1
|
Onuma N, Shindo D, Matsuo E, Sakazaki M, Nagai Y, Yamanaka K. Pre-exercise isomaltulose intake affects carbohydrate oxidation reduction during endurance exercise and maximal power output in the subsequent Wingate test. BMC Sports Sci Med Rehabil 2023; 15:89. [PMID: 37488656 PMCID: PMC10364385 DOI: 10.1186/s13102-023-00702-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/12/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Ingestion of low-glycemic index (GI) isomaltulose (ISO) not only suppresses subsequent carbohydrate (CHO) oxidation but also inversely retains more CHO after prolonged endurance exercise. Therefore, ISO intake may affect anaerobic power output after prolonged endurance exercise. This study aimed to clarify the time course of CHO utilization during endurance exercise after a single intake of ISO or sucrose (SUC) and the anaerobic power output at the end of endurance exercise. METHODS After an intake of either ISO or SUC, 13 athletes were kept at rest for 60 min. Thereafter, they performed a 90-min of treadmill running at their individual target level of % [Formula: see text]max. During the experimental session, the expired gas was recorded, and the energy expenditure (EE) and CHO oxidation rate were estimated. Immediately after 90 min of running, a 30-s Wingate test was performed, and the maximal anaerobic power output was compared between the ISO and SUC conditions. RESULTS The percentage of CHO-derived EE increased rapidly after CHO intake and then decreased gradually throughout the experiment. The slopes of the regression lines calculated from the time course in the CHO-derived EE were significantly (negatively) larger in the SUC condition (-19.4 ± 9.6 [%/h]) than in the ISO condition (-13.3 ± 7.5 [%/h]). Furthermore, the maximal power output in the Wingate test immediately after the endurance exercise was significantly higher in the ISO condition than in the SUC condition (peak power: 12.0 ± 0.6 vs. 11.5 ± 0.9 [W/kg]). CONCLUSION Compared with SUC intake, ISO intake does not produce an abrupt decline in the percentage of CHO-derived EE during prolonged endurance exercise; it remains relatively high until the final exercise phase. Additionally, anaerobic power output at the end of the exercise, largely contributed by anaerobic glycolysis, was greater after ISO intake than after SUC intake.
Collapse
Affiliation(s)
- Naoko Onuma
- School of Pharmacy, Nihon University, Funabashi, Chiba, Japan
- Graduate School of Life Sciences, Showa Women's University, Tokyo, Japan
| | - Daisuke Shindo
- School of Pharmacy, Nihon University, Funabashi, Chiba, Japan
| | - Eriko Matsuo
- College of Sports Sciences, Nihon University, Tokyo, Japan
| | | | | | - Kentaro Yamanaka
- Graduate School of Life Sciences, Showa Women's University, Tokyo, Japan.
| |
Collapse
|
2
|
Effects of carbohydrate-electrolyte dissolved alkaline electrolyzed water on physiological responses during exercise under heat stress in physically active men. Curr Res Physiol 2022; 5:389-398. [PMID: 36193515 PMCID: PMC9525732 DOI: 10.1016/j.crphys.2022.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/31/2022] [Accepted: 09/21/2022] [Indexed: 11/20/2022] Open
Abstract
Purpose This study investigated the effects of 1400 mL intake of alkaline electrolyzed water (AEW) or purified water (PW) into which carbohydrate-electrolyte (CE) was dissolved on improving physiological responses during exercise under heat stress. Methods This double-blinded, crossover randomized controlled trial included 10 male participants who completed two exercise trials in a hot environment (35 °C, ambient temperature, and 50% relative humidity) after consuming CE-dissolved PW (P-CE) or CE-dissolved AEW (A-CE). The exercise trial consisted of running for 30 min on a treadmill (at an intensity corresponding to 65% of heart rate reserve adjusted for heat stress conditions) and repeated sprint cycling (10 × 7-s maximal sprint cycling), with a 35-min rest interval between the two exercises, followed by a 30-min post-exercise recovery period. Before and after running, and after cycling, the participants drank P-CE (hydrogen concentration of 0 ppm, pH 3.8) or A-CE (0.3 ppm, pH 4.1). Blood samples were obtained before, during (rest interval between running and cycling), and post-exercise. Results Repeated sprint performance and oxidative stress response did not differ between the P-CE and A-CE trials. A-CE consumption significantly attenuated the increase in blood lactate concentration during the running exercise but not during repeated sprint cycling under heat stress conditions. Conclusion Our findings suggested that A-CE did not significantly affect repeated sprint performance; however, the attenuated elevation in blood lactate by A-CE ingestion implies a partial enhancement of endurance performance during submaximal exercise under heat stress. A-CE did not enhance repeated sprint performance in a hot environment. A-CE failed to decrease oxidative damage induced by exercise in a hot environment. Blood lactate response during submaximal running was attenuated by drinking A-CE.
Collapse
|
3
|
Ferreira FG, Marins JCB. O nível de condicionamento físico interfere nas respostas psicofisiológicas? REVISTA BRASILEIRA DE CIÊNCIAS DO ESPORTE 2019. [DOI: 10.1016/j.rbce.2018.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
4
|
The Dynamic and Correlation of Skin Temperature and Cardiorespiratory Fitness in Male Endurance Runners. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16162869. [PMID: 31405204 PMCID: PMC6718978 DOI: 10.3390/ijerph16162869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/09/2019] [Accepted: 08/09/2019] [Indexed: 11/17/2022]
Abstract
During endurance exercise, skin temperature (Tsk) plays a fundamental role in thermoregulatory processes. Environmental temperature is the biggest determinant of the Tsk. During exercise, the response of the skin temperature might be influenced by aerobic fitness (VO2peak). The aim of this study was to analyze and compare the dynamic of Tsk in high (HF) and moderately (MF) fit endurance runners during a progressive maximal stress test. Seventy-nine male endurance runners were classified into HF (n = 35; VO2peak = 56.62 ± 4.31 mL/kg/min) and MF (n = 44; VO2peak = 47.86 ± 5.29 mL/kg/min) groups. Tsk and cardiovascular data were continuously monitored during an incremental exercise, followed by a recovery period of five minutes. Results revealed that the MF group exhibited lower VO2peak, Speedpeak, ventilation (VE), muscle mass %, and higher BMI and fat mass % than the HF group (all p < 0.001). HF had significantly higher Tsk at baseline, and at 60% and 70% of peak workload (all p < 0.05). Tskpeak correlated with age, fat mass %, muscle mass %, VO2peak, Speedpeak, HR and VE (all p < 0.05). These findings indicate that VO2peak was positively associated with increased Tsk during incremental exercise in male endurance runners.
Collapse
|
5
|
Wilson PB. Effects of pre-exercise sucrose ingestion on thermoregulatory responses to near-maximal 5-km running. J Therm Biol 2018; 77:62-66. [PMID: 30196900 DOI: 10.1016/j.jtherbio.2018.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/14/2018] [Accepted: 08/14/2018] [Indexed: 12/01/2022]
Abstract
Research has shown that carbohydrate consumption can increase body temperature at rest and, in some cases, during exercise. Most exercise studies, however, haven't matched exercise intensity between carbohydrate and placebo conditions. The purpose of this randomized, double-blind, placebo-controlled trial was to examine whether pre-exercise carbohydrate consumption independently accelerates the usual temperature rise with intense exercise. Twenty-eight runners self-reported 5-km performance (16-23 min) and were randomized, using a matched-pairs design, to 750 ml water containing 100 g sucrose or 0.8 g aspartame. Beverages were consumed 60 min before running at 93% of maximum 5-km speed in temperate conditions. Gastrointestinal temperature, Thermal Sensation Scale (TSS) and Feeling Scale (FS) were recorded before ingestion, every 10 min during 60 min of rest, and every 1-km during the 5-km run. Rating of Perceived Exertion was recorded every 1-km. Independent samples t-tests and two-way mixed ANOVAs with repeated measures assessed whether there were baseline differences or treatment effects. Gastrointestinal temperature didn't differ between carbohydrate (38.7 ± 0.4 °C) and placebo (38.6 ± 0.4 °C) by the end of the 5-km (p = 0.49). No group x time interactions or main group effects were found, except for a modest interaction for TSS (F = 2.1, p = 0.02, partial η2 = 0.075). Time effects were found for all outcomes, with temperature, TSS, and RPE increasing, and FS decreasing, during the run. Ingesting 100 g of sucrose prior to intense running lasting < 25 min didn't influence gastrointestinal temperature and therefore doesn't likely impact on the risk of heat illness.
Collapse
Affiliation(s)
- Patrick B Wilson
- Human Movement Sciences, Old Dominion University, Norfolk, VA 23529, USA.
| |
Collapse
|
6
|
A comparison of isomaltulose versus maltodextrin ingestion during soccer-specific exercise. Eur J Appl Physiol 2017; 117:2321-2333. [PMID: 28929343 PMCID: PMC5700989 DOI: 10.1007/s00421-017-3719-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/12/2017] [Indexed: 11/13/2022]
Abstract
Purpose The performance and physiological effects of isomaltulose and maltodextrin consumed intermittently during prolonged soccer-specific exercise were investigated. Methods University soccer players (n = 22) performed 120 min of intermittent exercise while consuming 8% carbohydrate–electrolyte drinks (equivalent to ~ 20 g h−1) containing maltodextrin (Glycaemic Index: 90–100), isomaltulose (Glycaemic Index: 32) or a carbohydrate-energy-free placebo in a manner replicating the practices of soccer players (i.e., during warm-up and half-time). Physical (sprinting, jumping) and technical (shooting, dribbling) performance was assessed. Results Blood glucose and plasma insulin (both P < 0.001) concentrations varied by trial with isomaltulose maintaining > 13% higher blood glucose concentrations between 75 and 90 min versus maltodextrin (P < 0.05). A decline in glycaemia at 60 min in maltodextrin was attenuated with isomaltulose (−19 versus −4%; P = 0.015). Carbohydrates attenuated elevations in plasma epinephrine concentrations (P < 0.05), but isomaltulose proved most effective at 90 and 120 min. Carbohydrates did not attenuate IL-6 increases or reductions in physical or technical performances (all P > 0.05). Ratings of abdominal discomfort were influenced by trial (P < 0.05) with lower values for both carbohydrates compared to PLA from 60 min onwards. Conclusions Although carbohydrates (~ 20 g h−1) did not attenuate performance reductions throughout prolonged soccer-specific exercise, isomaltulose maintained higher blood glucose at 75–90 min, lessened the magnitude of the exercise-induced rebound glycaemic response and attenuated epinephrine increases whilst maintaining similar abdominal discomfort values relative to maltodextrin. When limited opportunities exist to consume carbohydrates on competition-day, low-glycaemic isomaltulose may offer an alternative nutritional strategy for exercising soccer players.
Collapse
|
7
|
Schrader M, Treff B, Sandholtet T, Maassen N, Shushakov V, Kaesebieter J, Maassen M. Carbohydrate supplementation stabilises plasma sodium during training with high intensity. Eur J Appl Physiol 2016; 116:1841-53. [PMID: 27465126 DOI: 10.1007/s00421-016-3429-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 07/05/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND Investigations of the effect of beverages containing carbohydrates, only, on the sodium and fluid balance during intermittent exercise of high intensity are rare. Therefore, we compared the effects of water and carbohydrate supplementation on plasma, blood volume, and electrolyte shifts during intermittent exercise. METHODS Ten male subjects performed an intermittent exercise test twice. In one trial, tap water (4 ml/kg/15 min) was consumed (Plac trial). In the other trial, the same amount of water supplemented with maltodextrin to achieve a 9.1 % carbohydrate solution (CHO trial) was ingested. Training schedule: warm-up at 50 % for 15 min. Afterwards, power changed between 100 % of the maximum power from a previous incremental test minus 10 and 10 W for each 30 s. Venous blood was sampled to measure electrolytes, osmolality, [protein], hct, [Lactate], [glucose], [Hb] and catecholamines. Hydration status was evaluated by BIA before and after exercise. RESULTS After beverage ingestion [glucose] was significantly higher in CHO until the end of the trial. Starting with similar resting values, osmolality increased significantly more during CHO (p = 0.002). PV decreased by 5 % under both conditions, but recovered partly during exercise under Plac (p = 0.002). [Na+] and [Cl(-)] decreased with Plac during exercise (both p < 0.001) but remained constant during exercise with CHO. CONCLUSIONS Sole carbohydrate supplementation seems to stabilise plasma [Na+]. This cannot be explained simply by a cotransport of glucose and [Na+], because that should lead to a recovery of the blood and plasma volume under CHO. In contrast, this was found during exercise with Plac.
Collapse
Affiliation(s)
- M Schrader
- Institute of Sports Medicine, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany.
| | - B Treff
- Institute of Sports Medicine, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - T Sandholtet
- Institute of Sports Medicine, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - N Maassen
- Institute of Sports Medicine, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany.,Institute of Sports Science, Leibniz University Hannover, Am Moritzwinkel 6, 30167, Hannover, Germany
| | - V Shushakov
- Institute of Sports Medicine, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany.,Institute of Sports Science, Leibniz University Hannover, Am Moritzwinkel 6, 30167, Hannover, Germany
| | | | - M Maassen
- Institute of Sports Medicine, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany.,Institute of Sports Science, Leibniz University Hannover, Am Moritzwinkel 6, 30167, Hannover, Germany
| |
Collapse
|
8
|
Pallarés JG, Martínez-Abellán A, López-Gullón JM, Morán-Navarro R, De la Cruz-Sánchez E, Mora-Rodríguez R. Muscle contraction velocity, strength and power output changes following different degrees of hypohydration in competitive olympic combat sports. J Int Soc Sports Nutr 2016; 13:10. [PMID: 26957952 PMCID: PMC4782333 DOI: 10.1186/s12970-016-0121-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/29/2016] [Indexed: 11/22/2022] Open
Abstract
Background It is habitual for combat sports athletes to lose weight rapidly to get into a lower weight class. Fluid restriction, dehydration by sweating (sauna or exercise) and the use of diuretics are among the most recurrent means of weight cutting. Although it is difficult to dissuade athletes from this practice due to the possible negative effect of severe dehydration on their health, athletes may be receptive to avoid weight cutting if there is evidence that it could affect their muscle performance. Therefore, the purpose of the present study was to investigate if hypohydration, to reach a weight category, affects neuromuscular performance and combat sports competition results. Methods We tested 163 (124 men and 39 woman) combat sports athletes during the 2013 senior Spanish National Championships. Body mass and urine osmolality (UOSM) were measured at the official weigh-in (PRE) and 13–18 h later, right before competing (POST). Athletes were divided according to their USOM at PRE in euhydrated (EUH; UOSM 250–700 mOsm · kgH2O−1), hypohydrated (HYP; UOSM 701–1080 mOsm · kgH2O−1) and severely hypohydrated (S-HYP; UOSM 1081–1500 mOsm · kgH2O−1). Athletes’ muscle strength, power output and contraction velocity were measured in upper (bench press and grip) and lower body (countermovement jump - CMJ) muscle actions at PRE and POST time-points. Results At weigh-in 84 % of the participants were hypohydrated. Before competition (POST) UOSM in S-HYP and HYP decreased but did not reach euhydration levels. However, this partial rehydration increased bench press contraction velocity (2.8-7.3 %; p < 0.05) and CMJ power (2.8 %; p < 0.05) in S-HYP. Sixty-three percent of the participants competed with a body mass above their previous day’s weight category and 70 of them (69 % of that sample) obtained a medal. Conclusions Hypohydration is highly prevalent among combat sports athletes at weigh-in and not fully reversed in the 13–18 h from weigh-in to competition. Nonetheless, partial rehydration recovers upper and lower body neuromuscular performance in the severely hypohydrated participants. Our data suggest that the advantage of competing in a lower weight category could compensate the declines in neuromuscular performance at the onset of competition, since 69 % of medal winners underwent marked hypohydration.
Collapse
Affiliation(s)
- J G Pallarés
- Human Performance and Sports Science Laboratory, University of Murcia, Murcia, Spain ; Exercise Physiology Laboratory, University of Castilla-La Mancha, Toledo, Spain
| | - A Martínez-Abellán
- Human Performance and Sports Science Laboratory, University of Murcia, Murcia, Spain
| | - J M López-Gullón
- Human Performance and Sports Science Laboratory, University of Murcia, Murcia, Spain
| | - R Morán-Navarro
- Human Performance and Sports Science Laboratory, University of Murcia, Murcia, Spain ; Exercise Physiology Laboratory, University of Castilla-La Mancha, Toledo, Spain
| | - E De la Cruz-Sánchez
- Human Performance and Sports Science Laboratory, University of Murcia, Murcia, Spain
| | - R Mora-Rodríguez
- Exercise Physiology Laboratory, University of Castilla-La Mancha, Toledo, Spain
| |
Collapse
|
9
|
Affiliation(s)
- Rita Basu
- Endocrine Research Unit, Mayo Clinic , Rochester, Minnesota
| | | | | | | |
Collapse
|
10
|
Kudva YC, Carter RE, Cobelli C, Basu R, Basu A. Closed-loop artificial pancreas systems: physiological input to enhance next-generation devices. Diabetes Care 2014; 37:1184-90. [PMID: 24757225 PMCID: PMC3994931 DOI: 10.2337/dc13-2066] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To provide an understanding of both the preclinical and clinical aspects of closed-loop artificial pancreas systems, we provide a discussion of this topic as part of this two-part Bench to Clinic narrative. Here, the Bench narrative provides an in-depth understanding of insulin-glucose-glucagon physiology in conditions that mimic the free-living situation to the extent possible in type 1 diabetes that will help refine and improve future closed-loop system algorithms. In the Clinic narrative, Doyle and colleagues compare and evaluate technology used in current closed-loop studies to gain further momentum toward outpatient trials and eventual approval for widespread use.
Collapse
|
11
|
Kalpana K, Lal PR, Kusuma DL, Khanna GL. The effects of ingestion of sugarcane juice and commercial sports drinks on cycling performance of athletes in comparison to plain water. Asian J Sports Med 2013; 4:181-9. [PMID: 24427476 PMCID: PMC3880661 DOI: 10.5812/asjsm.34256] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 03/24/2013] [Indexed: 11/16/2022] Open
Abstract
PURPOSE Sugarcane juice (ScJ) is a natural drink popular in most tropical Asian regions. However, research on its effect in enhancing sports performance is limited. The present investigation was to study the effect of sugarcane juice on exercise metabolism and sport performance of athletes in comparison to a commercially available sports drinks. METHODS Fifteen male athletes (18-25 yrs) were asked to cycle until volitional exhaustion at 70% VO2 max on three different trials viz. plain water (PW), sports drink (SpD) and ScJ. In each trial 3ml/kg/BW of 6 % of carbohydrate (CHO) fluid was given at every 20 min interval of exercise and a blood sample was taken to measure the hematological parameters. During recovery 200 ml of 9% CHO fluid was given and blood sample was drawn at 5, 10, 15 min of recovery. RESULTS Ingestion of sugarcane juice showed significant increase (P<0.05) in blood glucose levels during and after exercise compared to SpD and PW. However, no significant difference was found between PW, SpD and ScJ for total exercise time, heart rate, blood lactate and plasma volume. CONCLUSION ScJ may be equally effective as SpD and PW during exercise in a comfortable environment (<30°C) and a more effective rehydration drink than SpD and PW in post exercise as it enhances muscle glycogen resynthesis.
Collapse
Affiliation(s)
- Kommi Kalpana
- Department of Home Science, Sri Venkateswara University, Tirupati, India
| | - Priti Rishi Lal
- Department of Foods and Nutrition, Lady Irwin College, Delhi University, India
| | | | - Gulshan Lal Khanna
- Faculty of Sciences, Manav Rachana International University, Faridabad, India
| |
Collapse
|
12
|
Hvid LG, Gejl K, Bech RD, Nygaard T, Jensen K, Frandsen U, Ørtenblad N. Transient impairments in single muscle fibre contractile function after prolonged cycling in elite endurance athletes. Acta Physiol (Oxf) 2013; 208:265-73. [PMID: 23480612 DOI: 10.1111/apha.12095] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 02/28/2013] [Accepted: 03/05/2013] [Indexed: 11/27/2022]
Abstract
AIM Prolonged muscle activity impairs whole-muscle performance and function. However, little is known about the effects of prolonged muscle activity on the contractile function of human single muscle fibres. The purpose of this study was to investigate the effects of prolonged exercise and subsequent recovery on the contractile function of single muscle fibres obtained from elite athletes. METHODS Nine male triathletes (26 ± 1 years, 68 ± 1 mL O2 min(-1) kg(-1) , training volume 16 ± 1 h week(-1) ) performed 4 h of cycling exercise (at 73% of HRmax ) followed by 24 h of recovery. Biopsies from vastus lateralis were obtained before and following 4 h exercise and following 24 h recovery. Measurements comprised maximal Ca(2+) -activated specific force and Ca(2+) sensitivity of slow type I and fast type II single muscle fibres, as well as cycling peak power output. RESULTS Following cycling exercise, specific force was reduced to a similar extent in slow and fast fibres (-15 and -18%, respectively), while Ca(2+) sensitivity decreased in fast fibres only. Single fibre-specific force was fully restored in both fibre types after 24 h recovery. Cycling peak power output was reduced by 4-9% following cycling exercise and fully restored following recovery. CONCLUSION This is the first study to demonstrate that prolonged cycling exercise transiently impairs specific force in type I and II fibres and decreases Ca(2+) sensitivity in type II fibres only, specifically in elite endurance athletes. Further, the changes in single fibre-specific force induced by exercise and recovery coincided temporally with changes in cycling peak power output.
Collapse
Affiliation(s)
- L. G. Hvid
- Institute of Sports Science and Clinical Biomechanics, SDU Muscle Research Cluster (SMRC); Institute of Sports Science and Clinical Biomechanics; University of Southern Denmark; Odense; Denmark
| | - K. Gejl
- Institute of Sports Science and Clinical Biomechanics, SDU Muscle Research Cluster (SMRC); Institute of Sports Science and Clinical Biomechanics; University of Southern Denmark; Odense; Denmark
| | - R. D. Bech
- Department of Orthopaedic Surgery; Odense University Hospital; Odense; Denmark
| | - T. Nygaard
- Department of Orthopaedic Surgery; Rigshospitalet; University of Copenhagen; Copenhagen; Denmark
| | - K. Jensen
- Institute of Sports Science and Clinical Biomechanics, SDU Muscle Research Cluster (SMRC); Institute of Sports Science and Clinical Biomechanics; University of Southern Denmark; Odense; Denmark
| | - U. Frandsen
- Institute of Sports Science and Clinical Biomechanics, SDU Muscle Research Cluster (SMRC); Institute of Sports Science and Clinical Biomechanics; University of Southern Denmark; Odense; Denmark
| | | |
Collapse
|
13
|
McLean BD, Petrucelli C, Coyle EF. Maximal power output and perceptual fatigue responses during a Division I female collegiate soccer season. J Strength Cond Res 2013; 26:3189-96. [PMID: 22996020 DOI: 10.1519/jsc.0b013e318273666e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The purpose of this study was to investigate how maximal power output (PMAX), as measured via the inertial load cycling technique, changes throughout a collegiate soccer season in relation to training load completed. The current investigation took place throughout the 2010 Big XII soccer season. Nineteen Division I female collegiate soccer players (age: 19.9 ± 1.2 years, stature: 165.1 ± 6.6 cm, mass: 61.0 ± 6.8 kg) from the same team completed regular inertial load cycling tests and perceptual fatigue questionnaires throughout the season. Players were divided into STARTERS and NON-STARTERS based on percentage of matches started throughout the season. The results demonstrated that STARTERS experience much greater load throughout the season than NON-STARTERS (2247 ± 176 arbitrary units [AU] and 1585 ± 174 AU, p < 0.05), accounted for by increased load during matches. This increased load throughout the season was accompanied by decline in PMAX in STARTERS (to 92.3 ± 6.6%, p < 0.05), whereas PMAX was maintained in NON-STARTERS for the duration of the season (99.0 ± 4.9%). Furthermore, STARTERS experienced greater muscle soreness throughout the in-season period compared with NON-STARTERS. The main finding of this study is that PMAX declined throughout the middle and latter parts of the season in STARTERS, after experiencing significantly greater match loads than NON-STARTERS throughout the season. The current findings, combined with previous investigations, suggest that load needs to be carefully monitored throughout the in-season period to maintain optimal neuromuscular performance throughout a team's entire sporting season.
Collapse
Affiliation(s)
- Blake D McLean
- Human Performance Laboratory, Department of Kinesiology and Health, The University of Texas at Austin, Austin, Texas, USA
| | | | | |
Collapse
|
14
|
Abstract
Events arising within the central nervous system seem to be a major factor in the aetiology of hyperthermia-induced fatigue. Thus, various studies with superimposed electrical nerve stimulation or transcranial magnetic stimulation have shown that both passive and exercise-induced hyperthermia will impair voluntary motor activation during sustained maximal contractions. In humans, the brain temperature increases in parallel with that of the body core, making it very difficult to evaluate the independent effect of the cerebral temperature. Experiments with separate manipulation of the brain temperature in exercising goats indicate that excessive brain hyperthermia will directly affect motor performance. However, several homeostatic changes arise in parallel with hyperthermia, including factors that may influence both peripheral and central fatigue, and it is likely that these changes interact with the inhibitory effect of an elevated brain temperature.
Collapse
Affiliation(s)
- Lars Nybo
- Department of Exercise and Sport Sciences, Integrative Physiology, August Krogh Building, University of Copenhagen, Universitetsparken 13, 2100 Copenhagen Ø, Denmark.
| |
Collapse
|
15
|
Phillips SM, Sproule J, Turner AP. Carbohydrate ingestion during team games exercise: current knowledge and areas for future investigation. Sports Med 2011; 41:559-85. [PMID: 21688869 DOI: 10.2165/11589150-000000000-00000] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
There is a growing body of research on the influence of ingesting carbohydrate-electrolyte solutions immediately prior to and during prolonged intermittent, high-intensity exercise (team games exercise) designed to replicate field-based team games. This review presents the current body of knowledge in this area, and identifies avenues of further research. Almost all early work supported the ingestion of carbohydrate-electrolyte solutions during prolonged intermittent exercise, but was subject to methodological limitations. A key concern was the use of exercise protocols characterized by prolonged periods at the same exercise intensity, the lack of maximal- or high-intensity work components and long periods of seated recovery, which failed to replicate the activity pattern or physiological demand of team games exercise. The advent of protocols specifically designed to replicate the demands of field-based team games enabled a more externally valid assessment of the influence of carbohydrate ingestion during this form of exercise. Once again, the research overwhelmingly supports carbohydrate ingestion immediately prior to and during team games exercise for improving time to exhaustion during intermittent running. While the external validity of exhaustive exercise at fixed prescribed intensities as an assessment of exercise capacity during team games may appear questionable, these assessments should perhaps not be viewed as exhaustive exercise tests per se, but as indicators of the ability to maintain high-intensity exercise, which is a recognized marker of performance and fatigue during field-based team games. Possible mechanisms of exercise capacity enhancement include sparing of muscle glycogen, glycogen resynthesis during low-intensity exercise periods and attenuated effort perception during exercise. Most research fails to show improvements in sprint performance during team games exercise with carbohydrate ingestion, perhaps due to the lack of influence of carbohydrate on sprint performance when endogenous muscle glycogen concentration remains above a critical threshold of ∼200 mmol/kg dry weight. Despite the increasing number of publications in this area, few studies have attempted to drive the research base forward by investigating potential modulators of carbohydrate efficacy during team games exercise, preventing the formulation of optimal carbohydrate intake guidelines. Potential modulators may be different from those during prolonged steady-state exercise due to the constantly changing exercise intensity and frequency, duration and intensity of rest intervals, potential for team games exercise to slow the rate of gastric emptying and the restricted access to carbohydrate-electrolyte solutions during many team games. This review highlights fluid volume, carbohydrate concentration, carbohydrate composition and solution osmolality; the glycaemic index of pre-exercise meals; fluid and carbohydrate ingestion patterns; fluid temperature; carbohydrate mouthwashes; carbohydrate supplementation in different ambient temperatures; and investigation of all of these areas in different subject populations as important avenues for future research to enable a more comprehensive understanding of carbohydrate ingestion during team games exercise.
Collapse
Affiliation(s)
- Shaun M Phillips
- Institute of Sport, Physical Education and Health Studies, University of Edinburgh, Edinburgh, UK.
| | | | | |
Collapse
|
16
|
Theurel J, Crepin M, Foissac M, Temprado JJ. Effects of different pedalling techniques on muscle fatigue and mechanical efficiency during prolonged cycling. Scand J Med Sci Sports 2011; 22:714-21. [PMID: 21507064 DOI: 10.1111/j.1600-0838.2011.01313.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The present study aimed to test the influence of the pedalling technique on the occurrence of muscular fatigue and on the energetic demand during prolonged constant-load cycling exercise. Subjects performed two prolonged (45 min) cycling sessions at constant intensity (75% of maximal aerobic power). In a random order, participants cycled either with their preferred technique (PT) during one session or were helped by a visual force-feedback to modify their pedalling pattern during the other one (FB). Index of pedalling effectiveness was significantly (P<0.05) improved during FB (41.4 ± 5.5%); compared with PT (36.6 ± 4.1%). Prolonged cycling induced a significant reduction of maximal power output, which was greater after PT (-15 ± 9%) than after FB (-7 ± 12%). During steady-state FB, vastus lateralis muscle activity was significantly (P<0.05) reduced, whereas biceps femoris muscles activities increased compared with PT. Gross efficiency (GE) did not significantly differ between the two sessions, except during the first 15 min of exercise (FB: 19.0 ± 1.9% vs PT: 20.2 ± 1.9%). Although changes in muscular coordination pattern with feedback did not seem to influence GE, it could be mainly responsible for the reduction of muscle fatigue after prolonged cycling.
Collapse
Affiliation(s)
- J Theurel
- Institute of Movement Sciences E-J Marey, UMR CNRS 6233, Aix-Marseille University, Parc Scientifique et Technologique de Luminy, Marseille, France.
| | | | | | | |
Collapse
|
17
|
Abstract
Cycling performances require periods with high power output and consequently large endogenous heat production. During cycling in temperate or cold climates, heat is mainly released from the skin to the surroundings via convection, whereas evaporative heat loss becomes the dominant or only mechanism for heat dissipation when the environmental temperature increases. Accordingly, large sweat rates are required, which may challenge the cyclists' electrolyte and water balance. Furthermore, the cooling capacity of the environment may become a limiting factor for the ability to maintain heat balance, for example during cycling in very humid climates or when cycling up-hill as the wind speed decreases and reduces the maximal rate of evaporative heat loss. Hyperthermia may in itself hamper performance, but especially in combination with dehydration it may deteriorate the cyclist's ability to maintain power output. Fatigue mechanisms involve cardiovascular stressing, but it also appears that factors within the central nervous system are of major importance for motor performance during such exercise. However, the influence of the environmental temperature on cycling performance appears to vary markedly depending on the course, the air humidity and the cyclist ability to avoid dehydration. If hyperthermia becomes a major issue, it will deteriorate performance, but as long as temperature and water balance can be established, the high air temperature may actually benefit performance because air density and air resistance will decrease and lower the power output required to maintain a given velocity.
Collapse
Affiliation(s)
- L Nybo
- Department of Exercise and Sport Sciences, Section of Human Physiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
18
|
Karelis AD, Smith JW, Passe DH, Péronnet F. Carbohydrate administration and exercise performance: what are the potential mechanisms involved? Sports Med 2010; 40:747-63. [PMID: 20726621 DOI: 10.2165/11533080-000000000-00000] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
It is well established that carbohydrate (CHO) administration increases performance during prolonged exercise in humans and animals. The mechanism(s), which could mediate the improvement in exercise performance associated with CHO administration, however, remain(s) unclear. This review focuses on possible underlying mechanisms that could explain the increase in exercise performance observed with the administration of CHO during prolonged muscle contractions in humans and animals. The beneficial effect of CHO ingestion on performance during prolonged exercise could be due to several factors including (i) an attenuation in central fatigue; (ii) a better maintenance of CHO oxidation rates; (iii) muscle glycogen sparing; (iv) changes in muscle metabolite levels; (v) reduced exercise-induced strain; and (vi) a better maintenance of excitation-contraction coupling. In general, the literature indicates that CHO ingestion during exercise does not reduce the utilization of muscle glycogen. In addition, data from a meta-analysis suggest that a dose-dependent relationship was not shown between CHO ingestion during exercise and an increase in performance. This could support the idea that providing enough CHO to maintain CHO oxidation during exercise may not always be associated with an increase in performance. Emerging evidence from the literature shows that increasing neural drive and attenuating central fatigue may play an important role in increasing performance during exercise with CHO supplementation. In addition, CHO administration during exercise appears to provide protection from disrupted cell homeostasis/integrity, which could translate into better muscle function and an increase in performance. Finally, it appears that during prolonged exercise when the ability of metabolism to match energy demand is exceeded, adjustments seem to be made in the activity of the Na+/K+ pump. Therefore, muscle fatigue could be acting as a protective mechanism during prolonged contractions. This could be alleviated when CHO is administered resulting in the better maintenance of the electrical properties of the muscle fibre membrane. The mechanism(s) by which CHO administration increases performance during prolonged exercise is(are) complex, likely involving multiple factors acting at numerous cellular sites. In addition, due to the large variation in types of exercise, durations, intensities, feeding schedules and CHO types it is difficult to assess if the mechanism(s) that could explain the increase in performance with CHO administration during exercise is(are) similar in different situations. Experiments concerning the identification of potential mechanism(s) by which performance is increased with CHO administration during exercise will add to our understanding of the mechanism(s) of muscle/central fatigue. This knowledge could have significant implications for improving exercise performance.
Collapse
Affiliation(s)
- Antony D Karelis
- Department of Kinesiology, Université du Québec à Montréal, Montreal, Quebec, Canada.
| | | | | | | |
Collapse
|
19
|
Smith JW, Zachwieja JJ, Péronnet F, Passe DH, Massicotte D, Lavoie C, Pascoe DD. Fuel selection and cycling endurance performance with ingestion of [13C]glucose: evidence for a carbohydrate dose response. J Appl Physiol (1985) 2010; 108:1520-9. [DOI: 10.1152/japplphysiol.91394.2008] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endurance performance and fuel selection while ingesting glucose (15, 30, and 60 g/h) was studied in 12 cyclists during a 2-h constant-load ride [∼77% peak O2 uptake] followed by a 20-km time trial. Total fat and carbohydrate (CHO) oxidation and oxidation of exogenous glucose, plasma glucose, glucose released from the liver, and muscle glycogen were computed using indirect respiratory calorimetry and tracer techniques. Relative to placebo (210 ± 36 W), glucose ingestion increased the time trial mean power output (%improvement, 90% confidence limits: 7.4, 1.4 to 13.4 for 15 g/h; 8.3, 1.4 to 15.2 for 30 g/h; and 10.7, 1.8 to 19.6 for 60 g/h glucose ingested; effect size = 0.46). With 60 g/h glucose, mean power was 2.3, 0.4 to 4.2% higher, and 3.1, 0.5 to 5.7% higher than with 30 and 15 g/h, respectively, suggesting a relationship between the dose of glucose ingested and improvements in endurance performance. Exogenous glucose oxidation increased with ingestion rate (0.17 ± 0.04, 0.33 ± 0.04, and 0.52 ± 0.09 g/min for 15, 30, and 60 g/h glucose), but endogenous CHO oxidation was reduced only with 30 and 60 g/h due to the progressive inhibition of glucose released from the liver (probably related to higher plasma insulin concentration) with increasing ingestion rate without evidence for muscle glycogen sparing. Thus ingestion of glucose at low rates improved cycling time trial performance in a dose-dependent manner. This was associated with a small increase in CHO oxidation without any reduction in muscle glycogen utilization.
Collapse
Affiliation(s)
| | | | - François Péronnet
- Département de kinésiologie, Université de Montréal, Montreal, Quebec, Canada
| | | | - Denis Massicotte
- Département de Kinanthropologie, Université du Québec à Montréal, Montreal
| | - Carole Lavoie
- Département des Sciences de l'activité Physique, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada; and
| | - David D. Pascoe
- Department of Kinesiology, Auburn University, Auburn, Alabama
| |
Collapse
|
20
|
Horswill CA, Stofan JR, Lovett SC, Hannasch C. Core temperature and metabolic responses after carbohydrate intake during exercise at 30 degrees C. J Athl Train 2009; 43:585-91. [PMID: 19030136 DOI: 10.4085/1062-6050-43.6.585] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CONTEXT Carbohydrate ingestion has recently been associated with elevated core temperature during exercise in the heat when testing for ergogenic effects. Whether the association holds when metabolic rate is controlled is unclear. Such an effect would have undesirable consequences for the safety of the athlete. OBJECTIVE To examine whether ingesting fluids containing carbohydrate contributed to an accelerated rise in core temperature and greater overall body heat production during 1 hour of exercise at 30 degrees C when the effort was maintained at steady state. DESIGN Crossover design (repeated measures) in randomized order of treatments of drinking fluids with carbohydrate and electrolytes (CHO) or flavored-water placebo with electrolytes (PLA). The beverages were identical except for the carbohydrate content: CHO = 93.7 +/- 11.2 g, PLA = 0 g. SETTING Research laboratory. PATIENTS OR OTHER PARTICIPANTS Nine physically fit, endurance-trained adult males. INTERVENTION(S) Using rectal temperature sensors, we measured core temperature during 30 minutes of rest and 60 minutes of exercise at 65% of maximal oxygen uptake (Vo(2) max) in the heat (30.6 degrees C, 51.8% relative humidity). Participants drank equal volumes (1.6 L) of 2 beverages in aliquots 30 minutes before and every 15 minutes during exercise. Volumes were fixed to approximate sweat rates and minimize dehydration. MAIN OUTCOME MEASURE(S) Rectal temperature and metabolic response (Vo(2), heart rate). RESULTS Peak temperature, rate of temperature increase, and metabolic responses did not differ between beverage treatments. Initial hydration status, sweat rate, and fluid replacement were also not different between trials, as planned. CONCLUSIONS Ingestion of carbohydrate in fluid volumes that minimized dehydration during 1 hour of steady-state exercise at 30 degrees C did not elicit an increase in metabolic rate or core temperature.
Collapse
|
21
|
Clarke ND, Drust B, Maclaren DPM, Reilly T. Fluid provision and metabolic responses to soccer-specific exercise. Eur J Appl Physiol 2008; 104:1069-77. [PMID: 18781319 DOI: 10.1007/s00421-008-0864-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2008] [Indexed: 11/30/2022]
Abstract
The present study aimed to investigate the impact on metabolism of altering the timing and volume of ingested carbohydrate during soccer-specific exercise. Twelve soccer players performed a soccer-specific protocol on three occasions. On two, 7 ml kg(-1) carbohydrate-electrolyte or placebo were ingested at 0 and 45 min. On a third, the same total volume of carbohydrate-electrolyte was consumed but at 0, 15, 30, 45, 60 and 75 min. Carbohydrate-electrolyte ingestion increased blood glucose, insulin and carbohydrate oxidation, whilst suppressing NEFA, glycerol and fat oxidation (P < 0.05) although manipulating the schedule of carbohydrate ingestion elicited similar metabolic responses (P > 0.05). However, consuming fluid in small volumes reduced the sensation of gut fullness (P < 0.05). The results demonstrated that when the total volume of carbohydrate consumed is equal, manipulating the timing and volume of ingestion elicits similar metabolic responses. Furthermore, consuming a small volume of fluid at regular intervals reduces the sensation of gut fullness.
Collapse
Affiliation(s)
- N D Clarke
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Henry Cotton Campus, 15-21 Webster Street, Liverpool L3 2ET, UK.
| | | | | | | |
Collapse
|
22
|
Judelson DA, Maresh CM, Yamamoto LM, Farrell MJ, Armstrong LE, Kraemer WJ, Volek JS, Spiering BA, Casa DJ, Anderson JM. Effect of hydration state on resistance exercise-induced endocrine markers of anabolism, catabolism, and metabolism. J Appl Physiol (1985) 2008; 105:816-24. [PMID: 18617629 DOI: 10.1152/japplphysiol.01010.2007] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypohydration (decreased total body water) exacerbates the catabolic hormonal response to endurance exercise with unclear effects on anabolic hormones. Limited research exists that evaluates the effect of hypohydration on endocrine responses to resistance exercise; this work merits attention as the acute postexercise hormonal environment potently modulates resistance training adaptations. The purpose of this study was to examine the effect of hydration state on the endocrine and metabolic responses to resistance exercise. Seven healthy resistance-trained men (age = 23 ± 4 yr, body mass = 87.8 ± 6.8 kg, body fat = 11.5 ± 5.2%) completed three identical resistance exercise bouts in different hydration states: euhydrated (EU), hypohydrated by ∼2.5% body mass (HY25), and hypohydrated by ∼5.0% body mass (HY50). Investigators manipulated hydration status via controlled water deprivation and exercise-heat stress. Cortisol, epinephrine, norepinephrine, testosterone, growth hormone, insulin-like growth factor-I, insulin, glucose, lactate, glycerol, and free fatty acids were measured during euhydrated rest, immediately preceding resistance exercise, immediately postexercise, and during 60 min of recovery. Body mass decreased 0.2 ± 0.4, 2.4 ± 0.4, and 4.8 ± 0.4% during EU, HY25, and HY50, respectively, supported by humoral and urinary changes that clearly indicated subjects achieved three distinct hydration states. Hypohydration significantly 1) increased circulating concentrations of cortisol and norepinephrine, 2) attenuated the testosterone response to exercise, and 3) altered carbohydrate and lipid metabolism. These results suggest that hypohydration can modify the hormonal and metabolic response to resistance exercise, influencing the postexercise circulatory milieu.
Collapse
|
23
|
DEL COSO JUAN, ESTEVEZ EMMA, MORA-RODRIGUEZ RICARDO. Caffeine Effects on Short-Term Performance during Prolonged Exercise in the Heat. Med Sci Sports Exerc 2008; 40:744-51. [DOI: 10.1249/mss.0b013e3181621336] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Abstract
The present review addresses mechanisms of importance for hyperthermia-induced fatigue during short intense activities and prolonged exercise in the heat. Inferior performance during physical activities with intensities that elicit maximal oxygen uptake is to a large extent related to perturbation of the cardiovascular function, which eventually reduces arterial oxygen delivery to the exercising muscles. Accordingly, aerobic energy turnover is impaired and anaerobic metabolism provokes peripheral fatigue. In contrast, metabolic disturbances of muscle homeostasis are less important during prolonged exercise in the heat, because increased oxygen extraction compensates for the reduction in systemic blood flow. The decrease in endurance seems to involve changes in the function of the central nervous system (CNS) that lead to fatigue. The CNS fatigue appears to be influenced by neurotransmitter activity of the dopaminergic system, but may primarily relate to inhibitory signals from the hypothalamus arising secondary to an increase in brain temperature. Fatigue is an integrated phenomenon, and psychological factors, including the anticipation of fatigue, should not be neglected and the interaction between central and peripheral physiological factors also needs to be considered.
Collapse
Affiliation(s)
- Lars Nybo
- Department of Human Physiology, Institute of Exercise and Sport Sciences, University of Copenhagen, Universitetsparken 13, Copenhagen Ø, Denmark.
| |
Collapse
|
25
|
Judelson DA, Maresh CM, Anderson JM, Armstrong LE, Casa DJ, Kraemer WJ, Volek JS. Hydration and Muscular Performance. Sports Med 2007; 37:907-21. [PMID: 17887814 DOI: 10.2165/00007256-200737100-00006] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Significant scientific evidence documents the deleterious effects of hypohydration (reduced total body water) on endurance exercise performance; however, the influence of hypohydration on muscular strength, power and high-intensity endurance (maximal activities lasting >30 seconds but <2 minutes) is poorly understood due to the inconsistent results produced by previous investigations. Several subtle methodological choices that exacerbate or attenuate the apparent effects of hypohydration explain much of this variability. After accounting for these factors, hypohydration appears to consistently attenuate strength (by approximately 2%), power (by approximately 3%) and high-intensity endurance (by approximately 10%), suggesting alterations in total body water affect some aspect of force generation. Unfortunately, the relationships between performance decrement and crucial variables such as mode, degree and rate of water loss remain unclear due to a lack of suitably uninfluenced data. The physiological demands of strength, power and high-intensity endurance couple with a lack of scientific support to argue against previous hypotheses that suggest alterations in cardiovascular, metabolic and/or buffering function represent the performance-reducing mechanism of hypohydration. On the other hand, hypohydration might directly affect some component of the neuromuscular system, but this possibility awaits thorough evaluation. A critical review of the available literature suggests hypohydration limits strength, power and high-intensity endurance and, therefore, is an important factor to consider when attempting to maximise muscular performance in athletic, military and industrial settings.
Collapse
Affiliation(s)
- Daniel A Judelson
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, Connecticut, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
This review deals with new aspects of exercise in the heat as a challenge that not only influences the locomotive and cardiovascular systems, but also affects the brain. Activation of the brain during such exercise is manifested in the lowering of the cerebral glucose to oxygen uptake ratio, the elevated ratings of perceived exertion and increased release of hypothalamic hormones. While the slowing of the electroencephalographic (EEG), the decreased endurance and hampered ability to activate the skeletal muscles maximally during sustained isometric and repeated isokinetic contractions appear to relate to central fatigue arising as the core/brain increases, the central fatigue during exercise with hyperthermia thus can be considered as the ultimate safety break against catastrophic hyperthermia. This would force the subject to stop exercising or decrease the internal heat production. It appears that the dopaminergic system is important, but several other factors may interact and feedback from the skeletal muscles and internal temperature sensors are probably also involved. The complexity of brain fatigue response is discussed based on our own investigations and in the light of recent literature.
Collapse
Affiliation(s)
- Lars Nybo
- Department of Human Physiology, Institute of Exercise and Sport Sciences, August Krogh Institute, Universitetsparken 13, DK-2100 Copenhagen Ø, Denmark.
| |
Collapse
|
27
|
Cheuvront SN, Carter R, Haymes EM, Sawka MN. No effect of moderate hypohydration or hyperthermia on anaerobic exercise performance. Med Sci Sports Exerc 2006; 38:1093-7. [PMID: 16775551 DOI: 10.1249/01.mss.0000222838.74015.15] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study examined the effects of hypohydration and moderate hyperthermia (core temperature elevation) on anaerobic exercise performance in a temperate environment. METHODS Eight active males completed two passive heat exposure trials (180 min, 45 degrees C, 50% rh) with (EUH) and without (HYP) fluid replacement. A single 15-s Wingate anaerobic test (WAnT) was used to assess anaerobic performance (peak power, mean power, and fatigue index) before (-180 min) and again at three time points after passive heat exposure to include immediately (0 min), 30 min, and 60 min after in a temperate environment (22 degrees C). Rectal temperature (Tc) was measured throughout the experiment. RESULTS HYP reduced body mass (2.7+/-0.7%) (P<0.05) but had no effect on any WAnT performance measure. Passive heat exposure elicited moderate hyperthermia in both trials (EUH: 0.6 degrees C; HYP: 1.0 degrees C) and returned to baseline within 30-60 min following similar decay curves. HYP Tc remained higher (0.4 degrees C) than EUH throughout testing (P<0.05), but moderate hyperthermia itself produced no independent effect on anaerobic exercise performance in either trial. CONCLUSIONS This study demonstrates that neither moderate HYP nor the moderate hyperthermia accompanying HYP by passive heat exposure affect anaerobic exercise performance in a temperate environment.
Collapse
Affiliation(s)
- Samuel N Cheuvront
- U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, USA.
| | | | | | | |
Collapse
|
28
|
Coso JD, Mora-Rodríguez R. Validity of cycling peak power as measured by a short-sprint test versus the Wingate anaerobic test. Appl Physiol Nutr Metab 2006; 31:186-9. [PMID: 16770343 DOI: 10.1139/h05-026] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To validate the measurement of peak power output (PPO) using a short cycling sprint test (inertial load (IL) test), we compare it to the widely accepted Wingate anaerobic test (WAnT). Fifteen healthy, young, active subjects performed 2 experimental trials. In each trial, subjects warmed up and sprinted 4 times for the IL test. After recovery, they cycled for 30 s at maximum capacity for the WAnT. The experimental trial was replicated 3 d later to test for reliability. Inter- and intra-day PPO measured with the IL test was very reliable (R(1) = 0.99 and R(1) = 0.94, respectively). The correlation between the IL and WAnT was highly significant (r = 0.82; P < 0.001), although the absolute PPO values were markedly higher for the IL test (1268 +/- 41 W vs. 786 +/- 27 W; P < 0.001). In conclusion, cycling PPO can be validly assessed with the IL test. The higher PPO attained with an IL test could be related to better identification of peak power, since both velocity and resistance are free to vary during the sprint in comparison with the WAnT, where resistance is fixed. Owing to the short duration of the sprint (4 s) and high intra-day reliability despite a short recovery time (180 s), the IL test is optimal for repeated measurements of anaerobic performance.
Collapse
Affiliation(s)
- Juan Del Coso
- Exercise Physiology Laboratory, Universidad de Castilla -- La Mancha, Toledo, Spain
| | | |
Collapse
|
29
|
Grego F, Vallier J, Basset F, Brisswalter J. Influence du statut hydrique sur la variation des paramètres physiologiques et biomécaniques lors d'un exercice de pédalage de longue durée. Sci Sports 2004. [DOI: 10.1016/j.scispo.2004.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Nybo L, Secher NH. Cerebral perturbations provoked by prolonged exercise. Prog Neurobiol 2004; 72:223-61. [PMID: 15142684 DOI: 10.1016/j.pneurobio.2004.03.005] [Citation(s) in RCA: 260] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2003] [Accepted: 03/22/2004] [Indexed: 11/15/2022]
Abstract
This review addresses cerebral metabolic and neurohumoral alterations during prolonged exercise in humans with special focus on associations with fatigue. Global energy turnover in the brain is unaltered by the transition from rest to moderately intense exercise, apparently because exercise-induced activation of some brain regions including cortical motor areas is compensated for by reduced activity in other regions of the brain. However, strenuous exercise is associated with cerebral metabolic and neurohumoral alterations that may relate to central fatigue. Fatigue should be acknowledged as a complex phenomenon influenced by both peripheral and central factors. However, failure to drive the motorneurons adequately as a consequence of neurophysiological alterations seems to play a dominant role under some circumstances. During exercise with hyperthermia excessive accumulation of heat in the brain due to impeded heat removal by the cerebral circulation may elevate the brain temperature to >40 degrees C and impair the ability to sustain maximal motor activation. Also, when prolonged exercise results in hypoglycaemia, perceived exertion increases at the same time as the cerebral glucose uptake becomes low, and centrally mediated fatigue appears to arise as the cerebral energy turnover becomes restricted by the availability of substrates for the brain. Changes in serotonergic activity, inhibitory feed-back from the exercising muscles, elevated ammonia levels, and alterations in regional dopaminergic activity may also contribute to the impaired voluntary activation of the motorneurons after prolonged and strenuous exercise. Furthermore, central fatigue may involve depletion of cerebral glycogen stores, as signified by the observation that following exhaustive exercise the cerebral glucose uptake increases out of proportion to that of oxygen. In summary, prolonged exercise may induce homeostatic disturbances within the central nervous system (CNS) that subsequently attenuates motor activation. Therefore, strenuous exercise is a challenge not only to the cardiorespiratory and locomotive systems but also to the brain.
Collapse
Affiliation(s)
- Lars Nybo
- Department of Human Physiology, Institute of Exercise and Sport Sciences, August Krogh Institute, Universitetsparken 13, DK-2100 Copenhagen, Denmark.
| | | |
Collapse
|