1
|
Chen C, Barnes RA, Bangen KJ, Han F, Pfeuffer J, Wong EC, Liu TT, Bolar DS. MVP-VSASL: measuring MicroVascular Pulsatility using velocity-selective arterial spin labeling. Magn Reson Med 2025; 93:1516-1534. [PMID: 39888133 PMCID: PMC11782735 DOI: 10.1002/mrm.30370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 02/01/2025]
Abstract
PURPOSE By leveraging the small-vessel specificity of velocity-selective arterial spin labeling (VSASL), we present a novel technique for measuring cerebral MicroVascular Pulsatility named MVP-VSASL. THEORY AND METHODS We present a theoretical model relating the pulsatile, cerebral blood flow-driven VSASL signal to the microvascular pulsatility index (PI $$ \mathrm{PI} $$ ), a widely used metric for quantifying cardiac-dependent fluctuations. The model describes the dependence of thePI $$ \mathrm{PI} $$ of VSASL signal (denotedPI VS $$ {\mathrm{PI}}_{\mathrm{VS}} $$ ) on bolus durationτ $$ \tau $$ (an adjustable VSASL sequence parameter) and provides guidance for selecting a value ofτ $$ \tau $$ that maximizes the SNR of thePI VS $$ {\mathrm{PI}}_{\mathrm{VS}} $$ measurement. The model predictions were assessed in humans using data acquired with retrospectively cardiac-gated VSASL sequences over a broad range ofτ $$ \tau $$ values. In vivo measurements were also used to demonstrate the feasibility of whole-brain voxel-wise pulsatility mapping, assess intrasession repeatability ofPI VS $$ {\mathrm{PI}}_{\mathrm{VS}} $$ , and illustrate the potential of this method to explore an association with age. RESULTS The theoretical model showed excellent agreement to the empirical data in a gray matter region of interest (averageR 2 $$ {\mathrm{R}}^2 $$ value of 0.898± $$ \pm $$ 0.107 across six subjects). We further showed excellent intrasession repeatability of the pulsatility measurement (ICC = 0.960 $$ \mathrm{ICC}=0.960 $$ ,p < 0.001 $$ p<0.001 $$ ) and the potential to characterize associations with age (r = 0.554 $$ r=0.554 $$ ,p = 0.021 $$ p=0.021 $$ ). CONCLUSION We have introduced a novel, VSASL-based cerebral microvascular pulsatility technique, which may facilitate investigation of cognitive disorders where damage to the microvasculature has been implicated.
Collapse
Affiliation(s)
- Conan Chen
- Center for Functional MRIUniversity of California San Diego
La JollaCaliforniaUSA
- Department of RadiologyUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of Electrical and Computer EngineeringUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Ryan A. Barnes
- Center for Functional MRIUniversity of California San Diego
La JollaCaliforniaUSA
- Department of RadiologyUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Katherine J. Bangen
- VA San Diego Healthcare SystemSan DiegoCaliforniaUSA
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Fei Han
- Siemens Medical SolutionsLos AngelesCaliforniaUSA
| | - Josef Pfeuffer
- Application DevelopmentSiemens Healthineers AGErlangenGermany
| | - Eric C. Wong
- Center for Functional MRIUniversity of California San Diego
La JollaCaliforniaUSA
- Department of RadiologyUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Thomas T. Liu
- Center for Functional MRIUniversity of California San Diego
La JollaCaliforniaUSA
- Department of RadiologyUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Divya S. Bolar
- Center for Functional MRIUniversity of California San Diego
La JollaCaliforniaUSA
- Department of RadiologyUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
2
|
Wani P, Usmani K, Javidi B. Generalization of the two-point-source resolution criterion in the presence of noise. OPTICS LETTERS 2023; 48:4009-4012. [PMID: 37527105 DOI: 10.1364/ol.494910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/23/2023] [Indexed: 08/03/2023]
Abstract
The two-point-source resolution criterion is widely used to quantify the performance of imaging systems. The two main approaches for the computation of the two-point-source resolution are the detection theoretic and visual analyses. The first assumes a shift-invariant system and lacks the ability to incorporate two different point spread functions (PSFs), which may be required in certain situations like computing axial resolution. The latter approach, which includes the Rayleigh criterion, relies on the peak-to-valley ratio and does not properly account for the presence of noise. We present a heuristic generalization of the visual two-point-source resolution criterion using Gaussian processes (GP). This heuristic criterion is applicable to both shift-invariant and shift-variant imaging modalities. This criterion can also incorporate different definitions of resolution expressed in terms of varying peak-to-valley ratios. Our approach implicitly incorporates information about noise statistics such as the variance or signal-to-noise ratio by making assumptions about the spatial correlation of PSFs in the form of kernel functions. Also, it does not rely on an analytic form of the PSF.
Collapse
|
3
|
Pavlova OS, Gulyaev MV, Gervits LL, Hurshkainen AA, Nikulin AV, Puchnin VM, Teploukhova ED, Kuropatkina TA, Anisimov NV, Medvedeva NA, Pirogov YA. Т 1 mapping of rat lungs in 19 F MRI using octafluorocyclobutane. Magn Reson Med 2023; 89:2318-2331. [PMID: 36744719 DOI: 10.1002/mrm.29606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 02/07/2023]
Abstract
PURPOSE To demonstrate the feasibility of using octafluorocyclobutane (OFCB, c-C4 F8 ) for T1 mapping of lungs in 19 F MRI. METHODS The study was performed at 7 T in three healthy rats and three rats with pulmonary hypertension. To increase the sensitivity of 19 F MRI, a bent-shaped RF coil with periodic metal strips structure was used. The double flip angle method was used to calculate normalized transmitting RF field (B1n + ) maps and for correcting T1 maps built with the variable flip angle (VFA) method. The ultrashort TE pulse sequence was applied for acquiring MR images throughout the study. RESULTS The dependencies of OFCB relaxation times on its partial pressure in mixtures with oxygen, air, helium, and argon were obtained. T1 of OFCB linearly depended on its partial pressure with the slope of about 0.35 ms/kPa in the case of free diffusion. RF field inhomogeneity leads to distortion of T1 maps built with the VFA method, and therefore to high standard deviation of T1 in these maps. To improve the accuracy of the T1 maps, the B1n + maps were applied for VFA correction. This contributed to a 2-3-fold decrease in the SD of T1 values in the corresponding maps compared with T1 maps calculated without the correction. Three-dimensional T1 maps were obtained, and the mean T1 in healthy rat lungs was 35 ± 10 ms, and in rat lungs with pulmonary hypertension - 41 ± 9 ms. CONCLUSION OFCB has a spin-rotational relaxation mechanism and can be used for 19 F T1 mapping of lungs. The calculated OFCB maps captured ventilation defects induced by edema.
Collapse
Affiliation(s)
- Olga S Pavlova
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail V Gulyaev
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Lev L Gervits
- Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Moscow, Russia
| | - Anna A Hurshkainen
- School of Physics and Engineering, ITMO University, St. Petersburg, Russia
| | - Anton V Nikulin
- Center of Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Viktor M Puchnin
- School of Physics and Engineering, ITMO University, St. Petersburg, Russia
| | | | | | | | | | - Yury A Pirogov
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
4
|
Basic Statistical Properties of the Knot Efficiency. Symmetry (Basel) 2022. [DOI: 10.3390/sym14091926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A knot is the weakest point of every rope, and the knot efficiency measures the portion of original rope strength taken away by the knot. Despite possible safety implications, surprisingly little attention has been paid to this life-critical quantity in research papers. Knot efficiency is directly immeasurable and the only way to obtain it is by calculation from rope breaking strength. However, this complication makes room for a wide spectrum of misleading concepts. The vast majority of authors do not treat knot efficiency as a random variable, and published results mostly suffer from incorrect statistical processing. The main goal of the presented paper is to fix this issue by proposing correct statistical tools needed for knot efficiency assessment. The probability density function of knot efficiency ψ(η) has been derived in general, as well as for normally distributed breaking strength. Statistical properties of knot efficiency PDF have been discussed, and a less complex approximation of knot efficiency PDF has been proposed and investigated.
Collapse
|
5
|
Prinz C, Starke L, Ramspoth TF, Kerkering J, Martos Riaño V, Paul J, Neuenschwander M, Oder A, Radetzki S, Adelhoefer S, Ramos Delgado P, Aravina M, Millward JM, Fillmer A, Paul F, Siffrin V, von Kries JP, Niendorf T, Nazaré M, Waiczies S. Pentafluorosulfanyl (SF 5) as a Superior 19F Magnetic Resonance Reporter Group: Signal Detection and Biological Activity of Teriflunomide Derivatives. ACS Sens 2021; 6:3948-3956. [PMID: 34666481 PMCID: PMC8630787 DOI: 10.1021/acssensors.1c01024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/24/2021] [Indexed: 12/30/2022]
Abstract
Fluorine (19F) magnetic resonance imaging (MRI) is severely limited by a low signal-to noise ratio (SNR), and tapping it for 19F drug detection in vivo still poses a significant challenge. However, it bears the potential for label-free theranostic imaging. Recently, we detected the fluorinated dihydroorotate dehydrogenase (DHODH) inhibitor teriflunomide (TF) noninvasively in an animal model of multiple sclerosis (MS) using 19F MR spectroscopy (MRS). In the present study, we probed distinct modifications to the CF3 group of TF to improve its SNR. This revealed SF5 as a superior alternative to the CF3 group. The value of the SF5 bioisostere as a 19F MRI reporter group within a biological or pharmacological context is by far underexplored. Here, we compared the biological and pharmacological activities of different TF derivatives and their 19F MR properties (chemical shift and relaxation times). The 19F MR SNR efficiency of three MRI methods revealed that SF5-substituted TF has the highest 19F MR SNR efficiency in combination with an ultrashort echo-time (UTE) MRI method. Chemical modifications did not reduce pharmacological or biological activity as shown in the in vitro dihydroorotate dehydrogenase enzyme and T cell proliferation assays. Instead, SF5-substituted TF showed an improved capacity to inhibit T cell proliferation, indicating better anti-inflammatory activity and its suitability as a viable bioisostere in this context. This study proposes SF5 as a novel superior 19F MR reporter group for the MS drug teriflunomide.
Collapse
Affiliation(s)
- Christian Prinz
- Berlin
Ultrahigh Field Facility (B.U.F.F.), Max
Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße
10, 13125 Berlin, Germany
- Experimental
and Clinical Research Center, a joint cooperation between the Charité
- Universitätsmedizin Berlin and the Max Delbrück Center
for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Ludger Starke
- Berlin
Ultrahigh Field Facility (B.U.F.F.), Max
Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße
10, 13125 Berlin, Germany
| | - Tizian-Frank Ramspoth
- Medicinal
Chemistry, Leibniz-Institut für Molekulare
Pharmakologie (FMP), Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Janis Kerkering
- Experimental
and Clinical Research Center, a joint cooperation between the Charité
- Universitätsmedizin Berlin and the Max Delbrück Center
for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Vera Martos Riaño
- Medicinal
Chemistry, Leibniz-Institut für Molekulare
Pharmakologie (FMP), Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Jérôme Paul
- Medicinal
Chemistry, Leibniz-Institut für Molekulare
Pharmakologie (FMP), Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Martin Neuenschwander
- Screening
Unit, Leibniz-Institut für Molekulare
Pharmakologie (FMP), Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Andreas Oder
- Screening
Unit, Leibniz-Institut für Molekulare
Pharmakologie (FMP), Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Silke Radetzki
- Screening
Unit, Leibniz-Institut für Molekulare
Pharmakologie (FMP), Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Siegfried Adelhoefer
- Berlin
Ultrahigh Field Facility (B.U.F.F.), Max
Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße
10, 13125 Berlin, Germany
| | - Paula Ramos Delgado
- Berlin
Ultrahigh Field Facility (B.U.F.F.), Max
Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße
10, 13125 Berlin, Germany
- Experimental
and Clinical Research Center, a joint cooperation between the Charité
- Universitätsmedizin Berlin and the Max Delbrück Center
for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Mariya Aravina
- Berlin
Ultrahigh Field Facility (B.U.F.F.), Max
Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße
10, 13125 Berlin, Germany
| | - Jason M. Millward
- Berlin
Ultrahigh Field Facility (B.U.F.F.), Max
Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße
10, 13125 Berlin, Germany
- Experimental
and Clinical Research Center, a joint cooperation between the Charité
- Universitätsmedizin Berlin and the Max Delbrück Center
for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Ariane Fillmer
- Physikalisch-Technische
Bundesanstalt (PTB), Abbestraße 2-12, 10587 Berlin, Germany
| | - Friedemann Paul
- Experimental
and Clinical Research Center, a joint cooperation between the Charité
- Universitätsmedizin Berlin and the Max Delbrück Center
for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße 10, 13125 Berlin, Germany
- Charité
− Universitätsmedizin Berlin, corporate member of Freie
Universität Berlin, Humboldt-Universität zu Berlin,
and Berlin Institute of Health (BIH), Charitéplatz 1, 10117 Berlin, Germany
| | - Volker Siffrin
- Experimental
and Clinical Research Center, a joint cooperation between the Charité
- Universitätsmedizin Berlin and the Max Delbrück Center
for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Jens-Peter von Kries
- Screening
Unit, Leibniz-Institut für Molekulare
Pharmakologie (FMP), Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Thoralf Niendorf
- Berlin
Ultrahigh Field Facility (B.U.F.F.), Max
Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße
10, 13125 Berlin, Germany
- Experimental
and Clinical Research Center, a joint cooperation between the Charité
- Universitätsmedizin Berlin and the Max Delbrück Center
for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Marc Nazaré
- Medicinal
Chemistry, Leibniz-Institut für Molekulare
Pharmakologie (FMP), Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Sonia Waiczies
- Berlin
Ultrahigh Field Facility (B.U.F.F.), Max
Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße
10, 13125 Berlin, Germany
- Experimental
and Clinical Research Center, a joint cooperation between the Charité
- Universitätsmedizin Berlin and the Max Delbrück Center
for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße 10, 13125 Berlin, Germany
| |
Collapse
|
6
|
Alderete B, Puyol R, Slawik S, Espin E, Mücklich F, Suarez S. Multipurpose setup used to characterize tribo-electrical properties of electrical contact materials. MethodsX 2021; 8:101498. [PMID: 34754769 PMCID: PMC8563464 DOI: 10.1016/j.mex.2021.101498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/23/2021] [Indexed: 11/24/2022] Open
Abstract
Electrical contacts are pervasively found on countless modern devices and systems. It is imperative that connecting components present adequate electrical, mechanical, and chemical characteristics to fulfill the crucial role that they play in the system. To develop an electrical contact material that is tailored for a specific application, different approaches are pursued (e.g., coatings, reinforced composites, alloyed metals, duplex systems, etc.). The manufacturing of electrical contact materials demand a thorough characterization of their electrical properties, mechanical properties, and their resistance to wear, as well as their resistance to atmospheric conditions. Accordingly, commissioning of a novel setup enables a more comprehensive study of the materials that are developed. Therefore, a complete understanding of the material's electrical and tribological characteristics are attained, allowing the production of a material that is compliant with the particular demands of the application for which it is intended. This multipurpose setup was built with higher precision stages and higher accuracy 3-axis force sensor, thus providing the following improvement over the preceding setup:•Elevated load-bearing capacity (double), higher precision and stability.•Tribo-electrical characterization (implementation of scratch and fretting tests).•Environmental control (climate and external vibration).
Collapse
Affiliation(s)
- Bruno Alderete
- Chair of Functional Materials, Saarland University, Campus D3.3, Saarbrücken 66123, Germany
| | - Rafael Puyol
- ELEN, ICTEAM, UCLouvain, Place du Levant, 3 bte L5.03.02, Louvain-la-Neuve 1348, Belgium
| | - Sebastian Slawik
- Chair of Functional Materials, Saarland University, Campus D3.3, Saarbrücken 66123, Germany
| | - Eric Espin
- Chair of Functional Materials, Saarland University, Campus D3.3, Saarbrücken 66123, Germany
| | - Frank Mücklich
- Chair of Functional Materials, Saarland University, Campus D3.3, Saarbrücken 66123, Germany
| | - Sebastian Suarez
- Chair of Functional Materials, Saarland University, Campus D3.3, Saarbrücken 66123, Germany
| |
Collapse
|
7
|
Balasch A, Metze P, Li H, Rottbauer W, Abaei A, Rasche V. Tiny golden angle ultrashort echo-time lung imaging in mice. NMR IN BIOMEDICINE 2021; 34:e4591. [PMID: 34322941 DOI: 10.1002/nbm.4591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 06/25/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Imaging the lung parenchyma with MRI is particularly difficult in small animals due to the high respiratory and heart rates, and ultrashort T2* at high magnetic field strength caused by the high susceptibilities induced by the air-tissue interfaces. In this study, a 2D ultrashort echo-time (UTE) technique was combined with tiny golden angle (tyGA) ordering. Data were acquired continuously at 11.7 T and retrospective center-of-k-space gating was applied to reconstruct respiratory multistage images. Lung (proton) density (fP ), T2*, signal-to-noise ratio (SNR), fractional ventilation (FV) and perfusion (f) were quantified, and the application to dynamic contrast agent (CA)-enhanced (DCE) qualitative perfusion assessment tested. The interobserver and intraobserver and interstudy reproducibility of the quantitative parameters were investigated. High-quality images of the lung parenchyma could be acquired in all animals. Over all lung regions a mean T2* of 0.20 ± 0.05 ms was observed. FV resulted as 0.31 ± 0.13, and a trend towards lower SNR values during inspiration (EX: SNR = 12.48 ± 6.68, IN: SNR = 11.79 ± 5.86) and a significant (P < 0.001) decrease in lung density (EX: fP = 0.69 ± 0.13, IN: fP = 0.62 ± 0.13) were observed. Quantitative perfusion results as 34.63 ± 9.05 mL/cm3 /min (systole) and 32.77 ± 8.55 mL/cm3 /min (diastole) on average. The CA dynamics could be assessed and, because of the continuous nature of the data acquisition, reconstructed at different temporal resolutions. Where a good to excellent interobserver reproducibility and an excellent intraobserver reproducibility resulted, the interstudy reproducibility was only fair to good. In conclusion, the combination of tiny golden angles with UTE (2D tyGA UTE) resulted in a reliable imaging technique for lung morphology and function in mice, providing uniform k-space coverage and thus low-artefact images of the lung parenchyma after gating.
Collapse
Affiliation(s)
- Anke Balasch
- Department of Internal Medicine II, Ulm University Medical Centre, Ulm, Germany
| | - Patrick Metze
- Department of Internal Medicine II, Ulm University Medical Centre, Ulm, Germany
| | - Hao Li
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, People's Republic of China
- Core Facility Small Animal Imaging (CF-SANI), Ulm University, Ulm, Germany
| | - Wolfgang Rottbauer
- Department of Internal Medicine II, Ulm University Medical Centre, Ulm, Germany
| | - Alireza Abaei
- Core Facility Small Animal Imaging (CF-SANI), Ulm University, Ulm, Germany
| | - Volker Rasche
- Department of Internal Medicine II, Ulm University Medical Centre, Ulm, Germany
- Core Facility Small Animal Imaging (CF-SANI), Ulm University, Ulm, Germany
| |
Collapse
|
8
|
Ohno Y, Hanamatsu S, Obama Y, Ueda T, Ikeda H, Hattori H, Murayama K, Toyama H. Overview of MRI for pulmonary functional imaging. Br J Radiol 2021; 95:20201053. [PMID: 33529053 DOI: 10.1259/bjr.20201053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Morphological evaluation of the lung is important in the clinical evaluation of pulmonary diseases. However, the disease process, especially in its early phases, may primarily result in changes in pulmonary function without changing the pulmonary structure. In such cases, the traditional imaging approaches to pulmonary morphology may not provide sufficient insight into the underlying pathophysiology. Pulmonary imaging community has therefore tried to assess pulmonary diseases and functions utilizing not only nuclear medicine, but also CT and MR imaging with various technical approaches. In this review, we overview state-of-the art MR methods and the future direction of: (1) ventilation imaging, (2) perfusion imaging and (3) biomechanical evaluation for pulmonary functional imaging.
Collapse
Affiliation(s)
- Yoshiharu Ohno
- Department of Radiology, Fujita Health University, School of Medicine, Toyoake, Japan.,Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Japan
| | - Satomu Hanamatsu
- Department of Radiology, Fujita Health University, School of Medicine, Toyoake, Japan
| | - Yuki Obama
- Department of Radiology, Fujita Health University, School of Medicine, Toyoake, Japan
| | - Takahiro Ueda
- Department of Radiology, Fujita Health University, School of Medicine, Toyoake, Japan
| | - Hirotaka Ikeda
- Department of Radiology, Fujita Health University, School of Medicine, Toyoake, Japan
| | - Hidekazu Hattori
- Department of Radiology, Fujita Health University, School of Medicine, Toyoake, Japan
| | - Kazuhiro Murayama
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hiroshi Toyama
- Department of Radiology, Fujita Health University, School of Medicine, Toyoake, Japan
| |
Collapse
|
9
|
Kovtunov KV, Koptyug IV, Fekete M, Duckett SB, Theis T, Joalland B, Chekmenev EY. Parawasserstoff‐induzierte Hyperpolarisation von Gasen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kirill V. Kovtunov
- International Tomography Center SB RAS 630090 Novosibirsk Russland
- Department of Natural Sciences Novosibirsk State University Pirogova St. 2 630090 Novosibirsk Russland
| | - Igor V. Koptyug
- International Tomography Center SB RAS 630090 Novosibirsk Russland
- Department of Natural Sciences Novosibirsk State University Pirogova St. 2 630090 Novosibirsk Russland
| | - Marianna Fekete
- Center for Hyperpolarization in Magnetic Resonance (CHyM) University of York Heslington York YO10 5NY UK
| | - Simon B. Duckett
- Center for Hyperpolarization in Magnetic Resonance (CHyM) University of York Heslington York YO10 5NY UK
| | - Thomas Theis
- Department of Chemistry North Carolina State University Raleigh North Carolina 27695-8204 USA
| | - Baptiste Joalland
- Department of Chemistry Integrative Biosciences (Ibio) Karmanos Cancer Institute (KCI) Wayne State University Detroit Michigan 48202 USA
| | - Eduard Y. Chekmenev
- Department of Chemistry Integrative Biosciences (Ibio) Karmanos Cancer Institute (KCI) Wayne State University Detroit Michigan 48202 USA
- Russian Academy of Sciences (RAS) Leninskiy Prospekt 14 Moscow 119991 Russland
| |
Collapse
|
10
|
Kovtunov KV, Koptyug IV, Fekete M, Duckett SB, Theis T, Joalland B, Chekmenev EY. Parahydrogen-Induced Hyperpolarization of Gases. Angew Chem Int Ed Engl 2020; 59:17788-17797. [PMID: 31972061 PMCID: PMC7453723 DOI: 10.1002/anie.201915306] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Indexed: 12/16/2022]
Abstract
Imaging of gases is a major challenge for any modality including MRI. NMR and MRI signals are directly proportional to the nuclear spin density and the degree of alignment of nuclear spins with applied static magnetic field, which is called nuclear spin polarization. The level of nuclear spin polarization is typically very low, i.e., one hundred thousandth of the potential maximum at 1.5 T and a physiologically relevant temperature. As a result, MRI typically focusses on imaging highly concentrated tissue water. Hyperpolarization methods transiently increase nuclear spin polarizations up to unity, yielding corresponding gains in MRI signal level of several orders of magnitude that enable the 3D imaging of dilute biomolecules including gases. Parahydrogen-induced polarization is a fast, highly scalable, and low-cost hyperpolarization technique. The focus of this Minireview is to highlight selected advances in the field of parahydrogen-induced polarization for the production of hyperpolarized compounds, which can be potentially employed as inhalable contrast agents.
Collapse
Affiliation(s)
- Kirill V Kovtunov
- International Tomography Center, SB RAS, 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Igor V Koptyug
- International Tomography Center, SB RAS, 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Marianna Fekete
- Center for Hyperpolarization in Magnetic Resonance (CHyM), University of York, Heslington, York, YO10 5NY, UK
| | - Simon B Duckett
- Center for Hyperpolarization in Magnetic Resonance (CHyM), University of York, Heslington, York, YO10 5NY, UK
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, USA
| | - Baptiste Joalland
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, USA
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, USA
- Russian Academy of Sciences (RAS), Leninskiy Prospekt 14, Moscow, 119991, Russia
| |
Collapse
|
11
|
Hopkins SR. Ventilation/Perfusion Relationships and Gas Exchange: Measurement Approaches. Compr Physiol 2020; 10:1155-1205. [PMID: 32941684 DOI: 10.1002/cphy.c180042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ventilation-perfusion ( V ˙ A / Q ˙ ) matching, the regional matching of the flow of fresh gas to flow of deoxygenated capillary blood, is the most important mechanism affecting the efficiency of pulmonary gas exchange. This article discusses the measurement of V ˙ A / Q ˙ matching with three broad classes of techniques: (i) those based in gas exchange, such as the multiple inert gas elimination technique (MIGET); (ii) those derived from imaging techniques such as single-photon emission computed tomography (SPECT), positron emission tomography (PET), magnetic resonance imaging (MRI), computed tomography (CT), and electrical impedance tomography (EIT); and (iii) fluorescent and radiolabeled microspheres. The focus is on the physiological basis of these techniques that provide quantitative information for research purposes rather than qualitative measurements that are used clinically. The fundamental equations of pulmonary gas exchange are first reviewed to lay the foundation for the gas exchange techniques and some of the imaging applications. The physiological considerations for each of the techniques along with advantages and disadvantages are briefly discussed. © 2020 American Physiological Society. Compr Physiol 10:1155-1205, 2020.
Collapse
Affiliation(s)
- Susan R Hopkins
- Departments of Medicine and Radiology, University of California, San Diego, California, USA
| |
Collapse
|
12
|
Gutberlet M, Kaireit TF, Voskrebenzev A, Kern AL, Obert A, Wacker F, Hohlfeld JM, Vogel-Claussen J. Repeatability of Regional Lung Ventilation Quantification Using Fluorinated ( 19F) Gas Magnetic Resonance Imaging. Acad Radiol 2019; 26:395-403. [PMID: 30472224 DOI: 10.1016/j.acra.2018.10.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/03/2018] [Accepted: 10/24/2018] [Indexed: 11/17/2022]
Abstract
RATIONALE AND OBJECTIVES To assess the repeatability of global and regional lung ventilation quantification in both healthy subjects and patients with chronic obstructive pulmonary disease (COPD) using fluorinated (19F) gas washout magnetic resonance (MR) imaging in free breathing. MATERIAL AND METHODS In this prospective institutional review board-approved study, 12 healthy nonsmokers and eight COPD patients were examined with 19F dynamic gas washout MR imaging in free breathing and with lung function testing. Measurements were repeated within 2 weeks. Lung ventilation was quantified using 19F gas washout time. Repeatability was analyzed for the total lung and on a regional basis using the coefficient of variation (COV) and Bland-Altman plots. RESULTS In healthy subjects and COPD patients, a good repeatability was found for lung ventilation quantification using dynamic 19F gas washout MR imaging on a global (COV < 8%) and regional (COV < 15%) level. Gas washout time was significantly increased in the COPD group compared to the healthy subjects. CONCLUSION 19F gas washout MR imaging provides a good repeatability of lung ventilation quantification and appears to be sensitive to early changes of regional lung function alterations such as normal aging.
Collapse
Affiliation(s)
- Marcel Gutberlet
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| | - Till F Kaireit
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| | - Andreas Voskrebenzev
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| | - Agilo L Kern
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| | - Arnd Obert
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| | - Frank Wacker
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| | - Jens M Hohlfeld
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany; Clinic of Pneumology, Hannover Medical School, Hannover, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine, Clinical Airway Research, Hannover, Germany
| | - Jens Vogel-Claussen
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany.
| |
Collapse
|
13
|
Kuethe DO, Hix JM, Fredenburgh LE. T 1 , T 1 contrast, and Ernst-angle images of four rat-lung pathologies. Magn Reson Med 2018; 81:2489-2500. [PMID: 30417929 DOI: 10.1002/mrm.27582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 09/07/2018] [Accepted: 10/03/2018] [Indexed: 12/22/2022]
Abstract
PURPOSE To initiate the archive of relaxation-weighted images that may help discriminate between pulmonary pathologies relevant to acute respiratory distress syndrome. MRI has the ability to distinguish pathologies by providing a variety of different contrast mechanisms. Lungs have historically been difficult to image with MRI but image quality is sufficient to begin cataloging the appearance of pathologies in T1 - and T2 -weighted images. This study documents T1 and the use of T1 contrast with four experimental rat lung pathologies. METHODS Inversion-recovery and spoiled steady state images were made at 1.89 T to measure T1 and document contrast in rats with atelectasis, lipopolysaccharide-induced inflammation, ventilator-induced lung injury (VILI), and injury from saline lavage. Higher-resolution Ernst-angle images were made to see patterns of lung infiltrations. RESULTS T1 -weighted images showed minimal contrast between pathologies, similar to T1 -weighted images of other soft tissues. Images taken shortly after magnetization inversion and displayed with inverted contrast highlight lung pathologies. Ernst-angle images distinguish the effects of T1 relaxation and spin density and display distinctive patterns. T1 for pathologies were: atelectasis, 1.25 ± 0.046 s; inflammation from instillation of lipopolysaccharide, 1.24 ± 0.015 s; VILI, 1.55 ± 0.064 s (p = 0.0022 vs. normal lung); and injury from saline lavage, 1.90±0.080 s (p = 0.0022 vs. normal lung; p = 0.0079 vs. VILI). T1 of normal lung and erector spinae muscle were 1.25 ± 0.028 s and 1.02 ± 0.027 s, respectively (p = 0.0022). CONCLUSIONS Traditional T1 -weighting is subtle. However, images made with inverted magnetization and inverted contrast highlight the pathologies and Ernst-angle images aid in distinguishing pathologies.
Collapse
Affiliation(s)
- Dean O Kuethe
- ABQMR, Albuquerque, New Mexico.,Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Jeremy M Hix
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Laura E Fredenburgh
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
14
|
Couch MJ, Ball IK, Li T, Fox MS, Biman B, Albert MS. 19 F MRI of the Lungs Using Inert Fluorinated Gases: Challenges and New Developments. J Magn Reson Imaging 2018; 49:343-354. [PMID: 30248212 DOI: 10.1002/jmri.26292] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/23/2018] [Accepted: 07/26/2018] [Indexed: 12/27/2022] Open
Abstract
Fluorine-19 (19 F) MRI using inhaled inert fluorinated gases is an emerging technique that can provide functional images of the lungs. Inert fluorinated gases are nontoxic, abundant, relatively inexpensive, and the technique can be performed on any MRI scanner with broadband multinuclear imaging capabilities. Pulmonary 19 F MRI has been performed in animals, healthy human volunteers, and in patients with lung disease. In this review, the technical requirements of 19 F MRI are discussed, along with various imaging approaches used to optimize the image quality. Lung imaging is typically performed in humans using a gas mixture containing 79% perfluoropropane (PFP) or sulphur hexafluoride (SF6 ) and 21% oxygen. In lung diseases, such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF), ventilation defects are apparent in regions that the inhaled gas cannot access. 19 F lung images are typically acquired in a single breath-hold, or in a time-resolved, multiple breath fashion. The former provides measurements of the ventilation defect percent (VDP), while the latter provides measurements of gas replacement (ie, fractional ventilation). Finally, preliminary comparisons with other functional lung imaging techniques are discussed, such as Fourier decomposition MRI and hyperpolarized gas MRI. Overall, functional 19 F lung MRI is expected to complement existing proton-based structural imaging techniques, and the combination of structural and functional lung MRI will provide useful outcome measures in the future management of pulmonary diseases in the clinic. Level of Evidence: 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:343-354.
Collapse
Affiliation(s)
- Marcus J Couch
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Iain K Ball
- Philips Electronics Australia, North Ryde, Sydney, Australia
| | - Tao Li
- Department of Chemistry, Lakehead University, Thunder Bay, Ontario, Canada
| | - Matthew S Fox
- Imaging Program, Lawson Health Research Institute, London, Ontario, Canada.,Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Birubi Biman
- Thunder Bay Regional Health Sciences Centre, Thunder Bay, Ontario, Canada.,Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada.,Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Mitchell S Albert
- Department of Chemistry, Lakehead University, Thunder Bay, Ontario, Canada.,Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada.,Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada
| |
Collapse
|
15
|
Barskiy DA, Salnikov OG, Romanov AS, Feldman MA, Coffey AM, Kovtunov KV, Koptyug IV, Chekmenev EY. NMR Spin-Lock Induced Crossing (SLIC) dispersion and long-lived spin states of gaseous propane at low magnetic field (0.05T). JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 276:78-85. [PMID: 28152435 PMCID: PMC5452975 DOI: 10.1016/j.jmr.2017.01.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 05/22/2023]
Abstract
When parahydrogen reacts with propylene in low magnetic fields (e.g., 0.05T), the reaction product propane develops an overpopulation of pseudo-singlet nuclear spin states. We studied how the Spin-Lock Induced Crossing (SLIC) technique can be used to convert these pseudo-singlet spin states of hyperpolarized gaseous propane into observable magnetization and to detect 1H NMR signal directly at 0.05T. The theoretical simulation and experimental study of the NMR signal dependence on B1 power (SLIC amplitude) exhibits a well-resolved dispersion, which is induced by the spin-spin couplings in the eight-proton spin system of propane. We also measured the exponential decay time constants (TLLSS or TS) of these pseudo-singlet long-lived spin states (LLSS) by varying the time between hyperpolarized propane production and SLIC detection. We have found that, on average, TS is approximately 3 times longer than the corresponding T1 value under the same conditions in the range of pressures studied (up to 7.6atm). Moreover, TS may exceed 13s at pressures above 7atm in the gas phase. These results are in agreement with the previous reports, and they corroborate a great potential of long-lived hyperpolarized propane as an inhalable gaseous contrast agent for lung imaging and as a molecular tracer to study porous media using low-field NMR and MRI.
Collapse
Affiliation(s)
- Danila A Barskiy
- Vanderbilt University Institute of Imaging Science (VUIIS), Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA.
| | - Oleg G Salnikov
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk, Russia; Novosibirsk State University, 2 Pirogova St., Novosibirsk, Russia
| | - Alexey S Romanov
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk, Russia; Novosibirsk State University, 2 Pirogova St., Novosibirsk, Russia
| | - Matthew A Feldman
- Vanderbilt University Institute of Imaging Science (VUIIS), Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Aaron M Coffey
- Vanderbilt University Institute of Imaging Science (VUIIS), Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Kirill V Kovtunov
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk, Russia; Novosibirsk State University, 2 Pirogova St., Novosibirsk, Russia
| | - Igor V Koptyug
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk, Russia; Novosibirsk State University, 2 Pirogova St., Novosibirsk, Russia
| | - Eduard Y Chekmenev
- Vanderbilt University Institute of Imaging Science (VUIIS), Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Ingram Cancer Center (VICC), Vanderbilt University, Nashville, TN 37232, USA; Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
16
|
Ebner L, Kammerman J, Driehuys B, Schiebler ML, Cadman RV, Fain SB. The role of hyperpolarized 129xenon in MR imaging of pulmonary function. Eur J Radiol 2016; 86:343-352. [PMID: 27707585 DOI: 10.1016/j.ejrad.2016.09.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/15/2016] [Indexed: 01/29/2023]
Abstract
In the last two decades, functional imaging of the lungs using hyperpolarized noble gases has entered the clinical stage. Both helium (3He) and xenon (129Xe) gas have been thoroughly investigated for their ability to assess both the global and regional patterns of lung ventilation. With advances in polarizer technology and the current transition towards the widely available 129Xe gas, this method is ready for translation to the clinic. Currently, hyperpolarized (HP) noble gas lung MRI is limited to selected academic institutions; yet, the promising results from initial clinical trials have drawn the attention of the pulmonary medicine community. HP 129Xe MRI provides not only 3-dimensional ventilation imaging, but also unique capabilities for probing regional lung physiology. In this review article, we aim to (1) provide a brief overview of current ventilation MR imaging techniques, (2) emphasize the role of HP 129Xe MRI within the array of different imaging strategies, (3) discuss the unique imaging possibilities with HP 129Xe MRI, and (4) propose clinical applications.
Collapse
Affiliation(s)
- Lukas Ebner
- Cardiothoracic Imaging, Duke University Medical Center, Department of Radiology, Duke University, Durham, NC, USA
| | - Jeff Kammerman
- Department of Medical Physics, University of Wisconsin, Madison, WI, USA
| | | | - Mark L Schiebler
- Department of Radiology, University of Wisconsin, Madison, WI, USA
| | - Robert V Cadman
- Department of Medical Physics, University of Wisconsin, Madison, WI, USA
| | - Sean B Fain
- Departments of Medical Physics, Radiology, and Biomedical Engineering, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
17
|
Kuethe DO, Filipczak PT, Hix JM, Gigliotti AP, Estépar RSJ, Washko GR, Baron RM, Fredenburgh LE. Magnetic resonance imaging provides sensitive in vivo assessment of experimental ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2016; 311:L208-18. [PMID: 27288491 DOI: 10.1152/ajplung.00459.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 06/06/2016] [Indexed: 11/22/2022] Open
Abstract
Animal models play a critical role in the study of acute respiratory distress syndrome (ARDS) and ventilator-induced lung injury (VILI). One limitation has been the lack of a suitable method for serial assessment of acute lung injury (ALI) in vivo. In this study, we demonstrate the sensitivity of magnetic resonance imaging (MRI) to assess ALI in real time in rat models of VILI. Sprague-Dawley rats were untreated or treated with intratracheal lipopolysaccharide or PBS. After 48 h, animals were mechanically ventilated for up to 15 h to induce VILI. Free induction decay (FID)-projection images were made hourly. Image data were collected continuously for 30 min and divided into 13 phases of the ventilatory cycle to make cinematic images. Interleaved measurements of respiratory mechanics were performed using a flexiVent ventilator. The degree of lung infiltration was quantified in serial images throughout the progression or resolution of VILI. MRI detected VILI significantly earlier (3.8 ± 1.6 h) than it was detected by altered lung mechanics (9.5 ± 3.9 h, P = 0.0156). Animals with VILI had a significant increase in the Index of Infiltration (P = 0.0027), and early regional lung infiltrates detected by MRI correlated with edema and inflammatory lung injury on histopathology. We were also able to visualize and quantify regression of VILI in real time upon institution of protective mechanical ventilation. Magnetic resonance lung imaging can be utilized to investigate mechanisms underlying the development and propagation of ALI, and to test the therapeutic effects of new treatments and ventilator strategies on the resolution of ALI.
Collapse
Affiliation(s)
- Dean O Kuethe
- ABQMR Inc., Albuquerque, New Mexico; Lovelace Respiratory Research Institute, Albuquerque, New Mexico; and
| | - Piotr T Filipczak
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico; and Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Jeremy M Hix
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico; and
| | | | - Raúl San José Estépar
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - George R Washko
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Rebecca M Baron
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Laura E Fredenburgh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
18
|
Couch MJ, Fox MS, Viel C, Gajawada G, Li T, Ouriadov AV, Albert MS. Fractional ventilation mapping using inert fluorinated gas MRI in rat models of inflammation and fibrosis. NMR IN BIOMEDICINE 2016; 29:545-552. [PMID: 26866511 DOI: 10.1002/nbm.3493] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 12/11/2015] [Accepted: 01/01/2016] [Indexed: 06/05/2023]
Abstract
The purpose of this study was to extend established methods for fractional ventilation mapping using (19) F MRI of inert fluorinated gases to rat models of pulmonary inflammation and fibrosis. In this study, five rats were instilled with lipopolysaccharide (LPS) in the lungs two days prior to imaging, six rats were instilled with bleomycin in the lungs two weeks prior to imaging and an additional four rats were used as controls. (19) F MR lung imaging was performed at 3 T with rats continuously breathing a mixture of sulfur hexafluoride and O2 . Fractional ventilation maps were obtained using a wash-out approach, by switching the breathing mixture to pure O2 , and acquiring images following each successive wash-out breath. The mean fractional ventilation (r) was 0.29 ± 0.05 for control rats, 0.23 ± 0.10 for LPS-instilled rats and 0.19 ± 0.03 for bleomycin-instilled rats. Bleomycin-instilled rats had a significantly decreased mean r value compared with controls (P = 0.010). Although LPS-instilled rats had a slightly reduced mean r value, this trend was not statistically significant (P = 0.556). Fractional ventilation gradients were calculated in the anterior/posterior (A/P) direction, and the mean A/P gradient was -0.005 ± 0.008 cm(-1) for control rats, 0.013 ± 0.005 cm(-1) for LPS-instilled rats and 0.009 ± 0.018 cm(-1) for bleomycin-instilled rats. Fractional ventilation gradients were significantly different for control rats compared with LPS-instilled rats only (P = 0.016). The ventilation gradients calculated from control rats showed the expected gravitational relationship, while ventilation gradients calculated from LPS- and bleomycin-instilled rats showed the opposite trend. Histology confirmed that LPS-instilled rats had a significantly elevated alveolar wall thickness, while bleomycin-instilled rats showed signs of substantial fibrosis. Overall, (19)F MRI may be able to detect the effects of pulmonary inflammation and fibrosis using a simple and inexpensive imaging approach that can potentially be translated to humans.
Collapse
Affiliation(s)
- Marcus J Couch
- Lakehead University, Thunder Bay, Ontario, Canada
- Thunder Bay Regional Research Institute, Thunder Bay, Ontario, Canada
| | - Matthew S Fox
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Chris Viel
- Lakehead University, Thunder Bay, Ontario, Canada
- Thunder Bay Regional Research Institute, Thunder Bay, Ontario, Canada
| | - Gowtham Gajawada
- Lakehead University, Thunder Bay, Ontario, Canada
- Thunder Bay Regional Research Institute, Thunder Bay, Ontario, Canada
| | - Tao Li
- Lakehead University, Thunder Bay, Ontario, Canada
- Thunder Bay Regional Research Institute, Thunder Bay, Ontario, Canada
| | - Alexei V Ouriadov
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Mitchell S Albert
- Lakehead University, Thunder Bay, Ontario, Canada
- Thunder Bay Regional Research Institute, Thunder Bay, Ontario, Canada
| |
Collapse
|
19
|
Fox MS, Gaudet JM, Foster PJ. Fluorine-19 MRI Contrast Agents for Cell Tracking and Lung Imaging. MAGNETIC RESONANCE INSIGHTS 2016; 8:53-67. [PMID: 27042089 PMCID: PMC4807887 DOI: 10.4137/mri.s23559] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/24/2016] [Accepted: 01/31/2016] [Indexed: 02/06/2023]
Abstract
Fluorine-19 (19F)-based contrast agents for magnetic resonance imaging stand to revolutionize imaging-based research and clinical trials in several fields of medical intervention. First, their use in characterizing in vivo cell behavior may help bring cellular therapy closer to clinical acceptance. Second, their use in lung imaging provides novel noninvasive interrogation of the ventilated airspaces without the need for complicated, hard-to-distribute hardware. This article reviews the current state of 19F-based cell tracking and lung imaging using magnetic resonance imaging and describes the link between the methods across these fields and how they may mutually benefit from solutions to mutual problems encountered when imaging 19F-containing compounds, as well as hardware and software advancements.
Collapse
Affiliation(s)
- Matthew S Fox
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada.; Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada
| | - Jeffrey M Gaudet
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada.; Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada
| | - Paula J Foster
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada.; Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada
| |
Collapse
|
20
|
Kovtunov KV, Romanov AS, Salnikov OG, Barskiy DA, Chekmenev EY, Koptyug IV. Gas Phase UTE MRI of Propane and Propene. ACTA ACUST UNITED AC 2016; 2:49-55. [PMID: 27478870 PMCID: PMC4966642 DOI: 10.18383/j.tom.2016.00112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proton magnetic resonance imaging (1H MRI) of gases can potentially enable functional lung imaging to probe gas ventilation and other functions. Here, 1H MR images of hyperpolarized (HP) and thermally polarized propane gas were obtained using ultrashort echo time (UTE) pulse sequence. A 2-dimensional (2D) image of thermally polarized propane gas with ∼0.9 × 0.9 mm2 spatial resolution was obtained in <2 seconds, showing that even non-HP hydrocarbon gases can be successfully used for conventional proton magnetic resonance imaging. The experiments were also performed with HP propane gas, and high-resolution multislice FLASH 2D images in ∼510 seconds and non-slice-selective 2D UTE MRI images were acquired in ∼2 seconds. The UTE approach adopted in this study can be potentially used for medical lung imaging. Furthermore, the possibility of combining UTE with selective suppression of 1H signals from 1 of the 2 gases in a mixture is shown in this MRI study. The latter can be useful for visualizing industrially important processes where several gases may be present, eg, gas–solid catalytic reactions.
Collapse
Affiliation(s)
- Kirill V Kovtunov
- International Tomography Center, SB RAS, 3A Institutskaya St., 630090 Novosibirsk, Russia; Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Alexey S Romanov
- International Tomography Center, SB RAS, 3A Institutskaya St., 630090 Novosibirsk, Russia; Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Oleg G Salnikov
- International Tomography Center, SB RAS, 3A Institutskaya St., 630090 Novosibirsk, Russia; Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Danila A Barskiy
- Vanderbilt University, Institute of Imaging Science (VUIIS), Department of Radiology, Department of Biomedical Engineering, Vanderbilt-Ingram Cancer Center (VICC), Nashville, Tennessee, 37232-2310, USA
| | - Eduard Y Chekmenev
- Vanderbilt University, Institute of Imaging Science (VUIIS), Department of Radiology, Department of Biomedical Engineering, Vanderbilt-Ingram Cancer Center (VICC), Nashville, Tennessee, 37232-2310, USA
| | - Igor V Koptyug
- International Tomography Center, SB RAS, 3A Institutskaya St., 630090 Novosibirsk, Russia; Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| |
Collapse
|
21
|
Kruger SJ, Nagle SK, Couch MJ, Ohno Y, Albert M, Fain SB. Functional imaging of the lungs with gas agents. J Magn Reson Imaging 2016; 43:295-315. [PMID: 26218920 PMCID: PMC4733870 DOI: 10.1002/jmri.25002] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/26/2015] [Indexed: 12/22/2022] Open
Abstract
This review focuses on the state-of-the-art of the three major classes of gas contrast agents used in magnetic resonance imaging (MRI)-hyperpolarized (HP) gas, molecular oxygen, and fluorinated gas--and their application to clinical pulmonary research. During the past several years there has been accelerated development of pulmonary MRI. This has been driven in part by concerns regarding ionizing radiation using multidetector computed tomography (CT). However, MRI also offers capabilities for fast multispectral and functional imaging using gas agents that are not technically feasible with CT. Recent improvements in gradient performance and radial acquisition methods using ultrashort echo time (UTE) have contributed to advances in these functional pulmonary MRI techniques. The relative strengths and weaknesses of the main functional imaging methods and gas agents are compared and applications to measures of ventilation, diffusion, and gas exchange are presented. Functional lung MRI methods using these gas agents are improving our understanding of a wide range of chronic lung diseases, including chronic obstructive pulmonary disease, asthma, and cystic fibrosis in both adults and children.
Collapse
Affiliation(s)
- Stanley J. Kruger
- Department of Medical Physics, University of Wisconsin – Madison, WI, U.S.A
| | - Scott K. Nagle
- Department of Medical Physics, University of Wisconsin – Madison, WI, U.S.A
- Department of Radiology, University of Wisconsin – Madison, WI, U.S.A
- Department of Pediatrics, University of Wisconsin – Madison, WI, U.S.A
| | - Marcus J. Couch
- Thunder Bay Regional Research Institute, Thunder Bay, ON, Canada
- Biotechnology Program, Lakehead University, Thunder Bay, ON, Canada
| | - Yoshiharu Ohno
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mitchell Albert
- Thunder Bay Regional Research Institute, Thunder Bay, ON, Canada
- Department of Chemistry, Lakehead University, Thunder Bay, ON, Canada
| | - Sean B. Fain
- Department of Medical Physics, University of Wisconsin – Madison, WI, U.S.A
- Department of Radiology, University of Wisconsin – Madison, WI, U.S.A
- Department of Biomedical Engineering, University of Wisconsin – Madison, WI, U.S.A
| |
Collapse
|
22
|
|
23
|
Couch MJ, Ball IK, Li T, Fox MS, Ouriadov AV, Biman B, Albert MS. Inert fluorinated gas MRI: a new pulmonary imaging modality. NMR IN BIOMEDICINE 2014; 27:1525-1534. [PMID: 25066661 DOI: 10.1002/nbm.3165] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/06/2014] [Accepted: 06/12/2014] [Indexed: 06/03/2023]
Abstract
Fluorine-19 ((19)F) MRI of the lungs using inhaled inert fluorinated gases can potentially provide high quality images of the lungs that are similar in quality to those from hyperpolarized (HP) noble gas MRI. Inert fluorinated gases have the advantages of being nontoxic, abundant, and inexpensive compared with HP gases. Due to the high gyromagnetic ratio of (19)F, there is sufficient thermally polarized signal for imaging, and averaging within a single breath-hold is possible due to short longitudinal relaxation times. Therefore, the gases do not need to be hyperpolarized prior to their use in MRI. This eliminates the need for an expensive polarizer and expensive isotopes. Inert fluorinated gas MRI of the lungs has been previously demonstrated in animals, and more recently in healthy volunteers and patients with lung diseases. The ongoing improvements in image quality demonstrate the potential of (19)F MRI for visualizing the distribution of ventilation in human lungs and detecting functional biomarkers. In this brief review, the development of inert fluorinated gas MRI, current progress, and future prospects are discussed. The current state of HP noble gas MRI is also briefly discussed in order to provide context to the development of this new imaging modality. Overall, this may be a viable clinical imaging modality that can provide useful information for the diagnosis and management of chronic respiratory diseases.
Collapse
Affiliation(s)
- Marcus J Couch
- Lakehead University, Thunder Bay, Ontario, Canada; Thunder Bay Regional Research Institute, Thunder Bay, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
24
|
Fries P, Morelli JN, Lux F, Tillement O, Schneider G, Buecker A. The issues and tentative solutions for contrast-enhanced magnetic resonance imaging at ultra-high field strength. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 6:559-73. [DOI: 10.1002/wnan.1291] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 07/07/2014] [Accepted: 07/20/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Peter Fries
- Clinic of Diagnostic and Interventional Radiology (Geb. 50.1); Saarland University Medical Center; Homburg Germany
| | - John N. Morelli
- Russell H Morgan Department of Radiology & Radiological Science; Johns Hopkins University; Baltimore MD USA
| | - Francois Lux
- Institut Lumière Matière; Université Claude Bernard Lyon 1; Lyon France
| | - Olivier Tillement
- Institut Lumière Matière; Université Claude Bernard Lyon 1; Lyon France
| | - Günther Schneider
- Clinic of Diagnostic and Interventional Radiology (Geb. 50.1); Saarland University Medical Center; Homburg Germany
| | - Arno Buecker
- Clinic of Diagnostic and Interventional Radiology (Geb. 50.1); Saarland University Medical Center; Homburg Germany
| |
Collapse
|
25
|
Couch MJ, Ball IK, Li T, Fox MS, Littlefield SL, Biman B, Albert MS. Pulmonary Ultrashort Echo Time19F MR Imaging with Inhaled Fluorinated Gas Mixtures in Healthy Volunteers: Feasibility. Radiology 2013; 269:903-9. [DOI: 10.1148/radiol.13130609] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Clinical Perspectives of Hybrid Proton-Fluorine Magnetic Resonance Imaging and Spectroscopy. Invest Radiol 2013; 48:341-50. [DOI: 10.1097/rli.0b013e318277528c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Lilburn DM, Pavlovskaya GE, Meersmann T. Perspectives of hyperpolarized noble gas MRI beyond 3He. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 229:173-86. [PMID: 23290627 PMCID: PMC3611600 DOI: 10.1016/j.jmr.2012.11.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/12/2012] [Accepted: 11/15/2012] [Indexed: 05/29/2023]
Abstract
Nuclear Magnetic Resonance (NMR) studies with hyperpolarized (hp) noble gases are at an exciting interface between physics, chemistry, materials science and biomedical sciences. This paper intends to provide a brief overview and outlook of magnetic resonance imaging (MRI) with hp noble gases other than hp (3)He. A particular focus are the many intriguing experiments with (129)Xe, some of which have already matured to useful MRI protocols, while others display high potential for future MRI applications. Quite naturally for MRI applications the major usage so far has been for biomedical research but perspectives for engineering and materials science studies are also provided. In addition, the prospects for surface sensitive contrast with hp (83)Kr MRI is discussed.
Collapse
Affiliation(s)
| | | | - Thomas Meersmann
- University of Nottingham, School of Clinical Sciences, Sir Peter Mansfield Magnetic Resonance Centre, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
28
|
Carrero-González L, Kaulisch T, Stiller D. In vivo diffusion-weighted MRI using perfluorinated gases: ADC comparison between healthy and elastase-treated rat lungs. Magn Reson Med 2013; 70:1761-4. [DOI: 10.1002/mrm.24627] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 12/07/2012] [Accepted: 12/14/2012] [Indexed: 12/13/2022]
Affiliation(s)
- L. Carrero-González
- Boehringer Ingelheim Pharma GmbH & Co. KG, Target Discovery Research, in-vivo imaging laboratory; Biberach an der Riss Germany
| | - T. Kaulisch
- Boehringer Ingelheim Pharma GmbH & Co. KG, Target Discovery Research, in-vivo imaging laboratory; Biberach an der Riss Germany
| | - D. Stiller
- Boehringer Ingelheim Pharma GmbH & Co. KG, Target Discovery Research, in-vivo imaging laboratory; Biberach an der Riss Germany
| |
Collapse
|
29
|
Díaz-Francés E, Rubio FJ. On the existence of a normal approximation to the distribution of the ratio of two independent normal random variables. Stat Pap (Berl) 2012. [DOI: 10.1007/s00362-012-0429-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Design and synthesis of perfluorinated amphiphilic copolymers: Smart nanomicelles for theranostic applications. POLYMER 2011. [DOI: 10.1016/j.polymer.2011.08.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
31
|
Ruiz-Cabello J, Barnett BP, Bottomley PA, Bulte JW. Fluorine (19F) MRS and MRI in biomedicine. NMR IN BIOMEDICINE 2011; 24:114-29. [PMID: 20842758 PMCID: PMC3051284 DOI: 10.1002/nbm.1570] [Citation(s) in RCA: 372] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 04/23/2010] [Accepted: 04/26/2010] [Indexed: 05/04/2023]
Abstract
Shortly after the introduction of (1)H MRI, fluorinated molecules were tested as MR-detectable tracers or contrast agents. Many fluorinated compounds, which are nontoxic and chemically inert, are now being used in a broad range of biomedical applications, including anesthetics, chemotherapeutic agents, and molecules with high oxygen solubility for respiration and blood substitution. These compounds can be monitored by fluorine ((19)F) MRI and/or MRS, providing a noninvasive means to interrogate associated functions in biological systems. As a result of the lack of endogenous fluorine in living organisms, (19)F MRI of 'hotspots' of targeted fluorinated contrast agents has recently opened up new research avenues in molecular and cellular imaging. This includes the specific targeting and imaging of cellular surface epitopes, as well as MRI cell tracking of endogenous macrophages, injected immune cells and stem cell transplants.
Collapse
Affiliation(s)
- Jesús Ruiz-Cabello
- Russell H. Morgan Department of Radiology, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Vascular Biology Program and Cellular Imaging Section, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, USA
- NMR Group, Institute of Functional Studies, Complutense University and CIBERES, Madrid, Spain
| | - Brad P. Barnett
- Russell H. Morgan Department of Radiology, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Vascular Biology Program and Cellular Imaging Section, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Paul A. Bottomley
- Russell H. Morgan Department of Radiology, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeff W.M. Bulte
- Russell H. Morgan Department of Radiology, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Vascular Biology Program and Cellular Imaging Section, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
32
|
Wolf U, Scholz A, Terekhov M, Koebrich R, David M, Schreiber LM. Visualization of inert gas wash-out during high-frequency oscillatory ventilation using fluorine-19 MRI. Magn Reson Med 2010; 64:1478-83. [DOI: 10.1002/mrm.22528] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Scholz AW, Wolf U, Fabel M, Weiler N, Heussel CP, Eberle B, David M, Schreiber WG. Comparison of magnetic resonance imaging of inhaled SF6 with respiratory gas analysis. Magn Reson Imaging 2009; 27:549-56. [DOI: 10.1016/j.mri.2008.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 08/26/2008] [Accepted: 08/27/2008] [Indexed: 10/21/2022]
|
34
|
Assessment of pulmonary parenchyma perfusion with FAIR in comparison with DCE-MRI—Initial results. Eur J Radiol 2009; 70:41-8. [DOI: 10.1016/j.ejrad.2007.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 12/20/2007] [Accepted: 12/20/2007] [Indexed: 11/18/2022]
|
35
|
Mosbah K, Ruiz-Cabello J, Berthezène Y, Crémillieux Y. Aerosols and gaseous contrast agents for magnetic resonance imaging of the lung. CONTRAST MEDIA & MOLECULAR IMAGING 2008; 3:173-90. [DOI: 10.1002/cmmi.252] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Adolphi NL, Kuethe DO. Quantitative mapping of ventilation-perfusion ratios in lungs by19F MR imaging ofT1 of inert fluorinated gases. Magn Reson Med 2008; 59:739-46. [DOI: 10.1002/mrm.21579] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
37
|
Beckmann N, Cannet C, Karmouty-Quintana H, Tigani B, Zurbruegg S, Blé FX, Crémillieux Y, Trifilieff A. Lung MRI for experimental drug research. Eur J Radiol 2007; 64:381-96. [PMID: 17931813 DOI: 10.1016/j.ejrad.2007.08.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 07/31/2007] [Accepted: 08/01/2007] [Indexed: 10/22/2022]
Abstract
Current techniques to evaluate the efficacy of potential treatments for airways diseases in preclinical models are generally invasive and terminal. In the past few years, the flexibility of magnetic resonance imaging (MRI) to obtain anatomical and functional information of the lung has been explored with the scope of developing a non-invasive approach for the routine testing of drugs in models of airways diseases in small rodents. With MRI, the disease progression can be followed in the same animal. Thus, a significant reduction in the number of animals used for experimentation is achieved, as well as minimal interference with their well-being and physiological status. In addition, under certain circumstances the duration of the observation period after disease onset can be shortened since the technique is able to detect changes before these are reflected in parameters of inflammation determined using invasive procedures. The objective of this article is to briefly address MRI techniques that are being used in experimental lung research, with special emphasis on applications. Following an introduction on proton techniques and MRI of hyperpolarized gases, the attention is shifted to the MRI analysis of several aspects of lung disease models, including inflammation, ventilation, emphysema, fibrosis and sensory nerve activation. The next subject concerns the use of MRI in pharmacological studies within the context of experimental lung research. A final discussion points towards advantages and limitations of MRI in this area.
Collapse
Affiliation(s)
- Nicolau Beckmann
- Discovery Technologies, Novartis Institutes for BioMedical Research, Lichtstr. 35, WSJ-386.2.09, CH-4002 Basel, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kuethe DO, Adolphi NL, Fukushima E. Short data-acquisition times improve projection images of lung tissue. Magn Reson Med 2007; 57:1058-64. [PMID: 17534926 DOI: 10.1002/mrm.21230] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
MR images of laboratory rat lungs that resolve the thin membranes that separate lung lobes are presented. It appears that the capabilities of in vivo small-animal pulmonary MRI may rival those of in vivo small-animal X-ray CT. Free induction decay (FID)-projection imaging was employed with particular attention to the choice of acquisition time. For a given nominal resolution, one obtains optimal point discrimination when the acquisition time T(acq) normalized by the signal decay time constant T(2)(*) is approximately 0.8-0.9, although a better signal-to-noise ratio (SNR) is obtained when this quotient is 1.6. Currently available equipment should be able to even exceed the results presented herein.
Collapse
|
39
|
Abstract
Oxygen plays a major role as a substrate in metabolic processes in numerous signaling pathways, in redox metabolism, and in free radical metabolism. To study the role of oxygen in normal and pathophysiological states, methods that can be used noninvasively are required. This review examines the potential of nuclear magnetic resonance techniques to study tissue oxygenation. It is written from a systems perspective, looking at detection methods with respect to the path that oxygen takes in the mammalian system-from the lungs, through the vascular system, into the interstitial space, and finally into the cell. Methods discussed range from those that are quantifiable, such as the assessment of spin lattice relaxation time in fluorocarbon solutions, to those that are more correlative, such as assessment of lactate and high energy phosphates. Since the methods vary in their site of application, sensitivity, and specificity to the quantification of oxygen, this review provides examples of how each method has been applied. This may facilitate the reader's understanding of how to optimally apply different methods to study specific biomedical problems.
Collapse
Affiliation(s)
- J F Dunn
- Department of Radiology, Physiology, and Biophysics, University of Calgary, Faculty of Medicine, Calgary, Alberta, Canada.
| |
Collapse
|
40
|
|
41
|
Bouchard LS, Kovtunov KV, Burt SR, Anwar MS, Koptyug IV, Sagdeev RZ, Pines A. Para-Hydrogen-Enhanced Hyperpolarized Gas-Phase Magnetic Resonance Imaging. Angew Chem Int Ed Engl 2007; 46:4064-8. [PMID: 17455180 DOI: 10.1002/anie.200700830] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Louis-S Bouchard
- Department of Chemistry, University of California, Berkeley and Division of Materials Science, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Kuethe DO, Scholz MD, Fantazzini P. Imaging inert fluorinated gases in cracks: perhaps in David's ankles. Magn Reson Imaging 2007; 25:505-8. [PMID: 17466774 DOI: 10.1016/j.mri.2006.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 11/30/2006] [Indexed: 11/24/2022]
Abstract
Inspired by the challenge of determining the nature of cracks on the ankles of Michelangelo's statue David, we discovered that one can image SF(6) gas in cracks in marble samples with alacrity. The imaging method produces images of gas with a signal-to-noise ratio (SNR) of 100-250, which is very high for magnetic resonance imaging (MRI) in general, let alone for an image of a gas at thermal equilibrium polarization. To put this unusual SNR in better perspective, we imaged SF(6) in a crack in a marble sample and imaged the lung tissue of a live rat (a more familiar variety of sample to many MRI scientists) using the same pulse sequence, the same size coils and the same MRI system. In both cases, we try to image subvoxel thin sheets of material that should appear bright against a darker background. By choosing imaging parameters appropriate for the different relaxation properties of SF(6) gas versus lung tissue and by choosing voxel sizes appropriate for the different goals of detecting subvoxel cracks on marble versus resolving subvoxel thin sheets of tissue, the SNR for voxels full of material was 220 and 14 for marble and lung, respectively. A major factor is that we chose large voxels to optimize SNR for detecting small cracks and we chose small voxels for resolving lung features at the expense of SNR. Imaging physics will cooperate to provide detection of small cracks on marble, but David's size poses a challenge for magnet designers. For the modest goal of imaging cracks in the left ankle, we desire a magnet with an approximately 32-cm gap and a flux density of approximately 0.36 T that weighs <500 kg.
Collapse
|
43
|
Wolf U, Scholz A, Heussel CP, Markstaller K, Schreiber WG. Subsecond fluorine-19 MRI of the lung. Magn Reson Med 2006; 55:948-51. [PMID: 16534836 DOI: 10.1002/mrm.20859] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Minimal scan times in rapid fluorine-19 MRI using sulfur hexafluoride (SF6) have been on the order of 10 s. Because of the very short T1 relaxation time of SF6 (T1 = 1.65 ms), high receiver bandwidths are necessary to allow for a high number of excitations. Since high bandwidths cause high levels of electronic noise, SNR per acquisition has been too low to further reduce scan time. The purpose of this study was to investigate whether scan times could be reduced using hexafluoroethane (C2F6), a gas with a longer T1 (T1 = 7.9 ms) at a relatively low bandwidth of 488 Hz/pixel. Gradient-echo images were acquired during and after completion of the wash-in of a 70% C2F6- 30% O2 mixture. Peak SNR values of 16 and 7.9 were observed for coronal projection images acquired within 2 s and 260 ms, respectively. These results demonstrate that subsecond imaging is feasible using C2F6.
Collapse
Affiliation(s)
- Ursula Wolf
- Department of Radiology, Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | |
Collapse
|
44
|
Han SI, Pierce KL, Pines A. NMR velocity mapping of gas flow around solid objects. Phys Rev E 2006; 74:016302. [PMID: 16907186 DOI: 10.1103/physreve.74.016302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2005] [Indexed: 11/07/2022]
Abstract
We present experimental visualizations of gas flow around solid blunt bodies by NMR imaging. NMR velocimetry is a model-free and tracer-free experimental means for quantitative and multi-dimensional flow visualization. Hyperpolarization of (129)Xe provided sufficient NMR signal to overcome the low density of the dilute gas phase, and its long coherence time allows for true velocity vector mapping. In this study, the diverging gas flow around and wake patterns immediately behind a sphere could be vectorally visualized and quantified. In a similar experiment, the flow over an aerodynamic model airplane body revealed a less disrupted flow pattern.
Collapse
Affiliation(s)
- Song-I Han
- Materials Science Division, Lawrence Berkeley National Laboratory and Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
45
|
Chang YV, Conradi MS. Relaxation and diffusion of perfluorocarbon gas mixtures with oxygen for lung MRI. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2006; 181:191-8. [PMID: 16707266 DOI: 10.1016/j.jmr.2006.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 03/29/2006] [Accepted: 04/04/2006] [Indexed: 05/09/2023]
Abstract
We report measurements of free diffusivity D(0) and relaxation times T(1) and T(2) for pure C(2)F(6) and C(3)F(8) and their mixtures with oxygen. A simplified relaxation theory is presented and used to fit the data. The results enable spatially localized relaxation time measurements to determine the local gas concentration in lung MR images, so the free diffusivity D(0) is then known. Comparison of the measured diffusion to D(0) will express the extent of diffusion restriction and allow the local surface-to-volume ratio to be found.
Collapse
Affiliation(s)
- Yulin V Chang
- Department of Physics, Washington University, St. Louis, MO 63130, USA.
| | | |
Collapse
|
46
|
Tervonen H, Saunavaara J, Ingman LP, Jokisaari J. 19F Single-Quantum and 19F−33S Heteronuclear Multiple-Quantum Coherence NMR of SF6 in Thermotropic Nematogens and in the Gas Phase. J Phys Chem B 2006; 110:16232-8. [PMID: 16913748 DOI: 10.1021/jp062296m] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
(19)F single-quantum (SQC) and (19)F-(33)S heteronuclear multiple-quantum coherence (HMQC) NMR spectroscopy of sulfur hexafluoride (SF(6)) dissolved in thermotropic liquid crystals (TLCs) were used to investigate the properties of TLCs. On one hand, environmental effects on the NMR parameters of SF(6), (19)F nuclear shielding, (19)F-(33)S spin-spin coupling, secondary isotope effects of sulfur on (19)F shielding, and the self-diffusion coefficient in the direction of the external magnetic field were studied as well. The temperature dependence of the (19)F shielding of SF(6) in TLCs was modeled with a function that takes into account the properties of both TLC and SF(6). It appears that the TLC environment deforms the electronic system of SF(6) so that the (19)F shielding tensor becomes slightly anisotropic, with the anisotropy being from -0.5 to -1.4 ppm, depending upon the TLC solvent. On the contrary, no sign of residual dipolar coupling between (19)F and (33)S was found, meaning that the so-called deformational effects, which arise from the interaction between vibrational and reorientational motions of the molecule, on the geometry of the molecule are insignificant. Diffusion activation energies, E(a), were determined from the temperature dependence of the self-diffusion coefficients. In each TLC, E(a) increases when moving from an isotropic phase to a nematic phase. The spin-spin coupling constant, J((19)F,(33)S), increases by ca. 10 Hz when moving from the gas phase to TLC solutions. The secondary isotope shifts of (19)F shielding are practically independent of TLC solvent and temperature. For the first time, (19)F-(33)S heteronuclear multiple-quantum NMR spectra were recorded for SF(6) in the gas phase and in a liquid-crystalline solution.
Collapse
Affiliation(s)
- Henri Tervonen
- NMR Research Group, Department of Physical Sciences, University of Oulu, P.O. Box 3000, FIN-90014 Oulu, Finland
| | | | | | | |
Collapse
|
47
|
Guerrero T, Sanders K, Castillo E, Zhang Y, Bidaut L, Pan T, Komaki R. Dynamic ventilation imaging from four-dimensional computed tomography. Phys Med Biol 2006; 51:777-91. [PMID: 16467578 DOI: 10.1088/0031-9155/51/4/002] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A novel method for dynamic ventilation imaging of the full respiratory cycle from four-dimensional computed tomography (4D CT) acquired without added contrast is presented. Three cases with 4D CT images obtained with respiratory gated acquisition for radiotherapy treatment planning were selected. Each of the 4D CT data sets was acquired during resting tidal breathing. A deformable image registration algorithm mapped each (voxel) corresponding tissue element across the 4D CT data set. From local average CT values, the change in fraction of air per voxel (i.e. local ventilation) was calculated. A 4D ventilation image set was calculated using pairs formed with the maximum expiration image volume, first the exhalation then the inhalation phases representing a complete breath cycle. A preliminary validation using manually determined lung volumes was performed. The calculated total ventilation was compared to the change in contoured lung volumes between the CT pairs (measured volume). A linear regression resulted in a slope of 1.01 and a correlation coefficient of 0.984 for the ventilation images. The spatial distribution of ventilation was found to be case specific and a 30% difference in mass-specific ventilation between the lower and upper lung halves was found. These images may be useful in radiotherapy planning.
Collapse
Affiliation(s)
- Thomas Guerrero
- Division of Radiation Oncology, The University of Texas M D Anderson Cancer Center, Houston, TX 77030-4009, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Kuethe DO, Pietrass T, Behr VC. Inert fluorinated gas T1 calculator. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2005; 177:212-20. [PMID: 16143549 DOI: 10.1016/j.jmr.2005.07.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 06/25/2005] [Accepted: 07/27/2005] [Indexed: 05/04/2023]
Abstract
The physics of spin-rotation interaction in roughly spherical perfluorinated gas molecules has been studied extensively. But, it is difficult to calculate a spin-lattice relaxation time constant T1 for any given temperature and pressure using the published literature. We give a unified parameterization that makes use of the Clausius equation of state, Lennard-Jones collision dynamics, and a formulaic temperature dependence for collision cross section for rotational change. The model fits T1s for SF6, CF4, C2F6, and c-C4F8 for temperatures from 180 to 360 K and pressures from 2 to 210 kPa and in mixtures with other common gases to within our limits of measurement. It also fits previous data tabulated according to known number densities. Given a pressure, temperature, and mixture composition, one can now calculate T1s for common laboratory conditions with a known accuracy, typically 0.5%. Given the success of the model's formulaic structure, it is likely to apply to even broader ranges of physical conditions and to other gases that relax by spin-rotation interaction.
Collapse
|
49
|
Ruiz-Cabello J, Pérez-Sánchez JM, Pérez de Alejo R, Rodríguez I, González-Mangado N, Peces-Barba G, Cortijo M. Diffusion-weighted 19F-MRI of lung periphery: Influence of pressure and air-SF6 composition on apparent diffusion coefficients. Respir Physiol Neurobiol 2005; 148:43-56. [PMID: 16098469 DOI: 10.1016/j.resp.2005.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 03/30/2005] [Accepted: 04/03/2005] [Indexed: 11/18/2022]
Abstract
Lung functional magnetic resonance imaging (MRI) has become a reality using different inert hyperpolarized gases, such as 3He and 129Xe, which have provided an extraordinary boost in lung imaging and has also attracted interest to other chemically inert gaseous contrast agents. In this context, we have recently demonstrated the first diffusion-weighted images using thermally polarized inhaled sulfur hexafluoride (SF6) in small animals. The aim of this study was to evaluate whether or not the diffusion coefficient of this fluorinated gas is sensitive to pulmonary structure, gas concentration and air pressure in the airways. Diffusion coefficients of SF6 (both pure and in air mixtures) measured in vitro at different pressures and 20 degrees C showed an excellent agreement with theoretical values. Measurements of diffusion coefficients were also performed in vivo and post-mortem on healthy rats, achieving satisfactory signal-to-noise ratios (SNRs), and SF6 gas was found to be in an almost completely restricted diffusion regime in the lung, i.e., the transport by molecular diffusion is delayed by collisions with barriers such as the alveolar septa. This observed low diffusivity means that this gas will be less sensitive to structural changes in the lungs than other magnetic resonance sensitive gas such as 3He, particularly at human scale. However, it is still possible that SF6 plays a role since it opens a new structural window. Thus, the interest of researchers in delimiting the important limiting technical factors that makes this process very challenging is obvious. Among them, T2 relaxation is very fast, so gradient systems with very fast switching rate and probably large radiofrequency (RF) power and high field systems will be needed for hexafluoride to be used in human studies.
Collapse
Affiliation(s)
- Jesús Ruiz-Cabello
- Grupo de Resonancia Magnética, Instituto de Estudios Biofuncionales, Universidad Complutense de Madrid, Paseo Juan XXIII 1, Madrid 28040, Spain.
| | | | | | | | | | | | | |
Collapse
|
50
|
Fischer MC, Kadlecek S, Yu J, Ishii M, Emami K, Vahdat V, Lipson DA, Rizi RR. Measurements of regional alveolar oxygen pressure using hyperpolarized 3He MRI. Acad Radiol 2005; 12:1430-9. [PMID: 16253855 DOI: 10.1016/j.acra.2005.07.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 07/14/2005] [Accepted: 07/18/2005] [Indexed: 11/28/2022]
Abstract
RATIONALE AND OBJECTIVES The aim of this work is to review hyperpolarized (HP) helium-3 (3He) magnetic resonance imaging (MRI) methods to measure regional alveolar oxygen partial pressure (P(A)O2) and oxygen depletion rate (R) in the lung. We point out limitations of the methods and suggest improvements to increase their accuracy. MATERIALS AND METHODS P(A)O2 and R can be extracted from series of HP gas images acquired during breath hold by making use of the depolarizing effect of oxygen on HP gas. To separate oxygen-induced depolarization from other depolarizing effects, several techniques can be used. We review currently used techniques and point out their advantages and limitations. RESULTS We show that the precision of oxygen measurements depends on a variety of parameters and can vary within the measurement volume. Accuracy of the measurement also can be influenced by diffusion of oxygen and polarized 3He and generally is different for single-slice and multislice measurements. We present numerical simulations, phantom data, and in vivo data for illustration. CONCLUSION HP 3He MRI is a noninvasive, nonionizing, and repeatable imaging method that allows for quantitative analysis of lung function. The current techniques for measuring P(A)O2 have the potential to deliver clinically relevant functional images.
Collapse
Affiliation(s)
- Martin C Fischer
- Department of Radiology, University of Pennsylvania School of Medicine, B1, Stellar-Chance Labs, Philadelphia, PA19104-6100, USA
| | | | | | | | | | | | | | | |
Collapse
|