1
|
Qin Y, Zhao W, Jia Z, Bauman WA, Peng Y, Guo XE, Chen Z, He Z, Cardozo CP, Wang D, Qin W. Neuroprotective macromolecular methylprednisolone prodrug nanomedicine prevents glucocorticoid-induced muscle atrophy and osteoporosis in a rat model of spinal cord injury. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 62:102773. [PMID: 38960364 PMCID: PMC11513243 DOI: 10.1016/j.nano.2024.102773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/06/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
To address the adverse side effects associated with systemic high-dose methylprednisolone (MP) therapy for acute spinal cord injury (SCI), we have developed a N-2-hydroxypropyl methacrylamide copolymer-based MP prodrug nanomedicine (Nano-MP). Intravenous Nano-MP selectively targeted to the inflamed SCI lesion and significantly improved neuroprotection and functional recovery after acute SCI. In the present study, we comprehensively assessed the potential adverse side effects associated with the treatment in the SCI rat models, including reduced body weight and food intake, impaired glucose metabolism, and reduced musculoskeletal mass and integrity. In contrast to free MP treatment, intravenous Nano-MP after acute SCI not only offered superior neuroprotection and functional recovery but also significantly mitigated or even eliminated the aforementioned adverse side effects. The superior safety features of Nano-MP observed in this study further confirmed the clinical translational potential of Nano-MP as a highly promising drug candidate for better clinical management of patients with acute SCI.
Collapse
Affiliation(s)
- Yiwen Qin
- Spinal Cord Damage Research Center, James J. Peters Veteran Affairs Medical Center, Bronx, NY, USA; GCM Grosvenor, New York, USA
| | - Wei Zhao
- Spinal Cord Damage Research Center, James J. Peters Veteran Affairs Medical Center, Bronx, NY, USA; Departments of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Zhenshan Jia
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - William A Bauman
- Departments of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA; Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuanzhen Peng
- Spinal Cord Damage Research Center, James J. Peters Veteran Affairs Medical Center, Bronx, NY, USA
| | - X Edward Guo
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Zihao Chen
- Departments of Biotechnology, Brown University, Providence, RI, USA
| | - Zhiming He
- College of Dentistry, New York University, NY, New York, USA
| | - Christopher P Cardozo
- Spinal Cord Damage Research Center, James J. Peters Veteran Affairs Medical Center, Bronx, NY, USA; Departments of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA; Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dong Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Weiping Qin
- Spinal Cord Damage Research Center, James J. Peters Veteran Affairs Medical Center, Bronx, NY, USA; Departments of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
2
|
Hoekstra S, King JA, Fenton J, Kirk N, Willis SA, Phillips SM, Webborn N, Tolfrey K, Bosch JDVD, Goosey‐Tolfrey VL. The effect of home-based neuromuscular electrical stimulation-resistance training and protein supplementation on lean mass in persons with spinal cord injury: A pilot study. Physiol Rep 2024; 12:e70073. [PMID: 39358836 PMCID: PMC11446856 DOI: 10.14814/phy2.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
In persons with a spinal cord injury (SCI), resistance training using neuromuscular electrical stimulation (NMES-RT) increases lean mass in the lower limbs. However, whether protein supplementation in conjunction with NMES-RT further enhances this training effect is unknown. In this randomized controlled pilot trial, 15 individuals with chronic SCI engaged in 3 times/week NMES-RT, with (NMES+PRO, n = 8) or without protein supplementation (NMES, n = 7), for 12 weeks. Before and after the intervention, whole body and regional body composition (DXA) and fasting glucose and insulin concentrations were assessed in plasma. Adherence to the intervention components was ≥96%. Thigh lean mass was increased to a greater extent after NMES+PRO compared to NMES (0.3 (0.2, 0.4) kg; p < 0.001). Furthermore, fasting insulin concentration and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) were decreased similarly in both groups (fasting insulin: 1 [-9, 11] pmol∙L-1; HOMA-IR: 0.1 [-0.3, 0.5] AU; both p ≥ 0.617). Twelve weeks of home-based NMES-RT increased thigh lean mass, an effect that was potentiated by protein supplementation. In combination with the excellent adherence and apparent improvement in cardiometabolic health outcomes, these findings support further investigation through a full-scale randomized controlled trial.
Collapse
Affiliation(s)
- Sven Hoekstra
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
- Department of Exercise and Sport ScienceSt. Mary's UniversitySan AntonioTexasUSA
- Department of Rehabilitation MedicineUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - James A. King
- School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
- National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of LeicesterLeicesterUK
| | - Jordan Fenton
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
- School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
| | - Natasha Kirk
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
- School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
| | - Scott A. Willis
- School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
- National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of LeicesterLeicesterUK
| | | | - Nick Webborn
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
| | - Keith Tolfrey
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
- School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
| | | | - Vicky L. Goosey‐Tolfrey
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
- School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
| |
Collapse
|
3
|
Alharbi A, Li J, Womack E, Farrow M, Yarar-Fisher C. The Effect of Lower Limb Combined Neuromuscular Electrical Stimulation on Skeletal Muscle Signaling for Glucose Utilization, Myofiber Distribution, and Metabolic Function after Spinal Cord Injury. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6958. [PMID: 37887696 PMCID: PMC10606374 DOI: 10.3390/ijerph20206958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/29/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Maintaining healthy myofiber type and metabolic function early after spinal cord injury (SCI) may prevent chronic metabolic disorders. This study compares the effects of a 2-5 week combined (aerobic + resistance) neuromuscular electrical stimulation (Comb-NMES) regimen versus a sham control treatment on muscle protein signaling for glucose uptake, myofiber type distribution, and metabolic function. Twenty participants (31 ± 9 years of age) with an SCI (C4-L1, AIS level A-C) within 14 days of the SCI were randomly assigned to control (N = 8) or Comb-NMES (N = 12). Sessions were given three times per week. Fasting blood samples and vastus lateralis muscle biopsies were collected 24-48 h before or after the last session. Western blots were performed to quantify proteins, immunohistochemical analyses determined muscle myofiber distribution, and enzymatic assays were performed to measure serum glucose, insulin, and lipids. Our main findings include a decrease in fasting glucose (p < 0.05) and LDL-C (p < 0.05) levels, an upregulation of CamKII and Hexokinase (p < 0.05), and an increase in type I (+9%) and a decrease in type IIx (-36%) myofiber distribution in response to Comb-NMES. Our findings suggest that maintaining healthy myofiber type and metabolic function may be achieved via early utilization of Comb-NMES.
Collapse
Affiliation(s)
- Amal Alharbi
- Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Jia Li
- Department of Physical Medicine and Rehabilitation, Ohio State University, Columbus, OH 43210, USA; (J.L.); (M.F.)
| | - Erika Womack
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS 39762, USA;
| | - Matthew Farrow
- Department of Physical Medicine and Rehabilitation, Ohio State University, Columbus, OH 43210, USA; (J.L.); (M.F.)
| | - Ceren Yarar-Fisher
- Department of Physical Medicine and Rehabilitation, Ohio State University, Columbus, OH 43210, USA; (J.L.); (M.F.)
- Department of Neuroscience, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Sanchez MJ, Mossayebi A, Sigaroodi S, Apaflo JN, Galvan MJ, Min K, Agullo FJ, Wagler A, Bajpeyi S. Effects of neuromuscular electrical stimulation on glycemic control: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2023; 14:1222532. [PMID: 37583429 PMCID: PMC10424918 DOI: 10.3389/fendo.2023.1222532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/12/2023] [Indexed: 08/17/2023] Open
Abstract
Background Physical inactivity increases the risk for metabolic diseases such as obesity and type 2 diabetes. Neuromuscular electrical stimulation (NMES) is an effective method to induce muscle contraction, particularly for populations with physical impairments and/or metabolic diseases. However, its effectiveness to improve glycemic control is unclear. This review aimed to determine the effectiveness of NMES on glycemic control. Methods Electronic search consisted of MEDLINE (PubMed), EMBASE, Cochrane Library, Google Scholar, and Web of Science to identify studies that investigated the effects of NMES on glycemic control for this systematic review. The meta-analysis consists of the studies designed as randomized controlled trials. Effect sizes were calculated as the standardized mean difference (SMD) and meta-analysis was conducted using a random-effects model. Results Thirty-five studies met the inclusion criteria for systematic review and of those, nine qualified for the meta-analysis. Existing evidence suggested that NMES effectively improves glycemic control predominantly in middle-aged and elderly population with type 2 diabetes, obesity, and spinal cord injury. The meta-analysis is comprised of 180 participants and reported that NMES intervention lowered fasting blood glucose (SMD: 0.48; 95% CI: 0.17 to 0.78; p=0.002; I²=0%). Additional analysis using the primary measures reported by each study to indicate glycemic control (i.e., OGTT, HOMA-IR, and fasting glucose) also confirmed a significant effect of NMES on improving glycemic control (SMD: 0.41; 95% CI, 0.09 to 0.72; p=0.01; I²=11%). NMES protocol varied across studies and requires standardization. Conclusion NMES could be considered as a therapeutic strategy to improve glycemic control in populations with physical impairments and/or metabolic disorders. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42020192491.
Collapse
Affiliation(s)
- Michael J. Sanchez
- Metabolic, Nutrition, and Exercise Research (MiNER) Laboratory, Department of Kinesiology, The University of Texas at El Paso, El Paso, TX, United States
| | - Ali Mossayebi
- Metabolic, Nutrition, and Exercise Research (MiNER) Laboratory, Department of Kinesiology, The University of Texas at El Paso, El Paso, TX, United States
| | - Solmaz Sigaroodi
- Metabolic, Nutrition, and Exercise Research (MiNER) Laboratory, Department of Kinesiology, The University of Texas at El Paso, El Paso, TX, United States
| | - Jehu N. Apaflo
- Metabolic, Nutrition, and Exercise Research (MiNER) Laboratory, Department of Kinesiology, The University of Texas at El Paso, El Paso, TX, United States
| | - Michelle J. Galvan
- Metabolic, Nutrition, and Exercise Research (MiNER) Laboratory, Department of Kinesiology, The University of Texas at El Paso, El Paso, TX, United States
| | - Kisuk Min
- Muscle Molecular Physiology Laboratory, Department of Kinesiology, The University of Texas at El Paso, El Paso, TX, United States
| | | | - Amy Wagler
- Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, TX, United States
| | - Sudip Bajpeyi
- Metabolic, Nutrition, and Exercise Research (MiNER) Laboratory, Department of Kinesiology, The University of Texas at El Paso, El Paso, TX, United States
| |
Collapse
|
5
|
Gorgey AS, Goldsmith JA, Khalil RE, Liu XH, Pan J, Cardozo C, Adler RA. Predictors of muscle hypertrophy responsiveness to electrically evoked resistance training after spinal cord injury. Eur J Appl Physiol 2023; 123:479-493. [PMID: 36305973 DOI: 10.1007/s00421-022-05069-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/08/2022] [Indexed: 11/03/2022]
Abstract
The purpose of the study was to identify potential predictors of muscle hypertrophy responsiveness following neuromuscular electrical stimulation resistance training (NMES-RT) in persons with chronic spinal cord injury (SCI). Data for twenty individuals with motor complete SCI who completed twice weekly NMES-RT lasting 12-16 weeks as part of their participation in one of two separate clinical trials were pooled and retrospectively analyzed. Magnetic resonance imaging (MRI) was used to measure muscle cross-sectional area (CSA) of the whole thigh and knee extensor muscle before and after NMES-RT. Muscle biopsies and fasting biomarkers were also measured. Following the completion of the respective NMES-RT trials, participants were classified into either high-responders (n = 8; muscle CSA > 20%) or low-responders (n = 12; muscle CSA < 20%) based on whole thigh muscle CSA hypertrophy. Whole thigh muscle and knee extensors CSAs were significantly greater (P < 0.0001) in high-responders (29 ± 7% and 47 ± 15%, respectively) compared to low-responders (12 ± 3% and 19 ± 6%, respectively). There were no differences in total caloric intake or macronutrient intake between groups. Extensor spasticity was lower in the high-responders compared to the low-responders as was the dosage of baclofen. Prior to the intervention, the high-responders had greater body mass compared to the low-responders with SCI (87.8 ± 13.7 vs. 70.4 ± 15.8 kg; P = 0.012), body mass index (BMI: 27.6 ± 2.7 vs. 22.9 ± 6.0 kg/m2; P = 0.04), as well as greater percentage in whole body and regional fat mass (P < 0.05). Furthermore, high-responders had a 69% greater increase (P = 0.086) in total Akt protein expression than low-responders. High-responders also exhibited reduced circulating IGF-1 with a concomitant increase in IGFBP-3. Exploratory analyses revealed upregulation of mRNAs for muscle hypertrophy markers [IRS-1, Akt, mTOR] and downregulation of protein degradation markers [myostatin, MurF-1, and PDK4] in the high-responders compared to low-responders. The findings indicate that body composition, spasticity, baclofen usage, and multiple signaling pathways (anabolic and catabolic) are involved in the differential muscle hypertrophy response to NMES-RT in persons with chronic SCI.
Collapse
Affiliation(s)
- Ashraf S Gorgey
- Spinal Cord Injury and Disorders Service, Central Virginia VA Health Care System, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA.
- Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA.
| | - Jacob A Goldsmith
- Spinal Cord Injury and Disorders Service, Central Virginia VA Health Care System, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - Refka E Khalil
- Spinal Cord Injury and Disorders Service, Central Virginia VA Health Care System, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - Xin-Hua Liu
- National Center for the Medical Consequences of Spinal Cord Injury and Medical and Surgical Service, James J Peters VA Medical Center, Bronx, NY, USA
- Department of Medicine, Icahn School of Medicine, New York, NY, USA
| | - Jiangping Pan
- National Center for the Medical Consequences of Spinal Cord Injury and Medical and Surgical Service, James J Peters VA Medical Center, Bronx, NY, USA
- Department of Medicine, Icahn School of Medicine, New York, NY, USA
| | - Christopher Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury and Medical and Surgical Service, James J Peters VA Medical Center, Bronx, NY, USA
- Department of Medicine, Icahn School of Medicine, New York, NY, USA
| | - Robert A Adler
- Endocrinology Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
- Endocrine Division, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| |
Collapse
|
6
|
Xu X, Talifu Z, Zhang CJ, Gao F, Ke H, Pan YZ, Gong H, Du HY, Yu Y, Jing YL, Du LJ, Li JJ, Yang DG. Mechanism of skeletal muscle atrophy after spinal cord injury: A narrative review. Front Nutr 2023; 10:1099143. [PMID: 36937344 PMCID: PMC10020380 DOI: 10.3389/fnut.2023.1099143] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Spinal cord injury leads to loss of innervation of skeletal muscle, decreased motor function, and significantly reduced load on skeletal muscle, resulting in atrophy. Factors such as braking, hormone level fluctuation, inflammation, and oxidative stress damage accelerate skeletal muscle atrophy. The atrophy process can result in skeletal muscle cell apoptosis, protein degradation, fat deposition, and other pathophysiological changes. Skeletal muscle atrophy not only hinders the recovery of motor function but is also closely related to many systemic dysfunctions, affecting the prognosis of patients with spinal cord injury. Extensive research on the mechanism of skeletal muscle atrophy and intervention at the molecular level has shown that inflammation and oxidative stress injury are the main mechanisms of skeletal muscle atrophy after spinal cord injury and that multiple pathways are involved. These may become targets of future clinical intervention. However, most of the experimental studies are still at the basic research stage and still have some limitations in clinical application, and most of the clinical treatments are focused on rehabilitation training, so how to develop more efficient interventions in clinical treatment still needs to be further explored. Therefore, this review focuses mainly on the mechanisms of skeletal muscle atrophy after spinal cord injury and summarizes the cytokines and signaling pathways associated with skeletal muscle atrophy in recent studies, hoping to provide new therapeutic ideas for future clinical work.
Collapse
Affiliation(s)
- Xin Xu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Zuliyaer Talifu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Chun-Jia Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Han Ke
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Yun-Zhu Pan
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Han Gong
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Hua-Yong Du
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yan Yu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Ying-Li Jing
- School of Rehabilitation, Capital Medical University, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Liang-Jie Du
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jian-Jun Li
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
- *Correspondence: Jian-Jun Li
| | - De-Gang Yang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- De-Gang Yang
| |
Collapse
|
7
|
Graham ZA, DeBerry JJ, Cardozo CP, Bamman MM. SS-31 does not prevent or reduce muscle atrophy 7 days after a 65 kdyne contusion spinal cord injury in young male mice. Physiol Rep 2022; 10:e15266. [PMID: 35611788 PMCID: PMC9131615 DOI: 10.14814/phy2.15266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 05/02/2023] Open
Abstract
Spinal cord injury (SCI) leads to major reductions in function, independent living, and quality of life. Disuse and paralysis from SCI leads to rapid muscle atrophy, with chronic muscle loss likely playing a role in the development of the secondary metabolic disorders often seen in those with SCI. Muscle disuse is associated with mitochondrial dysfunction. Previous evidence has suggested targeting the mitochondria with the tetrapeptide SS-31 is beneficial for muscle health in preclinical models that lead to mitochondrial dysfunction, such as cast immobilization or burn injury. We gave young male mice a sham (n = 8) or 65 kdyne thoracic contusion SCI with (n = 9) or without (n = 9) daily administration of 5.0 mg/kg SS-31. Hindlimb muscle mass and muscle bundle respiration were measured at 7 days post-SCI and molecular targets were investigated using immunoblotting, RT-qPCR, and metabolomics. SS-31 did not preserve body mass or hindlimb muscle mass 7 days post-SCI. SS-31 had no effect on soleus or plantaris muscle bundle respiration. SCI was associated with elevated levels of protein carbonylation, led to reduced protein expression of activated DRP1 and reductions in markers of mitochondrial fusion. SS-31 administration did result in reduced total DRP1 expression, as well as greater expression of inhibited DRP1. Gene expression of proinflammatory cytokines and their receptors were largely stable across groups, although SS-31 treatment led to greater mRNA expression of IL1B, TNF, and TNFRSF12A. In summation, SS-31 was not an efficacious treatment acutely after a moderate thoracic contusion SCI in young male mice.
Collapse
Affiliation(s)
- Zachary A. Graham
- Research ServiceBirmingham VA Medical CenterBirminghamAlabamaUSA
- Department of Cell, Developmental, and Integrative BiologyUABBirminghamAlabamaUSA
| | - Jennifer J. DeBerry
- Department of Anesthesiology and Perioperative MedicineUABBirminghamAlabamaUSA
| | - Christopher P. Cardozo
- Center for the Medical Consequences of Spinal Cord InjuryBronxNew YorkUSA
- Medical ServiceJames J. Peters VA Medical CenterBronxNew YorkUSA
- Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Marcas M. Bamman
- Research ServiceBirmingham VA Medical CenterBirminghamAlabamaUSA
- Department of Cell, Developmental, and Integrative BiologyUABBirminghamAlabamaUSA
- UAB Center for Exercise MedicineBirminghamAlabamaUSA
- Florida Institute for Human and Machine CognitionPensacolaFloridaUSA
| |
Collapse
|
8
|
McMillan DW, Maher JL, Jacobs KA, Mendez AJ, Nash MS, Bilzon JLJ. Effects of Exercise Mode on Postprandial Metabolism in Humans with Chronic Paraplegia. Med Sci Sports Exerc 2021; 53:1495-1504. [PMID: 33433151 DOI: 10.1249/mss.0000000000002593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE The purpose of this study was to assess the acute effects of exercise mode and intensity on postprandial macronutrient metabolism. METHODS Ten healthy men age 39 ± 10 yr with chronic paraplegia (13.2 ± 8.8 yr, ASIA A-C) completed three isocaloric bouts of upper-body exercise and a resting control. After an overnight fast, participants completed circuit resistance exercise (CRE) first and the following conditions in a randomized order, separated by >48 h: i) control (CON), ~45-min seated rest; ii) moderate-intensity continuous exercise (MICE), ~40-min arm cranking at a resistance equivalent to ~30% peak power output (PPO); and iii) high-intensity interval exercise (HIIE), ~30 min arm cranking with resistance alternating every 2 min between 10% PPO and 70% PPO. After each condition, participants completed a mixed-meal tolerance test consisting of a 2510-kJ liquid meal (35% fat, 50% carbohydrate, 15% protein). Blood and expired gas samples were collected at baseline and regular intervals for 150 min after a meal. RESULTS An interaction (P < 0.001) was observed, with rates of lipid oxidation elevated above CON in HIIE until 60 min after a meal and in CRE at all postprandial time points up to 150 min after a meal. Postprandial blood glycerol was greater in MICE (P = 0.020) and CRE (P = 0.001) compared with CON. Furthermore, nonesterified fatty acid area under the curve had a moderate-to-strong effect in CRE versus MICE and HIIE (Cohen's d = -0.76 and -0.50, respectively). CONCLUSIONS In persons with paraplegia, high-intensity exercise increased postprandial energy expenditure independent of the energy cost of exercise. Furthermore, exercise combining resistance and endurance modes (CRE) showed the greater effect on postprandial lipid oxidation.
Collapse
Affiliation(s)
| | - Jennifer L Maher
- Department for Health, University of Bath, Bath, Somerset, UNITED KINGDOM
| | - Kevin A Jacobs
- Department of Kinesiology and Sport Sciences, University of Miami, Miami, FL
| | - Armando J Mendez
- Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, FL
| | - Mark S Nash
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami FL
| | - James L J Bilzon
- Department for Health, University of Bath, Bath, Somerset, UNITED KINGDOM
| |
Collapse
|
9
|
Atkins KD, Bickel CS. Effects of functional electrical stimulation on muscle health after spinal cord injury. Curr Opin Pharmacol 2021; 60:226-231. [PMID: 34464934 DOI: 10.1016/j.coph.2021.07.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Spinal cord injury is a devastating condition interrupting voluntary movement and motor control. In response to unloading, skeletal muscle undergoes numerous adaptations, including rapid and profound atrophy, intramuscular fat accumulation, impaired muscular glucose metabolism and decreased force generation and muscle performance. Functional electrical stimulation (FES) involves electrically stimulating affected muscles to contract in a coordinated manner to create a functional movement or task. Effects of FES-cycling, rowing and resistance training on muscle health are described here. Briefly, FES-cycling and resistance training may slow muscle atrophy or facilitate muscle hypertrophy, and all modalities benefit muscle composition and performance to some extent. These interventions show promise as future rehabilitative tools after spinal cord injury.
Collapse
Affiliation(s)
- Kelly D Atkins
- Department of Physical Therapy, Samford University, Birmingham, AL, USA
| | - C Scott Bickel
- Department of Physical Therapy, Samford University, Birmingham, AL, USA.
| |
Collapse
|
10
|
McMillan DW, Astorino TA, Correa MA, Nash MS, Gater DR. Virtual Strategies for the Broad Delivery of High Intensity Exercise in Persons With Spinal Cord Injury: Ongoing Studies and Considerations for Implementation. Front Sports Act Living 2021; 3:703816. [PMID: 34423292 PMCID: PMC8377288 DOI: 10.3389/fspor.2021.703816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/08/2021] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) results in a multitude of metabolic co-morbidities that can be managed by exercise. As in the non-injured population, manipulation of exercise intensity likely allows for fruitful optimization of exercise interventions targeting metabolic health in persons with SCI. In this population, interventions employing circuit resistance training (CRT) exhibit significant improvements in outcomes including cardiorespiratory fitness, muscular strength, and blood lipids, and recent exploration of high intensity interval training (HIIT) suggests the potential of this strategy to enhance health and fitness. However, the neurological consequences of SCI result in safety considerations and constrain exercise approaches, resulting in the need for specialized exercise practitioners. Furthermore, transportation challenges, inaccessibility of exercise facilities, and other barriers limit the translation of high intensity "real world" exercise strategies. Delivering exercise via online ("virtual") platforms overcomes certain access barriers while allowing for broad distribution of high intensity exercise despite the limited number of population-specific exercise specialists. In this review, we initially discuss the need for "real world" high intensity exercise strategies in persons with SCI. We then consider the advantages and logistics of using virtual platforms to broadly deliver high intensity exercise in this population. Safety and risk mitigation are considered first followed by identifying strategies and technologies for delivery and monitoring of virtual high intensity exercise. Throughout the review, we discuss approaches from previous and ongoing trials and conclude by giving considerations for future efforts in this area.
Collapse
Affiliation(s)
- David W. McMillan
- Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis, UHealth/Jackson Memorial, Miami, FL, United States
- Department of Physical Medicine & Rehabilitation, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Todd A. Astorino
- Department of Kinesiology, California State University San Marcos, San Marcos, CA, United States
| | - Michael A. Correa
- Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis, UHealth/Jackson Memorial, Miami, FL, United States
| | - Mark S. Nash
- Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis, UHealth/Jackson Memorial, Miami, FL, United States
- Department of Physical Medicine & Rehabilitation, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - David R. Gater
- Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis, UHealth/Jackson Memorial, Miami, FL, United States
- Department of Physical Medicine & Rehabilitation, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
11
|
Li J, Morrow C, Barnes S, Wilson L, Womack ED, McLain A, Yarar-Fisher C. Gut microbiome composition and serum metabolome profile among individuals with spinal cord injury and normal glucose tolerance or prediabetes/type 2 diabetes. Arch Phys Med Rehabil 2021; 103:702-710. [PMID: 34126067 DOI: 10.1016/j.apmr.2021.03.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/16/2021] [Accepted: 03/28/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To compare the gut microbiome composition and serum metabolome profile among individuals with spinal cord injury (SCI) and normal glucose tolerance (NGT) or prediabetes/type 2 diabetes (P/DM). DESIGN Cross-sectional design. SETTING Research university. PARTICIPANTS A total of 25 adults with SCI were included in the analysis and categorized as NGT (n=16) or P/DM (n=9) based on their glucose concentration at minute 120 during a 75-g oral glucose tolerance test. The American Diabetes Association diagnosis guideline was used for grouping participants. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURE(S) A stool sample was collected and used to assess the gut microbiome composition (alpha and beta diversity, microbial abundance) via the 16s rRNA sequencing technique. A fasting serum sample was used for liquid chromatography-mass spectrometry-based untargeted metabolomics analysis, the results from which reflect the relative quantity of metabolites detected and identified. Gut microbiome and metabolomics data were analyzed by the Quantitative Insights into Microbial Ecology 2 and Metaboanalyst platforms, respectively. RESULTS Gut microbiome alpha diversity (Pielou's evenness index, Shannon's index) and beta diversity (weighted UniFrac distances) differed between groups. Compared with participants with NGT, participants with P/DM had less evenness in microbial communities. In particular, those with P/DM had a lower abundance of the Clostridiales order and higher abundance of the Akkermansia genus, as well as higher serum levels of gut-derived metabolites, including indoxyl sulfate and phenylacetylglutamine (P < 0.05 for all). CONCLUSION(S) Our results provide evidence for altered gut microbiome composition and dysregulation of gut-derived metabolites in participants with SCI and P/DM. Both indoxyl sulfate and phenylacetylglutamine have been implicated in the development of cardiovascular diseases in the able-bodied population. These findings may inform future investigations in the field of SCI and cardio-metabolic health.
Collapse
Affiliation(s)
- Jia Li
- Departments of Physical Medicine and Rehabilitation, the University of Alabama at Birmingham, Birmingham, Alabama
| | - Casey Morrow
- Department of Cell, Developmental and Integrative Biology, the University of Alabama at Birmingham, Alabama
| | - Stephen Barnes
- Department of Pharmacology and Toxicology, the University of Alabama at Birmingham, Birmingham, Alabama
| | - Landon Wilson
- Department of Pharmacology and Toxicology, the University of Alabama at Birmingham, Birmingham, Alabama
| | - Erika D Womack
- Departments of Physical Medicine and Rehabilitation, the University of Alabama at Birmingham, Birmingham, Alabama
| | - Amie McLain
- Departments of Physical Medicine and Rehabilitation, the University of Alabama at Birmingham, Birmingham, Alabama
| | - Ceren Yarar-Fisher
- Departments of Physical Medicine and Rehabilitation, the University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
12
|
Ochoa C, Cole M, Froehlich-Grobe K. Feasibility of an Internet-Based Intervention to Promote Exercise for People With Spinal Cord Injury: Observational Pilot Study. JMIR Rehabil Assist Technol 2021; 8:e24276. [PMID: 34106086 PMCID: PMC8235292 DOI: 10.2196/24276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND People with spinal cord injury (SCI) are less likely to be physically active and have higher chronic disease risk than those in the general population due to physical and metabolic changes that occur postinjury. Few studies have investigated approaches to promote increased physical activity (PA) for people with SCI despite evidence that they face unique barriers, including lack of accessible transportation and exercise equipment. To address these obstacles, we adapted an evidence-based phone-delivered intervention that promoted increased PA among people with SCI into a web-based platform, titled the Workout on Wheels internet intervention (WOWii). The adapted program provides participants with weekly skill-building information and activities, basic exercise equipment, and ongoing support through weekly group videoconferencing. OBJECTIVE This pilot study was conducted to assess the feasibility of using a web-based and virtual format to deliver the WOWii program in a randomized controlled trial. METHODS We assessed the feasibility of the web-based program by delivering an abbreviated, 4-week version to 10 participants with SCI. Rates of weekly videoconference attendance, activity completion, and exercise activity as tracked by an arm-based activity monitor were recorded for all participants. RESULTS Participants averaged 3.3 of 4 (83%) weekly group videoconferences attended, 3.4 of 4 (85%) web-based module activities completed, and 2.3 of 4 (58%) weeks of using the arm-based activity monitor. The majority of the sample (9/10, 90%) synced their arm-based PA monitor at least once, and overall engagement as an average of each component across the 4 weeks was 75%. CONCLUSIONS The intervention had sufficiently high levels of engagement to be used in a full randomized controlled trial to test its effectiveness in improving levels of PA among people with SCI. The knowledge we gained from this pilot study informed improvements that were made in the full randomized controlled trial.
Collapse
Affiliation(s)
- Christa Ochoa
- Baylor Scott & White Institute for Rehabilitation, Baylor Scott & White Research Institute, Baylor Scott & White Health, Dallas, TX, United States
| | - Maria Cole
- Baylor Scott & White Institute for Rehabilitation, Baylor Scott & White Research Institute, Baylor Scott & White Health, Dallas, TX, United States
| | - Katherine Froehlich-Grobe
- Baylor Scott & White Institute for Rehabilitation, Baylor Scott & White Research Institute, Baylor Scott & White Health, Dallas, TX, United States.,Craig Hospital, Englewood, CO, United States
| |
Collapse
|
13
|
Farkas GJ, Swartz AM, Gorgey AS, Berg AS, Gater DR. Acute exercise improves glucose effectiveness but not insulin sensitivity in paraplegia. Disabil Rehabil 2021; 44:4656-4662. [PMID: 33905292 DOI: 10.1080/09638288.2021.1913517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE To determine the effect of a single session of arm crank ergometry (ACE) exercise on carbohydrate metabolism immediately and 24 h after the exercise bout in paraplegia and able-bodied controls (ABC). METHODS Paraplegia (n = 11; 91% male; age 34.8 ± 11.4 years) and ABC (n = 6; 67% male; age 28.7 ± 11.9 years) underwent 45 min of ACE exercise at 75% VO2Peak. Glucose effectiveness (Sg) and insulin sensitivity (Si) were assessed. Data were analyzed with two-way mixed analysis of variance and Wilcoxon rank-sum or signed-rank post hoc test. RESULTS VO2Peak was lower in paraplegia versus ABC (22.3 ± 3.99 vs. 30.8 ± 2.9 ml/kg/min, p = 0.003). Si was lower paraplegia vs. ABC immediately following exercise (3.28 ± 1.6 vs. 5.30 ± 1.2 min-1/[µU/mL-1]x10-4, p = 0.023). In paraplegia, Sg was higher immediately after exercise than baseline (B: 0.021 ± 0.01 vs. I: 0.026 ± 0.01 min-1, p = 0.037). Twenty-four hours after exercise, Sg was lower than immediately following exercise (I: 0.026 ± 0.01 vs. 24: 0.017 ± 0.01 min-1, p = 0.001), but not different than baseline in paraplegia (B: 0.021 ± 0.01 vs. 24: 0.017 ± 0.01 min-1, p = 0.216). In the ABC group, Sg was not different at all timepoints (p > 0.05). Si did not differ at all timepoints (p > 0.05). CONCLUSION A single bout of ACE at 75% VO2Peak helped to acutely control glucose metabolism in those with paraplegia by increasing Sg by nearly 27%; however, this was not sustained past 24-hours. These data provide support for regular exercise engagement.Implications for RehabilitationDisorders of glucose metabolism have been reported at a greater prevalence in persons with spinal cord injury.A single bout of arm crank ergometry exercise at 75% VO2Peak helped to acutely control glucose metabolism persons with paraplegia; however, this was not sustained past 24 h.These data provide support for regular exercise engagement in persons with paraplegia.
Collapse
Affiliation(s)
- Gary J Farkas
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ann M Swartz
- Department of Kinesiology, University of Wisconsin Milwaukee, Milwaukee, WI, USA
| | - Ashraf S Gorgey
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - Arthur S Berg
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - David R Gater
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
14
|
Gordon PS, Farkas GJ, Gater DR. Neurogenic Obesity-Induced Insulin Resistance and Type 2 Diabetes Mellitus in Chronic Spinal Cord Injury. Top Spinal Cord Inj Rehabil 2021; 27:36-56. [PMID: 33814882 DOI: 10.46292/sci20-00063] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The population with SCI is at a significant risk for both insulin resistance and type 2 diabetes mellitus (T2DM) secondary to neurogenic obesity. The prevalence of insulin resistance and T2DM in persons with SCI suggests that disorders of carbohydrate metabolism are at epidemic proportions within the population. However, the true frequency of such disorders may be underestimated because biomarkers of insulin resistance and T2DM used from the population without SCI remain nonspecific and may in fact fail to identify true cases that would benefit from intervention. Furthermore, diet and exercise have been used to help mitigate neurogenic obesity, but results on disorders of carbohydrate metabolism remain inconsistent, likely because of the various ways carbohydrate metabolism is assessed. The objective of this article is to review current literature on the prevalence and likely mechanisms driving insulin resistance and T2DM in persons with SCI. This article also explores the various assessments and diagnostic criteria used for insulin resistance and T2DM and briefly discusses the effects of exercise and/or diet to mitigate disorders of carbohydrate metabolism brought on by neurogenic obesity.
Collapse
Affiliation(s)
- Phillip S Gordon
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, Florida
| | - Gary J Farkas
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, Florida
| | - David R Gater
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
15
|
McMillan DW, Maher JL, Jacobs KA, Nash MS, Gater DR. Exercise Interventions Targeting Obesity in Persons With Spinal Cord Injury. Top Spinal Cord Inj Rehabil 2021; 27:109-120. [PMID: 33814889 PMCID: PMC7983638 DOI: 10.46292/sci20-00058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Spinal cord injury (SCI) results in an array of cardiometabolic complications, with obesity being the most common component risk of cardiometabolic disease (CMD) in this population. Recent Consortium for Spinal Cord Medicine Clinical Practice Guidelines for CMD in SCI recommend physical exercise as a primary treatment strategy for the management of CMD in SCI. However, the high prevalence of obesity in SCI and the pleiotropic nature of this body habitus warrant strategies for tailoring exercise to specifically target obesity. In general, exercise for obesity management should aim primarily to induce a negative energy balance and secondarily to increase the use of fat as a fuel source. In persons with SCI, reductions in the muscle mass that can be recruited during activity limit the capacity for exercise to induce a calorie deficit. Furthermore, the available musculature exhibits a decreased oxidative capacity, limiting the utilization of fat during exercise. These constraints must be considered when designing exercise interventions for obesity management in SCI. Certain forms of exercise have a greater therapeutic potential in this population partly due to impacts on metabolism during recovery from exercise and at rest. In this article, we propose that exercise for obesity in SCI should target large muscle groups and aim to induce hypertrophy to increase total energy expenditure response to training. Furthermore, although carbohydrate reliance will be high during activity, certain forms of exercise might induce meaningful postexercise shifts in the use of fat as a fuel. General activity in this population is important for many components of health, but low energy cost of daily activities and limitations in upper body volitional exercise mean that exercise interventions targeting utilization and hypertrophy of large muscle groups will likely be required for obesity management.
Collapse
Affiliation(s)
- David W. McMillan
- Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis, UHealth/Jackson Memorial, Miami, Florida
- Department of Physical Medicine & Rehabilitation, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Jennifer L. Maher
- Department of Health, University of Bath, Claverton Down, Bath, United Kingdom
| | - Kevin A. Jacobs
- Department of Kinesiology and Sport Sciences, University of Miami, Coral Gables, Florida
| | - Mark S. Nash
- Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis, UHealth/Jackson Memorial, Miami, Florida
| | - David R. Gater
- Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis, UHealth/Jackson Memorial, Miami, Florida
| |
Collapse
|
16
|
Farkas GJ, Gorgey AS, Dolbow DR, Berg AS, Gater DR. Energy Expenditure, Cardiorespiratory Fitness, and Body Composition Following Arm Cycling or Functional Electrical Stimulation Exercises in Spinal Cord Injury: A 16-Week Randomized Controlled Trial. Top Spinal Cord Inj Rehabil 2021; 27:121-134. [PMID: 33814890 PMCID: PMC7983642 DOI: 10.46292/sci20-00065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: Physical deconditioning and inactivity following spinal cord injury (SCI) are associated with multiple cardiometabolic risks. To mitigate cardiometabolic risk, exercise is recommended, but it is poorly established whether arm cycling exercise (ACE) or functional electrical stimulation (FES) leg cycling yields superior benefits. Objectives: To determine the adaptations of 16 weeks of FES cycling and ACE on exercise energy expenditure (EEE), cardiorespiratory fitness (CRF), and obesity after SCI. Methods: Thirteen physically untrained individuals were randomly assigned to FES (n = 6) or ACE (n = 7) exercise 5 days/week for 16 weeks. Pre- and post-intervention EEE, peak oxygen consumption (absolute and relative VO2Peak), and work were assessed using indirect calorimetry, while body composition was measured by dual-energy x-ray absorptiometry. Results: Main effects were found for peak power (p < .001), absolute (p = .046) and relative (p = .042) VO2Peak, and peak work (p = .013). Compared to baseline, the ACE group increased in EEE (+85%, p = .002), peak power (+307%, p < .001), VO2Peak (absolute +21%, relative +22%, p ≤ .024), peak work (19% increase, p = .003), and total body fat decreased (-6%, p = .05). The FES group showed a decrease in percentage body fat mass (-5%, p = .008). The ACE group had higher EEE (p = .008), peak power (p < .001), and relative VO2Peak (p = .025) compared to postintervention values in the FES group. Conclusion: In the current study, ACE induced greater increases in EEE and CRF, whereas ACE and FES showed similar results on body fat. Exercise promotional efforts targeting persons with SCI should use both FES and ACE to reduce sedentary behavior and to optimize different health parameters after SCI.
Collapse
Affiliation(s)
- Gary J. Farkas
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, Florida
| | - Ashraf S. Gorgey
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
| | - David R. Dolbow
- Department of Physical Therapy, William Carey University, Hattiesburg, Mississippi
| | - Arthur S. Berg
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - David R. Gater
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
17
|
Gorgey AS, Graham ZA, Chen Q, Rivers J, Adler RA, Lesnefsky EJ, Cardozo CP. Sixteen weeks of testosterone with or without evoked resistance training on protein expression, fiber hypertrophy and mitochondrial health after spinal cord injury. J Appl Physiol (1985) 2020; 128:1487-1496. [PMID: 32352341 DOI: 10.1152/japplphysiol.00865.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We investigated the effects of testosterone replacement therapy (TRT) with and without evoked resistance training (RT) on protein expression of key metabolic and hypertrophy regulators, muscle fiber cross-sectional area (CSA), and markers of mitochondrial health after spinal cord injury (SCI). Twenty-two men with chronic motor complete SCI were randomly assigned to either TRT + RT (n = 11) or TRT (n = 11) for 16 wk. TRT + RT men underwent twice weekly progressive RT using electrical stimulation with ankle weights. TRT was administered via testosterone patches (2-6 mg/day). Muscle biopsies were obtained before and after 16 wk from the right vastus lateralis. Expression of proteins associated with oxidative muscles and mechanical loading (PGC-1α and FAK), muscle hypertrophy (total and phosphorylated Akt, total and phosphorylated mTOR), and cellular metabolism (total and phosphorylated AMPK and GLUT4) were evaluated. Immunohistochemistry analysis was performed to measure fiber CSA and succinate dehydrogenase (SDH) activity as well as mitochondrial citrate synthase (CS) activity and complex III (CIII) activities. TRT + RT demonstrated a robust 27.5% increase in average fiber CSA compared with a -9% decrease following TRT only (P = 0.01). GLUT4 protein expression was elevated in the TRT + RT group compared with TRT only (P = 0.005). Total Akt (P = 0.06) and phosphorylated Akt Ser389 (P = 0.049) were also elevated in the TRT + RT group. Mitochondrial activity of SDH (P = 0.03) and CS (P = 0.006) increased in the TRT + RT group, with no changes in the TRT-only group. Sixteen weeks of TRT with RT resulted in fiber hypertrophy and beneficial changes in markers of skeletal muscle health and function.NEW & NOTEWORTHY Fiber cross-sectional area (CSA), protein expression, mitochondrial citrate synthase (CS), and succinate dehydrogenase (SDH) were measured following 16 wk of low-dose testosterone replacement therapy (TRT) with and without electrically evoked resistance training (RT) in men with spinal cord injury (SCI). Fiber CSA and protein expression of total GLUT4, total Akt, and phosphorylated Akt increased following TRT + RT but not in the TRT-only group. Mitochondrial CS and SDH increased after TRT + RT but not in TRT-only group.
Collapse
Affiliation(s)
- Ashraf S Gorgey
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia.,Virginia Commonwealth University, Department of Physical Medicine and Rehabilitation, Richmond, Virginia
| | - Zachary A Graham
- Birmingham Veterans Affairs Medical Center, Birmingham, Alabama.,Department of Cell, Developmental, and Integrative Biology, University of Alabama-Birmingham, Birmingham, Alabama
| | - Qun Chen
- Medical Service, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia.,Division of Cardiology, Department of Internal Medicine, Pauley Heart Center Virginia Commonwealth University, Richmond, Virginia
| | - Jeannie Rivers
- Surgery Service, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia
| | - Robert A Adler
- Endocrinology Service, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia.,Endocrine Division, Virginia Commonwealth University School of Medicine¸ Richmond, Virginia
| | - Edward J Lesnefsky
- Medical Service, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia.,Division of Cardiology, Department of Internal Medicine, Pauley Heart Center Virginia Commonwealth University, Richmond, Virginia
| | - Christopher P Cardozo
- Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York.,Icahn School of Medicine at Mt. Sinai, New York, New York
| |
Collapse
|
18
|
A Review of Functional Electrical Stimulation Treatment in Spinal Cord Injury. Neuromolecular Med 2020; 22:447-463. [DOI: 10.1007/s12017-019-08589-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/28/2019] [Indexed: 12/11/2022]
|
19
|
Gorgey AS, Khalil RE, Davis JC, Carter W, Gill R, Rivers J, Khan R, Goetz LL, Castillo T, Lavis T, Sima AP, Lesnefsky EJ, Cardozo CC, Adler RA. Skeletal muscle hypertrophy and attenuation of cardio-metabolic risk factors (SHARC) using functional electrical stimulation-lower extremity cycling in persons with spinal cord injury: study protocol for a randomized clinical trial. Trials 2019; 20:526. [PMID: 31443727 PMCID: PMC6708188 DOI: 10.1186/s13063-019-3560-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/06/2019] [Indexed: 12/16/2022] Open
Abstract
Background Persons with spinal cord injury (SCI) are at heightened risks of developing unfavorable cardiometabolic consequences due to physical inactivity. Functional electrical stimulation (FES) and surface neuromuscular electrical stimulation (NMES)-resistance training (RT) have emerged as effective rehabilitation methods that can exercise muscles below the level of injury and attenuate cardio-metabolic risk factors. Our aims are to determine the impact of 12 weeks of NMES + 12 weeks of FES-lower extremity cycling (LEC) compared to 12 weeks of passive movement + 12 weeks of FES-LEC on: (1) oxygen uptake (VO2), insulin sensitivity, and glucose disposal in adults with SCI; (2) skeletal muscle size, intramuscular fat (IMF), and visceral adipose tissue (VAT); and (3) protein expression of energy metabolism, protein molecules involved in insulin signaling, muscle hypertrophy, and oxygen uptake and electron transport chain (ETC) activities. Methods/Design Forty-eight persons aged 18–65 years with chronic (> 1 year) SCI/D (AIS A-C) at the C5-L2 levels, equally sub-grouped by cervical or sub-cervical injury levels and time since injury, will be randomized into either the NMES + FES group or Passive + FES (control group). The NMES + FES group will undergo 12 weeks of evoked RT using twice-weekly NMES and ankle weights followed by twice-weekly progressive FES-LEC for an additional 12 weeks. The control group will undergo 12 weeks of passive movement followed by 12 weeks of progressive FES-LEC. Measurements will be performed at baseline (B; week 0), post-intervention 1 (P1; week 13), and post-intervention 2 (P2; week 25), and will include: VO2 measurements, insulin sensitivity, and glucose effectiveness using intravenous glucose tolerance test; magnetic resonance imaging to measure muscle, IMF, and VAT areas; muscle biopsy to measure protein expression and intracellular signaling; and mitochondrial ETC function. Discussion Training through NMES + RT may evoke muscle hypertrophy and positively impact oxygen uptake, insulin sensitivity, and glucose effectiveness. This may result in beneficial outcomes on metabolic activity, body composition profile, mitochondrial ETC, and intracellular signaling related to insulin action and muscle hypertrophy. In the future, NMES-RT may be added to FES-LEC to improve the workloads achieved in the rehabilitation of persons with SCI and further decrease muscle wasting and cardio-metabolic risks. Trial registration ClinicalTrials.gov, NCT02660073. Registered on 21 Jan 2016.
Collapse
Affiliation(s)
- Ashraf S Gorgey
- Spinal Cord Injury & Disorders Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA. .,Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA.
| | - Refka E Khalil
- Spinal Cord Injury & Disorders Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - John C Davis
- Spinal Cord Injury & Disorders Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - William Carter
- Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| | - Ranjodh Gill
- Endocrinology Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA.,Endocrine Division, School of Medicine Virginia Commonwealth University, Richmond, VA, USA
| | - Jeannie Rivers
- Endocrine Division, School of Medicine Virginia Commonwealth University, Richmond, VA, USA
| | - Rehan Khan
- Radiology Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - Lance L Goetz
- Spinal Cord Injury & Disorders Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA.,Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| | - Teodoro Castillo
- Spinal Cord Injury & Disorders Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA.,Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| | - Timothy Lavis
- Spinal Cord Injury & Disorders Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA.,Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| | - Adam P Sima
- Department of Biostatistics, School of Medicine Virginia Commonwealth University, Richmond, VA, USA
| | - Edward J Lesnefsky
- Cardiology Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA.,Division of Cardiology, Department of Internal Medicine, Pauley Heart Center Virginia Commonwealth University, Richmond, VA, USA
| | - Christopher C Cardozo
- Center for the Medical Consequences of Spinal Cord Injury, James J Peters VA Medical Center, Bronx, NY, USA.,Departments of Medicine and Rehabilitation Medicine, Icahn School of Medicine, New York, NY, USA
| | - Robert A Adler
- Endocrinology Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA.,Endocrine Division, School of Medicine Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
20
|
Graham K, Yarar-Fisher C, Li J, McCully KM, Rimmer JH, Powell D, Bickel CS, Fisher G. Effects of High-Intensity Interval Training Versus Moderate-Intensity Training on Cardiometabolic Health Markers in Individuals With Spinal Cord Injury: A Pilot Study. Top Spinal Cord Inj Rehabil 2019; 25:248-259. [PMID: 31548792 PMCID: PMC6743747 DOI: 10.1310/sci19-00042] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background: Recent studies in nondisabled individuals have demonstrated that low-volume high-intensity interval training (HIIT) can improve cardiometabolic health similar to moderate-intensity training (MIT) despite requiring 20% of the overall time commitment. To date, there have been no studies assessing the effects of HIIT for improving cardiometabolic health in individuals with SCI. Objectives: The primary purpose of this pilot study was to compare the effects of 6 weeks of low-volume HIIT vs MIT using arm crank ergometer exercise to improve body composition, cardiovascular fitness, glucose tolerance, blood lipids, and blood pressure in a cohort of individuals with longstanding SCI. Methods: Participants were randomized to 6 weeks of HIIT or MIT arm crank exercise training. Aerobic capacity, muscular strength, blood lipids, glucose tolerance, blood pressure, and body composition were assessed at baseline and 6 weeks post training. Results: Seven individuals (6 male, 1 female; n = 3 in MIT and n = 4 in HIIT; mean age 51.3 ± 10.5 years) with longstanding SCI completed the study. The preliminary findings from this pilot study demonstrated that individuals with SCI randomized to either 6 weeks of HIIT or MIT displayed improvements in (a) insulin sensitivity, (b) cardiovascular fitness, and (c) muscular strength (p < .05). However, MIT led to greater improvements in arm fat percent and chest press strength compared to HIIT (p < .05). Conclusion: No differences between MIT and HIIT were observed. Both conditions led to improvements in insulin sensitivity, aerobic capacity, muscle strength, and blood lipids in individuals with SCI. Future larger cohort studies are needed to determine if the shorter amount of time required from HIIT is preferable to current MIT exercise recommendations.
Collapse
Affiliation(s)
- Kyle Graham
- Department of Human Studies, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ceren Yarar-Fisher
- Department of Physical Medicine and Rehabilitation Science, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jia Li
- Department of Physical Medicine and Rehabilitation Science, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kevin M McCully
- Department of Kinesiology, University of Georgia, Athens, Georgia
| | - James H Rimmer
- UAB/Lakeshore Foundation Research Collaborative, Birmingham, Alabama
| | - Danille Powell
- Department of Physical Medicine and Rehabilitation Science, University of Alabama at Birmingham, Birmingham, Alabama
| | - C Scott Bickel
- Department of Physical Therapy, Samford University, Birmingham, Alabama
| | - Gordon Fisher
- Department of Human Studies, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
21
|
Differences in Glucose Metabolism Among Women With Spinal Cord Injury May Not Be Fully Explained by Variations in Body Composition. Arch Phys Med Rehabil 2018; 100:1061-1067.e1. [PMID: 30316957 DOI: 10.1016/j.apmr.2018.08.191] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/26/2018] [Accepted: 08/18/2018] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To investigate the differences in glucose metabolism among women with paraplegic, and tetraplegic spinal cord injury (SCI) in comparison to their able-bodied (AB) counterparts after adjusting for differences in body composition. DESIGN Cross-sectional study. After an overnight fast, each participant consumed a 75-g glucose solution for oral glucose tolerance test (OGTT). Blood glucose, insulin, and C-peptide concentrations were analyzed before and 30, 60, 90, and 120 minutes after ingesting glucose solution. Insulin sensitivity index (ISI) was estimated using the Matsuda index. Percentage fat mass (%FM) and total body lean mass (TBLM) were estimated using data from dual-energy x-ray absorptiometry. Visceral fat (VF) was quantified using computed tomography. Outcome measures were compared among groups using analysis of covariance with %FM (or VF) and TBLM as covariates. SETTING Research university. PARTICIPANTS Women (N=42) with SCI (tetraplegia: n=8; paraplegia: n=14) and their race-, body mass index-, and age-matched AB counterparts (n=20). INTERVENTIONS Not applicable. RESULTS At fasting, there was no difference in glucose homeostasis (glucose, insulin, C-peptide concentrations) among 3 groups of women. In contrast, glucose, insulin, and C-peptide concentrations at minute 120 during OGTT were higher in women with tetraplegia versus women with paraplegia and AB women (P<.05, adjusted for TBLM and %FM). In addition, women with tetraplegia had lower ISI (P<.05, adjusted for TBLM and %FM) versus AB women. These differences remained after adjusting for VF and TBLM. CONCLUSION Our study confirms that impaired glucose metabolism among women with tetraplegia may not be fully explained by changes in their body composition. Future studies exploring additional factors involved in glucose metabolism are warranted.
Collapse
|
22
|
Maher JL, McMillan DW, Nash MS. Exercise and Health-Related Risks of Physical Deconditioning After Spinal Cord Injury. Top Spinal Cord Inj Rehabil 2018; 23:175-187. [PMID: 29339894 DOI: 10.1310/sci2303-175] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A sedentary lifestyle occurring soon after spinal cord injury (SCI) may be in contrast to a preinjury history of active physical engagement and is thereafter associated with profound physical deconditioning sustained throughout the lifespan. This physical deconditioning contributes in varying degrees to lifelong medical complications, including accelerated cardiovascular disease, insulin resistance, osteopenia, and visceral obesity. Unlike persons without disability for whom exercise is readily available and easily accomplished, exercise options for persons with SCI are more limited. Depending on the level of injury, the metabolic responses to acute exercise may also be less robust than those accompanying exercise in persons without disability, the training benefits more difficult to achieve, and the risks of ill-considered exercise both greater and potentially irreversible. For exercise to ultimately promote benefit and not impose additional impairment, an understanding of exercise opportunities and risks if exercise is undertaken by those with SCI is important. The following monograph will thus address common medical challenges experienced by persons with SCI and typical modes and benefits of voluntary exercise conditioning.
Collapse
Affiliation(s)
- Jennifer L Maher
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida
| | - David W McMillan
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida.,Department of Kinesiology and Sports Sciences, University of Miami, Coral Gables, Florida
| | - Mark S Nash
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida.,Departments of Neurological Surgery and Physical Medicine & Rehabilitation, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
23
|
Li J, Polston KFL, Eraslan M, Bickel CS, Windham ST, McLain AB, Oster RA, Bamman MM, Yarar‐Fisher C. A high-protein diet or combination exercise training to improve metabolic health in individuals with long-standing spinal cord injury: a pilot randomized study. Physiol Rep 2018; 6:e13813. [PMID: 30156033 PMCID: PMC6113133 DOI: 10.14814/phy2.13813] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 11/24/2022] Open
Abstract
We compared the effects of an 8-week iso-caloric high-protein (HP) diet versus a combined exercise regimen (Comb-Ex) in individuals with long-standing spinal cord injury (SCI). Effects on metabolic profiles, markers of inflammation, and signaling proteins associated with glucose transporter 4 (GLUT-4) translocation in muscles were evaluated. Eleven participants with SCI completed the study (HP diet: n = 5; Comb-Ex: n = 6; 46 ± 8 years; C5-T12 levels; American Spinal Injury Association Impairment Scale A or B). The Comb-Ex regimen included upper body resistance training (RT) and neuromuscular electrical stimulation-induced-RT for paralytic quadriceps muscles, interspersed with high-intensity (80-90% VO2 peak) arm cranking exercises 3 days/week. The HP diet included ~30% total energy as protein (carbohydrate to protein ratio <1.5, ~30% energy from fat). Oral glucose tolerance tests and muscle biopsies of the vastus lateralis (VL) and deltoid muscles were performed before and after the trial. Fasting plasma glucose levels decreased in the Comb-Ex (P < 0.05) group compared to the HP-diet group. A decrease in areas under the curve for insulin and TNF-α concentrations was observed for all participants regardless of group assignment (time effect, P < 0.05). Although both groups exhibited a quantitative increase in insulin sensitivity as measured by the Matsuda Index, the change was clinically meaningful only in the HP diet group (HP diet: pre, 4.6; post, 11.6 vs. Comb-Ex: pre, 3.3; post, 4.6). No changes were observed in proteins associated with GLUT-4 translocation in VL or deltoid muscles. Our results suggest that the HP-diet and Comb-Ex regimen may improve insulin sensitivity and decrease TNF-α concentrations in individuals with SCI.
Collapse
Affiliation(s)
- Jia Li
- Physical Medicine and RehabilitationUniversity of Alabama at BirminghamBirminghamAlabama
| | - Keith F. L. Polston
- University of Tennessee Health Science Center College of MedicineMemphisTennessee
| | - Mualla Eraslan
- Physical Medicine and RehabilitationUniversity of Alabama at BirminghamBirminghamAlabama
| | - C. Scott Bickel
- Physical Therapy and RehabilitationSamford UniversityBirminghamAlabama
| | - Samuel T. Windham
- Department of SurgeryUniversity of Alabama at BirminghamBirminghamAlabama
- UAB Center for Exercise MedicineUniversity of Alabama at BirminghamBirminghamAlabama
| | - Amie B. McLain
- Physical Medicine and RehabilitationUniversity of Alabama at BirminghamBirminghamAlabama
- UAB Center for Exercise MedicineUniversity of Alabama at BirminghamBirminghamAlabama
| | - Robert A. Oster
- Division of Preventive MedicineDepartment of MedicineUniversity of Alabama at BirminghamBirminghamAlabama
| | - Marcas M. Bamman
- UAB Center for Exercise MedicineUniversity of Alabama at BirminghamBirminghamAlabama
- Department of Cell, Developmental, and Integrative BiologyUniversity of Alabama at BirminghamBirminghamAlabama
- Geriatric Research, Education, and Clinical CenterBirmingham VA Medical CenterBirminghamAlabama
| | - Ceren Yarar‐Fisher
- Physical Medicine and RehabilitationUniversity of Alabama at BirminghamBirminghamAlabama
- UAB Center for Exercise MedicineUniversity of Alabama at BirminghamBirminghamAlabama
| |
Collapse
|
24
|
Yarar-Fisher C, Polston KFL, Eraslan M, Henley KY, Kinikli GI, Bickel CS, Windham ST, McLain AB, Oster RA, Bamman MM. Paralytic and nonparalytic muscle adaptations to exercise training versus high-protein diet in individuals with long-standing spinal cord injury. J Appl Physiol (1985) 2018; 125:64-72. [PMID: 29494292 PMCID: PMC6086973 DOI: 10.1152/japplphysiol.01029.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/31/2018] [Accepted: 02/28/2018] [Indexed: 02/08/2023] Open
Abstract
This study compares the effects of an 8-wk isocaloric high-protein (HP) diet versus a combination exercise (Comb-Ex) regimen on paralytic vastus lateralis (VL) and nonparalytic deltoid muscle in individuals with long-standing spinal cord injury (SCI). Fiber-type distribution, cross-sectional area (CSA), levels of translation initiation signaling proteins (Erk-1/2, Akt, p70S6K1, 4EBP1, RPS6, and FAK), and lean thigh mass were analyzed at baseline and after the 8-wk interventions. A total of 11 participants (C5-T12 levels, 21.8 ± 6.3 yr postinjury; 6 Comb-Ex and 5 HP diet) completed the study. Comb-Ex training occurred 3 days/wk and consisted of upper body resistance training (RT) in addition to neuromuscular electrical stimulation (NMES)-induced-RT for paralytic VL muscle. Strength training was combined with high-intensity arm-cranking exercises (1-min intervals at 85-90%, V̇o2peak) for improving cardiovascular endurance. For the HP diet intervention, protein and fat each comprised 30%, and carbohydrate comprised 40% of total energy. Clinical tests and muscle biopsies were performed 24 h before and after the last exercise or diet session. The Comb-Ex intervention increased Type IIa myofiber distribution and CSA in VL muscle and Type I and IIa myofiber CSA in deltoid muscle. In addition, Comb-Ex increased lean thigh mass, V̇o2peak, and upper body strength ( P < 0.05). These results suggest that exercise training is required to promote favorable changes in paralytic and nonparalytic muscles in individuals with long-standing SCI, and adequate dietary protein consumption alone may not be sufficient to ameliorate debilitating effects of paralysis. NEW & NOTEWORTHY This study is the first to directly compare the effects of an isocaloric high-protein diet and combination exercise training on clinical and molecular changes in paralytic and nonparalytic muscles of individuals with long-standing spinal cord injury. Our results demonstrated that muscle growth and fiber-type alterations can best be achieved when the paralyzed muscle is sufficiently loaded via neuromuscular electrical stimulation-induced resistance training.
Collapse
Affiliation(s)
- Ceren Yarar-Fisher
- Physical Medicine and Rehabilitation, University of Alabama at Birmingham , Birmingham, Alabama
- University of Alabama at Birmingham Center for Exercise Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Keith F L Polston
- University of Tennessee Health Science Center College of Medicine , Memphis, Tennessee
| | - Mualla Eraslan
- Physical Medicine and Rehabilitation, University of Alabama at Birmingham , Birmingham, Alabama
| | - Kathryn Y Henley
- Physical Medicine and Rehabilitation, University of Alabama at Birmingham , Birmingham, Alabama
| | - Gizem I Kinikli
- Physical Therapy and Rehabilitation, Hacettepe University , Ankara , Turkey
| | - C Scott Bickel
- Physical Therapy and Rehabilitation, Samford University , Birmingham, Alabama
| | - Samuel T Windham
- Department of Surgery, University of Alabama at Birmingham , Birmingham, Alabama
- University of Alabama at Birmingham Center for Exercise Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Amie B McLain
- Physical Medicine and Rehabilitation, University of Alabama at Birmingham , Birmingham, Alabama
- University of Alabama at Birmingham Center for Exercise Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Robert A Oster
- Department of Medicine/Division of Preventive Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Marcas M Bamman
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham , Birmingham, Alabama
- University of Alabama at Birmingham Center for Exercise Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Geriatric Research, Education, and Clinical Center, Birmingham VA Medical Center , Birmingham, Alabama
| |
Collapse
|
25
|
Otzel DM, Lee J, Ye F, Borst SE, Yarrow JF. Activity-Based Physical Rehabilitation with Adjuvant Testosterone to Promote Neuromuscular Recovery after Spinal Cord Injury. Int J Mol Sci 2018; 19:E1701. [PMID: 29880749 PMCID: PMC6032131 DOI: 10.3390/ijms19061701] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 12/22/2022] Open
Abstract
Neuromuscular impairment and reduced musculoskeletal integrity are hallmarks of spinal cord injury (SCI) that hinder locomotor recovery. These impairments are precipitated by the neurological insult and resulting disuse, which has stimulated interest in activity-based physical rehabilitation therapies (ABTs) that promote neuromuscular plasticity after SCI. However, ABT efficacy declines as SCI severity increases. Additionally, many men with SCI exhibit low testosterone, which may exacerbate neuromusculoskeletal impairment. Incorporating testosterone adjuvant to ABTs may improve musculoskeletal recovery and neuroplasticity because androgens attenuate muscle loss and the slow-to-fast muscle fiber-type transition after SCI, in a manner independent from mechanical strain, and promote motoneuron survival. These neuromusculoskeletal benefits are promising, although testosterone alone produces only limited functional improvement in rodent SCI models. In this review, we discuss the (1) molecular deficits underlying muscle loss after SCI; (2) independent influences of testosterone and locomotor training on neuromuscular function and musculoskeletal integrity post-SCI; (3) hormonal and molecular mechanisms underlying the therapeutic efficacy of these strategies; and (4) evidence supporting a multimodal strategy involving ABT with adjuvant testosterone, as a potential means to promote more comprehensive neuromusculoskeletal recovery than either strategy alone.
Collapse
Affiliation(s)
- Dana M Otzel
- Brain Rehabilitation Research Center, Malcom Randall Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA.
| | - Jimmy Lee
- Research Service, Malcom Randall Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA.
| | - Fan Ye
- Research Service, Malcom Randall Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA.
| | - Stephen E Borst
- Department of Applied Physiology, Kinesiology and University of Florida College of Health and Human Performance, Gainesville, FL 32603, USA.
| | - Joshua F Yarrow
- Research Service, Malcom Randall Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA.
- Division of Endocrinology, Diabetes and Metabolism, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| |
Collapse
|
26
|
Gorgey AS, Khalil RE, Lester RM, Dudley GA, Gater DR. Paradigms of Lower Extremity Electrical Stimulation Training After Spinal Cord Injury. J Vis Exp 2018:57000. [PMID: 29443103 PMCID: PMC5912427 DOI: 10.3791/57000] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle atrophy, increased adiposity and reduced physical activity are key changes observed after spinal cord injury (SCI) and are associated with numerous cardiometabolic health consequences. These changes are likely to increase the risk of developing chronic secondary conditions and impact the quality of life in persons with SCI. Surface neuromuscular electrical stimulation evoked resistance training (NMES-RT) was developed as a strategy to attenuate the process of skeletal muscle atrophy, decrease ectopic adiposity, improve insulin sensitivity and enhance mitochondrial capacity. However, NMES-RT is limited to only a single muscle group. Involving multiple muscle groups of the lower extremities may maximize the health benefits of training. Functional electrical stimulation-lower extremity cycling (FES-LEC) allows for the activation of 6 muscle groups, which is likely to evoke greater metabolic and cardiovascular adaptation. Appropriate knowledge of the stimulation parameters is key to maximizing the outcomes of electrical stimulation training in persons with SCI. Adopting strategies for long-term use of NMES-RT and FES-LEC during rehabilitation may maintain the integrity of the musculoskeletal system, a pre-requisite for clinical trials aiming to restore walking after injury. The current manuscript presents a combined protocol using NMES-RT prior to FES-LEC. We hypothesize that muscles conditioned for 12 weeks prior to cycling will be capable of generating greater power, cycle against higher resistance and result in greater adaptation in persons with SCI.
Collapse
Affiliation(s)
- Ashraf S Gorgey
- Spinal Cord Injury and Disorders Service, Hunter Holmes McGuire VAMC; Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University;
| | - Refka E Khalil
- Spinal Cord Injury and Disorders Service, Hunter Holmes McGuire VAMC
| | - Robert M Lester
- Spinal Cord Injury and Disorders Service, Hunter Holmes McGuire VAMC
| | - Gary A Dudley
- Deceased, Department of Kinesiology, The University of Georgia
| | - David R Gater
- Department of Physical Medicine and Rehabilitation, Penn State Milton S. Hershey Medical Center
| |
Collapse
|
27
|
Li L, Shin H, Stampas A, Li X, Zhou P. Electrical impedance myography changes after incomplete cervical spinal cord injury: An examination of hand muscles. Clin Neurophysiol 2017; 128:2242-2247. [DOI: 10.1016/j.clinph.2017.08.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 08/01/2017] [Accepted: 08/20/2017] [Indexed: 12/14/2022]
|
28
|
Gorgey AS, Graham ZA, Bauman WA, Cardozo C, Gater DR. Abundance in proteins expressed after functional electrical stimulation cycling or arm cycling ergometry training in persons with chronic spinal cord injury. J Spinal Cord Med 2017; 40:439-448. [PMID: 27735783 PMCID: PMC5537961 DOI: 10.1080/10790268.2016.1229397] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
STUDY DESIGN Longitudinal design. OBJECTIVES The study determined the effects of two forms of exercise training on the abundance of two proteins, (glucose transporter-4 [GLUT-4], adenosine monophosphate kinase [AMPK]) involved in glucose utilization and the transcriptional coactivator that regulates the genes involved in energy metabolism and mitochondrial biogenesis (peroxisome proliferator-activated receptor (PPAR) coactivator 1 alpha [PGC-1α]), in muscles in men with chronic motor-complete spinal cord injury (SCI). SETTINGS Clinical trial at a Medical Center. METHODS Nine men with chronic motor-complete SCI participated in functional electrical stimulation lower extremity cycling (FES-LEC; n = 4) or arm cycling ergometer (arm-cycling ergometer [ACE]; n = 5) 5 days/week for 16 weeks. Whole body composition was measured by dual energy X-ray absorptiometry. An intravenous glucose tolerance test was performed to measure glucose effectiveness (Sg) and insulin sensitivity (Si). Muscle biopsies of the right vastus lateralis (VL) and triceps muscles were collected one week prior to and post the exercise training intervention. RESULTS Neither training intervention altered body composition or carbohydrate metabolism. GLUT-4 increased by 3.8 fold in the VL after FES training and increased 0.6 fold in the triceps after ACE training. PGC-1α increased by 2.3 fold in the VL after FES training and 3.8 fold in the triceps after ACE training. AMPK increased by 3.4 fold in the VL after FES training and in the triceps after ACE training. CONCLUSION FES-LEC and ACE training were associated with greater protein expressions in the trained muscles by effectively influencing the abundance of GLUT-4, AMPK and PGC-1α. Thus, FES-LEC training of paralyzed muscle can modulate protein expression similar to that of trained and innervated muscle.
Collapse
Affiliation(s)
- Ashraf S. Gorgey
- Spinal Cord Injury Service and Disorders; Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA,Department of Physical Medicine and Rehabilitation; Virginia Commonwealth University, Richmond, VA, USA,Correspondence to: Ashraf S. Gorgey, Director of Spinal Cord Injury Research, Department of Veterans Affairs, Hunter Holmes McGuire Medical Center, Spinal Cord Injury & Disorders Service, 1201 Broad Rock Boulevard, Richmond, VA 23249.
| | - Zachary A. Graham
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, USA,Icahn School of Medicine at Mt. Sinai, Medicine, New York City, NY, USA
| | - William A. Bauman
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, USA,Icahn School of Medicine at Mt. Sinai, Medicine, New York City, NY, USA
| | - Christopher Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, USA,Icahn School of Medicine at Mt. Sinai, Medicine, New York City, NY, USA
| | - David R. Gater
- Department of Physical Medicine and Rehabilitation, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
29
|
Fisher G, Windham ST, Griffin P, Warren JL, Gower BA, Hunter GR. Associations of human skeletal muscle fiber type and insulin sensitivity, blood lipids, and vascular hemodynamics in a cohort of premenopausal women. Eur J Appl Physiol 2017; 117:1413-1422. [PMID: 28497385 DOI: 10.1007/s00421-017-3634-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/04/2017] [Indexed: 02/06/2023]
Abstract
PURPOSE Cardiometabolic disease remains a leading cause of morbidity and mortality in developed nations. Consequently, identifying and understanding factors associated with underlying pathophysiological processes leading to chronic cardio metabolic conditions is critical. Metabolic health, arterial elasticity, and insulin sensitivity (SI) may impact disease risk, and may be determined in part by myofiber type. Therefore, the purpose of this study was to test the hypothesis that type I myofiber composition would be associated with high SI, greater arterial elasticity, lower blood pressure, and blood lipids; whereas, type IIx myofibers would be associated with lower SI, lower arterial elasticity, higher blood pressure, blood lipids. METHODS Muscle biopsies were performed on the vastus lateralis in 16 subjects (BMI = 27.62 ± 4.71 kg/m2, age = 32.24 ± 6.37 years, 43% African American). The distribution of type I, IIa, and IIx myofibers was determined via immunohistochemistry performed on frozen cross-sections. Pearson correlation analyses were performed to assess associations between myofiber composition, SI, arterial elasticity, blood pressure, and blood lipid concentrations. RESULTS The percentage of type I myofibers positively correlated with SI and negatively correlated with systolic blood pressure SBP, diastolic blood pressure, and mean arterial pressure (MAP); whereas, the percentage of type IIx myofibers were negatively correlated with SI and large artery elasticity, and positively correlated with LDL cholesterol, SBP, and MAP. CONCLUSIONS These data demonstrate a potential link between myofiber composition and cardiometabolic health outcomes in a cohort of premenopausal women. Future research is needed to determine the precise mechanisms in which myofiber composition impacts the pathophysiology of impaired glucose and lipid metabolism, as well as vascular dysfunction.
Collapse
Affiliation(s)
- Gordon Fisher
- Departments of Human Studies, University of Alabama at Birmingham, Birmingham, USA.
| | - Samuel T Windham
- Department of Surgery, University of Alabama at Birmingham, Birmingham, USA
| | - Perry Griffin
- Departments of Human Studies, University of Alabama at Birmingham, Birmingham, USA
| | - Jonathan L Warren
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, USA
| | - Barbara A Gower
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, USA
| | - Gary R Hunter
- Departments of Human Studies, University of Alabama at Birmingham, Birmingham, USA
| |
Collapse
|
30
|
Smith DL, Yarar-Fisher C. Contributors to Metabolic Disease Risk Following Spinal Cord Injury. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2016; 4:190-199. [PMID: 29276654 PMCID: PMC5737009 DOI: 10.1007/s40141-016-0124-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Spinal cord injury (SCI) induced changes in neurological function have significant impact on the metabolism and subsequent metabolic-related disease risk in injured individuals. This metabolic-related disease risk relationship is differential depending on the anatomic level and severity of the injury, with high level anatomic injuries contributing a greater risk of glucose and lipid dysregulation resulting in type 2 diabetes and cardiovascular disease risk elevation. Although alterations in body composition, particularly excess adiposity and its anatomical distribution in the visceral depot or ectopic location in non-adipose organs, is known to significantly contribute to metabolic disease risk, changes in fat mass and fat-free mass do not fully account for this elevated disease risk in subjects with SCI. There are other negative adaptations in body composition including reductions in skeletal muscle mass and alterations in muscle fiber type, in addition to significant reduction in physical activity, that contribute to a decline in metabolic rate and increased metabolic disease risk following SCI. Recent studies in adult humans suggest cold- and diet-induced thermogenesis through brown adipose tissue metabolism may be important for energy balance and substrate metabolism, and particularly sensitive to sympathetic nervous signaling. Considering the alterations that occur in the autonomic nervous system (SNS) (sympathetic and parasympathetic) following a SCI, significant dysfunction of brown adipose function is expected. This review will highlight metabolic alterations following SCI and integrate findings from brown adipose tissue studies as potential new areas of research to pursue.
Collapse
Affiliation(s)
- Daniel L. Smith
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham AL, 35294 USA
- Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham, Birmingham AL, 35294 USA
- Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham AL, 35294 USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham AL, 35294 USA
| | - Ceren Yarar-Fisher
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham AL, 35294 USA
- Department of Physical Medicine and Rehabilitation, University of Alabama at Birmingham, Birmingham AL, 35294 USA
- Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham AL, 35294 USA
| |
Collapse
|
31
|
Yarar-Fisher C, Bickel CS, Kelly NA, Stec MJ, Windham ST, McLain AB, Oster RA, Bamman MM. Heightened TWEAK-NF-κB signaling and inflammation-associated fibrosis in paralyzed muscles of men with chronic spinal cord injury. Am J Physiol Endocrinol Metab 2016; 310:E754-61. [PMID: 26931128 PMCID: PMC4888537 DOI: 10.1152/ajpendo.00240.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 02/18/2016] [Indexed: 12/17/2022]
Abstract
Individuals with long-standing spinal cord injury (SCI) often present with extreme muscle atrophy and impaired glucose metabolism at both the skeletal muscle and whole body level. Persistent inflammation and increased levels of proinflammatory cytokines in the skeletal muscle are potential contributors to dysregulation of glucose metabolism and atrophy; however, to date no study has assessed the effects of long-standing SCI on their expression or intracellular signaling in the paralyzed muscle. In the present study, we assessed the expression of genes (TNFαR, TNFα, IL-6R, IL-6, TWEAK, TWEAK R, atrogin-1, and MuRF1) and abundance of intracellular signaling proteins (TWEAK, TWEAK R, NF-κB, and p-p65/p-50/105) that are known to mediate inflammation and atrophy in skeletal muscle. In addition, based on the effects of muscle inflammation on promotion of skeletal muscle fibrosis, we assessed the degree of fibrosis between myofibers and fascicles in both groups. For further insight into the distribution and variability of muscle fiber size, we also analyzed the frequency distribution of SCI fiber size. Resting vastus lateralis (VL) muscle biopsy samples were taken from 11 men with long-standing SCI (≈22 yr) and compared with VL samples from 11 able-bodied men of similar age. Our results demonstrated that chronic SCI muscle has heightened TNFαR and TWEAK R gene expression and NF-κB signaling (higher TWEAK R and phospho-NF-κB p65) and fibrosis, along with substantial myofiber size heterogeneity, compared with able-bodied individuals. Our data suggest that the TWEAK/TWEAK R/NF-κB signaling pathway may be an important mediator of chronic inflammation and fibrotic adaptation in SCI muscle.
Collapse
Affiliation(s)
- Ceren Yarar-Fisher
- Department of Physical Medicine and Rehabilitation, UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - C Scott Bickel
- Physical Therapy, UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Neil A Kelly
- Departments of Cell, Developmental, and Integrative Biology, UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Michael J Stec
- Departments of Cell, Developmental, and Integrative Biology, UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Samuel T Windham
- Surgery, and UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Amie B McLain
- Department of Physical Medicine and Rehabilitation, UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Robert A Oster
- Medicine/Division of Preventive Medicine, University of Alabama at Birmingham (UAB), Birmingham, Alabama
| | - Marcas M Bamman
- Departments of Cell, Developmental, and Integrative Biology, Medicine/Division of Preventive Medicine, University of Alabama at Birmingham (UAB), Birmingham, Alabama; Geriatric Research, Education, and Clinical Center, Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
32
|
Graham ZA, Qin W, Harlow LC, Ross NH, Bauman WA, Gallagher PM, Cardozo CP. Focal adhesion kinase signaling is decreased 56 days following spinal cord injury in rat gastrocnemius. Spinal Cord 2015; 54:502-9. [PMID: 26481700 DOI: 10.1038/sc.2015.183] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/21/2015] [Accepted: 09/03/2015] [Indexed: 12/25/2022]
Abstract
STUDY DESIGN Descriptive study. OBJECTIVES The goal of this study was to determine the effects of spinal cord injury (SCI) on aspects of the focal adhesion kinase (FAK) signaling pathway 56 days post injury in rat gastrocnemius. SETTING This study was conducted in Bronx, NY, USA. METHODS Three-month-old male Wistar rats were exposed to either a sham surgery (n=10) or complete T4 spinal cord transection (n=10). Rats were killed 56 days following surgery and the muscle was collected. Following homogenization, proteins of the FAK pathway were analyzed by western immunoblotting or reverse transcription-qPCR. In addition, cellular markers for proteins that target the degradation of FAK were investigated. RESULTS SCI resulted in significantly lower levels of total and phosphorylated FAK, cSrc and p70S6k, and a trend for increased FRNK protein expression. SCI did not change levels of the α7 or β1 integrin subunits, total or phosphorylated ERK1/2, phosphorylated Akt and TSC2 or total p70S6k. SCI resulted in a greater expression of total Akt. mRNA expression of FAK and the α7 or β1 integrins remained unchanged between sham and SCI groups. Caspase-3/7 activity and Trim72 mRNA and protein expression remained unchanged following SCI. CONCLUSION SCI results in diminished FAK signaling and is independent of ERK1/2 and Akt. SCI has no effect on mRNA levels for genes encoding components of the focal adhesion 56 days after injury.
Collapse
Affiliation(s)
- Z A Graham
- James J. Peters Veterans Affairs Medical Center, National Center of Excellence for the Medical Consequences of Spinal Cord Injury, Bronx, NY, USA.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - W Qin
- James J. Peters Veterans Affairs Medical Center, National Center of Excellence for the Medical Consequences of Spinal Cord Injury, Bronx, NY, USA.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - L C Harlow
- James J. Peters Veterans Affairs Medical Center, National Center of Excellence for the Medical Consequences of Spinal Cord Injury, Bronx, NY, USA
| | - N H Ross
- James J. Peters Veterans Affairs Medical Center, National Center of Excellence for the Medical Consequences of Spinal Cord Injury, Bronx, NY, USA
| | - W A Bauman
- James J. Peters Veterans Affairs Medical Center, National Center of Excellence for the Medical Consequences of Spinal Cord Injury, Bronx, NY, USA.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - P M Gallagher
- Applied Physiology Laboratory, University of Kansas, Lawrence, KS, USA
| | - C P Cardozo
- James J. Peters Veterans Affairs Medical Center, National Center of Excellence for the Medical Consequences of Spinal Cord Injury, Bronx, NY, USA.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
33
|
Yarar-Fisher C, Bickel CS, Kelly NA, Windham ST, Mclain AB, Bamman MM. Mechanosensitivity may be enhanced in skeletal muscles of spinal cord-injured versus able-bodied men. Muscle Nerve 2014; 50:599-601. [PMID: 24668759 DOI: 10.1002/mus.24248] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2014] [Indexed: 12/20/2022]
Abstract
We investigated the effects of an acute bout of neuromuscular electrical stimulation-induced resistance exercise (NMES-RE) on intracellular signaling pathways involved in translation initiation and mechanical loading-induced muscle hypertrophy in spinal cord-injured (SCI) versus able-bodied (AB) individuals. AB and SCI individuals completed 90 isometric knee extension contractions at 30% of maximum voluntary or evoked contraction, respectively. Muscle biopsies were collected before, and 10 and 60 min after NMES-RE. Protein levels of α7- and β1-integrin, phosphorylated and total GSK-3α/β, S6K1, RPS6, 4EBP1, and FAK were assessed by immunoblotting. SCI muscle appears to be highly sensitive to muscle contraction even several years after the injury, and in fact it may be more sensitive to mechanical stress than AB muscle. Heightened signaling associated with muscle mechanosensitivity and translation initiation in SCI muscle may be an attempted compensatory response to offset elevated protein degradation in atrophied SCI muscle. .
Collapse
Affiliation(s)
- Ceren Yarar-Fisher
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | |
Collapse
|