1
|
Lukasiewicz CJ, Vandiver KJ, Albert ED, Kirby BS, Jacobs RA. Assessing exogenous carbohydrate intake needed to optimize human endurance performance across sex: insights from modeling runners pursuing a sub-2-h marathon. J Appl Physiol (1985) 2024; 136:158-176. [PMID: 38059288 DOI: 10.1152/japplphysiol.00521.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023] Open
Abstract
Carbohydrate (CHO) availability sustains high metabolic demands during prolonged exercise. The adequacy of current CHO intake recommendations, 30-90 g·h-1 dependent on CHO mixture and tolerability, to support elite marathon performance is unclear. We sought to scrutinize the current upper limit recommendation for exogenous CHO intake to support modeled sub-2-h marathon (S2M) attempts across elite male and female runners. Male and female runners (n = 120 each) were modeled from published literature with reference characteristics necessary to complete a S2M (e.g., body mass and running economy). Completion of a S2M was considered across a range of respiratory exchange rates, with maximal starting skeletal muscle and liver glycogen content predicted for elite male and female runners. Modeled exogenous CHO bioavailability needed for male and female runners were 93 ± 26 and 108 ± 22 g·h-1, respectively (P < 0.0001, d = 0.61). Without exogenous CHO, males were modeled to deplete glycogen in 84 ± 7 min, females in 71 ± 5 min (P < 0.0001, d = 2.21) despite higher estimated CHO oxidation rates in males (5.1 ± 0.5 g·h-1) than females (4.4 ± 0.5 g·h-1; P < 0.0001, d = 1.47). Exogenous CHO intakes ≤ 90 g·h-1 are insufficient for 65% of modeled runners attempting a S2M. Current recommendations to support marathon performance appear inadequate for elite marathon runners but may be more suitable for male runners in pursuit of a S2M (56 of 120) than female runners (28 of 120).NEW & NOTEWORTHY This study scrutinizes the upper limit of exogenous carbohydrate (CHO) recommendations for elite male and female marathoners by modeling sex-specific needs across an extreme metabolic challenge lasting ∼2 h, a sub-2-h marathon. Contemporary nutritional guidelines to optimize marathon performance appear inadequate for most elite marathon runners but appear more appropriate for males over their female counterparts. Future research examining possible benefits of exogenous CHO intakes > 90 g·h-1 should prioritize female athlete study inclusion.
Collapse
Affiliation(s)
- Cole J Lukasiewicz
- Department of Human Physiology & Nutrition, College of Nursing and Health Sciences, University of Colorado Colorado Springs (UCCS), Colorado Springs, Colorado, United States
- William J. Hybl Sports Medicine and Performance Center, Colorado Springs, Colorado, United States
| | - Kayla J Vandiver
- Department of Human Physiology & Nutrition, College of Nursing and Health Sciences, University of Colorado Colorado Springs (UCCS), Colorado Springs, Colorado, United States
- William J. Hybl Sports Medicine and Performance Center, Colorado Springs, Colorado, United States
| | - Elizabeth D Albert
- Department of Human Physiology & Nutrition, College of Nursing and Health Sciences, University of Colorado Colorado Springs (UCCS), Colorado Springs, Colorado, United States
- William J. Hybl Sports Medicine and Performance Center, Colorado Springs, Colorado, United States
| | - Brett S Kirby
- Nike Sport Research Lab, Nike, Inc., Beaverton, Oregon, United States
| | - Robert A Jacobs
- Department of Human Physiology & Nutrition, College of Nursing and Health Sciences, University of Colorado Colorado Springs (UCCS), Colorado Springs, Colorado, United States
- William J. Hybl Sports Medicine and Performance Center, Colorado Springs, Colorado, United States
| |
Collapse
|
2
|
Rothschild JA, Kilding AE, Stewart T, Plews DJ. Factors Influencing Substrate Oxidation During Submaximal Cycling: A Modelling Analysis. Sports Med 2022; 52:2775-2795. [PMID: 35829994 PMCID: PMC9585001 DOI: 10.1007/s40279-022-01727-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Multiple factors influence substrate oxidation during exercise including exercise duration and intensity, sex, and dietary intake before and during exercise. However, the relative influence and interaction between these factors is unclear. OBJECTIVES Our aim was to investigate factors influencing the respiratory exchange ratio (RER) during continuous exercise and formulate multivariable regression models to determine which factors best explain RER during exercise, as well as their relative influence. METHODS Data were extracted from 434 studies reporting RER during continuous cycling exercise. General linear mixed-effect models were used to determine relationships between RER and factors purported to influence RER (e.g., exercise duration and intensity, muscle glycogen, dietary intake, age, and sex), and to examine which factors influenced RER, with standardized coefficients used to assess their relative influence. RESULTS The RER decreases with exercise duration, dietary fat intake, age, VO2max, and percentage of type I muscle fibers, and increases with dietary carbohydrate intake, exercise intensity, male sex, and carbohydrate intake before and during exercise. The modelling could explain up to 59% of the variation in RER, and a model using exclusively easily modified factors (exercise duration and intensity, and dietary intake before and during exercise) could only explain 36% of the variation in RER. Variables with the largest effect on RER were sex, dietary intake, and exercise duration. Among the diet-related factors, daily fat and carbohydrate intake have a larger influence than carbohydrate ingestion during exercise. CONCLUSION Variability in RER during exercise cannot be fully accounted for by models incorporating a range of participant, diet, exercise, and physiological characteristics. To better understand what influences substrate oxidation during exercise further research is required on older subjects and females, and on other factors that could explain additional variability in RER.
Collapse
Affiliation(s)
- Jeffrey A Rothschild
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand.
| | - Andrew E Kilding
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Tom Stewart
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Daniel J Plews
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
3
|
Bourdas DI, Souglis A, Zacharakis ED, Geladas ND, Travlos AK. Meta-Analysis of Carbohydrate Solution Intake during Prolonged Exercise in Adults: From the Last 45+ Years' Perspective. Nutrients 2021; 13:4223. [PMID: 34959776 PMCID: PMC8704222 DOI: 10.3390/nu13124223] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/02/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
Carbohydrate (CHO) supplementation during prolonged exercise postpones fatigue. However, the optimum administration timing, dosage, type of CHO intake, and possible interaction of the ergogenic effect with athletes' cardiorespiratory fitness (CRF) are not clear. Ninety-six studies (from relevant databases based on predefined eligibility criteria) were selected for meta-analysis to investigate the acute effect of ≤20% CHO solutions on prolonged exercise performance. The between-subject standardized mean difference [SMD = ([mean post-value treatment group-mean post-value control group]/pooled variance)] was assessed. Overall, SMD [95% CI] of 0.43 [0.35, 0.51] was significant (p < 0.001). Subgroup analysis showed that SMD was reduced as the subjects' CRF level increased, with a 6-8% CHO solution composed of GL:FRU improving performance (exercise: 1-4 h); administration during the event led to a superior performance compared to administration before the exercise, with a 6-8% single-source CHO solution increasing performance in intermittent and 'stop and start' sports and an ~6% CHO solution appearing beneficial for 45-60 min exercises, but there were no significant differences between subjects' gender and age groups, varied CHO concentrations, doses, or types in the effect measurement. The evidence found was sound enough to support the hypothesis that CHO solutions, when ingested during endurance exercise, have ergogenic action and a possible crossover interaction with the subject's CRF.
Collapse
Affiliation(s)
- Dimitrios I. Bourdas
- Section of Sport Medicine & Biology of Exercise, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 41 Ethnikis Antistasis, 17237 Athens, Greece;
| | - Athanasios Souglis
- Section of Didactics and Coaching in Sport Games, School of Physical Education & Sport Science, National and Kapodistrian University of Athens, 41 Ethnikis Antistasis, 17237 Athens, Greece; (A.S.); (E.D.Z.)
| | - Emmanouil D. Zacharakis
- Section of Didactics and Coaching in Sport Games, School of Physical Education & Sport Science, National and Kapodistrian University of Athens, 41 Ethnikis Antistasis, 17237 Athens, Greece; (A.S.); (E.D.Z.)
| | - Nickos D. Geladas
- Section of Sport Medicine & Biology of Exercise, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 41 Ethnikis Antistasis, 17237 Athens, Greece;
| | - Antonios K. Travlos
- Department of Sports Organization and Management, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Efstathiou and Stamatikis Valioti & Plataion Avenue, 23100 Tripoli, Greece;
| |
Collapse
|
4
|
Abstract
Taste is a homeostatic function that conveys valuable information, such as energy density, readiness to eat, or toxicity of foodstuffs. Taste is not limited to the oral cavity but affects multiple physiological systems. In this review, we outline the ergogenic potential of substances that impart bitter, sweet, hot and cold tastes administered prior to and during exercise performance and whether the ergogenic benefits of taste are attributable to the placebo effect. Carbohydrate mouth rinsing seemingly improves endurance performance, along with a potentially ergogenic effect of oral exposure to both bitter tastants and caffeine although subsequent ingestion of bitter mouth rinses is likely required to enhance performance. Hot and cold tastes may prove beneficial in circumstances where athletes' thermal state may be challenged. Efficacy is not limited to taste, but extends to the stimulation of targeted receptors in the oral cavity and throughout the digestive tract, relaying signals pertaining to energy availability and temperature to appropriate neural centres. Dose, frequency and timing of tastant application likely require personalisation to be most effective, and can be enhanced or confounded by factors that relate to the placebo effect, highlighting taste as a critical factor in designing and administering applied sports science interventions.
Collapse
|
5
|
IMPEY SAMUELG, JEVONS EMILY, MEES GEORGE, COCKS MATT, STRAUSS JULIETTE, CHESTER NEIL, LAURIE IEVA, TARGET DARREN, HODGSON ADRIAN, SHEPHERD SAMO, MORTON JAMESP. Glycogen Utilization during Running: Intensity, Sex, and Muscle-Specific Responses. Med Sci Sports Exerc 2020; 52:1966-1975. [DOI: 10.1249/mss.0000000000002332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Learsi SK, Ghiarone T, Silva-Cavalcante MD, Andrade-Souza VA, Ataide-Silva T, Bertuzzi R, de Araujo GG, McConell G, Lima-Silva AE. Cycling time trial performance is improved by carbohydrate ingestion during exercise regardless of a fed or fasted state. Scand J Med Sci Sports 2019; 29:651-662. [PMID: 30672619 DOI: 10.1111/sms.13393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 11/29/2022]
Abstract
PURPOSE We tested the hypothesis that carbohydrate ingestion during exercise improves time trial (TT) performance and that this carbohydrate-induced improvement is greater when carbohydrates are ingested during exercise in a fasted rather than a fed state. METHODS Nine males performed 105 minutes of constant-load exercise (50% of the difference between the first and second lactate thresholds), followed by a 10-km cycling TT. Exercise started at 9 am, 3 hours after either breakfast (FED, 824 kcal, 67% carbohydrate) or a 15-hour overnight fast (FAST). Before exercise, after every 15 minutes of exercise and at 5 km of the TT, participants ingested 2 mL kg-1 body mass of a non-caloric sweetened solution containing either carbohydrate (8% of maltodextrin, CHO) or placebo (0% carbohydrate, PLA). RESULTS Irrespective of the fasting state, when carbohydrate was ingested during exercise, the rating of perceived exertion (RPE) was lower throughout the constant-load exercise, while the plasma glucose concentration and carbohydrate oxidation were higher during the last stages of the constant-load exercise (P < 0.05). Consequently, TT performance was faster when carbohydrate was ingested during exercise (18.5 ± 0.3 and 18.7 ± 0.4 minutes for the FEDCHO and FASTCHO conditions, respectively) than when the placebo was ingested during exercise (20.2 ± 0.8 and 21.7 ± 1.4 minutes for the FEDPLA and FASTPLA conditions, respectively), regardless of fasting. CONCLUSION These findings indicate that even when breakfast is provided before exercise, carbohydrate ingestion during exercise is still beneficial for exercise performance. However, ingesting carbohydrate during exercise can overcome a lack of breakfast.
Collapse
Affiliation(s)
- Sara K Learsi
- Sport Science Research Group, Academic Center of Vitoria, Federal University of Pernambuco, Vitoria de Santo Antao, Brazil.,Department of Physical Education, Sciences Applied Sciences in Sports Research Group, Federal University of Alagoas, Maceio, Brazil
| | - Thaysa Ghiarone
- Sport Science Research Group, Academic Center of Vitoria, Federal University of Pernambuco, Vitoria de Santo Antao, Brazil
| | - Marcos D Silva-Cavalcante
- Sport Science Research Group, Academic Center of Vitoria, Federal University of Pernambuco, Vitoria de Santo Antao, Brazil
| | - Victor A Andrade-Souza
- Sport Science Research Group, Academic Center of Vitoria, Federal University of Pernambuco, Vitoria de Santo Antao, Brazil
| | - Thays Ataide-Silva
- Sport Science Research Group, Academic Center of Vitoria, Federal University of Pernambuco, Vitoria de Santo Antao, Brazil
| | - Romulo Bertuzzi
- Endurance Performance Research Group, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Gustavo G de Araujo
- Department of Physical Education, Sciences Applied Sciences in Sports Research Group, Federal University of Alagoas, Maceio, Brazil
| | - Glenn McConell
- Institute for Health and Sport, Victoria University, Footscray, Victoria, Australia
| | - Adriano E Lima-Silva
- Sport Science Research Group, Academic Center of Vitoria, Federal University of Pernambuco, Vitoria de Santo Antao, Brazil.,Human Performance Research Group, Academic Department of Physical Education, Technological Federal University of Parana, Curitiba, Brazil
| |
Collapse
|
7
|
Baldassarre R, Sacchetti M, Patrizio F, Nicolò A, Scotto di Palumbo A, Bonifazi M, Piacentini MF. Carbohydrate Supplementation Does Not Improve 10 km Swimming Intermittent Training. Sports (Basel) 2018; 6:sports6040147. [PMID: 30441819 PMCID: PMC6316724 DOI: 10.3390/sports6040147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 11/30/2022] Open
Abstract
The aim of the present study was to test the effectiveness of carbohydrate (CHO) feeding supplemented every 2.5-km, as in official races, on the performance, rating of perceived exertion (RPE), and glycaemia during a 10-km intermittent training workout in elite open-water swimmers. A randomized crossover design was used. Participants completed two 10-km intermittent training sessions (20 × 500-m). The relative velocity was expressed in percentage of a single 500-m. Glycaemia was monitored by continuous glucose monitoring. Participants had to ingest either 1 L of tap water (WAT; 0.50 L·h−1) or 120 g of CHO in the form of 8% solution (60 g·h−1). The 15-point RPE scale was used during the trials. A two-way ANOVA for repeated measures was performed (p < 0.05). The relative velocity of each 500-m was not significantly different between the two trials. No significant differences emerged in the relative velocity of the last 500-m between trials. Average RPE was not statistically different between the two trials (11 ± 3 in WAT and 12 ± 3 in CHO). In the last 500-m, glycaemia was significantly higher in the CHO trial (5.92 ± 0.47 mmol·L−1 in CHO; 5.61 ± 0.61 mmol·L−1 in WAT). CHO ingestion did not improve performance or affect RPE during a 10-km intermittent training in elite open-water swimmers.
Collapse
Affiliation(s)
- Roberto Baldassarre
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy.
| | - Massimo Sacchetti
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy.
| | - Federica Patrizio
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy.
| | - Andrea Nicolò
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy.
| | | | - Marco Bonifazi
- Department of Medical, Surgical and Neuro Sciences, University of Siena, 53100 Siena, Italy.
| | | |
Collapse
|
8
|
Park HY, Kim J, Park M, Chung N, Lim K. The effect of additional carbohydrate supplements for 7 days after prolonged interval exercise on exercise performance and energy metabolism during submaximal exercise in team-sports athletes. J Exerc Nutrition Biochem 2018; 22:29-34. [PMID: 29673243 PMCID: PMC5909074 DOI: 10.20463/jenb.2018.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/12/2018] [Indexed: 11/22/2022] Open
Abstract
[Purpose] The purpose of our study was to determine the effectiveness of carbohydrate loading by additional carbohydrate supplements for 7 days after prolonged interval exercise on exercise performance and energy metabolism during submaximal exercise in team-sports athletes. [Methods] Twenty male team-sports athletes (14 soccer and 6 rugby players) volunteered to participate in the study and were equally divided into the experimental group (EXP, n=10) performing additional carbohydrate supplementation for 7 days after prolonged interval exercise until blood glucose level reaches 50 mg/dL or less and the control group (CON, n=10). Then, maximal oxygen consumption (VO2max) and minute ventilation (VE), oxygen consumption (VO2), carbon dioxide excretion (VCO2), respiratory exchange ratio (RER), blood glucose level, and blood lactate level were measured in all team-sports players during submaximal exercise corresponding to 70% VO2max before and after intervention. [Results] There was no significant interaction in all parameters, but team-sports players in the EXP presented more improved VO2max (CON vs EXP = vs 5.3% vs 6.3%), VE (CON vs EXP = vs 3.8% vs 6.6%), VO2 (CON vs EXP = vs 8.5% vs 9.9%), VCO2 (CON vs EXP = vs 2.8% vs 4.0%), blood glucose level (CON vs EXP = vs -12.9% vs -7.6%), and blood lactate level (CON vs EXP = -18.2% vs -25%) compared to those in the CON. [Conclusion] These findings showed that additional carbohydrate supplementation conducted in our study is not effective in exercise performance and energy metabolism during submaximal exercise.
Collapse
|
9
|
Davidson CM, De Vito G, Lowery MM. Effect of oral glucose supplementation on surface EMG during fatiguing dynamic exercise. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:3498-3502. [PMID: 28269052 DOI: 10.1109/embc.2016.7591482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The aim of this study was to examine the effect of oral glucose supplementation on the surface electromyographic (sEMG) signal recorded during a dynamic, fatiguing exercise protocol. Five healthy subjects participated in the study. Blood glucose concentration and sEMG signals from five upper leg muscles were recorded during a cycling exercise performed at 70% VO2peak until task failure, on two separate occasions. Glucose was consumed at 15 minute intervals throughout one trial. The median frequency of the sEMG was observed to increase progressively throughout the exercise, with a greater increase in the with glucose condition. This is in direct contrast to the typical decrease in median frequency known to occur during a fatiguing isometric contraction. The result may indicate an increase in Na+ - K+ - AT Pase activity during fatiguing dynamic exercise resulting in an increase in muscle fiber membrane excitability due to membrane hyperpolarization.
Collapse
|
10
|
Cramer MN, Thompson MW, Périard JD. Thermal and Cardiovascular Strain Mitigate the Potential Benefit of Carbohydrate Mouth Rinse During Self-Paced Exercise in the Heat. Front Physiol 2015; 6:354. [PMID: 26635634 PMCID: PMC4658580 DOI: 10.3389/fphys.2015.00354] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/10/2015] [Indexed: 11/23/2022] Open
Abstract
Purpose: To determine whether a carbohydrate mouth rinse can alter self-paced exercise performance independently of a high degree of thermal and cardiovascular strain. Methods: Eight endurance-trained males performed two 40-km cycling time trials in 35°C, 60% RH while swilling a 20-ml bolus of 6.5% maltodextrin (CHO) or a color- and taste-matched placebo (PLA) every 5 km. Heart rate, power output, rectal temperature (Tre), and mean skin temperature (Tsk) were recorded continuously; cardiac output, oxygen uptake (VO2), mean arterial pressure (MAP), and perceived exertion (RPE) were measured every 10 min. Results: Performance time and mean power output were similar between treatments, averaging 63.9 ± 3.2 and 64.3 ± 2.8 min, and 251 ± 23 and 242 ± 18 W in CHO and PLA, respectively. Power output, stroke volume, cardiac output, MAP, and VO2 decreased during both trials, increasing slightly or remaining stable during a final 2-km end-spurt. Tre, Tsk, heart rate, and RPE increased throughout exercise similarly with both treatments. Changes in RPE correlated with those in Tre (P < 0.005) and heart rate (P < 0.001). Conclusions: These findings suggest that carbohydrate mouth rinsing does not improve ~1-h time trial performance in hot-humid conditions, possibly due to a failure in down-regulating RPE, which may be influenced more by severe thermal and cardiovascular strain.
Collapse
Affiliation(s)
- Matthew N Cramer
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa Ottawa, ON, Canada ; Discipline of Exercise and Sport Science, Faculty of Health Sciences, University of Sydney Lidcombe, NSW, Australia
| | - Martin W Thompson
- Discipline of Exercise and Sport Science, Faculty of Health Sciences, University of Sydney Lidcombe, NSW, Australia
| | - Julien D Périard
- Discipline of Exercise and Sport Science, Faculty of Health Sciences, University of Sydney Lidcombe, NSW, Australia ; Athlete Health and Performance Research Centre, Aspetar Orthopaedic and Sports Medicine Hospital Doha, Qatar
| |
Collapse
|
11
|
Fraga C, Velasques B, Koch AJ, Machado M, Paulucio D, Ribeiro P, Pompeu FAMS. Carbohydrate mouth rinse enhances time to exhaustion during treadmill exercise. Clin Physiol Funct Imaging 2015; 37:17-22. [PMID: 26302885 DOI: 10.1111/cpf.12261] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 04/17/2015] [Indexed: 11/28/2022]
Abstract
Mouth rinsing with a CHO solution has been suggested to improve short (<1 h) endurance performance through central effect. We examined the effects of mouth rinsing with a CHO solution on running time to exhaustion on a treadmill. Six well-trained subjects ran to exhaustion at 85% VO2max , on three separate occasions. Subjects received either an 8% CHO solution or a placebo (PLA) every 15 min to mouth rinse (MR) or a 6% CHO solution to ingest (ING). Treatments were assigned in a randomized, counterbalanced fashion, with the mouth-rinsing treatments double-blinded. Blood samples were taken to assess glucose (Glu) and lactate (Lac), as well as the perceived exertion (RPE). Gas exchange and heart rate (HR) were collected during all trials. Subjects ran longer (P = 0·038) in both the MR (2583 ± 686 s) and ING (2625 ± 804 s) trials, compared to PLA (1935 ± 809 s), covering a greater distance (MR 9685 ± 3511·62 m; ING 9855 ± 4118·62; PLA 7295 ± 3727 m). RER was significantly higher in both ING and MR versus PLA. No difference among trials was observed for other metabolic or cardiovascular variables (VO2 , Lac, Glu, HR), nor for RPE. Endurance capacity, based on time to exhaustion on a treadmill, was improved when either mouth rinsing or ingesting a CHO solution, compared to PLA.
Collapse
Affiliation(s)
- Cindy Fraga
- Biometrics Laboratory (LADEBIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna Velasques
- Physical Education Graduate Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexander J Koch
- Exercise Physiology Laboratory, Lenoir-Rhyne University, Hickory, NC, USA
| | - Marco Machado
- Laboratory of Human Movement Studies, Universitary Foundation of Itaperuna, Itaperuna, Brazil
| | - Dailson Paulucio
- Biometrics Laboratory (LADEBIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Ribeiro
- Physical Education Graduate Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando Augusto Monteiro Saboia Pompeu
- Biometrics Laboratory (LADEBIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Physical Education Graduate Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Stellingwerff T, Cox GR. Systematic review: Carbohydrate supplementation on exercise performance or capacity of varying durations. Appl Physiol Nutr Metab 2014; 39:998-1011. [PMID: 24951297 DOI: 10.1139/apnm-2014-0027] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This systematic review examines the efficacy of carbohydrate (CHO) supplementation on exercise performance of varying durations. Included studies utilized an all-out or endurance-based exercise protocol (no team-based performance studies) and featured randomized interventions and placebo (water-only) trial for comparison against exclusively CHO trials (no other ingredients). Of the 61 included published performance studies (n = 679 subjects), 82% showed statistically significant performance benefits (n = 50 studies), with 18% showing no change compared with placebo. There was a significant (p = 0.0036) correlative relationship between increasing total exercise time and the subsequent percent increase in performance with CHO intake versus placebo. While not mutually exclusive, the primary mechanism(s) for performance enhancement likely differs depending on the duration of the exercise. In short duration exercise situations (∼1 h), oral receptor exposure to CHO, via either mouthwash or oral consumption (with enough oral contact time), which then stimulates the pleasure and reward centers of the brain, provide a central nervous system-based mechanism for enhanced performance. Thus, the type and (or) amount of CHO and its ability to be absorbed and oxidized appear completely irrelevant to enhancing performance in short duration exercise situations. For longer duration exercise (>2 h), where muscle glycogen stores are stressed, the primary mechanism by which carbohydrate supplementation enhances performance is via high rates of CHO delivery (>90 g/h), resulting in high rates of CHO oxidation. Use of multiple transportable carbohydrates (glucose:fructose) are beneficial in prolonged exercise, although individual recommendations for athletes should be tailored according to each athlete's individual tolerance.
Collapse
Affiliation(s)
- Trent Stellingwerff
- a Canadian Sport Institute - Pacific, 4371 Interurban Road, Victoria, BC V9E 2C5, Canada
| | | |
Collapse
|
13
|
Gonçalves LC, Bessa A, Freitas-Dias R, Luzes R, Werneck-de-Castro JPS, Bassini A, Cameron LC. A sportomics strategy to analyze the ability of arginine to modulate both ammonia and lymphocyte levels in blood after high-intensity exercise. J Int Soc Sports Nutr 2012; 9:30. [PMID: 22734448 PMCID: PMC3502551 DOI: 10.1186/1550-2783-9-30] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 06/13/2012] [Indexed: 12/21/2022] Open
Abstract
Background Exercise is an excellent tool to study the interactions between metabolic stress and the immune system. Specifically, high-intensity exercises both produce transient hyperammonemia and influence the distribution of white blood cells. Carbohydrates and glutamine and arginine supplementation were previously shown to effectively modulate ammonia levels during exercise. In this study, we used a short-duration, high-intensity exercise together with a low carbohydrate diet to induce a hyperammonemia state and better understand how arginine influences both ammonemia and the distribution of leukocytes in the blood. Methods Brazilian Jiu-Jitsu practitioners (men, n = 39) volunteered for this study. The subjects followed a low-carbohydrate diet for four days before the trials and received either arginine supplementation (100 mg·kg-1 of body mass·day-1) or a placebo. The intergroup statistical significance was calculated by a one-way analysis of variance, followed by Student’s t-test. The data correlations were calculated using Pearson’s test. Results In the control group, ammonemia increased during matches at almost twice the rate of the arginine group (25 mmol·L-1·min-1 and 13 μmol·L-1·min-1, respectively). Exercise induced an increase in leukocytes of approximately 75%. An even greater difference was observed in the lymphocyte count, which increased 2.2-fold in the control group; this increase was partially prevented by arginine supplementation. The shape of the ammonemia curve suggests that arginine helps prevent increases in ammonia levels. Conclusions These data indicate that increases in lymphocytes and ammonia are simultaneously reduced by arginine supplementation. We propose that increased serum lymphocytes could be related to changes in ammonemia and ammonia metabolism.
Collapse
Affiliation(s)
- Luis Carlos Gonçalves
- Laboratory of Biochemistry of Proteins, Federal University of State of Rio de Janeiro, Av. Pasteur 296, CEP: 22290-240, Rio de Janeiro, Brazil
| | - Artur Bessa
- Laboratory of Biochemistry of Proteins, Federal University of State of Rio de Janeiro, Av. Pasteur 296, CEP: 22290-240, Rio de Janeiro, Brazil
| | - Ricardo Freitas-Dias
- Laboratory of Biochemistry of Proteins, Federal University of State of Rio de Janeiro, Av. Pasteur 296, CEP: 22290-240, Rio de Janeiro, Brazil
| | - Rafael Luzes
- Laboratory of Biochemistry of Proteins, Federal University of State of Rio de Janeiro, Av. Pasteur 296, CEP: 22290-240, Rio de Janeiro, Brazil.,Institute of Genetics and Biology, Federal University of Uberlândia, Av. João Naves de Ávila 2121, CEP: 38408-100, Uberlândia, Brazil
| | - João Pedro Saar Werneck-de-Castro
- Laboratory of Biochemistry of Proteins, Federal University of State of Rio de Janeiro, Av. Pasteur 296, CEP: 22290-240, Rio de Janeiro, Brazil.,Laboratory of Biology of Exercise, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 540, CEP: 21941-599, Rio de Janeiro, Brazil
| | - Adriana Bassini
- Laboratory of Biochemistry of Proteins, Federal University of State of Rio de Janeiro, Av. Pasteur 296, CEP: 22290-240, Rio de Janeiro, Brazil.,Institute of Genetics and Biology, Federal University of Uberlândia, Av. João Naves de Ávila 2121, CEP: 38408-100, Uberlândia, Brazil
| | - Luiz-Claudio Cameron
- Laboratory of Biochemistry of Proteins, Federal University of State of Rio de Janeiro, Av. Pasteur 296, CEP: 22290-240, Rio de Janeiro, Brazil.,Institute of Genetics and Biology, Federal University of Uberlândia, Av. João Naves de Ávila 2121, CEP: 38408-100, Uberlândia, Brazil.,University Castelo Branco, Av. Salvador Allende 6.700, CEP: 22780-160, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
ARNAOUTIS GIANNIS, KAVOURAS STAVROSA, CHRISTAKI IRINI, SIDOSSIS LABROSS. Water Ingestion Improves Performance Compared with Mouth Rinse in Dehydrated Subjects. Med Sci Sports Exerc 2012; 44:175-9. [DOI: 10.1249/mss.0b013e3182285776] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Phillips SM, Sproule J, Turner AP. Carbohydrate ingestion during team games exercise: current knowledge and areas for future investigation. Sports Med 2011; 41:559-85. [PMID: 21688869 DOI: 10.2165/11589150-000000000-00000] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
There is a growing body of research on the influence of ingesting carbohydrate-electrolyte solutions immediately prior to and during prolonged intermittent, high-intensity exercise (team games exercise) designed to replicate field-based team games. This review presents the current body of knowledge in this area, and identifies avenues of further research. Almost all early work supported the ingestion of carbohydrate-electrolyte solutions during prolonged intermittent exercise, but was subject to methodological limitations. A key concern was the use of exercise protocols characterized by prolonged periods at the same exercise intensity, the lack of maximal- or high-intensity work components and long periods of seated recovery, which failed to replicate the activity pattern or physiological demand of team games exercise. The advent of protocols specifically designed to replicate the demands of field-based team games enabled a more externally valid assessment of the influence of carbohydrate ingestion during this form of exercise. Once again, the research overwhelmingly supports carbohydrate ingestion immediately prior to and during team games exercise for improving time to exhaustion during intermittent running. While the external validity of exhaustive exercise at fixed prescribed intensities as an assessment of exercise capacity during team games may appear questionable, these assessments should perhaps not be viewed as exhaustive exercise tests per se, but as indicators of the ability to maintain high-intensity exercise, which is a recognized marker of performance and fatigue during field-based team games. Possible mechanisms of exercise capacity enhancement include sparing of muscle glycogen, glycogen resynthesis during low-intensity exercise periods and attenuated effort perception during exercise. Most research fails to show improvements in sprint performance during team games exercise with carbohydrate ingestion, perhaps due to the lack of influence of carbohydrate on sprint performance when endogenous muscle glycogen concentration remains above a critical threshold of ∼200 mmol/kg dry weight. Despite the increasing number of publications in this area, few studies have attempted to drive the research base forward by investigating potential modulators of carbohydrate efficacy during team games exercise, preventing the formulation of optimal carbohydrate intake guidelines. Potential modulators may be different from those during prolonged steady-state exercise due to the constantly changing exercise intensity and frequency, duration and intensity of rest intervals, potential for team games exercise to slow the rate of gastric emptying and the restricted access to carbohydrate-electrolyte solutions during many team games. This review highlights fluid volume, carbohydrate concentration, carbohydrate composition and solution osmolality; the glycaemic index of pre-exercise meals; fluid and carbohydrate ingestion patterns; fluid temperature; carbohydrate mouthwashes; carbohydrate supplementation in different ambient temperatures; and investigation of all of these areas in different subject populations as important avenues for future research to enable a more comprehensive understanding of carbohydrate ingestion during team games exercise.
Collapse
Affiliation(s)
- Shaun M Phillips
- Institute of Sport, Physical Education and Health Studies, University of Edinburgh, Edinburgh, UK.
| | | | | |
Collapse
|
16
|
Abstract
Ingesting carbohydrate-electrolyte solutions during exercise has been reported to benefit self-paced time-trial performance. The mechanism responsible for this ergogenic effect is unclear. For example, during short duration (≤1 hour), intense (>70% maximal oxygen consumption) exercise, euglycaemia is rarely challenged and adequate muscle glycogen remains at the cessation of exercise. The absence of a clear metabolic explanation has led authors to speculate that ingesting carbohydrate solutions during exercise may have a 'non-metabolic' or 'central effect' on endurance performance. This hypothesis has been explored by studies investigating the performance responses of subjects when carbohydrate solutions are mouth rinsed during exercise. The solution is expectorated before ingestion, thus removing the provision of carbohydrate to the peripheral circulation. Studies using this method have reported that simply having carbohydrate in the mouth is associated with improvements in endurance performance. However, the performance response appears to be dependent upon the pre-exercise nutritional status of the subject. Furthermore, the ability to identify a central effect of a carbohydrate mouth rinse maybe affected by the protocol used to assess its impact on performance. Studies using functional MRI and transcranial stimulation have provided evidence that carbohydrate in the mouth stimulates reward centres in the brain and increases corticomotor excitability, respectively. However, further research is needed to determine whether the central effects of mouth-rinsing carbohydrates, which have been seen at rest and during fatiguing exercise, are responsible for improved endurance performance.
Collapse
Affiliation(s)
- Ian Rollo
- School of Sport and Exercise and Health Sciences, Loughborough University, Loughborough, UK.
| | | |
Collapse
|
17
|
Vandenbogaerde TJ, Hopkins WG. Effects of Acute Carbohydrate Supplementation on Endurance Performance. Sports Med 2011; 41:773-92. [DOI: 10.2165/11590520-000000000-00000] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
18
|
Temesi J, Johnson NA, Raymond J, Burdon CA, O'Connor HT. Carbohydrate ingestion during endurance exercise improves performance in adults. J Nutr 2011; 141:890-7. [PMID: 21411610 DOI: 10.3945/jn.110.137075] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This study was a systematic review with meta-analysis examining the efficacy of carbohydrate (CHO) ingestion compared with placebo (PLA) on endurance exercise performance in adults. Relevant databases were searched to January 2011. Included studies were PLA-controlled, randomized, crossover designs in which CHO ingestion not exceeding 8% and between 30 and 80 g/h during exercise of ≥1 h was evaluated via time trial (TT) or exercise time to exhaustion (TTE). The between-trial standardized mean differences [effect size (ES)] and pooled estimates of the effect of CHO ingestion were calculated. Of the 41,175 studies from the initial search, 50 were included. The ES for submaximal exercise followed by TT was significant (ES = 0.53; 95% CI = 0.37-0.69; P < 0.001) as was the ES for TT (ES = 0.30; 95% CI = 0.07-0.53; P = 0.011). The weighted mean improvement in exercise performance favored CHO ingestion (7.5 and 2.0%, respectively). TTE (ES = 0.47; 95% CI = 0.32-0.62; P < 0.001) and submaximal exercise followed by TTE (ES = 0.44; 95% CI = 0.08-0.80; P = 0.017) also showed significant effects, with weighted mean improvements of 15.1 and 54.2%, respectively, with CHO ingestion. Similar trends were evident for subanalyses of studies using only male or trained participants, for exercise of 1-3 h duration, and where CHO and PLA beverages were matched for electrolyte content. The data support that ingestion of CHO between 30 and 80 g/h enhances endurance exercise performance in adults.
Collapse
Affiliation(s)
- John Temesi
- Discipline of Exercise and Sport Science, Faculty of Health Sciences, University of Sydney, Sydney 1825, Australia
| | | | | | | | | |
Collapse
|
19
|
ROLLO IAN, WILLIAMS CLYDE, NEVILL MARY. Influence of Ingesting versus Mouth Rinsing a Carbohydrate Solution during a 1-h Run. Med Sci Sports Exerc 2011; 43:468-75. [DOI: 10.1249/mss.0b013e3181f1cda3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
The effect of carbohydrate mouth rinse on maximal strength and strength endurance. Eur J Appl Physiol 2011; 111:2381-6. [DOI: 10.1007/s00421-011-1865-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 02/03/2011] [Indexed: 11/29/2022]
|
21
|
Rollo I, Williams C. Influence of ingesting a carbohydrate-electrolyte solution before and during a 1-hour run in fed endurance-trained runners. J Sports Sci 2010; 28:593-601. [PMID: 20391081 DOI: 10.1080/02640410903582784] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The aim of this study was to determine whether the ingestion of a carbohydrate-electrolyte solution would improve 1-h running performance in runners who had consumed a meal 3 h before exercise. Ten endurance-trained male runners completed two trials that required them to run as far as possible in 1 h on an automated treadmill that allowed changes in running speed without manual input. Following the consumption of the pre-exercise meal, which provided 2.5 g carbohydrate per kilogram body mass (BM), runners ingested either a 6.4% carbohydrate-electrolyte solution or placebo solution (i.e. 8 ml x kg BM(-1)) 30 min before and 2 ml x kg BM(-1) at 15-min intervals throughout the 1-h run. There were no differences in total distance covered (placebo: 13,680 m, s = 1525; carbohydrate: 13,589 m, s = 1635) (P > 0.05). Blood glucose and lactate concentration, respiratory exchange ratio, and carbohydrate oxidation during exercise were not different between trials (P > 0.05). There were also no differences in ratings of perceived exertion, felt arousal or pleasure-displeasure between trials (P > 0.05). In conclusion, the ingestion of a 6.4% carbohydrate-electrolyte solution did not improve 1-h running performance when a high carbohydrate meal was consumed 3 h before exercise.
Collapse
Affiliation(s)
- Ian Rollo
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.
| | | |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Carbohydrate during exercise has been demonstrated to improve exercise performance even when the exercise is of high intensity (>75% VO2max) and relatively short duration (approximately 1 h). It has become clear that the underlying mechanisms for the ergogenic effect during this type of activity are not metabolic but may reside in the central nervous system. RECENT FINDINGS Carbohydrate mouth rinses have been shown to result in similar performance improvements. This would suggest that the beneficial effects of carbohydrate feeding during exercise are not confined to its conventional metabolic advantage but may also serve as a positive afferent signal capable of modifying motor output. These effects are specific to carbohydrate and are independent of taste. The receptors in the oral cavity have not (yet) been identified and the exact role of various brain areas is not clearly understood. Further research is warranted to fully understand the separate taste transduction pathways for simple and complex carbohydrates and how these differ between mammalian species, particularly in humans. SUMMARY Carbohydrate is detected in oral cavity by unidentified receptors and this can be linked to improvements in exercise performance.
Collapse
Affiliation(s)
- Asker E Jeukendrup
- School of Sport and Exercise Sciences, University of Birmingham, Edgbaston, Birmingham, UK.
| | | |
Collapse
|
23
|
Pottier A, Bouckaert J, Gilis W, Roels T, Derave W. Mouth rinse but not ingestion of a carbohydrate solution improves 1-h cycle time trial performance. Scand J Med Sci Sports 2010; 20:105-11. [DOI: 10.1111/j.1600-0838.2008.00868.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Chambers ES, Bridge MW, Jones DA. Carbohydrate sensing in the human mouth: effects on exercise performance and brain activity. J Physiol 2009; 587:1779-94. [PMID: 19237430 DOI: 10.1113/jphysiol.2008.164285] [Citation(s) in RCA: 340] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Exercise studies have suggested that the presence of carbohydrate in the human mouth activates regions of the brain that can enhance exercise performance but direct evidence of such a mechanism is limited. The first aim of the present study was to observe how rinsing the mouth with solutions containing glucose and maltodextrin, disguised with artificial sweetener, would affect exercise performance. The second aim was to use functional magnetic resonance imaging (fMRI) to identify the brain regions activated by these substances. In Study 1A, eight endurance-trained cyclists (VO2max 60.8 +/- 4.1 ml kg(-1) min(-1)) completed a cycle time trial (total work = 914 +/- 29 kJ) significantly faster when rinsing their mouths with a 6.4% glucose solution compared with a placebo containing saccharin (60.4 +/- 3.7 and 61.6 +/- 3.8 min, respectively, P = 0.007). The corresponding fMRI study (Study 1B) revealed that oral exposure to glucose activated reward-related brain regions, including the anterior cingulate cortex and striatum, which were unresponsive to saccharin. In Study 2A, eight endurance-trained cyclists (VO2max 57.8 +/- 3.2 ml kg(-1) min(-1)) tested the effect of rinsing with a 6.4% maltodextrin solution on exercise performance, showing it to significantly reduce the time to complete the cycle time trial (total work = 837 +/- 68 kJ) compared to an artificially sweetened placebo (62.6 +/- 4.7 and 64.6 +/- 4.9 min, respectively, P = 0.012). The second neuroimaging study (Study 2B) compared the cortical response to oral maltodextrin and glucose, revealing a similar pattern of brain activation in response to the two carbohydrate solutions, including areas of the insula/frontal operculum, orbitofrontal cortex and striatum. The results suggest that the improvement in exercise performance that is observed when carbohydrate is present in the mouth may be due to the activation of brain regions believed to be involved in reward and motor control. The findings also suggest that there may be a class of so far unidentified oral receptors that respond to carbohydrate independently of those for sweetness.
Collapse
Affiliation(s)
- E S Chambers
- School of Sport and Exercise Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | | | |
Collapse
|
25
|
Effect of pre-exercise carbohydrate ingestion on substrate consumption in persons with spinal cord injury. Spinal Cord 2008; 47:464-9. [PMID: 19015664 DOI: 10.1038/sc.2008.140] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To investigate the influence of pre-exercise carbohydrate ingestion on fat and carbohydrate oxidation during prolonged arm cranking exercise in persons with spinal cord injury. SUBJECTS Six male paraplegic subjects (PS, Ll-Th3, 46.3+/-6.6 years) and seven able-bodied subjects (AB, 43.1+/-4.6 years) were volunteered to participate in the present study. METHODS The subjects were required to consume a glucose solution (1 g kg(-1) body mass and 500 ml plain water; glucose experiment) or only plain water (water experiment) before the prolonged exercise. Then the subjects performed for 1-h arm cranking exercise at a moderate workload. RESULTS In the water experiment, the carbohydrate oxidation slightly decreased and the fat oxidation increased continuously in AB. In contrast, the carbohydrate and fat oxidation of PS was constant during the exercise in the water experiment. In the glucose experiment, the fat oxidation did not rise and the carbohydrate oxidation was constant until the end of the exercise in PS and AB. PS oxidized more fat than AB in the glucose experiment (P<0.05), but no significant difference was found between PS and AB in the water experiment. CONCLUSION Using a wheelchair in daily life regularly was regarded as an exercise training that disciplined PS indirectly and is considered to cause PS to have more percentage of type I fiber than AB in the anterior deltoid muscle. Thus, the distribution of muscle fiber type in anterior deltoid muscle might be one of the factors that impacted the fat oxidation of PS in glucose experiment.
Collapse
|
26
|
Klein J, Nyhan WL, Kern M. The effects of alanine ingestion on metabolic responses to exercise in cyclists. Amino Acids 2008; 37:673-80. [PMID: 18850309 DOI: 10.1007/s00726-008-0187-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 09/24/2008] [Indexed: 11/26/2022]
Abstract
The influence of alanine on plasma amino acid concentrations and fuel substrates as well as cycling performance was examined. Four solutions [6% alanine (ALA); 6% sucrose (CHO); 6% alanine and 6% sucrose (ALA-CHO); an artificially sweetened placebo (PLC)] were tested using a double-blind, randomised, cross-over design. During each trial, ten cyclists ingested 500 mL of test solution 30 min before exercise and 250 mL after 15, 30, and 45 min of exercise. Participants cycled for 45 min at 75% VO(2)max followed by a 15-min performance trial. Blood was collected before beverage consumption and prior to the performance trial. Alanine concentration was increased (p < 0.05) by approximately tenfold for ALA and ALA-CHO and less than twofold for CHO and PLC. Alanine ingestion increased concentrations of most gluconeogenic amino acids. Overall, alanine supplementation tended to produce favourable metabolic effects, but did not influence performance.
Collapse
Affiliation(s)
- Janet Klein
- Department of Exercise and Nutritional Sciences, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182-7251, USA
| | | | | |
Collapse
|
27
|
Jeukendrup AE, Hopkins S, Aragón-Vargas LF, Hulston C. No effect of carbohydrate feeding on 16 km cycling time trial performance. Eur J Appl Physiol 2008; 104:831-7. [DOI: 10.1007/s00421-008-0838-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2008] [Indexed: 11/29/2022]
|
28
|
|
29
|
Bray SR, Martin Ginis KA, Hicks AL, Woodgate J. Effects of self-regulatory strength depletion on muscular performance and EMG activation. Psychophysiology 2008; 45:337-43. [PMID: 17995906 DOI: 10.1111/j.1469-8986.2007.00625.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Steven R Bray
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
30
|
Double blind carbohydrate ingestion does not improve exercise duration in warm humid conditions. J Sci Med Sport 2008; 11:72-9. [DOI: 10.1016/j.jsams.2007.08.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 08/16/2007] [Accepted: 08/24/2007] [Indexed: 11/21/2022]
|
31
|
Mamus RT, Dos Santos MG, Campbell B, Kreider R. Biochemical effects of carbohydrate supplementation in a simulated competition of short terrestrial duathlon. J Int Soc Sports Nutr 2006; 3:6-11. [PMID: 18500973 PMCID: PMC2129169 DOI: 10.1186/1550-2783-3-2-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2006] [Accepted: 11/08/2006] [Indexed: 11/15/2022] Open
Abstract
The purpose of the present study was to investigate the biochemical effects of carbohydrate supplementation in a simulated competition of short terrestrial duathlon. Ten duathletes participated in a simulated competition of short terrestrial duathlon 30 minutes after the ingestion of a 6% (30 g/500 ml) maltodextrin solution (MALT) or a placebo (PLA). This solution was also ingested every 15 minutes during the competition (12 g/200 ml); and immediately after the competition (18 g/300 ml). Samples of blood were collected at 3 time points: 1) at rest 1 hour before the beginning of the competition; 2) during the competition (approximately 1 hour and 45 minutes after the 1st collection); 3) immediately after the competition. Blood was analyzed for blood glucose, lactate, insulin and cortisol. Significant differences were observed in relation to blood glucose levels between MALT and PLA in the post-competition phase. There was also a significant difference in the lactate levels observed between MALT and PLA during the competition phase. Similarly, a significant difference in the cortisol concentrations during and after the competition phases (MALT and PLA) were observed. We conclude that maltodextrin supplementation appears to be beneficial during short terrestrial duathlon competition as evidenced by biochemical markers.
Collapse
|
32
|
De Bock K, Derave W, Ramaekers M, Richter EA, Hespel P. Fiber type-specific muscle glycogen sparing due to carbohydrate intake before and during exercise. J Appl Physiol (1985) 2006; 102:183-8. [PMID: 17008436 DOI: 10.1152/japplphysiol.00799.2006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effect of carbohydrate intake before and during exercise on muscle glycogen content was investigated. According to a randomized crossover study design, eight young healthy volunteers (n = 8) participated in two experimental sessions with an interval of 3 wk. In each session subjects performed 2 h of constant-load bicycle exercise ( approximately 75% maximal oxygen uptake). On one occasion (CHO), they received carbohydrates before ( approximately 150 g) and during (1 g.kg body weight(-1).h(-1)) exercise. On the other occasion they exercised after an overnight fast (F). Fiber type-specific relative glycogen content was determined by periodic acid Schiff staining combined with immunofluorescence in needle biopsies from the vastus lateralis muscle before and immediately after exercise. Preexercise glycogen content was higher in type IIa fibers [9.1 +/- 1 x 10(-2) optical density (OD)/microm(2)] than in type I fibers (8.0 +/- 1 x 10(-2) OD/microm(2); P < 0.0001). Type IIa fiber glycogen content decreased during F from 9.6 +/- 1 x 10(-2) OD/microm(2) to 4.5 +/- 1 x 10(-2) OD/microm(2) (P = 0.001), but it did not significantly change during CHO (P = 0.29). Conversely, in type I fibers during CHO and F the exercise bout decreased glycogen content to the same degree. We conclude that the combination of carbohydrate intake both before and during moderate- to high-intensity endurance exercise results in glycogen sparing in type IIa muscle fibers.
Collapse
Affiliation(s)
- K De Bock
- Research Center for Exercise and Health, Faculty of Kinesiology and Rehabilitation Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
33
|
McConell GK, Shinewell J, Stephens TJ, Stathis CG, Canny BJ, Snow RJ. Creatine supplementation reduces muscle inosine monophosphate during endurance exercise in humans. Med Sci Sports Exerc 2006; 37:2054-61. [PMID: 16331129 DOI: 10.1249/01.mss.0000179096.03129.a4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Creatine (Cr) supplementation has been shown to attenuate increases in plasma ammonia and hypoxanthine during intense endurance exercise lasting 1 h, suggesting that Cr supplementation may improve muscle energy balance (matching of ATP resynthesis to ATP demand) during such exercise. We hypothesized that Cr supplementation would improve muscle energy balance (as assessed by muscle inosine monophosphate (IMP) accumulation) during intense endurance exercise. METHODS Seven well-trained men completed two experimental trials involving approximately 1 h of intense endurance exercise (cycling 45 min at 78+/-1% & OV0312;O2 peak followed by completion of 251+/-6 kJ as quickly as possible (performance ride)). Subjects ingested approximately 42 g.d dextrose for 5 d before the first experimental trial (CON), then approximately 21 g Cr monohydrate plus approximately 21 g.d dextrose for 5 d before the second experimental trial (CREAT). Trials were ordered because of the long washout time for Cr. Subjects were blinded to the order of the trials. RESULTS Creatine supplementation significantly (P< 0.05) increased muscle total Cr (resting values: CREAT: 138.1+/-7.9; CON: 117.7+/- 6.5 mmol.kg dm). No difference was seen between treatments in any measured muscle or blood metabolite after the first 45 min of exercise. Despite the performance ride completion time being similar in the two treatments ( approximately 13.5 min, approximately 86% & OV0312;O2 peak), IMP at the end of the performance ride was significantly (P<0.05) lower in CREAT than in CON (CREAT: 1.2+/- 0.6; CON: 2.0+/- 0.7 mmol.kg dm). CONCLUSION Raising muscle total Cr content before exercise appears to improve the ability of the muscle to maintain energy balance during intense aerobic exercise, but not during more moderate exercise intensities.
Collapse
Affiliation(s)
- Glenn K McConell
- Department of Physiology, Monash University, Clayton, Victoria, AUSTRALIA
| | | | | | | | | | | |
Collapse
|
34
|
Massicotte D, Scotto A, Péronnet F, M'Kaouar H, Milot M, Lavoie C. Metabolic fate of a large amount of 13C-glycerol ingested during prolonged exercise. Eur J Appl Physiol 2005; 96:322-9. [PMID: 16369815 DOI: 10.1007/s00421-005-0058-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2005] [Indexed: 10/25/2022]
Abstract
We have shown that the oxidation rate of exogenous glycerol and glucose during prolonged exercise were similar when ingested in small amounts (0.36 g/kg) (J Appl Physiol 90:1685,2001). The oxidation rate of exogenous carbohydrate increases with the amount ingested. We, thus, hypothesized that the oxidation rate of exogenous glycerol would also be larger when ingested in large amount. The study was conducted on six male subjects exercising for 120 min at 64 (2)% VO(2)max while ingesting 1 g/kg of (13)C-glycerol. Substrate oxidation was measured using indirect respiratory calorimetry corrected for protein oxidation, and from V(13)CO(2) at the mouth. The (13)C enrichment of plasma glucose was also measured in order to follow the possible conversion of (13)C-glycerol into glucose. In spite of the large amount of glycerol ingested and absorbed (plasma glycerol concentration = 8.0 (0.3) mmol/l at min 100), exogenous glycerol oxidation over the last 80 min of exercise [8.8 (1.6) g providing 4.1 (0.7)% of the energy yield] was similar to that observed when 0.36 g/kg was ingested. The comparison between the (13)C enrichment of plasma glucose and the oxidation rate of (13)C-glycerol showed that a portion of exogenous glycerol was converted into glucose before being oxidized, but also suggested that another portion could have been directly oxidized in peripheral tissues.
Collapse
Affiliation(s)
- D Massicotte
- Département de kinanthropologie, Université du Québec à Montréal, Centre Ville, Canada.
| | | | | | | | | | | |
Collapse
|
35
|
Montfort-Steiger V, Williams CA, Armstrong N. The reproducibility of an endurance performance test in adolescent cyclists. Eur J Appl Physiol 2005; 94:618-25. [PMID: 15887022 DOI: 10.1007/s00421-005-1352-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Accepted: 03/10/2005] [Indexed: 10/25/2022]
Abstract
The purpose of the study was to measure the reproducibility of a performance test in well-trained adolescent cyclists. Eight male and one female cyclist [mean age 15.7 (0.7) y] participated in the study. Lactate threshold (LT) and peak VO2 were assessed. The performance test was repeated on three separate days and consisted of 30 min of steady state (SS) cycling at 80% of individual LT. Immediately after the SS cycling a time trial (TT) started with the cyclists having to complete a fixed amount of work as fast as possible. Reliability was assessed for the TT with the coefficient of variation (CV) as the (SD/mean)*100 for each participant, intraclass correlation coefficients (ICC) and typical error (SD of the difference in mean /radical2). The group mean (SD) times for the TT were TT1 1889 (306), TT2 1857 (283) and TT3 1953 (279) s respectively. Individual CV varied from 0.25% to 10%. The ICC for TT1/2 and 2/3 were r = 0.78 and 0.93 (P<0.05). The typical errors, expressed as a CV% on the log transformed performance times, were 7.3 and 3.7% for TT1/2 and TT2/3 respectively. The largest individual CVs were observed between TT1 and TT2. The differences in CV and SD among the three TTs indicate that trial two and three were more reliable than TT1, suggesting a habituation trial is needed. It is concluded that the present performance test is reliable in adolescent cyclists with lower variation between trials 2 and 3.
Collapse
Affiliation(s)
- Verónica Montfort-Steiger
- Children's Health and Exercise Research Centre, University of Exeter, St. Luke's Campus Heavitree Road, Exeter, EX1 2LU, UK
| | | | | |
Collapse
|
36
|
Abstract
It is generally accepted that carbohydrate (CHO) feeding during exercise can improve endurance capacity (time to exhaustion) and exercise performance during prolonged exercise (>2 h). More recently, studies have also shown ergogenic effects of CHO feeding during shorter exercise of high intensity ( approximately 1 h at >75% of maximum oxygen consumption). During prolonged exercise the mechanism behind this performance improvement is likely to be related to maintenance of high rates of CHO oxidation and the prevention of hypoglycemia. Nevertheless, other mechanisms may play a role, depending on the type of exercise and the specific conditions. The mechanism for performance improvements during higher-intensity exercise is less clear, but there is some evidence that CHO can have central effects. In the past few years, studies have investigated ways to optimize CHO delivery and bioavailability. An analysis of all studies available shows that a single CHO ingested during exercise will be oxidized at rates up to about 1 g/min, even when large amounts of CHO are ingested. Combinations of CHO that use different intestinal transporters for absorption (e.g., glucose and fructose) have been shown to result in higher oxidation rates, and this seems to be a way to increase exogenous CHO oxidation rates by 20% to 50%. The search will continue for ways to further improve CHO delivery and to improve the oxidation efficiency resulting in less accumulation of CHO in the gastrointestinal tract and potentially decreasing gastrointestinal problems during prolonged exercise.
Collapse
Affiliation(s)
- Asker E Jeukendrup
- Human Performance Laboratory, School of Sport and Exercise Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
| |
Collapse
|
37
|
Christopher MJ, Rantzau C, McConell G, Kemp BE, Alford FP. Prevailing hyperglycemia is critical in the regulation of glucose metabolism during exercise in poorly controlled alloxan-diabetic dogs. J Appl Physiol (1985) 2005; 98:930-9. [PMID: 15703164 DOI: 10.1152/japplphysiol.00687.2004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The separate impacts of the chronic diabetic state and the prevailing hyperglycemia on plasma substrates and hormones, in vivo glucose turnover, and ex vivo skeletal muscle (SkM) during exercise were examined in the same six dogs before alloxan-induced diabetes (prealloxan) and after 4–5 wk of poorly controlled hyperglycemic diabetes (HGD) in the absence and presence of ∼300-min phlorizin-induced (glycosuria mediated) normoglycemia (NGD). For each treatment state, the ∼15-h-fasted dog underwent a primed continuous 150-min infusion of [3-3H]glucose, followed by a 30-min treadmill exercise test (∼65% maximal oxygen capacity), with SkM biopsies taken from the thigh (vastus lateralis) before and after exercise. In the HGD and NGD states, preexercise hepatic glucose production rose by 130 and 160%, and the metabolic clearance rate of glucose (MCRg) fell by 70 and 37%, respectively, compared with the corresponding prealloxan state, but the rates of glucose uptake into peripheral tissues (Rdtissue) and total glycolysis (GF) were unchanged, despite an increased availability of plasma free fatty acid in the NGD state. Exercise-induced increments in hepatic glucose production, Rdtissue, and plasma-derived GF were severely blunted by ∼30–50% in the NGD state, but increments in MCRg remained markedly reduced by ∼70–75% in both diabetic states. SkM intracellular glucose concentrations were significantly elevated only in the HGD state. Although Rdtissueduring exercise in the diabetic states correlated positively with preexercise plasma glucose and insulin and GF and negatively with preexercise plasma free fatty acid, stepwise regression analysis revealed that an individual's preexercise glucose and GF accounted for 88% of Rdtissueduring exercise. In conclusion, the prevailing hyperglycemia in poorly controlled diabetes is critical in maintaining a sufficient supply of plasma glucose for SkM glucose uptake during exercise. During phlorizin-induced NGD, increments in both Rdtissueand GF are impaired due to a diminished fuel supply from plasma glucose and a sustained reduction in increments of MCRg.
Collapse
Affiliation(s)
- Michael J Christopher
- Department of Endocrinology and Diabetes, St. Vincent's Hospital Melbourne, 35 Victoria Parade, Fitzroy 3065, Victoria, Australia
| | | | | | | | | |
Collapse
|
38
|
Carter JM, Jeukendrup AE, Jones DA. The Effect of Carbohydrate Mouth Rinse on 1-h Cycle Time Trial Performance. Med Sci Sports Exerc 2004; 36:2107-11. [PMID: 15570147 DOI: 10.1249/01.mss.0000147585.65709.6f] [Citation(s) in RCA: 248] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE AND METHOD To investigate the possible role of carbohydrate (CHO) receptors in the mouth in influencing exercise performance, seven male and two female endurance cyclists (VO(2max) 63.2 +/- 2.7 (mean +/- SE) mL.kg*(-1).min(-1)) completed two performance trials in which they had to accomplish a set amount of work as quickly as possible (914 +/- 40 kJ). On one occasion a 6.4% maltodextrin solution (CHO) was rinsed around the mouth for every 12.5% of the trial completed. On the other occasion, water (PLA) was rinsed. Subjects were not allowed to swallow either the CHO solution or water, and each mouthful was spat out after a 5-s rinse. RESULTS Performance time was significantly improved with CHO compared with PLA (59.57 +/- 1.50 min vs 61.37 +/- 1.56 min, respectively, P = 0.011). This improvement resulted in a significantly higher average power output during the CHO compared with the PLA trial (259 +/- 16 W and 252 +/- 16 W, respectively, P = 0.003). There were no differences in heart rate or rating of perceived exertion (RPE) between the two trials (P > 0.05). CONCLUSION The results demonstrate that carbohydrate mouth rinse has a positive effect on 1-h time trial performance. The mechanism responsible for the improvement in high-intensity exercise performance with exogenous carbohydrate appears to involve an increase in central drive or motivation rather than having any metabolic cause. The nature and role of putative CHO receptors in the mouth warrants further investigation.
Collapse
Affiliation(s)
- James M Carter
- Human Performance Laboratory, School of Sport and Exercise Sciences, The University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| | | | | |
Collapse
|
39
|
Carter JM, Jeukendrup AE, Mann CH, Jones DA. The Effect of Glucose Infusion on Glucose Kinetics during a 1-h Time Trial. Med Sci Sports Exerc 2004; 36:1543-50. [PMID: 15354036 DOI: 10.1249/01.mss.0000139892.69410.d8] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE AND METHODS To investigate the effect of glucose infusion on glucose kinetics and performance, six endurance cyclists (VO2max = 61.7 +/- 2.0 (mean +/- SE) mL x kg(-1) x min(-1)) completed two performance trials in which they had to accomplish a set amount of work as quickly as possible (991 +/- 41 kJ). Subjects were infused with either glucose (20% in saline; carbohydrate (CHO)) at a rate of 1 g x min(-1) or saline (0.9% saline; placebo (PLA)). It was hypothesized that time trial performance would be unaffected by the infusion of glucose, as endogenous stores of CHO would not be limiting in the PLA trial. RESULTS Plasma glucose concentration increased from 4.8 +/- 0.1 mmol x L(-1) to 5.9 +/- 0.3 mmol x L(-1) during the PLA trial and from 4.9 +/- 0.1 mmol x L(-1) at rest to 12.4 +/- 1.1 mmol x L(-1) during the CHO trial. These values were significantly higher at all time points during the CHO trial compared with PLA (P < 0.001). In the final stages of the time trial, Rd in the PLA trial was 49 +/- 5 micromol x kg(-1) x min(-1) compared with 88 +/- 7 micromol x kg(-1) x min(-1) in the CHO trial (P < 0.05). Despite these differences, there was no difference in performance time between PLA and CHO (60.04 +/- 1.47 min, PLA, vs 59.90 +/- 1.49 min, CHO, respectively). Infused carbohydrate oxidation in the last 25% of the CHO trial was at least 675 +/- 120 micromol x kg(-1) and contributed 17 +/- 4% to total carbohydrate oxidation. CONCLUSION The results demonstrate that glucose infusion had no effect on 1-h cycle time-trial performance, despite an increased availability of plasma glucose for oxidation and evidence of increased glucose uptake into the tissues.
Collapse
Affiliation(s)
- James M Carter
- Human Performance Laboratory, School of Sport and Exercise Sciences, The University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | | | | | | |
Collapse
|
40
|
Baldwin J, Snow RJ, Gibala MJ, Garnham A, Howarth K, Febbraio MA. Glycogen availability does not affect the TCA cycle or TAN pools during prolonged, fatiguing exercise. J Appl Physiol (1985) 2003; 94:2181-7. [PMID: 12736189 DOI: 10.1152/japplphysiol.00866.2002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The hypothesis that fatigue during prolonged exercise arises from insufficient intramuscular glycogen, which limits tricarboxylic acid cycle (TCA) activity due to reduced TCA cycle intermediates (TCAI), was tested in this experiment. Seven endurance-trained men cycled at approximately 70% of peak O(2) uptake (Vo(2 peak)) until exhaustion with low (LG) or high (HG) preexercise intramuscular glycogen content. Muscle glycogen content was lower (P < 0.05) at fatigue than at rest in both trials. However, the increase in the sum of four measured TCAI (>70% of the total TCAI pool) from rest to 15 min of exercise was not different between trials, and TCAI content was similar after 103 +/- 15 min of exercise (2.62 +/- 0.31 and 2.59 +/- 0.28 mmol/kg dry wt for LG and HG, respectively), which was the point of volitional fatigue during LG. Subjects cycled for an additional 52 +/- 9 min during HG, and although glycogen was markedly reduced (P < 0.05) during this period, no further change in the TCAI pool was observed, thus demonstrating a clear dissociation between exercise duration and the size of the TCAI pool. Neither the total adenine nucleotide pool (TAN = ATP + ADP + AMP) nor IMP was altered compared with rest in either trial, whereas creatine phosphate levels were not different when values measured at fatigue were compared with those measured after 15 min of exercise. These data demonstrate that altered glycogen availability neither compromises TCAI pool expansion nor affects the TAN pool or creatine phosphate or IMP content during prolonged exercise to fatigue. Therefore, our data do not support the concept that a decrease in muscle TCAI during prolonged exercise in humans compromises aerobic energy provision or is the cause of fatigue.
Collapse
Affiliation(s)
- Jacinta Baldwin
- Department of Physiology, University of Melbourne, Parkville 3010, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
41
|
Couture S, Massicotte D, Lavoie C, Hillaire-Marcel C, Péronnet F. Oral [(13)C]glucose and endogenous energy substrate oxidation during prolonged treadmill running. J Appl Physiol (1985) 2002; 92:1255-60. [PMID: 11842065 DOI: 10.1152/japplphysiol.00437.2001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Six male subjects were studied during running exercise (120 min, 69% maximal oxygen consumption) with ingestion of a placebo or 3.5 g/kg of [(13)C]glucose (approximately 2 g/min). Indirect respiratory calorimetry corrected for urea excretion in urine and sweat, production of (13)CO(2) at the mouth, and changes in plasma glucose (13)C/(12)C were used to compute energy substrate oxidation. The oxidation rate of exogenous glucose increased from 1.02 at minute 60 to 1.22 g/min at minute 120 providing approximately 24 and 33% of the energy yield (%En). Glucose ingestion did not modify protein oxidation, which provided approximately 4-5%En, but significantly increased glucose oxidation by approximately 7%, reduced lipid oxidation by approximately 16%, and markedly reduced endogenous glucose oxidation (1.25 vs. 2.21 g/min between minutes 80 and 120, respectively). The oxidation rate of glucose released from the liver (0.38 and 0.47 g/min, or 10-13%En at minutes 60 and 120, respectively), and of plasma glucose (1.30-1.69 g/min, or 34 and 45%En and 50 and 75% of glucose oxidation) significantly increased from minutes 60 to 120, whereas the oxidation of muscle glycogen significantly decreased (1.28 to 0.58 g of glucose/min, or 34 and 16%En and 50 and 25% of glucose oxidation). These results indicate that, during moderate prolonged running exercise, ingestion of a very large amount of glucose significantly reduces endogenous glucose oxidation, thus sparing muscle and/or liver glycogen stores.
Collapse
Affiliation(s)
- Stéphane Couture
- Département de Kinésiologie, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | | | | | | | | |
Collapse
|