1
|
Zhu Y, Wang K, Jia X, Fu C, Yu H, Wang Y. Antioxidant peptides, the guardian of life from oxidative stress. Med Res Rev 2024; 44:275-364. [PMID: 37621230 DOI: 10.1002/med.21986] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/26/2023]
Abstract
Reactive oxygen species (ROS) are produced during oxidative metabolism in aerobic organisms. Under normal conditions, ROS production and elimination are in a relatively balanced state. However, under internal or external environmental stress, such as high glucose levels or UV radiation, ROS production can increase significantly, leading to oxidative stress. Excess ROS production not only damages biomolecules but is also closely associated with the pathogenesis of many diseases, such as skin photoaging, diabetes, and cancer. Antioxidant peptides (AOPs) are naturally occurring or artificially designed peptides that can reduce the levels of ROS and other pro-oxidants, thus showing great potential in the treatment of oxidative stress-related diseases. In this review, we discussed ROS production and its role in inducing oxidative stress-related diseases in humans. Additionally, we discussed the sources, mechanism of action, and evaluation methods of AOPs and provided directions for future studies on AOPs.
Collapse
Affiliation(s)
- Yiyun Zhu
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Kang Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xinyi Jia
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, China
- Department of Food Science and Technology, Food Science and Technology Center, National University of Singapore, Singapore, Singapore
| | - Caili Fu
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, China
| | - Haining Yu
- Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian, Liaoning, China
| | - Yipeng Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
2
|
Changing Perspectives from Oxidative Stress to Redox Signaling-Extracellular Redox Control in Translational Medicine. Antioxidants (Basel) 2022; 11:antiox11061181. [PMID: 35740078 PMCID: PMC9228063 DOI: 10.3390/antiox11061181] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/07/2022] Open
Abstract
Extensive research has changed the understanding of oxidative stress that has been linked to every major disease. Today we distinguish oxidative eu- and distress, acknowledging that redox modifications are crucial for signal transduction in the form of specific thiol switches. Long underestimated, reactive species and redox proteins of the Thioredoxin (Trx) family are indeed essential for physiological processes. Moreover, extracellular redox proteins, low molecular weight thiols and thiol switches affect signal transduction and cell–cell communication. Here, we highlight the impact of extracellular redox regulation for health, intermediate pathophenotypes and disease. Of note, recent advances allow the analysis of redox changes in body fluids without using invasive and expensive techniques. With this new knowledge in redox biochemistry, translational strategies can lead to innovative new preventive and diagnostic tools and treatments in life sciences and medicine.
Collapse
|
3
|
Snell JA, Jandova J, Wondrak GT. Hypochlorous Acid: From Innate Immune Factor and Environmental Toxicant to Chemopreventive Agent Targeting Solar UV-Induced Skin Cancer. Front Oncol 2022; 12:887220. [PMID: 35574306 PMCID: PMC9106365 DOI: 10.3389/fonc.2022.887220] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/31/2022] [Indexed: 12/15/2022] Open
Abstract
A multitude of extrinsic environmental factors (referred to in their entirety as the 'skin exposome') impact structure and function of skin and its corresponding cellular components. The complex (i.e. additive, antagonistic, or synergistic) interactions between multiple extrinsic (exposome) and intrinsic (biological) factors are important determinants of skin health outcomes. Here, we review the role of hypochlorous acid (HOCl) as an emerging component of the skin exposome serving molecular functions as an innate immune factor, environmental toxicant, and topical chemopreventive agent targeting solar UV-induced skin cancer. HOCl [and its corresponding anion (OCl-; hypochlorite)], a weak halogen-based acid and powerful oxidant, serves two seemingly unrelated molecular roles: (i) as an innate immune factor [acting as a myeloperoxidase (MPO)-derived microbicidal factor] and (ii) as a chemical disinfectant used in freshwater processing on a global scale, both in the context of drinking water safety and recreational freshwater use. Physicochemical properties (including redox potential and photon absorptivity) determine chemical reactivity of HOCl towards select biochemical targets [i.e. proteins (e.g. IKK, GRP78, HSA, Keap1/NRF2), lipids, and nucleic acids], essential to its role in innate immunity, antimicrobial disinfection, and therapeutic anti-inflammatory use. Recent studies have explored the interaction between solar UV and HOCl-related environmental co-exposures identifying a heretofore unrecognized photo-chemopreventive activity of topical HOCl and chlorination stress that blocks tumorigenic inflammatory progression in UV-induced high-risk SKH-1 mouse skin, a finding with potential implications for the prevention of human nonmelanoma skin photocarcinogenesis.
Collapse
Affiliation(s)
| | | | - Georg T. Wondrak
- Department of Pharmacology and Toxicology, R.K. Coit College of Pharmacy & UA Cancer Center, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
4
|
Rajput A, Tsunemoto H, Sastry AV, Szubin R, Rychel K, Sugie J, Pogliano J, Palsson BO. Machine learning from Pseudomonas aeruginosa transcriptomes identifies independently modulated sets of genes associated with known transcriptional regulators. Nucleic Acids Res 2022; 50:3658-3672. [PMID: 35357493 PMCID: PMC9023270 DOI: 10.1093/nar/gkac187] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/28/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022] Open
Abstract
The transcriptional regulatory network (TRN) of Pseudomonas aeruginosa coordinates cellular processes in response to stimuli. We used 364 transcriptomes (281 publicly available + 83 in-house generated) to reconstruct the TRN of P. aeruginosa using independent component analysis. We identified 104 independently modulated sets of genes (iModulons) among which 81 reflect the effects of known transcriptional regulators. We identified iModulons that (i) play an important role in defining the genomic boundaries of biosynthetic gene clusters (BGCs), (ii) show increased expression of the BGCs and associated secretion systems in nutrient conditions that are important in cystic fibrosis, (iii) show the presence of a novel ribosomally synthesized and post-translationally modified peptide (RiPP) BGC which might have a role in P. aeruginosa virulence, (iv) exhibit interplay of amino acid metabolism regulation and central metabolism across different carbon sources and (v) clustered according to their activity changes to define iron and sulfur stimulons. Finally, we compared the identified iModulons of P. aeruginosa with those previously described in Escherichia coli to observe conserved regulons across two Gram-negative species. This comprehensive TRN framework encompasses the majority of the transcriptional regulatory machinery in P. aeruginosa, and thus should prove foundational for future research into its physiological functions.
Collapse
Affiliation(s)
- Akanksha Rajput
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Hannah Tsunemoto
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Anand V Sastry
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Richard Szubin
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Kevin Rychel
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Joseph Sugie
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Joe Pogliano
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, USA.,Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.,Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens, Lyngby, Denmark
| |
Collapse
|
5
|
Probing Cell Redox State and Glutathione-Modulating Factors Using a Monochlorobimane-Based Microplate Assay. Antioxidants (Basel) 2022; 11:antiox11020391. [PMID: 35204274 PMCID: PMC8869332 DOI: 10.3390/antiox11020391] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/05/2022] [Accepted: 02/11/2022] [Indexed: 12/10/2022] Open
Abstract
Thiol compounds including predominantly glutathione (GSH) are key components of redox homeostasis, which are involved in the protection and regulation of mammalian cells. The assessment of cell redox status by means of in situ analysis of GSH in living cells is often preferable over established assays in cell lysates due to fluctuations of the GSH pool. For this purpose, we propose a microplate assay with monochlorobimane (MCB) as an available fluorescent probe for GSH, although poorly detected in the microplate format. In addition to the new procedure for improved MCB-assisted GSH detection in plate-grown cells and its verification with GSH modulators, this study provides a useful methodology for the evaluation of cell redox status probed through relative GSH content and responsiveness to both supplemented thiols and variation in oxygen pressure. The roles of extracellular interactions of thiols and natural variability of cellular glutathione on the assay performance were emphasized and discussed. The results are of broad interest in cell biology research and should be particularly useful for the characterization of pathological cells with decreased GSH status and increased oxidative status as well as redox-modulating factors.
Collapse
|
6
|
A commercially available NIR fluorescence probe for the detection of hypochlorite and its application in cell imaging. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Saha S, Das S, Das S, Samanta A, Maitra S, Sahoo P. Prompt detection of endogenous hypochlorite (ClO -) in murine macrophages and zebrafish embryos facilitated by a distinctive chemodosimetric mode. Org Biomol Chem 2020; 18:6716-6723. [PMID: 32820796 DOI: 10.1039/d0ob01389g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
An innovative fluorescein appended naphthalene diimide based probe (FANDI) has been prepared and characterized to selectively recognize hypochlorite or ClO- ions in the presence of other reactive oxygen species (ROS) and biorelevant ions, using a unique chemodosimetric method. Hypochlorite induced oxidation can efficiently alter the initial photophysical properties of FANDI and shows an easily detectable "turn on" green fluorescence. The chemodosimeter FANDI can efficiently detect exogenous as well as endogenous ClO- ions in RAW 264.7 cells (macrophages) and zebrafish embryos (Danio rerio) which further ensures the high potential, easy cell permeability and photostability of FANDI and makes it worth exploring in the future.
Collapse
Affiliation(s)
- Shrabani Saha
- Molecular Recognition Laboratory, Department of Chemistry, Visva-Bharati University, Santiniketan-731235, West Bengal, India.
| | | | | | | | | | | |
Collapse
|
8
|
Yadav R, Odera K, Rai A, Takahashi R, Mishra L. Synthesis, characterization, and supramolecular architectures of two distinct classes of probes for the visualization of endogenously generated hypochlorite ions in response to cellular activity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 198:111594. [PMID: 31446177 DOI: 10.1016/j.jphotobiol.2019.111594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/23/2019] [Accepted: 08/13/2019] [Indexed: 12/23/2022]
Abstract
Two distinct classes of compounds, (E)-2-(((3-amino-4-nitrophenyl) imino) methyl)-5-(diethylamino) phenol (SB) and 5-(diethylamino)-2-(5-nitro-1H-benzo[d]imidazol-2-yl) phenol (IM) were synthesized. SB, a bright red colored compound was crystallized in acetonitrile as a triclinic crystal system while IM, yellow colored compound crystallized as a monoclinic crystal system in dimethylformamide by vapor diffusion of diethylether. These compounds were characterized using spectroscopic techniques (IR, UV-visible, 1H, and 13C NMR), and X-ray crystallography. SB and IM displayed classical and non-classical H-bonding involving C-H…O and π…π interactions. These compounds detected hypochlorite ions in aqueous DMSO (1: 9, v/v, HEPES buffer, pH 7.4), and detection was visible via color changes by naked eye. We also performed UV-visible and fluorescence titrations, showing detection limits of 8.82 × 10-7 M for SB and 2.44 × 10-7 M for IM. The fluorometric responses from SB and IM were also studied against different ROS and anions. DFT calculations were performed to strengthen the proposed sensing mechanisms of both SB and IM. Hypochlorite, which is endogenously generated by myeloperoxidase in endosomes, was specifically visualized using SB and IM in lipopolysaccharide-treated RAW264.7 cells. These probes were also used to image the generation of hypochlorite by RAW264.7 cells during phagocytosis of non-fluorescent polystyrene beads.
Collapse
Affiliation(s)
- Richa Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Keiko Odera
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Abhishek Rai
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ryoya Takahashi
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.
| | - Lallan Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
9
|
Abstract
Mucociliary clearance is critically important in protecting the airways from infection and from the harmful effects of smoke and various inspired substances known to induce oxidative stress and persistent inflammation. An essential feature of the clearance mechanism involves regulation of the periciliary liquid layer on the surface of the airway epithelium, which is necessary for normal ciliary beating and maintenance of mucus hydration. The underlying ion transport processes associated with airway surface hydration include epithelial Na+ channel-dependent Na+ absorption occurring in parallel with CFTR and Ca2+-activated Cl- channel-dependent anion secretion, which are coordinately regulated to control the depth of the periciliary liquid layer. Oxidative stress is known to cause both acute and chronic effects on airway ion transport function, and an increasing number of studies in the past few years have identified an important role for autophagy as part of the physiological response to the damaging effects of oxidation. In this review, recent studies addressing the influence of oxidative stress and autophagy on airway ion transport pathways, along with results showing the potential of autophagy modulators in restoring the function of ion channels involved in transepithelial electrolyte transport necessary for effective mucociliary clearance, are presented.
Collapse
Affiliation(s)
- Scott M O'Grady
- Departments of Animal Science, Integrative Biology and Physiology, University of Minnesota , St. Paul, Minnesota
| |
Collapse
|
10
|
Corso CR, Acco A. Glutathione system in animal model of solid tumors: From regulation to therapeutic target. Crit Rev Oncol Hematol 2018; 128:43-57. [DOI: 10.1016/j.critrevonc.2018.05.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/10/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023] Open
|
11
|
Peng P, Li H, Bai L, Wang L, Chen B, Yu C, Zhang C, Ge J, Li L, Huang W. Photocontrollable Fluorogenic Probe for Visualizing Near‐Membrane Hypochlorite in Live Cells. ChemistrySelect 2018. [DOI: 10.1002/slct.201800777] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pingping Peng
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Hao Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Lei Bai
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Liulin Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Buxiang Chen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Chengwu Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang ProvinceCollege of Biotechnology and BioengineeringZhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech University (NanjingTech) Nanjing 211816 China
- Shanxi Institute of Flexible Electronics (SIFE)Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072, P. R. China
| |
Collapse
|
12
|
Roberts JS, Atanasova KR, Lee J, Diamond G, Deguzman J, Hee Choi C, Yilmaz Ö. Opportunistic Pathogen Porphyromonas gingivalis Modulates Danger Signal ATP-Mediated Antibacterial NOX2 Pathways in Primary Epithelial Cells. Front Cell Infect Microbiol 2017; 7:291. [PMID: 28725637 PMCID: PMC5495830 DOI: 10.3389/fcimb.2017.00291] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/14/2017] [Indexed: 12/15/2022] Open
Abstract
Porphyromonas gingivalis, a major opportunistic pathogen in the etiology of chronic periodontitis, successfully survives in human gingival epithelial cells (GECs). P. gingivalis abrogates the effects of a host danger molecule, extracellular ATP (eATP)/P2X7 signaling, such as the generation of reactive oxygen species (ROS) via the mitochondria and NADPH oxidases (NOX) from primary GECs. However, antimicrobial functions of ROS production are thoroughly investigated in myeloid-lineage immune cells and have not been well-understood in epithelial cells. Therefore, this study characterizes antibacterial NOX2 generated ROS and host downstream effects in P. gingivalis infected human primary GECs. We examined the expression of NOX isoforms in the GECs and demonstrate eATP stimulation increased the mRNA expression of NOX2 (p < 0.05). Specific peptide inhibition of NOX2 significantly reduced eATP-mediated ROS as detected by DCFDA probe. The results also showed P. gingivalis infection can temporally modulate NOX2 pathway by reorganizing the localization and activation of cytosolic molecules (p47phox, p67phox, and Rac1) during 24 h of infection. Investigation into downstream biocidal factors of NOX2 revealed an eATP-induced increase in hypochlorous acid (HOCl) in GECs detected by R19-S fluorescent probe, which is significantly reduced by a myeloperoxidase (MPO) inhibitor. MPO activity of the host cells was assayed and found to be positively affected by eATP treatment and/or infection. However, P. gingivalis significantly reduced the MPO product, bactericidal HOCl, in early times of infection upon eATP stimulation. Analysis of the intracellular levels of a major host-antioxidant, glutathione during early infection revealed a substantial decrease (p < 0.05) in reduced glutathione indicative of scavenging of HOCl by P. gingivalis infection and eATP treatment. Examination of the mRNA expression of key enzymes in the glutathione synthesis pathway displayed a marked increase (p < 0.05) in glutamate cysteine ligase (GCL) subunits GCLc and GCLm, glutathione synthetase, and glutathione reductase during the infection. These suggest P. gingivalis modulates the danger signal eATP-induced NOX2 signaling and also induces host glutathione synthesis to likely avoid HOCl mediated clearance. Thus, we characterize for the first time in epithelial cells, an eATP/NOX2-ROS-antibacterial pathway and demonstrate P. gingivalis can circumvent this important antimicrobial defense system potentially for successful persistence in human epithelial tissues.
Collapse
Affiliation(s)
- JoAnn S Roberts
- Department of Oral Health Sciences, Medical University of South CarolinaCharleston, SC, United States
| | - Kalina R Atanasova
- Department of Periodontology, University of FloridaGainesville, FL, United States
| | - Jungnam Lee
- Department of Periodontology, University of FloridaGainesville, FL, United States
| | - Gill Diamond
- Department of Oral Biology, University of FloridaGainesville, FL, United States
| | - Jeff Deguzman
- Department of Periodontology, University of FloridaGainesville, FL, United States
| | - Chul Hee Choi
- Department of Microbiology and Medical Science, School of Medicine, Chungnam National UniversityDaejeon, South Korea
| | - Özlem Yilmaz
- Department of Oral Health Sciences, Medical University of South CarolinaCharleston, SC, United States.,Department of Microbiology and Immunology, Medical University of South CarolinaCharleston, SC, United States
| |
Collapse
|
13
|
Xiong K, Yin C, Chao J, Zhang Y, Huo F. The detection for hypochlorite by UV-Vis and fluorescent spectra based on oxidized ring opening and successive hydrolysis reaction. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 166:79-83. [PMID: 27214272 DOI: 10.1016/j.saa.2016.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/26/2016] [Accepted: 05/13/2016] [Indexed: 05/26/2023]
Abstract
In this work, two high selective and sensitive fluorescent probes for ClO(-), 7-Hydroxycoumarin and 4-Hydroxycoumarin were designed. The reaction mechanism that we speculated was the oxidized ring opening reaction and hydrolysis. The detection could be realized in quasi-aqueous phase and the detection limits of probe [7] and probe [4] for ClO(-) were found to be 56.8nM and 70.5nM. Furthermore, the probes can be used to cell imagings.
Collapse
Affiliation(s)
- Kangming Xiong
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Shanxi University, Taiyuan 030006, China
| | - Caixia Yin
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Shanxi University, Taiyuan 030006, China.
| | - Jianbin Chao
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Yongbin Zhang
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
14
|
Wu X, Li Z, Yang L, Han J, Han S. A self-referenced nanodosimeter for reaction based ratiometric imaging of hypochlorous acid in living cells. Chem Sci 2013. [DOI: 10.1039/c2sc21485g] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
15
|
Robaszkiewicz A, Pogorzelska M, Bartosz G, Soszyński M. Chloric acid(I) affects antioxidant defense of lung epitelial cells. Toxicol In Vitro 2011; 25:1328-34. [DOI: 10.1016/j.tiv.2011.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 03/28/2011] [Accepted: 04/27/2011] [Indexed: 11/29/2022]
|
16
|
Joyce-Brady M, Hiratake J. Inhibiting Glutathione Metabolism in Lung Lining Fluid as a Strategy to Augment Antioxidant Defense. ACTA ACUST UNITED AC 2011; 7:71-78. [PMID: 22485086 PMCID: PMC3319921 DOI: 10.2174/157340811796575308] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 03/25/2011] [Accepted: 04/08/2011] [Indexed: 12/22/2022]
Abstract
Glutathione is abundant in the lining fluid that bathes the gas exchange surface of the lung. On the one hand glutathione in this extracellular pool functions in antioxidant defense to protect cells and proteins in the alveolar space from oxidant injury; on the other hand, it functions as a source of cysteine to maintain cellular glutathione and protein synthesis. These seemingly opposing functions are regulated through metabolism by gamma-glutamyl transferase (GGT, EC 2.3.2.2). Even under normal physiologic conditions, lung lining fluid (LLF) contains a concentrated pool of GGT activity exceeding that of whole lung by about 7-fold and indicating increased turnover of glutathione at the epithelial surface of the lung. With oxidant stress LLF GGT activity is amplified even further as glutathione turnover is accelerated to meet the increased demands of cells for cysteine. Mouse models of GGT deficiency confirmed this biological role of LLF GGT activity and revealed the robust expansiveness and antioxidant capacity of the LLF glutathione pool in the absence of metabolism. Acivicin, an irreversible inhibitor of GGT, can be utilized to augment LLF fluid glutathione content in normal mice and novel GGT inhibitors have now been defined that provide advantages over acivicin. Inhibiting LLF GGT activity is a novel strategy to selectively augment the extracellular LLF glutathione pool. The enhanced antioxidant capacity can maintain lung epithelial cell integrity and barrier function under oxidant stress.
Collapse
Affiliation(s)
- Martin Joyce-Brady
- The Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
| | | |
Collapse
|
17
|
Zhang W, Guo C, Liu L, Qin J, Yang C. Naked-eye visible and fluorometric dual-signaling chemodosimeter for hypochlorous acid based on water-soluble p-methoxyphenol derivative. Org Biomol Chem 2011; 9:5560-3. [PMID: 21701738 DOI: 10.1039/c1ob05550j] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The oxidation of a simple p-methoxyphenol derivative by HClO induces an intramolecular charge transfer from the end phenyl units to the middle benzoquinone, which leads to colorimetric and fluorescent changes. This detection can be run in aqueous solution with high selectivity over other reactive oxygen species.
Collapse
Affiliation(s)
- Wenjun Zhang
- Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan 430072, P. R. China
| | | | | | | | | |
Collapse
|
18
|
Vellosa JCR, Regasini LO, Khalil NM, Bolzani VDS, Khalil OAK, Manente FA, Pasquini Netto H, Oliveira OMMDF. Antioxidant and cytotoxic studies for kaempferol, quercetin and isoquercitrin. ECLÉTICA QUÍMICA 2011. [DOI: 10.1590/s0100-46702011000200001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to investigate a cytotoxic oxidative cell stress related and the antioxidant profile of kaempferol, quercetin, and isoquercitrin. The flavonol compounds were able to act as scavengers of superoxide anion (but not hydrogen peroxide), hypochlorous acid, chloramine and nitric oxide. Although flavonoids are widely described as antioxidants and this activity is generally related to beneficial effects on human health, here we show important cytotoxic actions of three well known flavonoids. They were able to promote hemolysis which one was exacerbated on the presence of hypochlorous acid but not by AAPH radical. Therefore, despite they expected scavenger action over free radicals an oxidants, these compounds could be very lesive to living organisms by acting over erythrocytes and maybe other cellular types.
Collapse
|
19
|
Xulu BA, Ashby MT. Small molecular, macromolecular, and cellular chloramines react with thiocyanate to give the human defense factor hypothiocyanite. Biochemistry 2010; 49:2068-74. [PMID: 20085320 PMCID: PMC2831154 DOI: 10.1021/bi902089w] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thiocyanate reacts noncatalytically with myeloperoxidase-derived HOCl to produce hypothiocyanite (OSCN(-)), thereby potentially limiting the propensity of HOCl to inflict host tissue damage that can lead to inflammatory diseases. However, the efficiency with which SCN(-) captures HOCl in vivo depends on the concentration of SCN(-) relative to other chemical targets. In blood plasma, where the concentration of SCN(-) is relatively low, proteins may be the principal initial targets of HOCl, and chloramines are a significant product. Chloramines eventually decompose to irreversibly damage proteins. In the present study, we demonstrate that SCN(-) reacts efficiently with chloramines in small molecules, in proteins, and in Escherichia coli cells to give OSCN(-) and the parent amine. Remarkably, OSCN(-) reacts faster than SCN(-) with chloramines. These reactions of SCN(-) and OSCN(-) with chloramines may repair some of the damage that is inflicted on protein amines by HOCl. Our observations are further evidence for the importance of secondary reactions during the redox cascades that are associated with oxidative stress by hypohalous acids.
Collapse
Affiliation(s)
- Bheki A. Xulu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Michael T. Ashby
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| |
Collapse
|
20
|
Chen S, Lu J, Sun C, Ma H. A highly specific ferrocene-based fluorescent probe for hypochlorous acid and its application to cell imaging. Analyst 2010; 135:577-82. [DOI: 10.1039/b921187j] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Allen GB, Leclair TR, von Reyn J, Larrabee YC, Cloutier ME, Irvin CG, Bates JHT. Acid aspiration-induced airways hyperresponsiveness in mice. J Appl Physiol (1985) 2009; 107:1763-70. [PMID: 19797689 DOI: 10.1152/japplphysiol.00572.2009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The role of gastroesophageal reflux and micro-aspiration as a trigger of airways hyperresponsiveness (AHR) in patients with asthma is controversial. The role of acid reflux and aspiration as a direct cause of AHR in normal subjects is also unclear. We speculated that aspiration of a weak acid with a pH (1.8) equivalent to the upper range of typical gastric contents would lead to AHR in naive mice. We further speculated that modest reductions in aspirate acidity to a level expected during gastric acid suppression therapy (pH 4.0) would impede aspiration-induced AHR. BALB/c female mice were briefly anesthetized with isoflurane and allowed to aspirate 75 microl of saline with HCl (pH 1.8, 4.0, or 7.4) or underwent sham aspiration. Mice were re-anesthetized 2 or 24 h later, underwent tracheostomy, and were coupled to a mechanical ventilator. Forced oscillations were used to periodically measure respiratory impedance (Zrs) following aerosol delivery of saline and increasing doses of methacholine to measure for AHR. Values for elastance (H), airways resistance (R(N)), and tissue damping (G) were derived from Zrs. Aspirate pH of 1.8 led to a significant overall increase in peak R(N), G, and H compared with pH 4.0 and 7.4 at 2 and 24 h. Differences between pH 7.4 and 4.0 were not significant. In mice aspirating pH 1.8 compared with controls, airway lavage fluid contained more neutrophils, higher protein, and demonstrated higher permeability. We conclude that acid aspiration triggers an acute AHR, driven principally by breakdown of epithelial barrier integrity within the airways.
Collapse
Affiliation(s)
- Gilman B Allen
- Department of Medicine, Vermont Lung Center, University of Vermont, Burlington, Vermont, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Forman HJ, Zhang H, Rinna A. Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Aspects Med 2009; 30:1-12. [PMID: 18796312 PMCID: PMC2696075 DOI: 10.1016/j.mam.2008.08.006] [Citation(s) in RCA: 1498] [Impact Index Per Article: 99.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2008] [Revised: 08/18/2008] [Accepted: 08/19/2008] [Indexed: 02/06/2023]
Abstract
This review is the introduction to a special issue concerning, glutathione (GSH), the most abundant low molecular weight thiol compound synthesized in cells. GSH plays critical roles in protecting cells from oxidative damage and the toxicity of xenobiotic electrophiles, and maintaining redox homeostasis. Here, the functions and GSH and the sources of oxidants and electrophiles, the elimination of oxidants by reduction and electrophiles by conjugation with GSH are briefly described. Methods of assessing GSH status in the cells are also described. GSH synthesis and its regulation are addressed along with therapeutic approaches for manipulating GSH content that have been proposed. The purpose here is to provide a brief overview of some of the important aspects of glutathione metabolism as part of this special issue that will provide a more comprehensive review of the state of knowledge regarding this essential molecule.
Collapse
Affiliation(s)
- Henry Jay Forman
- School of Natural Science, University of California at Merced, P.O. Box 2039, Merced, CA 95344, USA.
| | | | | |
Collapse
|
23
|
Schwarzer C, Fischer H, Kim EJ, Barber KJ, Mills AD, Kurth MJ, Gruenert DC, Suh JH, Machen TE, Illek B. Oxidative stress caused by pyocyanin impairs CFTR Cl(-) transport in human bronchial epithelial cells. Free Radic Biol Med 2008; 45:1653-62. [PMID: 18845244 PMCID: PMC2628806 DOI: 10.1016/j.freeradbiomed.2008.09.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 08/25/2008] [Accepted: 09/01/2008] [Indexed: 11/22/2022]
Abstract
Pyocyanin (N-methyl-1-hydroxyphenazine), a redox-active virulence factor produced by the human pathogen Pseudomonas aeruginosa, is known to compromise mucociliary clearance. Exposure of human bronchial epithelial cells to pyocyanin increased the rate of cellular release of H(2)O(2) threefold above the endogenous H(2)O(2) production. Real-time measurements of the redox potential of the cytosolic compartment using the redox sensor roGFP1 showed that pyocyanin (100 microM) oxidized the cytosol from a resting value of -318+/-5 mV by 48.0+/-4.6 mV within 2 h; a comparable oxidation was induced by 100 microM H(2)O(2). Whereas resting Cl(-) secretion was slightly activated by pyocyanin (to 10% of maximal currents), forskolin-stimulated Cl(-) secretion was inhibited by 86%. The decline was linearly related to the cytosolic redox potential (1.8% inhibition/mV oxidation). Cystic fibrosis bronchial epithelial cells homozygous for DeltaF508 CFTR failed to secrete Cl(-) in response to pyocyanin or H(2)O(2), indicating that these oxidants specifically target the CFTR and not other Cl(-) conductances. Treatment with pyocyanin also decreased total cellular glutathione levels to 62% and cellular ATP levels to 46% after 24 h. We conclude that pyocyanin is a key factor that redox cycles in the cytosol, generates H(2)O(2), depletes glutathione and ATP, and impairs CFTR function in Pseudomonas-infected lungs.
Collapse
Affiliation(s)
- Christian Schwarzer
- Department of Molecular and Cell Biology, University of California, Berkeley, California
| | - Horst Fischer
- Nutrition and Metabolism Center, Children’s Hospital Oakland Research Institute, Oakland, California
| | - Eun-Jin Kim
- Nutrition and Metabolism Center, Children’s Hospital Oakland Research Institute, Oakland, California
| | - Katharine J. Barber
- Nutrition and Metabolism Center, Children’s Hospital Oakland Research Institute, Oakland, California
| | - Aaron D. Mills
- Department of Chemistry, University of California, Davis, California
| | - Mark J. Kurth
- Department of Chemistry, University of California, Davis, California
| | - Dieter C. Gruenert
- California Pacific Medical Center Research Institute, San Francisco, California
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California
- Department of Medicine, University of Vermont, Burlington, Vermont
| | - Jung H. Suh
- Nutrition and Metabolism Center, Children’s Hospital Oakland Research Institute, Oakland, California
| | - Terry E. Machen
- Department of Molecular and Cell Biology, University of California, Berkeley, California
| | - Beate Illek
- Nutrition and Metabolism Center, Children’s Hospital Oakland Research Institute, Oakland, California
| |
Collapse
|
24
|
Shepherd J, Hilderbrand SA, Waterman P, Heinecke JW, Weissleder R, Libby P. A fluorescent probe for the detection of myeloperoxidase activity in atherosclerosis-associated macrophages. ACTA ACUST UNITED AC 2008; 14:1221-31. [PMID: 18022561 DOI: 10.1016/j.chembiol.2007.10.005] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 10/03/2007] [Accepted: 10/03/2007] [Indexed: 11/26/2022]
Abstract
The myeloperoxidase (MPO)-derived oxidant hypochlorous acid (HOCl/OCl(-)) is implicated in the pathogenesis of atherosclerosis and other inflammatory states. We have synthesized an imaging probe, sulfonaphthoaminophenyl fluorescein (SNAPF), that selectively reacts with HOCl. SNAPF detects HOCl produced by stimulated MPO-expressing cells cultured from human whole blood, as well as HOCl from bone marrow (BM)-derived macrophages isolated from transgenic mice that express human MPO. Two lines of evidence indicate that SNAPF permits the in vivo imaging of HOCl production. First, we used this approach to demonstrate HOCl production by neutrophils in experimental murine peritonitis. Second, we detected HOCl production by MPO expressing cells in human atherosclerotic arteries. Thus, fluorescence reflectance imaging by SNAPF may provide a valuable noninvasive molecular imaging tool for implicating HOCl and MPO in the damage of inflamed tissues.
Collapse
Affiliation(s)
- Joanna Shepherd
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | |
Collapse
|
25
|
Nilsson H, Dragomir A, Ahlander A, Johannesson M, Roomans GM. Effects of hyperosmotic stress on cultured airway epithelial cells. Cell Tissue Res 2007; 330:257-69. [PMID: 17768643 DOI: 10.1007/s00441-007-0482-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Accepted: 07/06/2007] [Indexed: 10/22/2022]
Abstract
Inhalation of hyperosmotic solutions (salt, mannitol) has been used in the treatment of patients with cystic fibrosis or asthma, but the mechanism behind the effect of hyperosmotic solutions is unclear. The relation between osmolarity and permeability changes was examined in an airway cell line by the addition of NaCl, NaBr, LiCl, mannitol, or xylitol (295-700 mOsm). Transepithelial resistance was measured as an indicator of the tightness of the cultures. Cell-cell contacts and morphology were investigated by immunofluorescence and by transmission electron microscopy, with lanthanum nitrate added to the luminal side of the epithelium to investigate tight junction permeability. The electrolyte solutions caused a significant decrease in transepithelial resistance from 450 mOsm upwards, when the hyperosmolar exposure was gradually increased from 295 to 700 mOsm; whereas the nonelectrolyte solutions caused a decrease in transepithelial resistance from 700 mOsm upwards. Old cultures reacted in a more rigid way compared to young cultures. Immuno-fluorescence pictures showed weaker staining for the proteins ZO-1, claudin-4, and plakoglobin in treated samples compared to the control. The ultrastructure revealed an increased number of open tight junctions as well as a disturbed morphology with increasing osmolarity, and electrolyte solutions opened a larger proportion of tight junctions than nonelectrolyte solutions. This study shows that hyperosmotic solutions cause the opening of tight junctions, which may increase the permeability of the paracellular pathway and result in increased transepithelial water transport.
Collapse
Affiliation(s)
- Harriet Nilsson
- Department of Medical Cell Biology, University of Uppsala, P.O. Box 571, 75123, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
26
|
Cantin AM, White TB, Cross CE, Forman HJ, Sokol RJ, Borowitz D. Antioxidants in cystic fibrosis. Conclusions from the CF antioxidant workshop, Bethesda, Maryland, November 11-12, 2003. Free Radic Biol Med 2007; 42:15-31. [PMID: 17157190 PMCID: PMC2696206 DOI: 10.1016/j.freeradbiomed.2006.09.022] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 09/11/2006] [Accepted: 09/25/2006] [Indexed: 02/07/2023]
Abstract
Although great strides are being made in the care of individuals with cystic fibrosis (CF), this condition remains the most common fatal hereditary disease in North America. Numerous links exist between progression of CF lung disease and oxidative stress. The defect in CF is the loss of function of the transmembrane conductance regulator (CFTR) protein; recent evidence that CFTR expression and function are modulated by oxidative stress suggests that the loss may result in a poor adaptive response to oxidants. Pancreatic insufficiency in CF also increases susceptibility to deficiencies in lipophilic antioxidants. Finally the airway infection and inflammatory processes in the CF lung are potential sources of oxidants that can affect normal airway physiology and contribute to the mechanisms causing characteristic changes associated with bronchiectasis and loss of lung function. These multiple abnormalities in the oxidant/antioxidant balance raise several possibilities for therapeutic interventions that must be carefully assessed.
Collapse
Affiliation(s)
- André M. Cantin
- Pulmonary Division, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, Quebec, Canada J1H 5N4
| | | | - Carroll E. Cross
- Pulmonary-Critical Care Medicine, UC Davis Medical Center, Sacramento, CA, USA
| | - Henry Jay Forman
- Division of Natural Sciences, University of California, Merced, CA, USA
| | - Ronald J. Sokol
- Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine and The Children's Hospital, Denver, CO, USA
| | - Drucy Borowitz
- Pediatric Pulmonology, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
27
|
|
28
|
Perez-Vilar J, Boucher RC. Reevaluating gel-forming mucins' roles in cystic fibrosis lung disease. Free Radic Biol Med 2004; 37:1564-77. [PMID: 15477008 DOI: 10.1016/j.freeradbiomed.2004.07.027] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Revised: 07/13/2004] [Accepted: 07/22/2004] [Indexed: 10/26/2022]
Abstract
The existence of mucus plugs, containing mucins, bacteria, and neutrophils, blocking the lower airways in the lung of cystic fibrosis (CF) patients has raised the possibility that production of "abnormal" mucins is a critical characteristic of this disease. The molecular nature, if any, of this abnormality is unknown. Recent studies suggest that CF lung disease progression is characterized by an early phase in which airway surface liquid (ASL) increased dehydration is accompanied by altered pH and levels of reduced glutathione (GSH). In a later phase, bacterial infection and neutrophil invasion lead to increased ASL of concentrations myeloperoxidase and hypochlorous acid (HOCl). Independent studies indicate that gel-forming mucins, the key components of airway mucus, form disulfide-linked polymers through a pH-dependent, likely self-catalyzed mechanism. In this article, we present the hypothesis that increased mucus concentration (dehydration) and altered pH, and levels of GSH, myeloperoxidase, and/or HOCl result in the extracellular formation of additional interchain bonds among airway mucins. These novel interactions would create an atypical mucin network with abnormal viscoelastic and adhesive properties.
Collapse
Affiliation(s)
- Juan Perez-Vilar
- The Cystic Fibrosis/Pulmonary Research and Treatment Center, School of Medicine, University of North Carolina at Chapel Hill, CB7248, 4011 Thurston-Bowles Bldg., Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Changes in redox state clearly play a role in airway inflammation and mucus rheology. Furthermore CFTR (cystic fibrosis transmembrane conductance regulator), the defective protein in cystic fibrosis (CF), not only is regulated by redox state but also directly modulates the epithelial redox environment through transepithelial flux of glutathione. The purpose of this review is to explore the potential therapeutic interest of antioxidant molecules in CF. RECENT FINDINGS Several antioxidants have been shown to have mucolytic and anti-inflammatory properties. Some antioxidants such as zinc and vitamin C may also help increase epithelial chloride secretion through CFTR-dependent and independent pathways. Other antioxidants are showing promise in helping CFTR mobilization to plasma membranes. SUMMARY The many levels of potential application offered by antioxidants make this class of molecules one of the promising areas of therapeutic development for CF. Several redox-modulating agents have a high likelihood of providing useful approaches for the treatment of many aspects of CF airway disease.
Collapse
Affiliation(s)
- André M Cantin
- Pulmonary Division, Department of Medicine, Faculty of Medicine University of Sherbrooke, Sherbrooke, Quebec, Canada.
| |
Collapse
|
30
|
Day BJ, van Heeckeren AM, Min E, Velsor LW. Role for cystic fibrosis transmembrane conductance regulator protein in a glutathione response to bronchopulmonary pseudomonas infection. Infect Immun 2004; 72:2045-51. [PMID: 15039325 PMCID: PMC375208 DOI: 10.1128/iai.72.4.2045-2051.2004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lung maintains an elevated level of glutathione (GSH) in epithelial lining fluid (ELF) compared to serum. The mechanism(s) by which the lung maintains high levels of ELF GSH and factors that modulate them are largely unexplored. We hypothesized that lung cystic fibrosis transmembrane conductance regulator protein (CFTR) modulates GSH efflux in response to extracellular stress, which occurs with lung infections. Mice were challenged intratracheally with Pseudomonas aeruginosa, and on the third day of infection bronchoalveolar lavage fluid was obtained and analyzed for cytokines and antioxidants. Lung tissue antioxidants and enzyme activities were also assessed. P. aeruginosa lung infection increased levels of inflammatory cytokines and neutrophils in the ELF. This corresponded with a marked threefold increase in GSH and a twofold increase in urate levels in the ELF of P. aeruginosa-infected wild-type mice. A twofold increase in urate levels was also observed among lung tissue antioxidants of P. aeruginosa-infected wild-type mice. There were no changes in markers of lung oxidative stress associated with the P. aeruginosa lung infection. In contrast with wild-type mice, the CFTR knockout mice lacked a significant increase in ELF GSH when challenged with P. aeruginosa, and this correlated with a decrease in the ratio of reduced to oxidized GSH in the ELF, a marker of oxidative stress. These data would suggest that the lung adapts to infectious agents with elevated ELF GSH and urate. Individuals with lung diseases associated with altered antioxidant transport, such as cystic fibrosis, might lack the ability to adapt to the infection and present with a more severe inflammatory response.
Collapse
Affiliation(s)
- Brian J Day
- Department of Medicine, National Jewish Medical and Research Center, Denver, Colorado 80206, USA.
| | | | | | | |
Collapse
|
31
|
Griese M, Ramakers J, Krasselt A, Starosta V, Van Koningsbruggen S, Fischer R, Ratjen F, Müllinger B, Huber RM, Maier K, Rietschel E, Scheuch G. Improvement of alveolar glutathione and lung function but not oxidative state in cystic fibrosis. Am J Respir Crit Care Med 2004; 169:822-8. [PMID: 14726422 DOI: 10.1164/rccm.200308-1104oc] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chronic neutrophilic inflammation leads to oxidative damage, which may play an important role in the pathogenesis of cystic fibrosis lung disease. Bronchoalveolar lavage levels of the antioxidant glutathione are diminished in patients with cystic fibrosis. Here we evaluated the effects of glutathione aerosol on lower airway glutathione levels, lung function, and oxidative status. Pulmonary deposition of a radiolabeled monodisperse aerosol generated with a Pari LC Star nebulizer (Allergy Asthma Technology, Morton Grove, IL) connected to an AKITA inhalation device (Inamed, Gauting, Germany) was determined in six patients. In 17 additional patients bronchoalveolar lavage fluid was assessed before and after 14 days of inhalation with thrice-daily doses of 300 or 450 mg of glutathione. Intrathoracic deposition was 86.3 +/- 1.4% of the emitted dose. Glutathione concentration in lavage 1 hour postinhalation was increased three- to fourfold and was still almost doubled 12 hours postinhalation. FEV(1) transiently dropped after inhalation but increased compared with pretreatment values after 14 days (p < 0.001). This improvement was not related to the lavage content of oxidized proteins and lipids, which did not change with treatment. These results show that, using a new inhalation device with high efficacy, glutathione treatment of the lower airways is feasible. Reversion of markers of oxidative injury may need longer treatment, higher doses, or different types of antioxidants.
Collapse
Affiliation(s)
- Matthias Griese
- Department of Pediatric Ludwig -Maximilians-University, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|