi HM, Birring SS. Utility of Cough Provocation Tests in Chronic Cough and Respiratory Diseases: A Comprehensive Review and Introduction of New Reference Ranges for the Capsaicin Test. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2021; 13:833-849. [PMID: 34734503 PMCID: PMC8569027 DOI: 10.4168/aair.2021.13.6.833] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/09/2021] [Accepted: 08/17/2021] [Indexed: 01/20/2023]
Abstract
Cough provocation tests (CPTs) are an objective measurement of the sensitivity of the cough reflex arc. However, they are not established in clinical practice because a large variability of response in healthy subjects limits their diagnostic value. There is a paucity of studies that have investigated CPT reference ranges in healthy subjects. This systematic review describes the variability of the responses to CPTs in healthy subjects and factors that influence it. A new analysis of 134 healthy subjects was conducted to create reference ranges for single-breath capsaicin CPT by calculating the interquartile ranges for the provocative concentration of capsaicin to induce 2 and 5 coughs. Female subjects had a more sensitive cough reflex than male counterparts. The ability of CPTs to distinguish various respiratory diseases from healthy subjects was also reviewed. Cough sensitivity was consistently heightened in the following groups: unselected patients with chronic, refractory, or recurrent cough, unexplained chronic cough, gastro-esophageal reflux-associated cough, cough-variant asthma, lower airway symptoms induced by chemical irritants, and fibrotic interstitial lung diseases. In the following groups, hypersensitivity of the cough reflex was present in those individuals whose symptom profile was predominated by cough: asthma, chronic obstructive pulmonary disease (COPD), bronchiectasis, and sarcoidosis. In the following conditions, patients usually cough in order to expectorate mucus from their airways, not because of a hypersensitive cough reflex arc: productive cough, asthma, upper airway cough syndrome, COPD, bronchiectasis, cystic fibrosis, and chronic respiratory infections. CPTs have the potential to identify patients with chronic respiratory symptoms due to cough reflex hypersensitivity, thereby providing a targeted approach for therapy.
Collapse
Affiliation(s)
- Heikki Olavi Koskela
- Unit for Medicine and Clinical Research, Pulmonary Division, Kuopio University Hospital, Kuopio, Finland.,School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Hanna Maria Nurmi
- Unit for Medicine and Clinical Research, Pulmonary Division, Kuopio University Hospital, Kuopio, Finland.,School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Surinder Singh Birring
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
8
|
Drake MG, Cook M, Fryer AD, Jacoby DB, Scott GD. Airway Sensory Nerve Plasticity in Asthma and Chronic Cough. Front Physiol 2021; 12:720538. [PMID: 34557110 PMCID: PMC8452850 DOI: 10.3389/fphys.2021.720538] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/02/2021] [Indexed: 01/21/2023] Open
Abstract
Airway sensory nerves detect a wide variety of chemical and mechanical stimuli, and relay signals to circuits within the brainstem that regulate breathing, cough, and bronchoconstriction. Recent advances in histological methods, single cell PCR analysis and transgenic mouse models have illuminated a remarkable degree of sensory nerve heterogeneity and have enabled an unprecedented ability to test the functional role of specific neuronal populations in healthy and diseased lungs. This review focuses on how neuronal plasticity contributes to development of two of the most common airway diseases, asthma and chronic cough, and discusses the therapeutic implications of emerging treatments that target airway sensory nerves.
Collapse
Affiliation(s)
- Matthew G. Drake
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Madeline Cook
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Allison D. Fryer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - David B. Jacoby
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Gregory D. Scott
- Department of Pathology, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
9
|
Satia I, Cusack R, Stevens C, Schlatman A, Wattie J, Mian F, Killian KJ, O'Byrne PM, Bienenstock J, Forsythe P, Gauvreau GM. Limosilactobacillus reuteri DSM-17938 for preventing cough in adults with mild allergic asthma: A double-blind randomized placebo-controlled cross-over study. Clin Exp Allergy 2021; 51:1133-1143. [PMID: 34192396 DOI: 10.1111/cea.13976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/27/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cough is a common troublesome symptom in asthma which is neuronally mediated. Limosilactobacillus reuteri DSM-17938 (L. reuteri DSM-17938) is a probiotic shown to be effective in pre-clinical models at suppressing neuronal responses to capsaicin, a transient receptor potential vanilloid agonist (TRPV1). OBJECTIVE Investigate the effects of DSM-17938 versus matched placebo on capsaicin-evoked coughs in mild allergic asthmatics. METHODS We performed a 4-visit, randomized, double-blind, placebo-controlled, two-way cross-over study comparing full dose cough responses with inhaled capsaicin in mild allergic asthmatics after 1 month of treatment with DSM-17938 compared with matched placebo. Randomization and allocation to trial group were carried out by a central computer system. Histamine skin prick testing, airway hyper-responsiveness and inflammatory cells in induced sputum were measured at every visit. Blood was collected to extract PBMCs and stimulated with CD3/CD28 to ascertain the effects of DSM-17938 /placebo on T-cell cytokine responses. RESULTS Seventeen subjects were recruited and 15 completed the study (8 females, mean age 27.3 years). There was no difference in the change in maximum capsaicin-evoked coughs (Emax) after treatment with L. reuteri DSM-17938 compared with placebo [mean difference 2.07 coughs (95% CI -2.77 to 6.91, p = .38) or relative changes in geometric mean ratios for the dose evoking at least half the Emax (ED50) [1.05 (95% CI 0.31-3.58, p = .94)], concentration evoking 2 coughs (C2) [0.63 (0.26-1.53), p = .28] and 5 coughs (C5) [0.79 (0.25-2.50), p = .67]. There was no effect on histamine skin prick wheal size, intensity of itch sensation, methacholine PC20, airway inflammation or T-cell responses after stimulation with CD3/CD28. There were no serious adverse events. One subject developed a mild upper respiratory tract infection and another mild transient nausea whilst on DSM-17938. CONCLUSION In this small study in adults with mild allergic asthma, we found no evidence that L. reuteri DSM-17938 has any systemic effects on airway nerves, smooth muscle, sputum inflammatory cells, skin responses or T-cell responses after oral consumption. TRIAL REGISTRATION Clinicaltrials.gov Identifier: NCT03603522.
Collapse
Affiliation(s)
- Imran Satia
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada.,Firestone Institute for Respiratory Health, St Joseph's Healthcare, Hamilton, ON, Canada
| | - Ruth Cusack
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Catie Stevens
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Abbey Schlatman
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Jennifer Wattie
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Firoz Mian
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Kieran J Killian
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Paul M O'Byrne
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada.,Firestone Institute for Respiratory Health, St Joseph's Healthcare, Hamilton, ON, Canada
| | - John Bienenstock
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Paul Forsythe
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Gail M Gauvreau
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
10
|
Brozmanova M, Pavelkova N. The Prospect for Potent Sodium Voltage-Gated Channel Blockers to Relieve an Excessive Cough. Physiol Res 2021; 69:S7-S18. [PMID: 32228007 DOI: 10.33549/physiolres.934395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
An excessive, irritable, productive or non-productive coughing associated with airway inflammation belongs to pathological cough. Increased activation of airway vagal nociceptors in pathological conditions results from dysregulation of the neural pathway that controls cough. A variety of mediators associated with airway inflammation overstimulate these vagal airway fibers including C-fibers leading to hypersensitivity and hyperreactivity. Because current antitussives have limited efficacy and unwanted side effects there is a continual demand for the development of a novel more effective antitussives for a new efficacious and safe cough treatment. Therefore, inhibiting the activity of these vagal C-fibers represents a rational approach to the development of effective antitussive drugs. This may be achieved by blocking inflammatory mediator receptors or by blocking the generator potential associated with the specific ion channels. Because voltage-gated sodium channels (NaVs) are absolutely required for action potentials initiation and conduction irrespective of the stimulus, NaVs become a promising neural target. There is evidence that NaV1.7, 1.8 and 1.9 subtypes are predominantly expressed in airway cough-triggering nerves. The advantage of blocking these NaVs is suppressing C-fiber irrespective to stimuli, but the disadvantage is that by suppressing the nerves is may also block beneficial sensations and neuronal reflex behavior. The concept is that new antitussive drugs would have the benefit of targeting peripheral airway nociceptors without inhibiting the protective cough reflex.
Collapse
Affiliation(s)
- M Brozmanova
- Department of Pathophysiology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia.
| | | |
Collapse
|
11
|
Taylor-Clark TE. Molecular identity, anatomy, gene expression and function of neural crest vs. placode-derived nociceptors in the lower airways. Neurosci Lett 2020; 742:135505. [PMID: 33197519 DOI: 10.1016/j.neulet.2020.135505] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022]
Abstract
The lower airways (larynx to alveoli) are protected by a complex array of neural networks that regulate respiration and airway function. Harmful stimuli trigger defensive responses such as apnea, cough and bronchospasm by activating a subpopulation of sensory afferent nerves (termed nociceptors) which are found throughout the airways. Airway nociceptive fibers are projected from the nodose vagal ganglia, the jugular vagal ganglia and the dorsal root ganglia, which are derived from distinct embryological sources: the former from the epibranchial placodes, the latter two from the neural crest. Embryological source determines nociceptive gene expression of receptors and neurotransmitters and recent evidence suggests that placode- and neural crest-derived nociceptors have distinct stimuli sensitivity, innervation patterns and functions. Improved understanding of the function of each subset in specific reflexes has substantial implications for therapeutic targeting of the neuronal components of airway disease such as asthma, viral infections and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Thomas E Taylor-Clark
- Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd., Tampa, FL 33612, USA.
| |
Collapse
|
12
|
Abstract
Cough sensitivity can be described as the reaction intensity of the cough reflex to different stimuli which activate chemically and mechanically sensitive vagal afferent nerves innervating airways and lungs. Measurement of cough reflex sensitivity plays an important role in revealing the underlying mechanisms of cough and evaluating the effects of pharmacological interventions. Besides, different responses to cough suppression therapies indicate the existence of cough hypersensitivity. In consideration of these factors stated above, cough sensitivity should therefore be assessed with a variety of cough challenge tests. Based on the neuroanatomical characteristics of the cough reflex, chemical challenge tests have been developed to objectively assess cough sensitivity. In cough inhalation challenges, capsaicin and citric acid are commonly used as the tussive agents to induce cough, which are validated for describing a profile of cough sensitivity to chemical irritants. Recently, mechanical methodologies have also been tried to measure the mechanical sensitivity of the cough reflex. Methodological consideration and selection are necessary for the reasonable assessment of cough sensitivity while employing cough challenges in clinical trials. Thus, in this review, we will focus on describing various methodologies of cough sensitivity measurement and, detailing some factors influencing on the accuracy of outcomes in the experimentally induced cough.
Collapse
Affiliation(s)
- Yonglin Mai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Nanshan School of Medicine, Guangzhou Medical University, Guangzhou, China
| | - Liman Fang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuxin Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - S Dushinka Shaniya Helen de Silva
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,International College of Education, Guangzhou Medical University, Guangzhou, China
| | - Ruchong Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kefang Lai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
13
|
Silverman HA, Chen A, Kravatz NL, Chavan SS, Chang EH. Involvement of Neural Transient Receptor Potential Channels in Peripheral Inflammation. Front Immunol 2020; 11:590261. [PMID: 33193423 PMCID: PMC7645044 DOI: 10.3389/fimmu.2020.590261] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
Transient receptor potential (TRP) channels are a superfamily of non-selective cation channels that act as polymodal sensors in many tissues throughout mammalian organisms. In the context of ion channels, they are unique for their broad diversity of activation mechanisms and their cation selectivity. TRP channels are involved in a diverse range of physiological processes including chemical sensing, nociception, and mediating cytokine release. They also play an important role in the regulation of inflammation through sensory function and the release of neuropeptides. In this review, we discuss the functional contribution of a subset of TRP channels (TRPV1, TRPV4, TRPM3, TRPM8, and TRPA1) that are involved in the body’s immune responses, particularly in relation to inflammation. We focus on these five TRP channels because, in addition to being expressed in many somatic cell types, these channels are also expressed on peripheral ganglia and nerves that innervate visceral organs and tissues throughout the body. Activation of these neural TRP channels enables crosstalk between neurons, immune cells, and epithelial cells to regulate a wide range of inflammatory actions. TRP channels act either through direct effects on cation levels or through indirect modulation of intracellular pathways to trigger pro- or anti-inflammatory mechanisms, depending on the inflammatory disease context. The expression of TRP channels on both neural and immune cells has made them an attractive drug target in diseases involving inflammation. Future work in this domain will likely yield important new pathways and therapies for the treatment of a broad range of disorders including colitis, dermatitis, sepsis, asthma, and pain.
Collapse
Affiliation(s)
- Harold A Silverman
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Adrian Chen
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Nigel L Kravatz
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Sangeeta S Chavan
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, NY, United States
| | - Eric H Chang
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, NY, United States
| |
Collapse
|
14
|
Cho PSP, Fletcher HV, Turner RD, Patel IS, Jolley CJ, Birring SS. The Relationship Between Cough Reflex Sensitivity and Exacerbation Frequency in Chronic Obstructive Pulmonary Disease. Lung 2020; 198:617-628. [PMID: 32561993 PMCID: PMC7374441 DOI: 10.1007/s00408-020-00366-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/01/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cough is predictive of exacerbations of chronic obstructive pulmonary disease (COPD). Little is known about cough reflex sensitivity during exacerbation of COPD and whether it is associated with exacerbation frequency. This pilot study aimed to investigate cough reflex sensitivity during and following recovery from exacerbation of COPD, and its association with the frequency of future exacerbations. In addition, the repeatability of cough reflex sensitivity in stable COPD was investigated. METHODS Twenty participants hospitalised with exacerbation of COPD underwent inhaled capsaicin challenge during exacerbation and after 6 weeks of recovery. The frequency of future exacerbations was monitored for 12 months. The repeatability of cough reflex sensitivity was assessed in separate participants with stable COPD, who underwent 2 capsaicin challenge tests, 6 weeks apart. RESULTS Cough reflex sensitivity was heightened during exacerbation of COPD. Geometric mean (SD) capsaicin concentration thresholds to elicit 5 coughs (C5) during exacerbation and after 6 weeks of recovery were 1.76 (3.73) vs. 8.09 (6.25) μmol L-1, respectively (p < 0.001). The change in C5 from exacerbation to 6-week recovery was associated with the frequency of future exacerbations (ρ = - 0.687, p = 0.003). C5 was highly repeatable over 6 weeks in stable COPD, and intraclass correlation coefficient was 0.85. CONCLUSION Cough reflex sensitivity is heightened during exacerbation of COPD and reduces after recovery. The persistence of cough reflex hypersensitivity at recovery was associated with the frequency of future exacerbations.
Collapse
Affiliation(s)
- Peter S P Cho
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London, London, UK
| | - Hannah V Fletcher
- Department of Respiratory Medicine, King's College Hospital NHS Foundation Trust, London, UK
| | - Richard D Turner
- Department of Respiratory Medicine, Charing Cross Hospital, Imperial College Healthcare Trust, London, UK
| | - Irem S Patel
- Department of Respiratory Medicine, King's College Hospital NHS Foundation Trust, London, UK
| | - Caroline J Jolley
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London, London, UK
| | - Surinder S Birring
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London, London, UK. .,Department of Respiratory Medicine, King's College Hospital NHS Foundation Trust, London, UK.
| |
Collapse
|
15
|
Joseph V, Yang X, Gao SS, Elstrott J, Weimer RM, Theess W, Thrasher C, Singh N, Lin J, Bauer RN. Development of AITC-induced dermal blood flow as a translational in vivo biomarker of TRPA1 activity in human and rodent skin. Br J Clin Pharmacol 2020; 87:129-139. [PMID: 32415670 DOI: 10.1111/bcp.14370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/27/2020] [Accepted: 05/01/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND AND PURPOSE Develop a translational assay of Transient Receptor Potential Ankyrin 1 (TRPA1) activity for use as a preclinical and clinical biomarker. EXPERIMENTAL APPROACH Allyl isothiocyanate (AITC), capsaicin or citric acid were applied to ears of wildtype and Trpa1-knock out (Trpa1 KO) rats, and changes in dermal blood flow (DBF) were measured by laser speckle contrast imaging. In humans, the DBF, pain and itch responses to 5-20% AITC applied to the forearm were measured and safety was evaluated. Reproducibility of the DBF, pain and itch responses to topically applied 10% and 15% AITC were assessed at two visits separated by 13-15 days. DBF changes were summarized at 5-minute intervals as areas under the curve (AUC) and maxima. Intraclass correlation coefficient (ICC) was calculated to assess arm-arm and period-period reproducibility. KEY RESULTS AITC- and citric acid-induced DBF were significantly reduced in Trpa1 KO rats compared to wildtype (90 ± 2% and 65 ± 11% reduction, respectively), whereas capsaicin response did not differ. In humans, each AITC concentration significantly increased DBF compared to vehicle with the maximal increase occurring 5 minutes post application. Ten percent and 15% AITC were selected as safe and effective stimuli. AUC from 0 to 5 minutes was the most reproducible metric of AITC-induced DBF across arms (ICC = 0.92) and periods (ICC = 0.85). Subject-reported pain was more reproducible than itch across visits (ICC = 0.76 vs 0.17, respectively). CONCLUSION AND IMPLICATIONS AITC-induced DBF is a suitable target engagement biomarker of TRPA1 activity for preclinical and clinical studies of TRPA1 antagonists.
Collapse
Affiliation(s)
- Victory Joseph
- Biomedical Imaging, Genentech, Inc., South San Francisco, CA, USA
| | - Xiaoying Yang
- Biostatistics, Genentech, Inc., South San Francisco, CA, USA
| | - Simon S Gao
- Clinical Imaging, Genentech, Inc., South San Francisco, CA, USA
| | - Justin Elstrott
- Biomedical Imaging, Genentech, Inc., South San Francisco, CA, USA
| | - Robby M Weimer
- Biomedical Imaging, Genentech, Inc., South San Francisco, CA, USA
| | - Wiebke Theess
- Early Clinical Development, Genentech, Inc., South San Francisco, CA, USA
| | - Cory Thrasher
- Environmental Health and Safety, Genentech, Inc., South San Francisco, CA, USA
| | | | - Joseph Lin
- Early Clinical Development, Genentech, Inc., South San Francisco, CA, USA
| | - Rebecca N Bauer
- OMNI Biomarker Development, Genentech, Inc., South San Francisco, CA, USA
| |
Collapse
|
16
|
Zhang M, Wang S, Yu L, Xu X, Qiu Z. The role of ATP in cough hypersensitivity syndrome: new targets for treatment. J Thorac Dis 2020; 12:2781-2790. [PMID: 32642186 PMCID: PMC7330343 DOI: 10.21037/jtd-20-cough-001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Clinically, chronic cough can be effectively controlled in most patients by etiological treatment; however, there remain a small number of patients whose cough has unidentifiable etiology or where treatment efficacy is poor following etiology identification, whose condition is described as unexplained chronic cough or refractory chronic cough. Patients with refractory chronic or unexplained chronic cough commonly have increased cough reflex sensitivity, which has been described as cough hypersensitivity syndrome. The adenosine triphosphate (ATP)-gated P2X3 receptor may be a key link in the activation of sensory neurons that regulate cough reflexes and has recently draw attention as a potential target for the treatment of refractory chronic cough, with a number of clinical studies validating the therapeutic effects of P2X3 receptor antagonists in patients with this condition. As the energy source for various cells in vivo, ATP localizes within cells under normal physiological conditions, and has physiological functions, including in metabolism; however, under some pathological circumstances, ATP can act as a neuromodulator and is released into the extracellular space in large quantities as a signal transduction molecule. In addition, ATP is involved in regulation of airway inflammation and the cough reflex. Here, we review the generation, release, and regulation of ATP during airway inflammation and its role in the etiology of cough hypersensitivity syndrome, including the potential underlying mechanism.
Collapse
Affiliation(s)
- Mengru Zhang
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Shengyuan Wang
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Li Yu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Xianghuai Xu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Zhongmin Qiu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| |
Collapse
|
17
|
Koskela HO, Nurmi HM, Purokivi MK. Cough-provocation tests with hypertonic aerosols. ERJ Open Res 2020; 6:00338-2019. [PMID: 32337214 PMCID: PMC7167210 DOI: 10.1183/23120541.00338-2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/23/2020] [Indexed: 12/19/2022] Open
Abstract
Recent advances in cough research suggest a more widespread use of cough-provocation tests to demonstrate the hypersensitivity of the cough reflex arc. Cough-provocation tests with capsaicin or acidic aerosols have been used for decades in scientific studies. Several factors have hindered their use in everyday clinical work: i.e. lack of standardisation, the need for special equipment and the limited clinical importance of the response. Cough-provocation tests with hypertonic aerosols (CPTHAs) involve provocations with hypertonic saline, hypertonic histamine, mannitol and hyperpnoea. They probably act via different mechanisms than capsaicin and acidic aerosols. They are safe and well tolerated and the response is repeatable. CPTHAs can assess not only the sensitivity of the cough reflex arc but also the tendency of the airway smooth muscles to constrict (airway hyper-responsiveness). They can differentiate between subjects with asthma or chronic cough and healthy subjects. The responsiveness to CPTHAs correlates with the cough-related quality of life among asthmatic subjects. Furthermore, the responsiveness to them decreases during treatment of chronic cough. A severe response to CPTHAs may indicate poor long-term prognosis in chronic cough. The mannitol test has been stringently standardised, is easy to administer with simple equipment, and has regulatory approval for the assessment of airway hyper-responsiveness. Manual counting of coughs during a mannitol challenge would allow the measurement of the function of the cough reflex arc as a part of clinical routine. Cough-provocation tests with hypertonic aerosols offer the possibility to measure the function of the cough reflex arc even in everyday clinical workhttp://bit.ly/2RTOfMI
Collapse
Affiliation(s)
- Heikki O Koskela
- Unit for Medicine and Clinical Research, Pulmonary Division, Kuopio University Hospital, Kuopio, Finland.,School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Hanna M Nurmi
- Unit for Medicine and Clinical Research, Pulmonary Division, Kuopio University Hospital, Kuopio, Finland.,School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Minna K Purokivi
- Unit for Medicine and Clinical Research, Pulmonary Division, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
18
|
Pecova T, Kocan I, Vysehradsky R, Pecova R. Itch and Cough - Similar Role of Sensory Nerves in Their Pathogenesis. Physiol Res 2020; 69:S43-S54. [PMID: 32228011 DOI: 10.33549/physiolres.934403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Itch is the most common chief complaint in patients visiting dermatology clinics and is analogous to cough and also sneeze of the lower and upper respiratory tract, all three of which are host actions trying to clear noxious stimuli. The pathomechanisms of these symptoms are not completely determined. The itch can originate from a variety of etiologies. Itch originates following the activation of peripheral sensory nerve endings following damage or exposure to inflammatory mediators. More than one sensory nerve subtype is thought to subservepruriceptive itch which includes both unmyelinated C-fibers and thinly myelinated Adelta nerve fibers. There are a lot of mediators capable of stimulating these afferent nerves leading to itch. Cough and itch pathways are mediated by small-diameter sensory fibers. These cough and itch sensory fibers release neuropeptides upon activation, which leads to inflammation of the nerves. The inflammation is involved in the development of chronic conditions of itch and cough. The aim of this review is to point out the role of sensory nerves in the pathogenesis of cough and itching. The common aspects of itch and cough could lead to new thoughts and perspectives in both fields.
Collapse
Affiliation(s)
- T Pecova
- Clinic of Dermatovenerology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital in Martin, Martin, Slovak
| | | | | | | |
Collapse
|
19
|
Comparison of mannitol and citric acid cough provocation tests. Respir Med 2019; 158:14-20. [PMID: 31542680 DOI: 10.1016/j.rmed.2019.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 11/23/2022]
Abstract
RATIONALE Citric acid has been used as a cough provocation test for decades. However, the methods of administration have not been standardized. Inhaled mannitol is a novel cough provocation test, which has regulatory approval and can be performed utilizing a simple disposable inhaler in a standardized manner. OBJECTIVE To compare the mannitol and citric acid cough provocation tests with respect to their ability to identify subjects with chronic cough and their tolerability. METHODS Subjects with chronic cough (n = 36) and controls (n = 25) performed provocation tests with mannitol and citric acid. Both tests were video recorded. Cough sensitivity was expressed as coughs-to-dose ratios (CDR) and the cumulative doses to mannitol or concentration to citric acid evoking 5 coughs (C5). Forced expiratory volume in 1 s (FEV1), visual analogue scales (VAS), test completion rates and the total cough frequencies were analysed. RESULTS Mannitol and citric acid CDR both effectively separated those with cough and the control subjects (AUC 0.847 and 0.803, respectively) as did C5 (AUC 0.823 and 0.763, respectively). There was a good correlation between the cough sensitivity provoked by the two stimuli, either expressed as CDR (r = 0.65, p < 0.001) or C5 (r = 0.53, p = 0.001). Both tests were similarly tolerated in terms of VAS, although more patients discontinued the mannitol test early, primarily due to cough. CONCLUSIONS Mannitol and citric acid tests correlated well, equally identified subjects with chronic cough and their tolerability was similar. The feasibility issues, strict standardisation and regulatory approval may favour mannitol to be used in clinical cough research.
Collapse
|
20
|
Methods of Cough Assessment. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 7:1715-1723. [DOI: 10.1016/j.jaip.2019.01.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/24/2022]
|
21
|
Koskela HO, Lake C, Wong K, Brannan JD. Cough sensitivity to mannitol inhalation challenge identifies subjects with chronic cough. Eur Respir J 2018; 51:13993003.00294-2018. [PMID: 29545282 DOI: 10.1183/13993003.00294-2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 03/06/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Heikki O Koskela
- Unit for Medicine and Clinical Research, Pulmonary Division, Kuopio University Hospital, Kuopio, Finland.,School of Medicine, Institute of Clinical Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Clair Lake
- Dept of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, Australia.,Central Clinical School, Faculty of Medicine, The University of Sydney, Sydney, Australia
| | - Keith Wong
- Dept of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, Australia.,Central Clinical School, Faculty of Medicine, The University of Sydney, Sydney, Australia
| | - John D Brannan
- Dept of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton, Australia
| |
Collapse
|
22
|
Krishnatreyya H, Hazarika H, Saha A, Chattopadhyay P. Capsaicin, the primary constituent of pepper sprays and its pharmacological effects on mammalian ocular tissues. Eur J Pharmacol 2018; 819:114-121. [DOI: 10.1016/j.ejphar.2017.11.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/20/2017] [Accepted: 11/24/2017] [Indexed: 01/07/2023]
|
23
|
Bonvini SJ, Belvisi MG. Cough and airway disease: The role of ion channels. Pulm Pharmacol Ther 2017; 47:21-28. [PMID: 28669932 DOI: 10.1016/j.pupt.2017.06.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 01/07/2023]
Abstract
Cough is the most common reason for patients to visit a primary care physician, yet it remains an unmet medical need. It can be idiopathic in nature but can also be a troublesome symptom across chronic lung diseases such as asthma, COPD and idiopathic pulmonary fibrosis (IPF). Chronic cough affects up to 12% of the population and yet there are no safe and effective therapies. The cough reflex is regulated by vagal, sensory afferent nerves which innervate the airway. The Transient Receptor Potential (TRP) family of ion channels are expressed on sensory nerve terminals, and when activated can evoke cough. This review focuses on the role of 4 TRP channels; TRP Vannilloid 1 (TRPV1), TRP Ankyrin 1 (TRPA1), TRP Vannilloid 4 (TRPV4) and TRP Melastatin 8 (TRPM8) and the purinergic P2X3 receptor and their possible role in chronic cough. We conclude that these ion channels, given their expression profile and their role in the activation of sensory afferents and the cough reflex, may represent excellent therapeutic targets for the treatment of respiratory symptoms in chronic lung disease.
Collapse
Affiliation(s)
- Sara J Bonvini
- Respiratory Pharmacology Group, Airway Disease Section, National Heart & Lung Institute, Imperial College, Exhibition Road, London SW7 2AZ, UK
| | - Maria G Belvisi
- Respiratory Pharmacology Group, Airway Disease Section, National Heart & Lung Institute, Imperial College, Exhibition Road, London SW7 2AZ, UK.
| |
Collapse
|
24
|
Belvisi MG, Birrell MA, Wortley MA, Maher SA, Satia I, Badri H, Holt K, Round P, McGarvey L, Ford J, Smith JA. XEN-D0501, a Novel Transient Receptor Potential Vanilloid 1 Antagonist, Does Not Reduce Cough in Patients with Refractory Cough. Am J Respir Crit Care Med 2017. [DOI: 10.1164/rccm.201704-0769oc] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Maria G. Belvisi
- Respiratory Pharmacology Group, Division of Airway Disease, National Heart and Lung Institute, Imperial College London, United Kingdom
- Innovative Medicines and Early Development, IMED RIA, AstraZeneca, Mölndal, Sweden
| | - Mark A. Birrell
- Respiratory Pharmacology Group, Division of Airway Disease, National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Michael A. Wortley
- Respiratory Pharmacology Group, Division of Airway Disease, National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Sarah A. Maher
- Respiratory Pharmacology Group, Division of Airway Disease, National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Imran Satia
- Division of Infection, Immunity, and Respiratory Medicine, University of Manchester, University Hospital of South Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Huda Badri
- Division of Infection, Immunity, and Respiratory Medicine, University of Manchester, University Hospital of South Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Kimberley Holt
- Division of Infection, Immunity, and Respiratory Medicine, University of Manchester, University Hospital of South Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Patrick Round
- Ario Pharma Ltd., Cambridgeshire, United Kingdom; and
| | - Lorcan McGarvey
- Centre for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - John Ford
- Ario Pharma Ltd., Cambridgeshire, United Kingdom; and
| | - Jaclyn A. Smith
- Division of Infection, Immunity, and Respiratory Medicine, University of Manchester, University Hospital of South Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| |
Collapse
|
25
|
Keller JA, McGovern AE, Mazzone SB. Translating Cough Mechanisms Into Better Cough Suppressants. Chest 2017; 152:833-841. [DOI: 10.1016/j.chest.2017.05.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/14/2017] [Accepted: 05/17/2017] [Indexed: 12/19/2022] Open
|
26
|
Belvisi MG, Birrell MA. The emerging role of transient receptor potential channels in chronic lung disease. Eur Respir J 2017; 50:50/2/1601357. [PMID: 28775042 DOI: 10.1183/13993003.01357-2016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 04/14/2017] [Indexed: 12/12/2022]
Abstract
Chronic lung diseases such as asthma, chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis are a major and increasing global health burden with a high unmet need. Drug discovery efforts in this area have been largely disappointing and so new therapeutic targets are needed. Transient receptor potential ion channels are emerging as possible therapeutic targets, given their widespread expression in the lung, their role in the modulation of inflammatory and structural changes and in the production of respiratory symptoms, such as bronchospasm and cough, seen in chronic lung disease.
Collapse
Affiliation(s)
- Maria G Belvisi
- Respiratory Pharmacology Group, Airway Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| | - Mark A Birrell
- Respiratory Pharmacology Group, Airway Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
27
|
Belvisi MG, Birrell MA, Khalid S, Wortley MA, Dockry R, Coote J, Holt K, Dubuis E, Kelsall A, Maher SA, Bonvini S, Woodcock A, Smith JA. Neurophenotypes in Airway Diseases. Insights from Translational Cough Studies. Am J Respir Crit Care Med 2017; 193:1364-72. [PMID: 26741046 DOI: 10.1164/rccm.201508-1602oc] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Most airway diseases, including chronic obstructive pulmonary disease (COPD), are associated with excessive coughing. The extent to which this may be a consequence of increased activation of vagal afferents by pathology in the airways (e.g., inflammatory mediators, excessive mucus) or an altered neuronal phenotype is unknown. Understanding whether respiratory diseases are associated with dysfunction of airway sensory nerves has the potential to identify novel therapeutic targets. OBJECTIVES To assess the changes in cough responses to a range of inhaled irritants in COPD and model these in animals to investigate the underlying mechanisms. METHODS Cough responses to inhaled stimuli in patients with COPD, healthy smokers, refractory chronic cough, asthma, and healthy volunteers were assessed and compared with vagus/airway nerve and cough responses in a cigarette smoke (CS) exposure guinea pig model. MEASUREMENTS AND MAIN RESULTS Patients with COPD had heightened cough responses to capsaicin but reduced responses to prostaglandin E2 compared with healthy volunteers. Furthermore, the different patient groups all exhibited different patterns of modulation of cough responses. Consistent with these findings, capsaicin caused a greater number of coughs in CS-exposed guinea pigs than in control animals; similar increased responses were observed in ex vivo vagus nerve and neuron cell bodies in the vagal ganglia. However, responses to prostaglandin E2 were decreased by CS exposure. CONCLUSIONS CS exposure is capable of inducing responses consistent with phenotypic switching in airway sensory nerves comparable with the cough responses observed in patients with COPD. Moreover, the differing profiles of cough responses support the concept of disease-specific neurophenotypes in airway disease. Clinical trial registered with www.clinicaltrials.gov (NCT 01297790).
Collapse
Affiliation(s)
- Maria G Belvisi
- 1 Respiratory Pharmacology Group, Division of Airway Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Mark A Birrell
- 1 Respiratory Pharmacology Group, Division of Airway Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Saifudin Khalid
- 2 Centre for Respiratory and Allergy, University of Manchester, University Hospital of South Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom; and
| | - Michael A Wortley
- 1 Respiratory Pharmacology Group, Division of Airway Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Rachel Dockry
- 2 Centre for Respiratory and Allergy, University of Manchester, University Hospital of South Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom; and
| | - Julie Coote
- 1 Respiratory Pharmacology Group, Division of Airway Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,3 Respiratory Diseases, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Kimberley Holt
- 2 Centre for Respiratory and Allergy, University of Manchester, University Hospital of South Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom; and
| | - Eric Dubuis
- 1 Respiratory Pharmacology Group, Division of Airway Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Angela Kelsall
- 2 Centre for Respiratory and Allergy, University of Manchester, University Hospital of South Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom; and
| | - Sarah A Maher
- 1 Respiratory Pharmacology Group, Division of Airway Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sara Bonvini
- 1 Respiratory Pharmacology Group, Division of Airway Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Ashley Woodcock
- 2 Centre for Respiratory and Allergy, University of Manchester, University Hospital of South Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom; and
| | - Jaclyn A Smith
- 2 Centre for Respiratory and Allergy, University of Manchester, University Hospital of South Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom; and
| |
Collapse
|
28
|
Mazzone SB, Undem BJ. Vagal Afferent Innervation of the Airways in Health and Disease. Physiol Rev 2017; 96:975-1024. [PMID: 27279650 DOI: 10.1152/physrev.00039.2015] [Citation(s) in RCA: 373] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vagal sensory neurons constitute the major afferent supply to the airways and lungs. Subsets of afferents are defined by their embryological origin, molecular profile, neurochemistry, functionality, and anatomical organization, and collectively these nerves are essential for the regulation of respiratory physiology and pulmonary defense through local responses and centrally mediated neural pathways. Mechanical and chemical activation of airway afferents depends on a myriad of ionic and receptor-mediated signaling, much of which has yet to be fully explored. Alterations in the sensitivity and neurochemical phenotype of vagal afferent nerves and/or the neural pathways that they innervate occur in a wide variety of pulmonary diseases, and as such, understanding the mechanisms of vagal sensory function and dysfunction may reveal novel therapeutic targets. In this comprehensive review we discuss historical and state-of-the-art concepts in airway sensory neurobiology and explore mechanisms underlying how vagal sensory pathways become dysfunctional in pathological conditions.
Collapse
Affiliation(s)
- Stuart B Mazzone
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Australia; and Department of Medicine, Johns Hopkins University Medical School, Asthma & Allergy Center, Baltimore, Maryland
| | - Bradley J Undem
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Australia; and Department of Medicine, Johns Hopkins University Medical School, Asthma & Allergy Center, Baltimore, Maryland
| |
Collapse
|
29
|
Audrit KJ, Delventhal L, Aydin Ö, Nassenstein C. The nervous system of airways and its remodeling in inflammatory lung diseases. Cell Tissue Res 2017; 367:571-590. [PMID: 28091773 DOI: 10.1007/s00441-016-2559-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/13/2016] [Indexed: 12/20/2022]
Abstract
Inflammatory lung diseases are associated with bronchospasm, cough, dyspnea and airway hyperreactivity. The majority of these symptoms cannot be primarily explained by immune cell infiltration. Evidence has been provided that vagal efferent and afferent neurons play a pivotal role in this regard. Their functions can be altered by inflammatory mediators that induce long-lasting changes in vagal nerve activity and gene expression in both peripheral and central neurons, providing new targets for treatment of pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- Katrin Julia Audrit
- Institute of Anatomy and Cell Biology, Aulweg 123, 35385, Giessen, Germany.,German Center for Lung Research (DZL), Giessen, Germany
| | - Lucas Delventhal
- Institute of Anatomy and Cell Biology, Aulweg 123, 35385, Giessen, Germany.,German Center for Lung Research (DZL), Giessen, Germany
| | - Öznur Aydin
- Institute of Anatomy and Cell Biology, Aulweg 123, 35385, Giessen, Germany.,German Center for Lung Research (DZL), Giessen, Germany
| | - Christina Nassenstein
- Institute of Anatomy and Cell Biology, Aulweg 123, 35385, Giessen, Germany. .,German Center for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
30
|
Viral laryngitis: a mimic and a monster - range, presentation, management. Curr Opin Otolaryngol Head Neck Surg 2016; 23:454-8. [PMID: 26397458 DOI: 10.1097/moo.0000000000000203] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to highlight recent literature relating to the diagnosis and treatment of some less common forms of viral laryngitis. The main conditions addressed in this review are chronic cough or postviral vagal neuropathy, varicella zoster infection of the larynx, and a condition increasingly suspected as being virally induced, idiopathic ulcerative laryngitis. RECENT FINDINGS Diagnosis of these conditions requires a thorough history and physical exam, and in certain cases referral to other subspecialties such as gastroenterology and pulmonology. Chronic cough due to postviral vagal neuropathy is a diagnosis of exclusion; however, recent literature does suggest that certain studies such as laryngeal electromyography can be of use in reaching a diagnosis. Treatment of this neuropathy has focused on use of neuromodulators. Treatment of laryngeal shingles and idiopathic ulcerative laryngitis has not been well defined because of the rarity of these conditions. SUMMARY Recent studies regarding these conditions and potential future treatment options will be discussed.
Collapse
|
31
|
Airway remodeling associated with cough hypersensitivity as a consequence of persistent cough: An experimental study. Respir Investig 2016; 54:419-427. [PMID: 27886853 DOI: 10.1016/j.resinv.2016.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 05/31/2016] [Accepted: 06/27/2016] [Indexed: 11/23/2022]
Abstract
BACKGROUND Chronic cough involves airway remodeling associated with cough reflex hypersensitivity. Whether cough itself induces these features remains unknown. METHODS Guinea pigs were assigned to receive treatment with citric acid (CA), saline (SA), or CA+dextromethorphan (DEX). All animals were exposed to 0.5M CA on days 1 and 22. On days 4-20, the CA and CA+DEX groups were exposed to CA, and the SA group to saline thrice weekly, during which the CA+DEX group was administered DEX pretreatment to inhibit cough. The number of coughs was counted during each 10-min CA or SA exposure. Terbutaline premedication was started to prevent bronchoconstriction. Bronchoalveolar lavage and pathology were examined on day 25. Average cough number for 10 CA exposures was examined as "cough index" in the CA group, which was divided into frequent (cough index>5) and infrequent (<5) cough subgroups for lavage and pathology analysis. RESULTS The number of coughs significantly increased in the CA group from day 13 onwards. In the CA+DEX and SA groups, the number of coughs did not differ between days 1 and 22, while average number of coughs during days 4-20 was significantly lower than at days 1 and 22. Bronchoalveolar cell profiles were similar among the four groups. The smooth muscle area of small airways was significantly greater in the frequent-cough subgroup than in the other groups (in which it was similar), and highly correlated with cough index in CA group. CONCLUSION Repeated cough induces airway smooth muscle remodeling associated with cough reflex hypersensitivity.
Collapse
|
32
|
Mutolo D, Cinelli E, Iovino L, Pantaleo T, Bongianni F. Downregulation of the cough reflex by aclidinium and tiotropium in awake and anesthetized rabbits. Pulm Pharmacol Ther 2016; 38:1-9. [DOI: 10.1016/j.pupt.2016.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/08/2016] [Accepted: 04/10/2016] [Indexed: 01/23/2023]
|
33
|
Zaccone EJ, Lieu T, Muroi Y, Potenzieri C, Undem BE, Gao P, Han L, Canning BJ, Undem BJ. Parainfluenza 3-Induced Cough Hypersensitivity in the Guinea Pig Airways. PLoS One 2016; 11:e0155526. [PMID: 27213574 PMCID: PMC4877001 DOI: 10.1371/journal.pone.0155526] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/29/2016] [Indexed: 02/06/2023] Open
Abstract
The effect of respiratory tract viral infection on evoked cough in guinea pigs was evaluated. Guinea pigs were inoculated intranasally with either parainfluenza type 3 (PIV3) and cough was quantified in conscious animals. The guinea pigs infected with PIV3 (day 4) coughed nearly three times more than those treated with the viral growth medium in response to capsaicin, citric acid, and bradykinin. Since capsaicin, citric acid, and bradykinin evoked coughing in guinea pigs can be inhibited by drugs that antagonize the transient receptor potential cation channel, subfamily V, member 1 (TRPV1), it was reasoned that the virally-induced hypertussive state may involve alterations in TPRV1 activity. PIV3 infection caused a phenotypic switch in tracheal nodose Aδ “cough receptors” such that nearly 50% of neurons began to express, de novo, TRPV1 mRNA. There was also an increase TRPV1 expression in jugular C-fiber neurons as determined by qPCR. It has previously been reported that tracheal-specific nodose neurons express the BDNF receptor TrkB and jugular neurons express the NGF receptor TrkA. Jugular neurons also express the artemin receptor GFRα3. All these neurotrophic factors have been associated with increases in TRPV1 expression. In an ex vivo perfused guinea pig tracheal preparation, we demonstrated that within 8 h of PIV3 infusion there was no change in NGF mRNA expression, but there was nearly a 10-fold increase in BDNF mRNA in the tissue, and a small but significant elevation in the expression of artemin mRNA. In summary, PIV3 infection leads to elevations in TRPV1 expression in the two key cough evoking nerve subtypes in the guinea pig trachea, and this is associated with a hypertussive state with respect to various TRPV1 activating stimuli.
Collapse
Affiliation(s)
- Eric J. Zaccone
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - TinaMarie Lieu
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Yukiko Muroi
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Carl Potenzieri
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Blair E. Undem
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Peisong Gao
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Liang Han
- The Solomon H. Snyder Department of Neuroscience, Center of Sensory Biology, the Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Brendan J. Canning
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Bradley J. Undem
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
34
|
Taylor-Clark TE. Role of reactive oxygen species and TRP channels in the cough reflex. Cell Calcium 2016; 60:155-62. [PMID: 27016063 DOI: 10.1016/j.ceca.2016.03.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 12/15/2022]
Abstract
The cough reflex is evoked by noxious stimuli in the airways. Although this reflex is essential for health, it can be triggered chronically in inflammatory and infectious airway disease. Neuronal transient receptor potential (TRP) channels such as ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) are polymodal receptors expressed on airway nociceptive afferent nerves. Reactive oxygen species (ROS) and other reactive compounds are associated with inflammation, from either NADPH oxidase or mitochondria. These reactive compounds cause activation and hyperexcitability of nociceptive afferents innervating the airways, and evidence suggests key contributions of TRPA1 and TRPV1.
Collapse
Affiliation(s)
- Thomas E Taylor-Clark
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| |
Collapse
|
35
|
Bonvini SJ, Birrell MA, Grace MS, Maher SA, Adcock JJ, Wortley MA, Dubuis E, Ching YM, Ford AP, Shala F, Miralpeix M, Tarrason G, Smith JA, Belvisi MG. Transient receptor potential cation channel, subfamily V, member 4 and airway sensory afferent activation: Role of adenosine triphosphate. J Allergy Clin Immunol 2016; 138:249-261.e12. [PMID: 26792207 PMCID: PMC4929136 DOI: 10.1016/j.jaci.2015.10.044] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 10/19/2015] [Accepted: 10/28/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Sensory nerves innervating the airways play an important role in regulating various cardiopulmonary functions, maintaining homeostasis under healthy conditions and contributing to pathophysiology in disease states. Hypo-osmotic solutions elicit sensory reflexes, including cough, and are a potent stimulus for airway narrowing in asthmatic patients, but the mechanisms involved are not known. Transient receptor potential cation channel, subfamily V, member 4 (TRPV4) is widely expressed in the respiratory tract, but its role as a peripheral nociceptor has not been explored. OBJECTIVE We hypothesized that TRPV4 is expressed on airway afferents and is a key osmosensor initiating reflex events in the lung. METHODS We used guinea pig primary cells, tissue bioassay, in vivo electrophysiology, and a guinea pig conscious cough model to investigate a role for TRPV4 in mediating sensory nerve activation in vagal afferents and the possible downstream signaling mechanisms. Human vagus nerve was used to confirm key observations in animal tissues. RESULTS Here we show TRPV4-induced activation of guinea pig airway-specific primary nodose ganglion cells. TRPV4 ligands and hypo-osmotic solutions caused depolarization of murine, guinea pig, and human vagus and firing of Aδ-fibers (not C-fibers), which was inhibited by TRPV4 and P2X3 receptor antagonists. Both antagonists blocked TRPV4-induced cough. CONCLUSION This study identifies the TRPV4-ATP-P2X3 interaction as a key osmosensing pathway involved in airway sensory nerve reflexes. The absence of TRPV4-ATP-mediated effects on C-fibers indicates a distinct neurobiology for this ion channel and implicates TRPV4 as a novel therapeutic target for neuronal hyperresponsiveness in the airways and symptoms, such as cough.
Collapse
Affiliation(s)
- Sara J Bonvini
- Respiratory Pharmacology Group, Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Mark A Birrell
- Respiratory Pharmacology Group, Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Megan S Grace
- School of Medical Sciences and Health Innovations Research Institute, RMIT University, Bundoora, Australia
| | - Sarah A Maher
- Respiratory Pharmacology Group, Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - John J Adcock
- Respiratory Pharmacology Group, Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Michael A Wortley
- Respiratory Pharmacology Group, Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Eric Dubuis
- Respiratory Pharmacology Group, Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Yee-Man Ching
- Airway Disease Infection Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | | | - Fisnik Shala
- Respiratory Pharmacology Group, Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Montserrat Miralpeix
- Respiratory Therapeutic Area-Discovery, R&D Centre, Almirall S.A., Barcelona, Spain
| | - Gema Tarrason
- Respiratory Therapeutic Area-Discovery, R&D Centre, Almirall S.A., Barcelona, Spain
| | - Jaclyn A Smith
- Respiratory and Allergy Centre, University of Manchester, University Hospital of South Manchester, Manchester, United Kingdom
| | - Maria G Belvisi
- Respiratory Pharmacology Group, Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom.
| |
Collapse
|
36
|
Abstract
Cough affects all individuals at different times, and its economic burden is substantial. Despite these widespread adverse effects, cough research relies on animal models, which hampers our understanding of the fundamental cause of cough. Postnasal drip is speculated to be one of the most frequent causes of chronic cough; however, this is a matter of debate. Here we show that mechanical stimuli by postnasal drip cause chronic cough. We distinguished human cough from sneezes and expiration reflexes by airflow patterns. Cough and sneeze exhibited one-peak and two-peak patterns, respectively, in expiratory airflow, which were also confirmed by animal models of cough and sneeze. Transgenic mice with ciliary dyskinesia coughed substantially and showed postnasal drip in the pharynx; furthermore, their cough was completely inhibited by nasal airway blockade of postnasal drip. We successfully reproduced cough observed in these mice by injecting artificial postnasal drip in wild-type mice. These results demonstrated that mechanical stimulation by postnasal drip evoked cough. The findings of our study can therefore be used to develop new antitussive drugs that prevent the root cause of cough.
Collapse
|
37
|
Taylor-Clark TE. Oxidative stress as activators of sensory nerves for cough. Pulm Pharmacol Ther 2015; 35:94-9. [PMID: 26095768 DOI: 10.1016/j.pupt.2015.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 06/17/2015] [Indexed: 02/07/2023]
Abstract
Excessive activation of the cough reflex is a major clinical problem in respiratory diseases. The cough reflex is triggered by activation of nociceptive sensory nerve terminals innervating the airways by noxious stimuli. Oxidative stress is a noxious stimuli associated with inhalation of pollutants and inflammatory airway disease. Here, we discuss recent findings that oxidative stress, in particular downstream of mitochondrial dysfunction, evokes increased electrical activity in airway nociceptive sensory nerves. Mechanisms include activation of transient receptor potential (TRP) channels and protein kinase C. Such mechanisms may contribute to excessive cough reflexes in respiratory diseases.
Collapse
Affiliation(s)
- Thomas E Taylor-Clark
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA.
| |
Collapse
|
38
|
Bonvini SJ, Birrell MA, Smith JA, Belvisi MG. Targeting TRP channels for chronic cough: from bench to bedside. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2015; 388:401-20. [PMID: 25572384 DOI: 10.1007/s00210-014-1082-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/16/2014] [Indexed: 12/24/2022]
Abstract
Cough is currently the most common reason for patients to visit a primary care physician in the UK, yet it remains an unmet medical need. Current therapies have limited efficacy or have potentially dangerous side effects. Under normal circumstances, cough is a protective reflex to clear the lungs of harmful particles; however, in disease, cough can become excessive, dramatically impacting patients' lives. In many cases, this condition is linked to inflammatory diseases such as asthma and chronic obstructive pulmonary disease (COPD), but can also be refractory to treatment and idiopathic in nature. Therefore, there is an urgent need to develop therapies, and targeting the sensory afferent arm of the reflex which initiates the cough reflex may uncover novel therapeutic targets. The cough reflex is initiated following activation of ion channels present on vagal sensory afferents. These ion channels include the transient receptor potential (TRP) family of cation-selective ion channels which act as cellular sensors and respond to changes in the external environment. Many direct activators of TRP channels, including arachidonic acid derivatives, a lowered airway pH, changes in temperature, and altered airway osmolarity are present in the diseased airway where responses to challenge agents which activate airway sensory nerve activity are known to be enhanced. Furthermore, the expression of some TRP channels is increased in airway disease. Together, this makes them promising targets for the treatment of chronic cough. This review will cover the current understanding of the role of the TRP family of ion channels in the activation of airway sensory nerves and cough, focusing on four members, transient receptor potential vanilloid (TRPV) 1, transient receptor potential ankyrin (TRPA) 1, TRPV4, and transient receptor potential melastatin (TRPM) 8 as these represent the channels where most information has been gathered with relevance to the airways. We will describe recent data and highlight the possible therapeutic utility of specific TRP channel antagonists as antitussives in the clinic.
Collapse
Affiliation(s)
- Sara J Bonvini
- Respiratory Pharmacology Group, Airway Disease Section, National Heart & Lung Institute, Imperial College, Exhibition Road, London, SW7 2AZ, UK
| | | | | | | |
Collapse
|
39
|
Peripheral neural circuitry in cough. Curr Opin Pharmacol 2015; 22:9-17. [PMID: 25704498 DOI: 10.1016/j.coph.2015.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/02/2015] [Accepted: 02/04/2015] [Indexed: 01/22/2023]
Abstract
Cough is a reflex that serves to protect the airways. Excessive or chronic coughing is a major health issue that is poorly controlled by current therapeutics. Significant effort has been made to understand the mechanisms underlying the cough reflex. The focus of this review is the evidence supporting the role of specific airway sensory nerve (afferent) populations in the initiation and modulation of the cough reflex in health and disease.
Collapse
|
40
|
Veldhuis NA, Poole DP, Grace M, McIntyre P, Bunnett NW. The G protein-coupled receptor-transient receptor potential channel axis: molecular insights for targeting disorders of sensation and inflammation. Pharmacol Rev 2015; 67:36-73. [PMID: 25361914 DOI: 10.1124/pr.114.009555] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Sensory nerves are equipped with receptors and ion channels that allow them to detect and respond to diverse chemical, mechanical, and thermal stimuli. These sensory proteins include G protein-coupled receptors (GPCRs) and transient receptor potential (TRP) ion channels. A subclass of peptidergic sensory nerves express GPCRs and TRP channels that detect noxious, irritant, and inflammatory stimuli. Activation of these nerves triggers protective mechanisms that lead to withdrawal from danger (pain), removal of irritants (itch, cough), and resolution of infection (neurogenic inflammation). The GPCR-TRP axis is central to these mechanisms. Signals that emanate from the GPCR superfamily converge on the small TRP family, leading to channel sensitization and activation, which amplify pain, itch, cough, and neurogenic inflammation. Herein we discuss how GPCRs and TRP channels function independently and synergistically to excite sensory nerves that mediate noxious and irritant responses and inflammation in the skin and the gastrointestinal and respiratory systems. We discuss the signaling mechanisms that underlie the GPCR-TRP axis and evaluate how new information about the structure of GPCRs and TRP channels provides insights into their functional interactions. We propose that a deeper understanding of the GPCR-TRP axis may facilitate the development of more selective and effective therapies to treat dysregulated processes that underlie chronic pain, itch, cough, and inflammation.
Collapse
Affiliation(s)
- Nicholas A Veldhuis
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (N.A.V., D.P.P., N.W.B); Departments of Genetics (N.A.V.), Anatomy and Neuroscience (D.P.P.), and Pharmacology (N.W.B.), The University of Melbourne, Melbourne, Victoria, Australia; School of Medical Sciences and Health Innovations Research Institute, RMIT University, Bundoora, Victoria, Australia (M.G., P.M.); and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia (N.W.B.)
| | - Daniel P Poole
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (N.A.V., D.P.P., N.W.B); Departments of Genetics (N.A.V.), Anatomy and Neuroscience (D.P.P.), and Pharmacology (N.W.B.), The University of Melbourne, Melbourne, Victoria, Australia; School of Medical Sciences and Health Innovations Research Institute, RMIT University, Bundoora, Victoria, Australia (M.G., P.M.); and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia (N.W.B.)
| | - Megan Grace
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (N.A.V., D.P.P., N.W.B); Departments of Genetics (N.A.V.), Anatomy and Neuroscience (D.P.P.), and Pharmacology (N.W.B.), The University of Melbourne, Melbourne, Victoria, Australia; School of Medical Sciences and Health Innovations Research Institute, RMIT University, Bundoora, Victoria, Australia (M.G., P.M.); and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia (N.W.B.)
| | - Peter McIntyre
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (N.A.V., D.P.P., N.W.B); Departments of Genetics (N.A.V.), Anatomy and Neuroscience (D.P.P.), and Pharmacology (N.W.B.), The University of Melbourne, Melbourne, Victoria, Australia; School of Medical Sciences and Health Innovations Research Institute, RMIT University, Bundoora, Victoria, Australia (M.G., P.M.); and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia (N.W.B.)
| | - Nigel W Bunnett
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (N.A.V., D.P.P., N.W.B); Departments of Genetics (N.A.V.), Anatomy and Neuroscience (D.P.P.), and Pharmacology (N.W.B.), The University of Melbourne, Melbourne, Victoria, Australia; School of Medical Sciences and Health Innovations Research Institute, RMIT University, Bundoora, Victoria, Australia (M.G., P.M.); and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia (N.W.B.)
| |
Collapse
|
41
|
Zholos AV. TRP Channels in Respiratory Pathophysiology: the Role of Oxidative, Chemical Irritant and Temperature Stimuli. Curr Neuropharmacol 2015; 13:279-91. [PMID: 26411771 PMCID: PMC4598440 DOI: 10.2174/1570159x13666150331223118] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 12/13/2022] Open
Abstract
There is rapidly growing evidence indicating multiple and important roles of Ca(2+)- permeable cation TRP channels in the airways, both under normal and disease conditions. The aim of this review was to summarize the current knowledge of TRP channels in sensing oxidative, chemical irritant and temperature stimuli by discussing expression and function of several TRP channels in relevant cell types within the respiratory tract, ranging from sensory neurons to airway smooth muscle and epithelial cells. Several of these channels, such as TRPM2, TRPM8, TRPA1 and TRPV1, are discussed in much detail to show that they perform diverse, and often overlapping or contributory, roles in airway hyperreactivity, inflammation, asthma, chronic obstructive pulmonary disease and other respiratory disorders. These include TRPM2 involvement in the disruption of the bronchial epithelial tight junctions during oxidative stress, important roles of TRPA1 and TRPV1 channels in airway inflammation, hyperresponsiveness, chronic cough, and hyperplasia of airway smooth muscles, as well as TRPM8 role in COPD and mucus hypersecretion. Thus, there is increasing evidence that TRP channels not only function as an integral part of the important endogenous protective mechanisms of the respiratory tract capable of detecting and ensuring proper physiological responses to various oxidative, chemical irritant and temperature stimuli, but that altered expression, activation and regulation of these channels may also contribute to the pathogenesis of respiratory diseases.
Collapse
Affiliation(s)
- Alexander V Zholos
- Department of Biophysics, Educational and Scientific Centre "Institute of Biology", Taras Shevchenko Kiev National University, 2 Academician Glushkov Avenue, Kiev 03022, Ukraine.
| |
Collapse
|
42
|
Maher SA, Birrell MA, Adcock JJ, Wortley MA, Dubuis ED, Bonvini SJ, Grace MS, Belvisi MG. Prostaglandin D2 and the role of the DP1, DP2 and TP receptors in the control of airway reflex events. Eur Respir J 2014; 45:1108-18. [PMID: 25323233 DOI: 10.1183/09031936.00061614] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Prostaglandin D2 (PGD2) causes cough and levels are increased in asthma suggesting that it may contribute to symptoms. Although the prostaglandin D2 receptor 2 (DP2) is a target for numerous drug discovery programmes little is known about the actions of PGD2 on sensory nerves and cough. We used human and guinea pig bioassays, in vivo electrophysiology and a guinea pig conscious cough model to assess the effect of prostaglandin D2 receptor (DP1), DP2 and thromboxane receptor antagonism on PGD2 responses. PGD2 caused cough in a conscious guinea pig model and an increase in calcium in airway jugular ganglia. Using pharmacology and receptor-deficient mice we showed that the DP1 receptor mediates sensory nerve activation in mouse, guinea pig and human vagal afferents. In vivo, PGD2 and a DP1 receptor agonist, but not a DP2 receptor agonist, activated single airway C-fibres. Interestingly, activation of DP2 inhibited sensory nerve firing to capsaicin in vitro and in vivo. The DP1 receptor could be a therapeutic target for symptoms associated with asthma. Where endogenous PGD2 levels are elevated, loss of DP2 receptor-mediated inhibition of sensory nerves may lead to an increase in vagally associated symptoms and the potential for such adverse effects should be investigated in clinical studies with DP2 antagonists.
Collapse
Affiliation(s)
- Sarah A Maher
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Mark A Birrell
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, UK
| | - John J Adcock
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Michael A Wortley
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Eric D Dubuis
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Sara J Bonvini
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Megan S Grace
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Maria G Belvisi
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, UK
| |
Collapse
|
43
|
Abstract
TRPV1 is a well-characterised channel expressed by a subset of peripheral sensory neurons involved in pain sensation and also at a number of other neuronal and non-neuronal sites in the mammalian body. Functionally, TRPV1 acts as a sensor for noxious heat (greater than ~42 °C). It can also be activated by some endogenous lipid-derived molecules, acidic solutions (pH < 6.5) and some pungent chemicals and food ingredients such as capsaicin, as well as by toxins such as resiniferatoxin and vanillotoxins. Structurally, TRPV1 subunits have six transmembrane (TM) domains with intracellular N- (containing 6 ankyrin-like repeats) and C-termini and a pore region between TM5 and TM6 containing sites that are important for channel activation and ion selectivity. The N- and C- termini have residues and regions that are sites for phosphorylation/dephosphorylation and PI(4,5)P2 binding, which regulate TRPV1 sensitivity and membrane insertion. The channel has several interacting proteins, some of which (e.g. AKAP79/150) are important for TRPV1 phosphorylation. Four TRPV1 subunits form a non-selective, outwardly rectifying ion channel permeable to monovalent and divalent cations with a single-channel conductance of 50-100 pS. TRPV1 channel kinetics reveal multiple open and closed states, and several models for channel activation by voltage, ligand binding and temperature have been proposed. Studies with TRPV1 agonists and antagonists and Trpv1 (-/-) mice have suggested a role for TRPV1 in pain, thermoregulation and osmoregulation, as well as in cough and overactive bladder. TRPV1 antagonists have advanced to clinical trials where findings of drug-induced hyperthermia and loss of heat sensitivity have raised questions about the viability of this therapeutic approach.
Collapse
|
44
|
Novel drug targets for asthma and COPD: lessons learned from in vitro and in vivo models. Pulm Pharmacol Ther 2014; 29:181-98. [PMID: 24929072 DOI: 10.1016/j.pupt.2014.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/20/2014] [Accepted: 05/31/2014] [Indexed: 12/28/2022]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are highly prevalent respiratory diseases characterized by airway inflammation, airway obstruction and airway hyperresponsiveness. Whilst current therapies, such as β-agonists and glucocorticoids, may be effective at reducing symptoms, they do not reduce disease progression. Thus, there is a need to identify new therapeutic targets. In this review, we summarize the potential of novel targets or tools, including anti-inflammatories, phosphodiesterase inhibitors, kinase inhibitors, transient receptor potential channels, vitamin D and protease inhibitors, for the treatment of asthma and COPD.
Collapse
|
45
|
Brito R, Sheth S, Mukherjea D, Rybak LP, Ramkumar V. TRPV1: A Potential Drug Target for Treating Various Diseases. Cells 2014; 3:517-45. [PMID: 24861977 PMCID: PMC4092862 DOI: 10.3390/cells3020517] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 12/11/2022] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is an ion channel present on sensory neurons which is activated by heat, protons, capsaicin and a variety of endogenous lipids termed endovanilloids. As such, TRPV1 serves as a multimodal sensor of noxious stimuli which could trigger counteractive measures to avoid pain and injury. Activation of TRPV1 has been linked to chronic inflammatory pain conditions and peripheral neuropathy, as observed in diabetes. Expression of TRPV1 is also observed in non-neuronal sites such as the epithelium of bladder and lungs and in hair cells of the cochlea. At these sites, activation of TRPV1 has been implicated in the pathophysiology of diseases such as cystitis, asthma and hearing loss. Therefore, drugs which could modulate TRPV1 channel activity could be useful for the treatment of conditions ranging from chronic pain to hearing loss. This review describes the roles of TRPV1 in the normal physiology and pathophysiology of selected organs of the body and highlights how drugs targeting this channel could be important clinically.
Collapse
Affiliation(s)
- Rafael Brito
- Department of Pharmacology and Neuroscience, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | - Sandeep Sheth
- Department of Pharmacology and Neuroscience, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | - Debashree Mukherjea
- Department of Surgery (Otoloryngalogy), Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | - Leonard P Rybak
- Department of Pharmacology and Neuroscience, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | - Vickram Ramkumar
- Department of Pharmacology and Neuroscience, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| |
Collapse
|
46
|
Grace MS, Baxter M, Dubuis E, Birrell MA, Belvisi MG. Transient receptor potential (TRP) channels in the airway: role in airway disease. Br J Pharmacol 2014; 171:2593-607. [PMID: 24286227 PMCID: PMC4009002 DOI: 10.1111/bph.12538] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/18/2013] [Indexed: 12/16/2022] Open
Abstract
Over the last few decades, there has been an explosion of scientific publications reporting the many and varied roles of transient receptor potential (TRP) ion channels in physiological and pathological systems throughout the body. The aim of this review is to summarize the existing literature on the role of TRP channels in the lungs and discuss what is known about their function under normal and diseased conditions. The review will focus mainly on the pathogenesis and symptoms of asthma and chronic obstructive pulmonary disease and the role of four members of the TRP family: TRPA1, TRPV1, TRPV4 and TRPM8. We hope that the article will help the reader understand the role of TRP channels in the normal airway and how their function may be changed in the context of respiratory disease.
Collapse
Affiliation(s)
- M S Grace
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College LondonLondon, UK
| | - M Baxter
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College LondonLondon, UK
| | - E Dubuis
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College LondonLondon, UK
| | - M A Birrell
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College LondonLondon, UK
| | - M G Belvisi
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College LondonLondon, UK
| |
Collapse
|
47
|
Koskela HO, Purokivi MK. Capability of hypertonic saline cough provocation test to predict the response to inhaled corticosteroids in chronic cough: a prospective, open-label study. COUGH 2013; 9:15. [PMID: 23688169 PMCID: PMC3669106 DOI: 10.1186/1745-9974-9-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 05/15/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND Many patients with chronic cough respond to treatment with inhaled corticosteroids but it is difficult to predict which patients are likely to respond. The primary aim of the present study was to define the capability of hypertonic saline cough provocation test to predict the responsiveness to inhaled corticosteroids in chronic cough. The secondary aim was to assess the ability of the saline test to monitor the healing of cough during corticosteroid treatment. METHODS Forty-three patients with chronic cough were recruited. Before therapy, spirometry, ambulatory peak flow monitoring, nitric oxide measurement, histamine airway challenge, and saline test were performed. Those responding to the first saline test repeated it and the nitric oxide measurement during the subsequent visits. The patients used inhaled budesonide, 400 ug twice daily, for twelve weeks. The treatment response was assessed by Leicester Cough Questionnaire at baseline, and at one, four, and twelve weeks. RESULTS Seventy-seven % of the patients demonstrated the minimal important difference in the Leicester Cough Questionnaire indicating a symptomatic response. Neither the response magnitude nor the speed was predicted by the saline test. Histamine challenge showed the strongest predictive ability: The maximal improvement in Leicester Cough Questionnaire total score was 5.08 (3.76 - 6.40) points in the histamine positive and 2.78 (1.55 - 4.01) points in the histamine negative subjects (p = 0.006). Baseline nitric oxide level also associated with the improvement in Leicester Cough Questionnaire total score (p = 0.02). During the treatment, the cough sensitivity to saline gradually decreased among the budesonide responders but not in the non-responders. Nitric oxide levels decreased very rapidly among the responders. CONCLUSIONS Saline test cannot predict the responsiveness to inhaled corticosteroids in chronic cough but it may be utilized to monitor the effect of this treatment. TRIAL REGISTRATION The study was registered in ClinicalTrials.gov database (KUH5801112). ClinicalTrials.gov Identifier: NCT00859274.
Collapse
Affiliation(s)
- Heikki O Koskela
- Unit for Medicine and Clinical Research, Pulmonary Division, Kuopio University Hospital, PL 1777, Kuopio 70211, Finland
| | - Minna K Purokivi
- Unit for Medicine and Clinical Research, Pulmonary Division, Kuopio University Hospital, PL 1777, Kuopio 70211, Finland
| |
Collapse
|
48
|
Muroi Y, Ru F, Chou YL, Carr MJ, Undem BJ, Canning BJ. Selective inhibition of vagal afferent nerve pathways regulating cough using Nav 1.7 shRNA silencing in guinea pig nodose ganglia. Am J Physiol Regul Integr Comp Physiol 2013; 304:R1017-23. [PMID: 23576611 DOI: 10.1152/ajpregu.00028.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Adeno-associated virus delivery systems and short hairpin RNA (shRNA) were used to selectively silence the voltage-gated sodium channel NaV 1.7 in the nodose ganglia of guinea pigs. The cough reflex in these animals was subsequently assessed. NaV 1.7 shRNA was delivered to the majority of nodose ganglia neurons [50-60% transfection rate determined by green fluorescent protein (GFP) gene cotransfection] and action potential conduction in the nodose vagal nerve fibers, as evaluated using an extracellular recording technique, was markedly and significantly reduced. By contrast, <5% of neurons in the jugular vagal ganglia neurons were transfected, and action potential conduction in the jugular vagal nerve fibers was unchanged. The control virus (with GFP expression) was without effect on action potential discharge and conduction in either ganglia. In vivo, NaV 1.7 silencing in the nodose ganglia nearly abolished cough evoked by mechanically probing the tracheal mucosa in anesthetized guinea pigs. Stimuli such as capsaicin and bradykinin that are known to stimulate both nodose and jugular C-fibers evoked coughing in conscious animals was unaffected by NaV 1.7 silencing in the nodose ganglia. Nodose C-fiber selective stimuli including adenosine, 2-methyl-5-HT, and ATP all failed to evoke coughing upon aerosol challenge. These results indicate that cough is independently regulated by two vagal afferent nerve subtypes in guinea pigs, with nodose Aδ fibers regulating cough evoked mechanically from the trachea and bradykinin- and capsaicin-evoked cough regulated by C-fibers arising from the jugular ganglia.
Collapse
Affiliation(s)
- Yukiko Muroi
- Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
49
|
Grace MS, Dubuis E, Birrell MA, Belvisi MG. Pre-clinical studies in cough research: role of Transient Receptor Potential (TRP) channels. Pulm Pharmacol Ther 2013; 26:498-507. [PMID: 23474212 PMCID: PMC3763377 DOI: 10.1016/j.pupt.2013.02.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/19/2013] [Accepted: 02/24/2013] [Indexed: 02/08/2023]
Abstract
Cough is a protective reflex and defence mechanism in healthy individuals, which helps clear excessive secretions and foreign material from the lungs. Cough often presents as the first and most persistent symptom of many respiratory diseases and some non-respiratory disorders, but can also be idiopathic, and is a common respiratory complaint for which medical attention is sought. Chronic cough of various aetiologies is a regular presentation to specialist respiratory clinics, and is reported as a troublesome symptom by a significant proportion of the population. Despite this, the treatment options for cough are limited. The lack of effective anti-tussives likely stems from our incomplete understanding of how the tussive reflex is mediated. However, research over the last decade has begun to shed some light on the mechanisms which provoke cough, and may ultimately provide us with better anti-tussive therapies. This review will focus on the in vitro and in vivo models that are currently used to further our understanding of the sensory innervation of the respiratory tract, and how these nerves are involved in controlling the cough response. Central to this are the Transient Receptor Potential (TRP) ion channels, a family of polymodal receptors that can be activated by such diverse stimuli as chemicals, temperature, osmotic stress, and mechanical perturbation. These ion channels are thought to be molecular pain integrators and targets for novel analgesic agents for the treatment of various pain disorders but some are also being developed as anti-tussives.
Collapse
Affiliation(s)
- Megan S Grace
- Respiratory Pharmacology, Pharmacology & Toxicology Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | | | | | | |
Collapse
|
50
|
Lavinka PC, Dong X. Molecular signaling and targets from itch: lessons for cough. COUGH 2013; 9:8. [PMID: 23497684 PMCID: PMC3630061 DOI: 10.1186/1745-9974-9-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/08/2013] [Indexed: 01/05/2023]
Abstract
Itch is described as an unpleasant sensation that elicits the desire to scratch, which results in the removal of the irritant from the skin. The cough reflex also results from irritation, with the purpose of removing said irritant from the airway. Could cough then be similar to itch? Anatomically, both pathways are mediated by small-diameter sensory fibers. These cough and itch sensory fibers release neuropeptides upon activation, which leads to inflammation of the nerves. Both cough and itch also involve mast cells and their mediators, which are released upon degranulation. This common inflammation and interaction with mast cells are involved in the development of chronic conditions of itch and cough. In this review, we examine the anatomy and molecular mechanisms of itch and compare them to known mechanisms for cough. Highlighting the common aspects of itch and cough could lead to new thoughts and perspectives in both fields.
Collapse
Affiliation(s)
- Pamela Colleen Lavinka
- The Solomon H, Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD, 21205, USA.
| | | |
Collapse
|