1
|
Jakobsson J, Burtin C, Hedlund M, Boraxbekk CJ, Westman J, Karalija N, Stål P, Sandström T, Ruttens D, Gosker HR, De Brandt J, Nyberg A. Effects and mechanisms of supramaximal high-intensity interval training on extrapulmonary manifestations in people with and without chronic obstructive pulmonary disease (COPD-HIIT): study protocol for a multi-centre, randomized controlled trial. Trials 2024; 25:664. [PMID: 39375781 PMCID: PMC11460198 DOI: 10.1186/s13063-024-08481-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Beyond being a pulmonary disease, chronic obstructive pulmonary disease (COPD) presents with extrapulmonary manifestations including reduced cognitive, cardiovascular, and muscle function. While exercise training is the cornerstone in the non-pharmacological treatment of COPD, there is a need for new exercise training methods due to suboptimal adaptations when following traditional exercise guidelines, often applying moderate-intensity continuous training (MICT). In people with COPD, short-duration high-intensity interval training (HIIT) holds the potential to induce a more optimal stimulus for training adaptations while circumventing the ventilatory burden often associated with MICT in people with COPD. We aim to determine the effects of supramaximal HIIT and MICT on extrapulmonary manifestations in people with COPD compared to matched healthy controls. METHODS COPD-HIIT is a prospective, multi-centre, randomized, controlled trial with blinded assessors and data analysts, employing a parallel-group designed trial. In phase 1, we will investigate the effects and mechanisms of a 12-week intervention of supramaximal HIIT compared to MICT in people with COPD (n = 92) and matched healthy controls (n = 70). Participants will perform watt-based cycling two to three times weekly. In phase 2, we will determine how exercise training and inflammation impact the trajectories of neurodegeneration, in people with COPD, over 24 months. In addition to the 92 participants with COPD performing HIIT or MICT, a usual care group (n = 46) is included in phase 2. In both phases, the primary outcomes are a change from baseline in cognitive function, cardiorespiratory fitness, and muscle power. Key secondary outcomes include change from baseline exercise tolerance, brain structure, and function measured by MRI, neuroinflammation measured by PET/CT, systemic inflammation, and intramuscular adaptations. Feasibility of the interventions will be comprehensively investigated. DISCUSSION The COPD-HIIT trial will determine the effects of supramaximal HIIT compared to MICT in people with COPD and healthy controls. We will provide evidence for a novel exercise modality that might overcome the barriers associated with MICT in people with COPD. We will also shed light on the impact of exercise at different intensities to reduce neurodegeneration. The goal of the COPD-HIIT trial is to improve the treatment of extrapulmonary manifestations of the disease. TRIAL REGISTRATION Clinicaltrials.gov: NCT06068322. Prospectively registered on 2023-09-28.
Collapse
Affiliation(s)
- Johan Jakobsson
- Section of Physiotherapy, Department of Community Medicine and Rehabilitation, Umeå University, Umeå, 901 87, Sweden.
| | - Chris Burtin
- REVAL - Rehabilitation Research Center, BIOMED - Biomedical Research Institute, Hasselt University, Diepenbeek, 3590, Belgium
| | - Mattias Hedlund
- Section of Physiotherapy, Department of Community Medicine and Rehabilitation, Umeå University, Umeå, 901 87, Sweden
| | - Carl-Johan Boraxbekk
- Umeå Centre for Functional Brain Imaging (UFBI), Umeå University, Umeå, 901 87, Sweden
- Diagnostic Radiology, Department of Radiation Sciences, Umeå University, Umeå, 901 87, Sweden
- Institute of Sports Medicine Copenhagen (ISMC) and Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, 2400, Denmark
- Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Jonas Westman
- Section of Physiotherapy, Department of Community Medicine and Rehabilitation, Umeå University, Umeå, 901 87, Sweden
| | - Nina Karalija
- Umeå Centre for Functional Brain Imaging (UFBI), Umeå University, Umeå, 901 87, Sweden
- Department of Medical and Translational Biology, Umeå University, Umeå, 901 87, Sweden
| | - Per Stål
- Department of Medical and Translational Biology, Umeå University, Umeå, 901 87, Sweden
| | - Thomas Sandström
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, 901 87, Sweden
| | - David Ruttens
- Department of Respiratory Medicine, Ziekenhuis Oost-Limburg, Genk, 3600, Belgium
- Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, 3590, Belgium
| | - Harry R Gosker
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Jana De Brandt
- Section of Physiotherapy, Department of Community Medicine and Rehabilitation, Umeå University, Umeå, 901 87, Sweden
| | - André Nyberg
- Section of Physiotherapy, Department of Community Medicine and Rehabilitation, Umeå University, Umeå, 901 87, Sweden
| |
Collapse
|
2
|
Kathia MM, Duplea SG, Bommarito JC, Hinks A, Leake E, Shannon J, Pitman J, Khangura PK, Coates AM, Slysz JT, Katerberg C, McCarthy DG, Beedie T, Malcolm R, Witton LA, Connolly BS, Burr JF, Vallis LA, Power GA, Millar PJ. High-intensity interval versus moderate-intensity continuous cycling training in Parkinson's disease: a randomized trial. J Appl Physiol (1985) 2024; 137:603-615. [PMID: 39008618 DOI: 10.1152/japplphysiol.00219.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
Exercise training is recommended to improve the quality of life in those living with Parkinson's disease (PD); however, the optimal prescription to improve cardiorespiratory fitness and disease-related motor symptoms remains unknown. Twenty-nine participants with PD were randomly allocated to either 10 wk of high-intensity interval training (HIIT) (n = 15; 6 female) or moderate-intensity continuous training (MICT) (n = 14; 5 female). The primary outcome was the change in maximal oxygen consumption (V̇o2peak). Secondary outcomes included changes in the Unified Parkinson's Disease Rating Scale (UPDRS) Part III motor score, Parkinson's Fatigue Scale (PFS)-16, resting and exercise cardiovascular measures, gait, balance, and knee extensor strength and fatigability. Exercise training increased V̇o2peak (main effect of time, P < 0.01), with a clinically meaningful difference in the change following HIIT versus MICT (Δ3.7 ± 3.7 vs. 1.7 ± 3.2 mL·kg-1·min-1, P = 0.099). The UPDRS motor score improved over time (P < 0.001) but without any differences between HIIT versus MICT (Δ-9.7 ± 1.3 vs. -8.4 ± 1.4, P = 0.51). Self-reported subjective fatigue (PFS-16) decreased over time (P < 0.01) but was similar between HIIT and MICT groups (P = 0.6). Gait, balance, blood pressure (BP), and heart rate (HR) were unchanged with training (all P > 0.09). Knee extensor strength increased over time (P = 0.03) but did not differ between HIIT versus MICT (Δ8.2 ± 5.9 vs. 11.7 ± 6.2 Nm, P = 0.69). HIIT alone increased the muscular endurance of the knee extensors during an isotonic fatigue task to failure (P = 0.04). In participants with PD, HIIT and MICT both increased V̇o2peak and led to improvements in motor symptoms and perceived fatigue; HIIT may offer the potential for larger changes in V̇o2peak and reduced knee extensor fatigability.NEW & NOTEWORTHY The optimal exercise prescription to improve cardiorespiratory fitness and disease-related motor symptoms in adults with Parkinson's disease remains unknown. In a single-center randomized trial consisting of either 10 wk of high-intensity interval training (HIIT) or moderate-intensity continuous training (MICT), we found that both training modes increased V̇o2peak, with a larger clinically meaningful difference following HIIT. Both exercise modes improved motor symptoms and subjective fatigue, whereas HIIT increased the muscular endurance of the knee extensors.
Collapse
Affiliation(s)
- Muhammad M Kathia
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Sergiu-Gabriel Duplea
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Julian C Bommarito
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Avery Hinks
- Neuromechanical Performance Research Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Elira Leake
- Neuromechanical Performance Research Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Julia Shannon
- Gait Biomechanics Laboratory, Department of Human Health & Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jenna Pitman
- Gait Biomechanics Laboratory, Department of Human Health & Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Pardeep K Khangura
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
- Neuromechanical Performance Research Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Alexandra M Coates
- Human Performance and Health Research Laboratory, Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Joshua T Slysz
- Human Performance and Health Research Laboratory, Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Carlin Katerberg
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Devin G McCarthy
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
- Human Performance and Health Research Laboratory, Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Taylor Beedie
- Neuromechanical Performance Research Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Rhianna Malcolm
- Gait Biomechanics Laboratory, Department of Human Health & Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | | | - Barbara S Connolly
- Division of Neurology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jamie F Burr
- Human Performance and Health Research Laboratory, Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Lori Ann Vallis
- Gait Biomechanics Laboratory, Department of Human Health & Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Geoffrey A Power
- Neuromechanical Performance Research Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Philip J Millar
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
3
|
Yue T, Liu L, Nitsche MA, Kong Z, Zhang M, Qi F. Effects of high-intensity interval training combined with dual-site transcranial direct current stimulation on inhibitory control and working memory in healthy adults. Hum Mov Sci 2024; 96:103240. [PMID: 38875731 DOI: 10.1016/j.humov.2024.103240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/06/2024] [Accepted: 05/30/2024] [Indexed: 06/16/2024]
Abstract
Transcranial direct current stimulation (tDCS) and high-intensity interval training (HIIT) have been demonstrated to enhance inhibitory control and working memory (WM) performance in healthy adults. However, the potential benefits of combining these two interventions have been rarely explored and remain largely speculative. This study aimed to explore the effects of acute HIIT combined with dual-site tDCS over the dorsolateral prefrontal cortex (DLPFC, F3 and F4) on inhibitory control and WM in healthy young adults. Twenty-five healthy college students (20.5 ± 1.3 years; 11 females) were recruited to complete HIIT + tDCS, HIIT + sham-tDCS, rest + tDCS, and rest + sham-tDCS (CON) sessions in a randomized crossover design. tDCS or sham-tDCS was conducted after completing HIIT or a rest condition of the same duration. The Stroop and 2-back tasks were used to evaluate the influence of this combined intervention on cognitive tasks involving inhibitory control and WM performance in post-trials, respectively. Response times (RTs) of the Stroop task significantly improved in the HIIT + tDCS session compared to the CON session across all conditions (all p values <0.05), in the HIIT + tDCS session compared to the rest + tDCS session in the congruent and neutral conditions (all p values <0.05), in the HIIT + sham-tDCS session compared to the CON session in the congruent and neutral conditions (all p values <0.05), in the HIIT + sham-tDCS session compared to the rest + tDCS session in the congruent condition (p = 0.015). No differences were found between sessions in composite score of RT and accuracy in the Stroop task (all p values >0.05) and in the 2-back task reaction time and accuracy (all p values >0.05). We conclude that acute HIIT combined with tDCS effectively improved inhibitory control but it failed to yield cumulative benefits on inhibitory control and WM in healthy adults. These preliminary findings help to identify beneficial effects of combined interventions on cognitive performance and might guide future research with clinical populations.
Collapse
Affiliation(s)
- Tian Yue
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China; Sports, Exercise and Brain Sciences Laboratory, Sports Coaching College, Beijing Sport University, Beijing 100084, China
| | - Liang Liu
- School of Design, Jianghan University, Wuhan 430056, China
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund 44139, Germany; University Clinic of Psychiatry and Psychotherapy, Protestant Hospital of Bethel Foundation, University Hospital OWL, Bielefeld University, Bielefeld 33615, Germany; German Centre for Mental Health (DZPG), Bochum, Germany
| | - Zhaowei Kong
- Faculty of Education, University of Macau, Taipa, Macau, China
| | - Ming Zhang
- China Volleyball College, Beijing Sport University, Beijing 100084, China.
| | - Fengxue Qi
- Sports, Exercise and Brain Sciences Laboratory, Sports Coaching College, Beijing Sport University, Beijing 100084, China.
| |
Collapse
|
4
|
Wang M, Hua Y, Bai Y. A review of the application of exercise intervention on improving cognition in patients with Alzheimer's disease: mechanisms and clinical studies. Rev Neurosci 2024; 0:revneuro-2024-0046. [PMID: 39029521 DOI: 10.1515/revneuro-2024-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, leading to sustained cognitive decline. An increasing number of studies suggest that exercise is an effective strategy to promote the improvement of cognition in AD. Mechanisms of the benefits of exercise intervention on cognitive function may include modulation of vascular factors by affecting cardiovascular risk factors, regulating cardiorespiratory health, and enhancing cerebral blood flow. Exercise also promotes neurogenesis by stimulating neurotrophic factors, affecting neuroplasticity in the brain. Additionally, regular exercise improves the neuropathological characteristics of AD by improving mitochondrial function, and the brain redox status. More and more attention has been paid to the effect of Aβ and tau pathology as well as sleep disorders on cognitive function in persons diagnosed with AD. Besides, there are various forms of exercise intervention in cognitive improvement in patients with AD, including aerobic exercise, resistance exercise, and multi-component exercise. Consequently, the purpose of this review is to summarize the findings of the mechanisms of exercise intervention on cognitive function in patients with AD, and also discuss the application of different exercise interventions in cognitive impairment in AD to provide a theoretical basis and reference for the selection of exercise intervention in cognitive rehabilitation in AD.
Collapse
Affiliation(s)
- Man Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai 200040, China
- Department of Rehabilitation Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yan Hua
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai 200040, China
| | - Yulong Bai
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai 200040, China
| |
Collapse
|
5
|
Caldarelli M, Rio P, Marrone A, Ocarino F, Chiantore M, Candelli M, Gasbarrini A, Gambassi G, Cianci R. Gut-Brain Axis: Focus on Sex Differences in Neuroinflammation. Int J Mol Sci 2024; 25:5377. [PMID: 38791415 PMCID: PMC11120930 DOI: 10.3390/ijms25105377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, there has been a growing interest in the concept of the "gut-brain axis". In addition to well-studied diseases associated with an imbalance in gut microbiota, such as cancer, chronic inflammation, and cardiovascular diseases, research is now exploring the potential role of gut microbial dysbiosis in the onset and development of brain-related diseases. When the function of the intestinal barrier is altered by dysbiosis, the aberrant immune system response interacts with the nervous system, leading to a state of "neuroinflammation". The gut microbiota-brain axis is mediated by inflammatory and immunological mechanisms, neurotransmitters, and neuroendocrine pathways. This narrative review aims to illustrate the molecular basis of neuroinflammation and elaborate on the concept of the gut-brain axis by virtue of analyzing the various metabolites produced by the gut microbiome and how they might impact the nervous system. Additionally, the current review will highlight how sex influences these molecular mechanisms. In fact, sex hormones impact the brain-gut microbiota axis at different levels, such as the central nervous system, the enteric nervous one, and enteroendocrine cells. A deeper understanding of the gut-brain axis in human health and disease is crucial to guide diagnoses, treatments, and preventive interventions.
Collapse
Affiliation(s)
- Mario Caldarelli
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Pierluigi Rio
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Andrea Marrone
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Francesca Ocarino
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Monica Chiantore
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Marcello Candelli
- Department of Emergency, Anesthesiological and Reanimation Sciences, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Giovanni Gambassi
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| |
Collapse
|
6
|
Curtin D, Taylor EM, Bellgrove MA, Chong TTJ, Coxon JP. Dopamine D2 Receptor Modulates Exercise Related Effect on Cortical Excitation/Inhibition and Motor Skill Acquisition. J Neurosci 2024; 44:e2028232024. [PMID: 38553046 PMCID: PMC11079968 DOI: 10.1523/jneurosci.2028-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 05/12/2024] Open
Abstract
Exercise is known to benefit motor skill learning in health and neurological disease. Evidence from brain stimulation, genotyping, and Parkinson's disease studies converge to suggest that the dopamine D2 receptor, and shifts in the cortical excitation and inhibition (E:I) balance, are prime candidates for the drivers of exercise-enhanced motor learning. However, causal evidence using experimental pharmacological challenge is lacking. We hypothesized that the modulatory effect of the dopamine D2 receptor on exercise-induced changes in the E:I balance would determine the magnitude of motor skill acquisition. To test this, we measured exercise-induced changes in excitation and inhibition using paired-pulse transcranial magnetic stimulation (TMS) in 22 healthy female and male humans, and then had participants learn a novel motor skill-the sequential visual isometric pinch task (SVIPT). We examined the effect of D2 receptor blockade (800 mg sulpiride) on these measures within a randomized, double-blind, placebo-controlled design. Our key result was that motor skill acquisition was driven by an interaction between the D2 receptor and E:I balance. Specifically, poorer skill learning was related to an attenuated shift in the E:I balance in the sulpiride condition, whereas this interaction was not evident in placebo. Our results demonstrate that exercise-primed motor skill acquisition is causally influenced by D2 receptor activity on motor cortical circuits.
Collapse
Affiliation(s)
- Dylan Curtin
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria 3800, Australia
| | - Eleanor M Taylor
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria 3800, Australia
| | - Mark A Bellgrove
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria 3800, Australia
| | - Trevor T-J Chong
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria 3800, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria 3004, Australia
- Department of Clinical Neurosciences, St Vincent's Hospital, Melbourne, Victoria 3065, Australia
| | - James P Coxon
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
7
|
Ceylan Hİ, Silva AF, Ramirez-Campillo R, Murawska-Ciałowicz E. Exploring the Effect of Acute and Regular Physical Exercise on Circulating Brain-Derived Neurotrophic Factor Levels in Individuals with Obesity: A Comprehensive Systematic Review and Meta-Analysis. BIOLOGY 2024; 13:323. [PMID: 38785805 PMCID: PMC11117522 DOI: 10.3390/biology13050323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Obesity is a major global health concern linked to cognitive impairment and neurological disorders. Circulating brain-derived neurotrophic factor (BDNF), a protein crucial for neuronal growth and survival, plays a vital role in brain function and plasticity. Notably, obese individuals tend to exhibit lower BDNF levels, potentially contributing to cognitive decline. Physical exercise offers health benefits, including improved circulating BDNF levels and cognitive function, but the specific impacts of acute versus regular exercise on circulating BDNF levels in obesity are unclear. Understanding this can guide interventions to enhance brain health and counter potential cognitive decline in obese individuals. Therefore, this study aimed to explore the impact of acute and regular physical exercise on circulating BDNF in individuals with obesity. The target population comprised individuals classified as overweight or obese, encompassing both acute and chronic protocols involving all training methods. A comprehensive search was conducted across computerized databases, including PubMed, Academic Search Complete, and Web of Science, in August 2022, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Initially, 98 studies were identified, from which 16 studies, comprising 23 trials, met the selection criteria. Substantial heterogeneity was observed for both acute (I2 = 80.4%) and long-term effects (I2 = 88.7%), but low risk of bias for the included studies. A single session of exercise increased circulating BDNF levels among obese patients compared to the control group (ES = 1.25, 95% CI = 0.19 to 2.30, p = 0.021). However, with extended periods of physical exercise, there was no significant increase in circulating BDNF levels when compared to the control group (ES = 0.49, 95% CI = -0.08 to 1.06, p = 0.089). These findings highlight the need to consider exercise duration and type when studying neurobiological responses in obesity and exercise research. The study's results have implications for exercise prescription in obesity management and highlight the need for tailored interventions to optimize neurotrophic responses. Future research should focus on elucidating the adaptive mechanisms and exploring novel strategies to enhance BDNF modulation through exercise in this population. However, further research is needed considering limitations such as the potential age-related confounding effects due to diverse participant ages, lack of sex-specific analyses, and insufficient exploration of how specific exercise parameters (e.g., duration, intensity, type) impact circulating BDNF.
Collapse
Affiliation(s)
- Halil İbrahim Ceylan
- Physical Education and Sports Teaching Department, Kazim Karabekir Faculty of Education, Ataturk University, 25240 Erzurum, Turkey
| | - Ana Filipa Silva
- Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal
- Research Center in Sports Performance, Recreation, Innovation and Technology (SPRINT), 4960-320 Melgaço, Portugal
| | - Rodrigo Ramirez-Campillo
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago de Chile 7591538, Chile;
| | - Eugenia Murawska-Ciałowicz
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, Wrocław University of Health and Sport Sciences, 51-612 Wrocław, Poland;
| |
Collapse
|
8
|
Montero-Almagro G, Bernal-Utrera C, Geribaldi-Doldán N, Nunez-Abades P, Castro C, Rodriguez-Blanco C. Influence of High-Intensity Interval Training on Neuroplasticity Markers in Post-Stroke Patients: Systematic Review. J Clin Med 2024; 13:1985. [PMID: 38610750 PMCID: PMC11012260 DOI: 10.3390/jcm13071985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Background: Exercise has shown beneficial effects on neuronal neuroplasticity; therefore, we want to analyze the influence of high-intensity interval training (HIIT) on neuroplasticity markers in post-stroke patients. Methods: A systematic review of RCTs including studies with stroke participants was conducted using the following databases (PubMed, LILACS, ProQuest, PEDro, Web of Science). Searches lasted till (20/11/2023). Studies that used a HIIT protocol as the main treatment or as a coadjutant treatment whose outcomes were neural plasticity markers were used and compared with other exercise protocols, controls or other kinds of treatment. Studies that included other neurological illnesses, comorbidities that interfere with stroke or patients unable to complete a HIIT protocol were excluded. HIIT protocol, methods to assess intensity, neuroplasticity markers (plasmatic and neurophysiological) and other types of assessments such as cognitive scales were extracted to make a narrative synthesis. Jadad and PEDro scales were used to assess bias. Results: Eight articles were included, one included lacunar stroke (less than 3 weeks) and the rest had chronic stroke. The results found here indicate that HIIT facilitates neuronal recovery in response to an ischemic injury. This type of training increases the plasma concentrations of lactate, BDNF and VEGF, which are neurotrophic and growth factors involved in neuroplasticity. HIIT also positively regulates other neurophysiological measurements that are directly associated with a better outcome in motor learning tasks. Conclusions: We conclude that HIIT improves post-stroke recovery by increasing neuroplasticity markers. However, a limited number of studies have been found indicating that future studies are needed that assess this effect and include the analysis of the number of intervals and their duration in order to maximize this effect.
Collapse
Affiliation(s)
- Gines Montero-Almagro
- Physiotherapy Department, Faculty of Nursing, Physiotherapy and Podiatry, University of Seville, 41013 Seville, Spain; (G.M.-A.); (C.R.-B.)
| | - Carlos Bernal-Utrera
- Physiotherapy Department, Faculty of Nursing, Physiotherapy and Podiatry, University of Seville, 41013 Seville, Spain; (G.M.-A.); (C.R.-B.)
- Institute for Biomedical Research and Innovation of Cadiz (INiBICA), 11009 Cadiz, Spain; (P.N.-A.); (C.C.)
| | - Noelia Geribaldi-Doldán
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Cadiz, 11002 Cadiz, Spain;
| | - Pedro Nunez-Abades
- Institute for Biomedical Research and Innovation of Cadiz (INiBICA), 11009 Cadiz, Spain; (P.N.-A.); (C.C.)
- Department of Physiology, Faculty of Pharmacy, University of Seville, 41013 Seville, Spain
| | - Carmen Castro
- Institute for Biomedical Research and Innovation of Cadiz (INiBICA), 11009 Cadiz, Spain; (P.N.-A.); (C.C.)
- Department of Biomedicine, Biotechnology and Public Health, Area of Physiology, Faculty of Medicine, University of Cadiz, 11002 Cadiz, Spain
| | - Cleofas Rodriguez-Blanco
- Physiotherapy Department, Faculty of Nursing, Physiotherapy and Podiatry, University of Seville, 41013 Seville, Spain; (G.M.-A.); (C.R.-B.)
| |
Collapse
|
9
|
Shafiq MA, Singh J, Khan ZA, Neary JP, Bardutz HA. Effect of exercise on sleep quality in Parkinson's disease: a mini review. BMC Neurol 2024; 24:49. [PMID: 38291381 PMCID: PMC10826022 DOI: 10.1186/s12883-024-03548-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/24/2024] [Indexed: 02/01/2024] Open
Abstract
The growing incidence of Parkinson's Disease (PD) is a major burden on the healthcare system. PD is caused by the degeneration of dopaminergic neurons and is known for its effects on motor function and sleep. Sleep is vital for maintaining proper homeostasis and clearing the brain of metabolic waste. Adequate time spent in each sleep stage can help maintain homeostatic function; however, patients with PD appear to exhibit sleep impairments. Although medications enhance the function of remaining dopaminergic neurons and reduce motor symptoms, their potential to improve sleep is still under question. Recently, research has shifted towards exercise protocols to help improve sleep in patients with PD. This review aims to provide an overview of how sleep is impaired in patients with PD, such as experiencing a reduction in time spent in slow-wave sleep, and how exercise can help restore normal sleep function. A PubMed search summarized the relevant research on the effects of aerobic and resistance exercise on sleep in patients with PD. Both high and low-intensity aerobic and resistance exercises, along with exercises related to balance and coordination, have been shown to improve some aspects of sleep. Neurochemically, sleeping leads to an increase in toxin clearance, including α-synuclein. Furthermore, exercise appears to enhance the concentration of brain-derived neurotrophic factors, which has preliminary evidence to suggest correlations to time spent in slow-wave sleep. More research is needed to further elucidate the physiological mechanism pertaining to sleep and exercise in patients with PD.
Collapse
Affiliation(s)
- M Abdullah Shafiq
- College of Medicine, University of Saskatchewan Regina Campus, 1440 14 Ave, Regina, SK, S4P 0W5, Canada
| | - Jyotpal Singh
- Faculty of Kinesiology and Health Studies, University of Regina, 3737 Wascana Pkwy, Regina, SK, S4S 0A2, Canada
| | - Zain A Khan
- Faculty of Kinesiology and Health Studies, University of Regina, 3737 Wascana Pkwy, Regina, SK, S4S 0A2, Canada
| | - J Patrick Neary
- Faculty of Kinesiology and Health Studies, University of Regina, 3737 Wascana Pkwy, Regina, SK, S4S 0A2, Canada
| | - Holly A Bardutz
- Faculty of Kinesiology and Health Studies, University of Regina, 3737 Wascana Pkwy, Regina, SK, S4S 0A2, Canada.
| |
Collapse
|
10
|
Morton L, Paton C, Braakhuis A. The Effects of Polyphenol Supplementation on BDNF, Cytokines and Cognition in Trained Male Cyclists following Acute Ozone Exposure during High-Intensity Cycling. Nutrients 2024; 16:233. [PMID: 38257125 PMCID: PMC10819340 DOI: 10.3390/nu16020233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The neurotoxic effects of ozone exposure are related to neuroinflammation and increases in reactive oxygen species (ROS). This study aimed to assess inflammation, Brain-Derived Neurotrophic Factor (BDNF), and cognition in healthy male cyclists following polyphenol supplementation and exercise in an ozone-polluted environment. Ten male cyclists initially completed a maximal incremental test and maximal effort 4 km time trial in ambient air. Cyclists then completed two trials in an ozone-polluted environment (0.25 ppm) following 7 days of supplementation with either polyphenol (POLY) or placebo (PL). Experimental trials consisted of a three-stage submaximal test followed by a 4 km time trial. Blood samples were drawn pre- and post-exercise, and analyzed for BDNF, interleukin 6 (IL-6), interleukin 10 (IL-10) and tumor necrosis factor (TNF-α). The Stroop test and serial subtraction task were performed before ozone exposure and again after the 4 km TT. Serum BDNF increased post-exercise (p < 0.0001), and positive differences were observed post-exercise in the ozone POLY group relative to PL (p = 0.013). Plasma IL-6 increased post-exercise (p = 0.0015), and TNF-α increased post-ozone exposure (p = 0.0018). There were no differences in Stroop or serial subtraction tasks pre- or post-exercise. Exercise increases BDNF in ozone.
Collapse
Affiliation(s)
- Lillian Morton
- Department of Nutrition, Faculty of Medical & Health Science, The University of Auckland, Auckland 1023, New Zealand;
| | - Carl Paton
- School of Health and Sport Science, The Eastern Institute of Technology, Napier 4142, New Zealand;
| | - Andrea Braakhuis
- Department of Nutrition, Faculty of Medical & Health Science, The University of Auckland, Auckland 1023, New Zealand;
| |
Collapse
|
11
|
Rodríguez-Gutiérrez E, Torres-Costoso A, Saz-Lara A, Bizzozero-Peroni B, Guzmán-Pavón MJ, Sánchez-López M, Martínez-Vizcaíno V. Effectiveness of high-intensity interval training on peripheral brain-derived neurotrophic factor in adults: A systematic review and network meta-analysis. Scand J Med Sci Sports 2024; 34:e14496. [PMID: 37728896 DOI: 10.1111/sms.14496] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/29/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND High-intensity interval training (HIIT) has emerged as an alternative training method to increase brain-derived neurotrophic factor (BDNF) levels, a crucial molecule involved in plastic brain changes. Its effect compared to moderate-intensity continuous training (MICT) is controversial. We aimed to estimate, and to comparatively evaluate, the acute and chronic effects on peripheral BDNF levels after a HIIT, MICT intervention or a control condition in adults. METHODS The CINAHL, Cochrane, PubMed, PEDro, Scopus, SPORTDiscus, and Web of Science databases were searched for randomized controlled trials (RCTs) from inception to June 30, 2023. A network meta-analysis was performed to assess the acute and chronic effects of HIIT versus control condition, HIIT versus MICT and MICT versus control condition on BDNF levels. Pooled standardized mean differences (SMDs) and their 95% confidence intervals (95% CIs) were calculated for RCTs using a random-effects model. RESULTS A total of 22 RCTs were selected for the systematic review, with 656 participants (aged 20.4-79 years, 34.0% females) and 20 were selected for the network meta-analysis. Network SMD estimates were significant for HIIT versus control condition (1.49, 95% CI: 0.61, 2.38) and MICT versus control condition (1.08, 95% CI: 0.04, 2.12) for acutely BDNF increase. However, pairwise comparisons only resulted in a significant effect for HIIT versus control condition. CONCLUSIONS HIIT is the best training modality for acutely increasing peripheral BDNF levels in adults. HIIT may effectively increase BDNF levels in the long term.
Collapse
Affiliation(s)
| | - Ana Torres-Costoso
- Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca, Spain
- Facultad de Fisioterapia y Enfermería, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Alicia Saz-Lara
- Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca, Spain
| | - Bruno Bizzozero-Peroni
- Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca, Spain
- Instituto Superior de Educación Física, Universidad de la República, Rivera, Uruguay
| | | | - Mairena Sánchez-López
- Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca, Spain
- Facultad de Educación, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Vicente Martínez-Vizcaíno
- Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca, Spain
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| |
Collapse
|
12
|
Bugge Kambestad O, Sirevåg K, Mrdalj J, Hovland A, Bruun Endal T, Andersson E, Sjøbø T, Haukenes Stavestrand S. Physical Exercise and Serum BDNF Levels: Accounting for the Val66Met Polymorphism in Older Adults. Cogn Behav Neurol 2023; 36:219-227. [PMID: 37404130 PMCID: PMC10683974 DOI: 10.1097/wnn.0000000000000349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 03/28/2023] [Indexed: 07/06/2023]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) expression, which can be measured in blood serum, has been found to increase with aerobic exercise. The link between BDNF level, physical exercise, and genetic status (Val66Met polymorphism) has not been well researched in older adults. OBJECTIVE To investigate the possible link between BDNF expression, acute aerobic exercise, and the Val66Met polymorphism in older adults. METHOD Twenty-three healthy older adults participated in one session of acute aerobic exercise. Their serum BDNF levels were measured both at baseline and post exercise. Saliva samples were collected to identify each individual's genetic status. RESULTS At baseline, the individuals' mean serum BDNF level was 16.03 ng/mL (Val66Val = 15.89 ng/mL; Val66Met = 16.34 ng/mL); post exercise, the individuals' mean serum BDNF level was 16.81 ng/mL (Val66Val = 16.14 ng/mL; Val66Met = 18.34 ng/mL). CONCLUSION One session of acute aerobic exercise significantly increased the individuals' mean serum BDNF level. Males had higher BDNF levels than females. There was a significant interaction between gender and BDNF expression post exercise and a significant between-group effect of gender. The Val66Met carriers had a more positive response to the acute aerobic exercise compared with the Val66Val carriers, although without a significant difference between the two groups.
Collapse
Affiliation(s)
- Oda Bugge Kambestad
- Solli District Psychiatric Centre, Nesttun, Norway
- Institute for Clinical Psychology, University of Bergen, Bergen, Norway
| | - Kristine Sirevåg
- Solli District Psychiatric Centre, Nesttun, Norway
- Institute for Clinical Psychology, University of Bergen, Bergen, Norway
| | - Jelena Mrdalj
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Anders Hovland
- Solli District Psychiatric Centre, Nesttun, Norway
- Institute for Clinical Psychology, University of Bergen, Bergen, Norway
| | | | - Eva Andersson
- The Swedish School of Sport and Health Sciences, Stockholm, Sweden
- Karolinska Institute, Department of Neuroscience, Stockholm, Sweden
| | - Trond Sjøbø
- Solli District Psychiatric Centre, Nesttun, Norway
| | - Silje Haukenes Stavestrand
- Solli District Psychiatric Centre, Nesttun, Norway
- Institute for Clinical Psychology, University of Bergen, Bergen, Norway
| |
Collapse
|
13
|
Ekkekakis P, Swinton P, Tiller NB. Extraordinary Claims in the Literature on High-Intensity Interval Training (HIIT): I. Bonafide Scientific Revolution or a Looming Crisis of Replication and Credibility? Sports Med 2023; 53:1865-1890. [PMID: 37561389 DOI: 10.1007/s40279-023-01880-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2023] [Indexed: 08/11/2023]
Abstract
The literature on high-intensity interval training (HIIT) contains claims that, if true, could revolutionize the science and practice of exercise. This critical analysis examines two varieties of claims: (i) HIIT is effective in improving various indices of fitness and health, and (ii) HIIT is as effective as more time-consuming moderate-intensity continuous exercise. Using data from two recent systematic reviews as working examples, we show that studies in both categories exhibit considerable weaknesses when judged through the prism of fundamental statistical principles. Predominantly, small-to-medium effects are investigated in severely underpowered studies, thus greatly increasing the risk of both type I and type II errors of statistical inference. Studies in the first category combine the volatility of estimates associated with small samples with numerous dependent variables analyzed without consideration of the inflation of the type I error rate. Studies in the second category inappropriately use the p > 0.05 criterion from small studies to support claims of 'similar' or 'comparable' effects. It is concluded that the situation in the HIIT literature is reminiscent of the research climate that led to the replication crisis in psychology. As in psychology, this could be an opportunity to reform statistical practices in exercise science.
Collapse
Affiliation(s)
- Panteleimon Ekkekakis
- Department of Kinesiology, Michigan State University, 308 W Circle Dr #134, East Lansing, MI, 48824, USA.
| | - Paul Swinton
- School of Health Sciences, Robert Gordon University, Aberdeen, Scotland, UK
| | - Nicholas B Tiller
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| |
Collapse
|
14
|
Mottolese N, Uguagliati B, Tassinari M, Cerchier CB, Loi M, Candini G, Rimondini R, Medici G, Trazzi S, Ciani E. Voluntary Running Improves Behavioral and Structural Abnormalities in a Mouse Model of CDKL5 Deficiency Disorder. Biomolecules 2023; 13:1396. [PMID: 37759796 PMCID: PMC10527551 DOI: 10.3390/biom13091396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a rare neurodevelopmental disease caused by mutations in the X-linked CDKL5 gene. CDD is characterized by a broad spectrum of clinical manifestations, including early-onset refractory epileptic seizures, intellectual disability, hypotonia, visual disturbances, and autism-like features. The Cdkl5 knockout (KO) mouse recapitulates several features of CDD, including autistic-like behavior, impaired learning and memory, and motor stereotypies. These behavioral alterations are accompanied by diminished neuronal maturation and survival, reduced dendritic branching and spine maturation, and marked microglia activation. There is currently no cure or effective treatment to ameliorate the symptoms of the disease. Aerobic exercise is known to exert multiple beneficial effects in the brain, not only by increasing neurogenesis, but also by improving motor and cognitive tasks. To date, no studies have analyzed the effect of physical exercise on the phenotype of a CDD mouse model. In view of the positive effects of voluntary running on the brain of mouse models of various human neurodevelopmental disorders, we sought to determine whether voluntary daily running, sustained over a month, could improve brain development and behavioral defects in Cdkl5 KO mice. Our study showed that long-term voluntary running improved the hyperlocomotion and impulsivity behaviors and memory performance of Cdkl5 KO mice. This is correlated with increased hippocampal neurogenesis, neuronal survival, spine maturation, and inhibition of microglia activation. These behavioral and structural improvements were associated with increased BDNF levels. Given the positive effects of BDNF on brain development and function, the present findings support the positive benefits of exercise as an adjuvant therapy for CDD.
Collapse
Affiliation(s)
- Nicola Mottolese
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Beatrice Uguagliati
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Marianna Tassinari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Camilla Bruna Cerchier
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Manuela Loi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giulia Candini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Roberto Rimondini
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giorgio Medici
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
15
|
Rocha-Gomes A, Alvarenga E Castro TP, Almeida PR, Balsamão Paes Leme PS, da Silva AA, Riul TR, Bastos CP, Leite HR. High-intensity interval training improves long-term memory and increases hippocampal antioxidant activity and BDNF levels in ovariectomized Wistar rats. Behav Brain Res 2023; 453:114605. [PMID: 37517574 DOI: 10.1016/j.bbr.2023.114605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Menopause is the period in which women cease to produce the hormone estrogen, which can trigger physiological, cognitive, and behavioral changes. In this context, alternatives are needed that can reduce the effects provided by menopause, specifically in terms of cognitive and behavioral aspects. High-intensity interval training (HIIT) is an exercise protocol that has shown the potential to improve cognition by promoting an increase in antioxidant defenses and BDNF levels. Therefore, the aim of this study was to evaluate the effects of HIIT on behavior and hippocampal neurochemistry in ovariectomized adult rats. Four groups of rats were divided into: females without ovariectomy surgery and sedentary (SHAM-SED); females with ovariectomy surgery and sedentary (OVX-SED); females without ovariectomy surgery and trained (SHAM-HIIT); females with ovariectomy surgery and trained (OVX-HIIT). After the surgical procedure and the HIIT protocol, the animals underwent anxiety (elevated plus maze and open field) and memory (novel object recognition) tests. Corticosterone was measured in blood and BDNF levels and redox status were evaluated in the hippocampus. The OVX-SED group showed low BDNF levels and antioxidant enzymes, which may be linked to the observed memory impairments. The HIIT protocol (SHAM-HIIT and OVX-HIIT groups) increased the BDNF levels and antioxidant enzymes in the hippocampus, improving the animals' memory. However, HIIT also led to increased plasma corticosterone and anxiety-like behaviors. The ovariectomy procedure induced memory impairment probably due to reductions in hippocampal BDNF levels and redox imbalance. The HIIT protocol demonstrates promising results as an alternative to improve memory in ovariectomized rats.
Collapse
Affiliation(s)
- Arthur Rocha-Gomes
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil.
| | | | - Pedro Rodrigues Almeida
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG, Brazil
| | - Paula Silveira Balsamão Paes Leme
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG, Brazil
| | - Alexandre Alves da Silva
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG, Brazil
| | - Tania Regina Riul
- Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG, Brazil
| | - Cristiane Perácio Bastos
- Departamento de Enfermagem, Faculdade de Ciências Humanas de Curvelo (FACIC), Curvelo, MG, Brazil
| | - Hércules Ribeiro Leite
- Programa de Pós-Graduação em Ciências da Reabilitação, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
16
|
Slimani M, Znazen H, Hammami A, Bragazzi NL. Effects of Acute Long- versus Short-Interval High-Intensity Interval Training on Attention and Psychological States in a Sample of Male and Female Adolescents: A Pilot Study. Life (Basel) 2023; 13:1846. [PMID: 37763250 PMCID: PMC10532653 DOI: 10.3390/life13091846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 09/29/2023] Open
Abstract
The aim of this study was to assess the effect of acute short- versus long-interval high-intensity interval training (HIIT) on cognitive performance and psychological states in secondary school students. Fifteen secondary school students (nine males and six females: mean age = 16.2 ± 0.4 years, mean Body Mass Index = 21.2 ± 1.5 kg/m2, and maximum oxygen uptake = 42.2 ± 5.9 mL/kg/min) participated in the current study. They performed one of the following three sessions in a randomized order: (i) a long-interval HIIT (LIHIIT), (ii) a short-interval HIIT (SIHIIT), and (iii) a control condition (CC). Cognitive performance and perceived exertion were assessed pre and immediately post each condition using the d2 test and the Rating of Perceived Exertion (RPE) tool, respectively. Mood state was quantified using the Brunel Mood Scale (BRUMS) questionnaire immediately post each condition. The findings reported higher concentration performance in the SIHIIT compared to the LIHIIT condition (p = 0.043) and the CC (p < 0.001) and in the LIHIIT compared to the CC (p = 0.023). Moreover, the total count of errors was higher in the CC than in the LIHIIT (p = 0.01) and in the SIHIIT conditions (p < 0.001) and in the LIHIIT than in the SIHIIT condition (p = 0.03). RPE value was higher in the LIHIIT and SIHIIT conditions than in the CC (both p < 0.001), whereas no statistically significant difference between LIHIIT and SIHIIT conditions (p = 0.24) was found. Regarding the BRUMS, a significant difference between conditions in the fatigue subscale was found, being higher in LIHIIT with respect to SIHIIT (p = 0.03) and CC (p < 0.05). Vigor differed between conditions, with a higher value than in the LIHIIT (p = 0.04) and CC (p < 0.001). All the remaining subscales did not significantly differ between conditions (p > 0.05). Practitioners may implement short-interval HIIT prior to any tasks that require high levels of visual attention.
Collapse
Affiliation(s)
- Maamer Slimani
- School of Public Health, Department of Health Sciences (DISSAL), Genoa University, 16126 Genoa, Italy
| | - Hela Znazen
- Department of Physical Education and Sport, College of Education, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Amri Hammami
- Higher Institute of Sport and Physical Education of Ksar Said, University of Manouba, Manouba 2010, Tunisia;
| | - Nicola Luigi Bragazzi
- Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada;
| |
Collapse
|
17
|
Irwin G, Rogatzki MJ, Wiltshire HD, Williams GKR, Gu Y, Ash GI, Tao D, Baker JS. Sports-Related Concussion Assessment: A New Physiological, Biomechanical, and Cognitive Methodology Incorporating a Randomized Controlled Trial Study Protocol. BIOLOGY 2023; 12:1089. [PMID: 37626975 PMCID: PMC10452437 DOI: 10.3390/biology12081089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Taking part in moderate-to-vigorous exercise in contact sports on a regular basis may be linked to an increase in cerebrovascular injury and head trauma. Validated objective measures are lacking in the initial post-event diagnosis of head injury. The exercise style, duration, and intensity may also confound diagnostic indicators. As a result, we propose that the new Interdisciplinary Group in Movement & Performance from Acute & Chronic Head Trauma (IMPACT) analyze a variety of functional (biomechanical and motor control) tests as well as related biochemistry to see how they are affected by contact in sports and head injury. The study's goal will be to look into the performance and physiological changes in rugby players after a game for head trauma and injury. METHODS This one-of-a-kind study will use a randomized controlled trial (RCT) utilizing a sport participation group and a non-participation control group. Forty male rugby 7 s players will be recruited for the study and allocated randomly to the experimental groups. The intervention group will participate in three straight rugby matches during a local 7 s rugby event. At the pre-match baseline, demographic and anthropometric data will be collected. This will be followed by the pre-match baseline collection of biochemical, biomechanical, and cognitive-motor task data. After three consecutive matches, the same measures will be taken. During each match, a notational analysis will be undertaken to obtain contact information. All measurements will be taken again 24, 48, and 72 h after the third match. DISCUSSION When the number of games increases owing to weariness and/or stressful circumstances, we expect a decline in body movement, coordination, and cognitive-motor tasks. Changes in blood biochemistry are expected to correspond to changes in biomechanics and cognitive-motor processes. This research proposal will generate considerable, ecologically valid data on the occurrence of head trauma events under game conditions, as well as the influence of these events on the biological systems of the performers. This will lead to a greater understanding of how sports participants react to exercise-induced injuries. This study's scope will have far-reaching ramifications for doctors, coaches, managers, scientists, and sports regulatory bodies concerned with the health and well-being of athletic populations at all levels of competition, including all genders and ages.
Collapse
Affiliation(s)
- Gareth Irwin
- Faculty of Sports Science, Ningbo University, Ningbo 315010, China; (G.I.); (Y.G.); (J.S.B.)
- Research Academy of Medicine Combining Sports, Ningbo No.2 Hospital, Ningbo 315010, China
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff CF52YB, UK;
- Sport and Health Interdisciplinary Group in Movement & Performance from Acute & Chronic Head Trauma (IMPACT) Group, Cardiff Metropolitan University, Cardiff CF52YB, UK; (M.J.R.); (G.K.R.W.); (G.I.A.)
| | - Matthew J. Rogatzki
- Sport and Health Interdisciplinary Group in Movement & Performance from Acute & Chronic Head Trauma (IMPACT) Group, Cardiff Metropolitan University, Cardiff CF52YB, UK; (M.J.R.); (G.K.R.W.); (G.I.A.)
- Department of Health & Exercise Science, Appalachian State University, Boone, NC 28608, USA
| | - Huw D. Wiltshire
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff CF52YB, UK;
- Sport and Health Interdisciplinary Group in Movement & Performance from Acute & Chronic Head Trauma (IMPACT) Group, Cardiff Metropolitan University, Cardiff CF52YB, UK; (M.J.R.); (G.K.R.W.); (G.I.A.)
| | - Genevieve K. R. Williams
- Sport and Health Interdisciplinary Group in Movement & Performance from Acute & Chronic Head Trauma (IMPACT) Group, Cardiff Metropolitan University, Cardiff CF52YB, UK; (M.J.R.); (G.K.R.W.); (G.I.A.)
- Department of Sport and Health Sciences, University of Exeter, Exeter EX44QJ, UK
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo 315010, China; (G.I.); (Y.G.); (J.S.B.)
- Research Academy of Medicine Combining Sports, Ningbo No.2 Hospital, Ningbo 315010, China
- Sport and Health Interdisciplinary Group in Movement & Performance from Acute & Chronic Head Trauma (IMPACT) Group, Cardiff Metropolitan University, Cardiff CF52YB, UK; (M.J.R.); (G.K.R.W.); (G.I.A.)
| | - Garrett I. Ash
- Sport and Health Interdisciplinary Group in Movement & Performance from Acute & Chronic Head Trauma (IMPACT) Group, Cardiff Metropolitan University, Cardiff CF52YB, UK; (M.J.R.); (G.K.R.W.); (G.I.A.)
- Section of General Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
- Center for Pain, Research, Informatics, Medical Comorbidities and Education Center (PRIME), VA Connecticut Healthcare System, West Haven, CT 06510, USA
| | - Dan Tao
- Sport and Health Interdisciplinary Group in Movement & Performance from Acute & Chronic Head Trauma (IMPACT) Group, Cardiff Metropolitan University, Cardiff CF52YB, UK; (M.J.R.); (G.K.R.W.); (G.I.A.)
- Department of Government and International Studies, Hong Kong Baptist University, Hong Kong 999077, China
| | - Julien S. Baker
- Faculty of Sports Science, Ningbo University, Ningbo 315010, China; (G.I.); (Y.G.); (J.S.B.)
- Research Academy of Medicine Combining Sports, Ningbo No.2 Hospital, Ningbo 315010, China
- Sport and Health Interdisciplinary Group in Movement & Performance from Acute & Chronic Head Trauma (IMPACT) Group, Cardiff Metropolitan University, Cardiff CF52YB, UK; (M.J.R.); (G.K.R.W.); (G.I.A.)
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Hong Kong 999077, China
| |
Collapse
|
18
|
Frimpong E, Mograss M, Zvionow T, Paez A, Aubertin-Leheudre M, Bherer L, Pepin V, Robertson EM, Dang-Vu TT. Acute evening high-intensity interval training may attenuate the detrimental effects of sleep restriction on long-term declarative memory. Sleep 2023; 46:zsad119. [PMID: 37084788 PMCID: PMC10334486 DOI: 10.1093/sleep/zsad119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/05/2023] [Indexed: 04/23/2023] Open
Abstract
Recent evidence shows that a nap and acute exercise synergistically enhanced memory. Additionally, human-based cross-sectional studies and animal experiments suggest that physical exercise may mitigate the cognitive impairments of poor sleep quality and sleep restriction, respectively. We evaluated whether acute exercise may offset sleep restriction's impairment of long-term declarative memory compared to average sleep alone. A total of 92 (82% females) healthy young adults (24.6 ± 4.2 years) were randomly allocated to one of four evening groups: sleep restriction only (S5, 5-6 h/night), average sleep only (S8, 8-9 h/night), high-intensity interval training (HIIT) before restricted sleep (HIITS5), or HIIT before average sleep (HIITS8). Groups either followed a 15-min remote HIIT video or rest period in the evening (7:00 p.m.) prior to encoding 80 face-name pairs. Participants completed an immediate retrieval task in the evening. The next morning a delayed retrieval task was given after their subjectively documented sleep opportunities. Long-term declarative memory performance was assessed with the discriminability index (d') during the recall tasks. While our results showed that the d' of S8 (0.58 ± 1.37) was not significantly different from those of HIITS5 (-0.03 ± 1.64, p = 0.176) and HIITS8 (-0.20 ± 1.28, p = 0.092), there was a difference in d' compared to S5 (-0.35 ± 1.64, p = 0.038) at the delayed retrieval. These results suggest that the acute evening HIIT partially reduced the detrimental effects of sleep restriction on long-term declarative memory.
Collapse
Affiliation(s)
- Emmanuel Frimpong
- Sleep, Cognition and Neuroimaging Laboratory, Concordia University, Montreal, QC, Canada
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montreal, QC, Canada
- PERFORM Center, Concordia University, Montreal, QC, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, QC, Canada
| | - Melodee Mograss
- Sleep, Cognition and Neuroimaging Laboratory, Concordia University, Montreal, QC, Canada
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montreal, QC, Canada
- PERFORM Center, Concordia University, Montreal, QC, Canada
- Department of Psychology, Concordia University, Montreal, QC, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, QC, Canada
| | - Tehila Zvionow
- Sleep, Cognition and Neuroimaging Laboratory, Concordia University, Montreal, QC, Canada
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montreal, QC, Canada
- PERFORM Center, Concordia University, Montreal, QC, Canada
| | - Arsenio Paez
- Sleep, Cognition and Neuroimaging Laboratory, Concordia University, Montreal, QC, Canada
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montreal, QC, Canada
- PERFORM Center, Concordia University, Montreal, QC, Canada
| | - Mylene Aubertin-Leheudre
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, QC, Canada
- Département des Sciences de l’activité physique, GRAPA, Université du Québec à Montréal, Montréal, QC, Canada
| | - Louis Bherer
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, QC, Canada
- Department of Medicine and Centre de recherche de l’Institut de cardiologie de Montréal, Université de Montréal, QC, Canada
| | - Véronique Pepin
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montreal, QC, Canada
- PERFORM Center, Concordia University, Montreal, QC, Canada
- Centre de recherche, CIUSSS du Nord-de l’Île-de-Montréal, Montréal, QC, Canada
| | - Edwin M Robertson
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
| | - Thien Thanh Dang-Vu
- Sleep, Cognition and Neuroimaging Laboratory, Concordia University, Montreal, QC, Canada
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montreal, QC, Canada
- PERFORM Center, Concordia University, Montreal, QC, Canada
- Department of Psychology, Concordia University, Montreal, QC, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, QC, Canada
| |
Collapse
|
19
|
Ying N, Luo H, Li B, Gong K, Shu Q, Liang F, Gao H, Huang T, Zheng H. Exercise Alleviates Behavioral Disorders but Shapes Brain Metabolism of APP/PS1 Mice in a Region- and Exercise-Specific Manner. J Proteome Res 2023. [PMID: 37126732 DOI: 10.1021/acs.jproteome.2c00691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Exercise plays a beneficial role in the management of Alzheimer's disease (AD), but its effects on brain metabolism are still far from being understood. Here, we examined behavioral changes of APP/PS1 mice after high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) and analyzed metabolomics profiles in the hippocampus, cortex, and hypothalamus by using nuclear magnetic resonance spectroscopy to explore potential metabolic mechanisms. The results demonstrate that both HIIT and MICT alleviated anxiety/depressive-like behaviors as well as learning and memory impairments of AD mice. Metabolomics analysis reveals that energy metabolism, neurotransmitter metabolism, and membrane metabolism were significantly altered in all three brain regions after both types of exercises. Amino acid metabolism was detected to be affected in the cortex and hypothalamus after HIIT and in the hippocampus and hypothalamus after MICT. However, only HIIT significantly altered astrocyte-neuron metabolism in the hippocampus and hypothalamus of AD mice. Therefore, our study suggests that exercise can shape brain metabolism of AD mice in a region- and exercise-specific manner, indicating that the precise modification of brain metabolism by a specific type of exercise might be a novel perspective for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Na Ying
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Hanqi Luo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Baixia Li
- School of Physical Education and Health Care, East China Normal University, Shanghai 200241, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Kaiyan Gong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qi Shu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Fei Liang
- College of Physical Education, Gannan Normal University, Ganzhou 341000, China
| | - Hongchang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Tao Huang
- Department of Physical Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
20
|
Ceylan Hİ, Öztürk ME, Öztürk D, Silva AF, Albayrak M, Saygın Ö, Eken Ö, Clemente FM, Nobari H. Acute effect of moderate and high-intensity interval exercises on asprosin and BDNF levels in inactive normal weight and obese individuals. Sci Rep 2023; 13:7040. [PMID: 37120612 PMCID: PMC10148865 DOI: 10.1038/s41598-023-34278-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/27/2023] [Indexed: 05/01/2023] Open
Abstract
This study aimed to examine the acute effects of moderate-intensity aerobic and high-intensity interval exercise protocols on Asprosin and Brain-Derived Neurotrophic Factor (BDNF) levels in inactive normal weight and obese individuals. A total of 20 male individuals aged 18-65 years, ten normal weight (NW) (Body Mass Index (BMI): 18.5-24.99 kg/m2) and 10 obese (Ob) (BMI: 24.99-35.00 kg/m2) participated in this study, voluntarily. Moderate aerobic exercise (AE) (main circuit 30 min, between 40 and 59% of Heart Rate Reserve: HRR) and High-Intensity Interval exercise (HIIE) running protocols (main circuit 20 min, between 75 and 90% of the HRR for 1 min*10 times, and 1-min active rest at 30% of the HRR) was applied to the volunteer participants in the morning hours (08.00-10.00 a.m.), following the night fasting (at least 8-10 h) for at least 3 days between each other. Blood samples were collected from the participants before and immediately after each exercise protocol, and serum asprosin and BDNF hormone levels were determined by Enzyme-Linked Immunosorbent Assay" method. Basal serum asprosin was found to be significantly higher in the Ob group compared to the NW group (p < .001), while the basal serum BDNF hormone was found to be lower (p < 0.05). It was observed that the serum asprosin level of both groups decreased significantly after both AE and HIIE protocols (p < 0.05). In addition, there was a significantly higher decrease in serum asprosin level in the Ob group compared to the NW group after HIIE protocol. For the Ob group, serum BDNF level increased considerably after HIIE protocol compared to AE protocol (p < 0.05). Serum asprosin was found to be higher in the Ob group, while the serum BDNF was found to be lower. In addition, the acute exercises of different intensity significantly affected hormones that regulate appetite metabolism. In particular, it was observed that the HIIE protocol had a greater effect on the regulation of appetite (hunger-satiety) in the Ob group. This result can be taken into account when planning training programs for these individuals.
Collapse
Affiliation(s)
- Halil İbrahim Ceylan
- Physical Education and Sports Teaching Department, Kazim Karabekir Faculty of Education, Ataturk University, Erzurum, Turkey
| | - Mehmet Ertuğrul Öztürk
- Physical Education and Sports Teaching Department, Kazim Karabekir Faculty of Education, Ataturk University, Erzurum, Turkey
| | - Deniz Öztürk
- Vocational School of Health Services, Ataturk University, Erzurum, Turkey
| | - Ana Filipa Silva
- Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun'Álvares, 4900-347, Viana do Castelo, Portugal
- The Research Centre in Sports Sciences, Health Sciences and Human Development (CIDESD), 5001-801, Vila Real, Portugal
- Research Center in Sports Performance, Recreation, Innovation and Technology (SPRINT), 4960-320, Melgaço, Portugal
| | - Mevlüt Albayrak
- Vocational School of Health Services, Ataturk University, Erzurum, Turkey
| | - Özcan Saygın
- Coaching Science, Faculty of Sports Sciences, Mugla Sitki Kocman University, Muğla, Turkey
| | - Özgür Eken
- Department of Physical Education and Sport Teaching, Faculty of Sports Sciences, Inonu University, Malatya, Turkey
| | - Filipe Manuel Clemente
- Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun'Álvares, 4900-347, Viana do Castelo, Portugal
- Instituto de Telecomunicações, Delegação da Covilhã, 1049-001, Lisbon, Portugal
| | - Hadi Nobari
- Department of Exercise Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, 56199-11367, Iran.
- Faculty of Sport Sciences, University of Extremadura, 10003, Cáceres, Spain.
| |
Collapse
|
21
|
Physical activity for cognitive health promotion: An overview of the underlying neurobiological mechanisms. Ageing Res Rev 2023; 86:101868. [PMID: 36736379 DOI: 10.1016/j.arr.2023.101868] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
Physical activity is one of the modifiable factors of cognitive decline and dementia with the strongest evidence. Although many influential reviews have illustrated the neurobiological mechanisms of the cognitive benefits of physical activity, none of them have linked the neurobiological mechanisms to normal exercise physiology to help the readers gain a more advanced, comprehensive understanding of the phenomenon. In this review, we address this issue and provide a synthesis of the literature by focusing on five most studied neurobiological mechanisms. We show that the body's adaptations to enhance exercise performance also benefit the brain and contribute to improved cognition. Specifically, these adaptations include, 1), the release of growth factors that are essential for the development and growth of neurons and for neurogenesis and angiogenesis, 2), the production of lactate that provides energy to the brain and is involved in the synthesis of glutamate and the maintenance of long-term potentiation, 3), the release of anti-inflammatory cytokines that reduce neuroinflammation, 4), the increase in mitochondrial biogenesis and antioxidant enzyme activity that reduce oxidative stress, and 5), the release of neurotransmitters such as dopamine and 5-HT that regulate neurogenesis and modulate cognition. We also discussed several issues relevant for prescribing physical activity, including what intensity and mode of physical activity brings the most cognitive benefits, based on their influence on the above five neurobiological mechanisms. We hope this review helps readers gain a general understanding of the state-of-the-art knowledge on the neurobiological mechanisms of the cognitive benefits of physical activity and guide them in designing new studies to further advance the field.
Collapse
|
22
|
Andrews SC, Kämpf L, Curtin D, Hinder M, Wenderoth N, Stout JC, Coxon JP. A single bout of moderate-intensity aerobic exercise improves motor learning in premanifest and early Huntington's disease. Front Psychol 2023; 14:1089333. [PMID: 36968757 PMCID: PMC10032374 DOI: 10.3389/fpsyg.2023.1089333] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/20/2023] [Indexed: 03/10/2023] Open
Abstract
Introduction Cardiorespiratory exercise has emerged as a promising candidate to modify disease progression in Huntington's disease (HD). In animal models, exercise has been found to alter biomarkers of neuroplasticity and delay evidence of disease, and some interventions-including exercise-have shown benefits in human HD patients. In healthy human populations, increasing evidence suggests that even a single bout of exercise can improve motor learning. In this pilot study, we investigated the effect of a single bout of moderate intensity aerobic exercise on motor skill learning in presymptomatic and early manifest HD patients. Methods Participants were allocated to either an exercise (n = 10) or control (n = 10) group. They performed either 20 min of moderate intensity cycling or rest before practicing a novel motor task, the sequential visual isometric pinch force task (SVIPT). After 1 week, the retention of the SVIPT was measured in both groups. Results We found that the exercise group performed significantly better during initial task acquisition. There were no significant differences in offline memory consolidation between groups, but total skill gain across both acquisition and retention sessions was greater in the group who exercised. The better performance of the exercise group was driven by improvements in accuracy, rather than speed. Discussion We have shown that a single bout of moderate intensity aerobic exercise can facilitate motor skill learning in people with HD gene-expansion. More research is needed to investigate the underlying neural mechanisms and to further explore the potential for neurocognitive and functional benefits of exercise for people with HD.
Collapse
Affiliation(s)
- Sophie C. Andrews
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
- Healthy Brain Ageing Research Group, Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia
| | - Lydia Kämpf
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Dylan Curtin
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| | - Mark Hinder
- Sensorimotor Neuroscience and Ageing Research Group, School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Nicole Wenderoth
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), Federal Institute of Technology Zurich, University and Balgrist Hospital Zurich, University of Zurich, Zurich, Switzerland
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
| | - Julie C. Stout
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| | - James P. Coxon
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| |
Collapse
|
23
|
Zhang L, Lv J, Wang C, Ren Y, Yong M. Myokine, a key cytokine for physical exercise to alleviate sarcopenic obesity. Mol Biol Rep 2023; 50:2723-2734. [PMID: 36571655 DOI: 10.1007/s11033-022-07821-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/29/2022] [Accepted: 07/24/2022] [Indexed: 12/27/2022]
Abstract
Skeletal muscle has a robust endocrine function as a powerful organ and can secrete and release cytokines or polypeptides known as myokines. These myokines have significant regulatory effects on signal transduction in skeletal muscle and the metabolism of peripheral tissues and organs and exert biological effects via autocrine, paracrine, or endocrine forms. Obesity and aging cause myokine secretion dysregulation, and hastening sarcopenic obesity (SO) development. Exercise is currently an excellent intervention and prevention method for SO. Meanwhile, exercise impacts many organs and tissues. These organs and tissues will produce various myokines in response to movement and metabolism throughout the body to govern muscle differentiation, growth, and remodeling. According to accumulating data, exercise can increase the release of myokines from diverse tissues into the blood and postpone the SO onset and progression by influencing protein metabolism, inflammation, mitochondrial quality control, and other mechanisms.
Collapse
Affiliation(s)
- Lei Zhang
- Physical Education and Sport Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Junjie Lv
- Department of Sport, Physical Education and Health, Hong Kong Baptist University, Hong Kong, China
| | - Cenyi Wang
- Physical Education and Sport Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Yuanyuan Ren
- Physical Education and Sport Science, Soochow University, Suzhou, Jiangsu Province, China.
| | - Ming Yong
- Physical Education and Sport Science, Soochow University, Suzhou, Jiangsu Province, China.
| |
Collapse
|
24
|
Banasiak‐Cieślar H, Wiener D, Kuszczyk M, Dobrzyńska K, Polanowski A. Proline-rich polypeptides (Colostrinin ®/COLOCO ®) modulate BDNF concentration in blood affecting cognitive function in adults: A double-blind randomized placebo-controlled study. Food Sci Nutr 2023; 11:1477-1485. [PMID: 36911821 PMCID: PMC10002942 DOI: 10.1002/fsn3.3187] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/18/2022] [Accepted: 12/06/2022] [Indexed: 01/13/2023] Open
Abstract
Proline-rich polypeptides (PRPs complex also known as COLOCO®, Colostrinin®) consist of low-molecular weight peptides ranging up to 10 kDa, isolated from the bovine colostrum obtained up to 48 h postpartum. PRPs have been shown to affect processes involved in inflammation, brain aging, and neurodegeneration. The aim of this study was to investigate the effect of Colostrinin® (COLOCO®) on the cognitive abilities of healthy volunteers in three different age groups using the CANTAB tool in a double-blind randomized placebo-controlled study. BDNF serum level was used as a physicochemical marker of improvement of the cognitive skills. Three hundred and sixty-one healthy volunteers were divided into three study groups aged 18-24, 25-54, and 55-75; each group was then divided into two subgroups which took either placebo or tested lozenge with 120 μg of PRPs for the period of 4 months. The CANTAB battery test was used to measure the efficacy of PRP in the context of cognitive functioning. After the treatment with COLOCO®, we observed differences within MoCA score in the oldest patients, improvement in DMS and drop in PAL scores within the youngest group, drop in RTI and improvement in RVP scores within the middle-aged group. It was observed that serum BDNF level increased in all study groups which confirms cognitive improvement. In conclusion, we have shown that Colostrinin® exhibits cognitive enhancing effects, probably through the modulation of BDNF concentrations.
Collapse
Affiliation(s)
| | - Dawid Wiener
- Department of Design (School of Form)SWPS University of Social Sciences and HumanitiesWarsawPoland
| | | | | | - Antoni Polanowski
- Department of Animal Products Technology and Quality ManagementUniversity of Environmental and Life SciencesWroclawPoland
| |
Collapse
|
25
|
Bhattacharya P, Chatterjee S, Roy D. Impact of exercise on brain neurochemicals: a comprehensive review. SPORT SCIENCES FOR HEALTH 2023. [DOI: 10.1007/s11332-022-01030-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
26
|
Bartsch B, Faulkner J, Moore JB, Stoner L. Exercise prescription, intervention, dissemination, and implementation following transient ischemic attack or stroke: advancing the field through interdisciplinary science. Transl Behav Med 2023; 13:309-315. [PMID: 36694928 DOI: 10.1093/tbm/ibac107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Lay Summary
Research has demonstrated that both exercise, and a reduction in cardiovascular disease (CVD) risk factors (i.e., high blood sugar, blood lipids, and blood pressure), following a stroke or transient ischemic attack (TIA) are beneficial for reducing risk of recurrent stroke or TIA and for improving overall quality of life. Despite this evidence, many stroke and TIA survivors remain inactive and sedentary and present with multiple CVD risk factors. The purpose of this commentary is to highlight gaps in the current literature in regard to exercise and behavior interventions for the stroke and TIA populations, present ideas for intervention design, and discuss the dissemination and implementation of research findings. The future research ideas presented in this commentary are based on current research findings, as well as the professional experience of the article authors. Professional experience spans occupational therapy in neurorehabilitation, clinical exercise physiology in rehabilitation, creation and implementation of stroke rehabilitation clinics, stroke and TIA research, and behavioral and implementation science.
Collapse
Affiliation(s)
- Bria Bartsch
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, USA
| | - James Faulkner
- Department of Sport, Exercise and Health, University of Winchester, Winchester, UK
| | - Justin B Moore
- Department of Implementation Science, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Lee Stoner
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, USA.,Department of Epidemiology, The Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
27
|
Liang Z, Zhang Z, Qi S, Yu J, Wei Z. Effects of a Single Bout of Endurance Exercise on Brain-Derived Neurotrophic Factor in Humans: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. BIOLOGY 2023; 12:biology12010126. [PMID: 36671818 PMCID: PMC9856094 DOI: 10.3390/biology12010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/24/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023]
Abstract
We aimed to investigate the impact of a single bout of endurance exercise on the brain-derived neurotrophic factor (BDNF) in humans and analyze how a single bout of endurance exercise impacts the peripheral BDNF types by age group. We performed a systematic literature review by searching PubMed, Elsevier, and Web of Science for studies that included a single bout of endurance exercise in the experimental group and other exercise types in the control group. Eight interventions were included in the study. Overall, a single bout of endurance exercise significantly increased BDNF expression (SMD = 0.30; 95% CI = [0.08, 0.52]; p = 0.001), which was confirmed in the serum BDNF (SMD = 0.30; 95% CI = [0.04, 0.55]; p < 0.001). A non-significant trend was observed in the plasma BDNF (SMD = 0.31; 95% CI = [−0.13, 0.76]; p = 0.017). The serum and plasma BDNF levels significantly increased regardless of age (SMD = 0.35; 95% CI = [0.11, 0.58]; p = 0.004; I2 = 0%). In conclusion, a single bout of endurance exercise significantly elevates BDNF levels in humans without neurological disorders, regardless of age. The serum BDNF is a more sensitive index than the plasma BDNF in evaluating the impact of a single bout of endurance exercise on the BDNF.
Collapse
Affiliation(s)
- Zhiqiang Liang
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
- Correspondence:
| | - Zheng Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Shuo Qi
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Jinglun Yu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Zhen Wei
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
28
|
Henrique PPB, Perez FMP, Dorneles G, Peres A, Korb A, Elsner V, De Marchi ACB. Exergame and/or conventional training-induced neuroplasticity and cognitive improvement by engaging epigenetic and inflammatory modulation in elderly women: A randomized clinical trial. Physiol Behav 2023; 258:113996. [PMID: 36252683 DOI: 10.1016/j.physbeh.2022.113996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To evaluate the acute and long-term impact of exergaming (EXE) and conventional therapy (CON) in the peripheral levels of brain-derived neurotrophic factor (BDNF), inflammatory markers (interleukin [IL]-1b, IL-6, IL-8, and tumor necrosis factor-alpha [TNF-α]) and epigenetic mechanisms (global histone H3 and H4 acetylation levels in mononuclear cells) of healthy elderly women. We also evaluated the effect of intervention on cognitive performance in these individuals. METHODS Twenty-two elderly women were randomly assigned into two groups: EXE (n = 12) and CON (n = 10). Both interventions were performed twice a week for 6 weeks (12 sessions). Blood samples were obtained before intervention, after the first session, and 1 hour after the last session. Cognitive performance was evaluated before and after intervention. RESULTS Both EXE and CON interventions ameliorated cognitive performance, improved inflammatory profile, enhanced BDNF levels, and induced histone H4 and H3 hyperacetylation status in elderly women. CONCLUSION Our study demonstrated that the proposed interventions can be considered important strategies capable of promoting cognitive improvement in healthy elderly women. The acetylation status of histones and inflammatory cytokines are possible molecular mechanisms that mediate this beneficial response, being distinctly modulated by acute and long-term exposure.
Collapse
Affiliation(s)
| | - Fabrízzio Martin Pelle Perez
- Programa de Pós-Graduação em Envelhecimento Humano, Instituto de Saúde, Universidade de Passo Fundo, Passo Fundo, Brazil
| | - Gilson Dorneles
- Laboratório de Imunologia Celular e Molecular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Alessandra Peres
- Laboratório de Imunologia Celular e Molecular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Arthiese Korb
- Universidade Regional Integrada do Alto Uruguai e das Missões - URI Campus de Erechim, Brazil
| | - Viviane Elsner
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ana Carolina Bertoletti De Marchi
- Programa de Pós-Graduação em Envelhecimento Humano, Instituto de Saúde, Universidade de Passo Fundo, Passo Fundo, Brazil; Programa de Pós-Graduação em Computação Aplicada, Instituto de Tecnologia, Universidade de Passo Fundo, Passo Fundo, Brazil
| |
Collapse
|
29
|
Jemni M, Zaman R, Carrick FR, Clarke ND, Marina M, Bottoms L, Matharoo JS, Ramsbottom R, Hoffman N, Groves SJ, Gu Y, Konukman F. Exercise improves depression through positive modulation of brain-derived neurotrophic factor (BDNF). A review based on 100 manuscripts over 20 years. Front Physiol 2023; 14:1102526. [PMID: 36969600 PMCID: PMC10030936 DOI: 10.3389/fphys.2023.1102526] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/30/2023] [Indexed: 03/29/2023] Open
Abstract
The aim of this review was to explore the relevant neurobiology and the association between peripheral levels of brain-derived neurotrophic factor (BDNF) and acute and short to long-term exercise regimes, as well as its relation to depression and antidepressant treatment. A 20-year literature search was conducted. The screening process resulted in 100 manuscripts. Antidepressants as well as acute exercise, particularly high-intensity, elevates BDNF in healthy humans and clinical populations, as evidenced from aerobic and resistance-based studies. Although exercise is increasingly recognised in the management of depression, acute and short-term exercise studies have failed to establish a relationship between the severity of depression and changes in peripheral BDNF. The latter rapidly returns to baseline, possibly indicating a quick re-uptake by the brain, aiding its neuroplasticity functions. The timescale of administration needed for the antidepressants to stimulate biochemical changes is longer than similar increases with acute exercise.
Collapse
Affiliation(s)
- Monèm Jemni
- Faculty of Physical Education, Ningbo University, Ningbo, Zhejiang, China
- The Carrick Institute of Neuroscience, Cape Canaveral, FL, United States
- Centre for Mental Health Research in association with The University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Monèm Jemni, ; Yaodong Gu,
| | - Rashid Zaman
- Centre for Mental Health Research in association with The University of Cambridge, Cambridge, United Kingdom
- Department of Psychiatry, The University of Cambridge, Cambridge, United Kingdom
| | - Frederick Robert Carrick
- The Carrick Institute of Neuroscience, Cape Canaveral, FL, United States
- Centre for Mental Health Research in association with The University of Cambridge, Cambridge, United Kingdom
- University of Central Florida College of Medicine, Orlando, FL, United states
- MGH Institute of Health Professions, Boston, MA, United States
| | - Neil David Clarke
- Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Michel Marina
- Institut Nacional d'Educació Física de Catalunya (INEFC), Sport Performance, Barcelona, Spain
| | - Lindsay Bottoms
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, United Kingdom
| | | | - Roger Ramsbottom
- Sport and Health Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Norman Hoffman
- The Carrick Institute of Neuroscience, Cape Canaveral, FL, United States
| | - Shad James Groves
- The Carrick Institute of Neuroscience, Cape Canaveral, FL, United States
| | - Yaodong Gu
- Faculty of Physical Education, Ningbo University, Ningbo, Zhejiang, China
- *Correspondence: Monèm Jemni, ; Yaodong Gu,
| | - Ferman Konukman
- Department of Physical Education, College of Education, Qatar University, Doha, Qatar
| |
Collapse
|
30
|
Ballester-Ferrer JA, Bonete-López B, Roldan A, Cervelló E, Pastor D. Effect of acute exercise intensity on cognitive inhibition and well-being: Role of lactate and BDNF polymorphism in the dose-response relationship. Front Psychol 2022; 13:1057475. [PMID: 36570982 PMCID: PMC9780502 DOI: 10.3389/fpsyg.2022.1057475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction There is evidence in the literature that acute exercise can modify cognitive function after the effort. However, there is still some controversy concerning the most effective exercise modality to improve cognitive function in acute interventions. Regarding these different exercise modalities, the dose-response relationship between exercise intensity and cognitive response is one of the most challenging questions in exercise and cognition research. Methods In this study, we tested the impact of moderate-intensity (MICT), high-intensity (HIIT) exercise sessions, or control situation (CTRL) on cognitive inhibition (measured with the Stroop Test). Thirty-six young college students participated in this study, where a within-subject repeated measure design was used. Results ANOVA 2×3 demonstrated that HIIT improved the acute cognitive response to a higher degree when compared to MICT or CTRL (p < 0.05). The cognitive improvements correlated with lactate release, providing a plausible molecular explanation for the cognitive enhancement (r < -0.2 and p < 0.05 for all the Stroop conditions). Moreover, a positive trend in wellbeing was observed after both exercise protocols (HIIT and MICT) but not in the CTRL situation. Genetic BDNF single nucleotide polymorphism did not influence any interactions (p < 0.05). Discussion In this sense, our results suggest that exercise intensity could be a key factor in improved cognitive function following exercise in young college students, with no additional impact of BDNF polymorphism. Moreover, our results also provide evidence that exercise could be a useful tool in improving psychological wellbeing.
Collapse
Affiliation(s)
| | | | - Alba Roldan
- Sports Research Centre, Department of Sport Sciences, Miguel Hernández University of Elche, Elche, Spain
| | - Eduardo Cervelló
- Sports Research Centre, Department of Sport Sciences, Miguel Hernández University of Elche, Elche, Spain
| | - Diego Pastor
- Sports Research Centre, Department of Sport Sciences, Miguel Hernández University of Elche, Elche, Spain,*Correspondence: Diego Pastor,
| |
Collapse
|
31
|
Lissek T. Activity-Dependent Induction of Younger Biological Phenotypes. Adv Biol (Weinh) 2022; 6:e2200119. [PMID: 35976161 DOI: 10.1002/adbi.202200119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/11/2022] [Indexed: 01/28/2023]
Abstract
In several mammalian species, including humans, complex stimulation patterns such as cognitive and physical exercise lead to improvements in organ function, organism health and performance, as well as possibly longer lifespans. A framework is introduced here in which activity-dependent transcriptional programs, induced by these environmental stimuli, move somatic cells such as neurons and muscle cells toward a state that resembles younger cells to allow remodeling and adaptation of the organism. This cellular adaptation program targets several process classes that are heavily implicated in aging, such as mitochondrial metabolism, cell-cell communication, and epigenetic information processing, and leads to functional improvements in these areas. The activity-dependent gene program (ADGP) can be seen as a natural, endogenous cellular reprogramming mechanism that provides deep insight into the principles of inducible improvements in cell and organism function and can guide the development of therapeutic approaches for longevity. Here, these ADGPs are analyzed, exemplary critical molecular nexus points such as cAMP response element-binding protein, myocyte enhancer factor 2, serum response factor, and c-Fos are identified, and it is explored how one may leverage them to prevent, attenuate, and reverse human aging-related decline of body function.
Collapse
Affiliation(s)
- Thomas Lissek
- Interdisciplinary Center for Neurosciences, Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany
| |
Collapse
|
32
|
Effects of acute exercise on memory: Considerations of exercise intensity, post-exercise recovery period and aerobic endurance. Mem Cognit 2022; 51:1011-1026. [PMID: 36401115 PMCID: PMC9676734 DOI: 10.3758/s13421-022-01373-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2022] [Indexed: 11/19/2022]
Abstract
Accumulating research demonstrates that acute exercise can enhance long-term episodic memory. However, it is unclear if there is an intensity-specific effect of acute exercise on long-term episodic memory function and whether this is influenced by the post-exercise recovery period, which was the primary objective of this experiment. Another uncertainty in the literature is whether aerobic endurance influences the interaction between exercise intensity and post-exercise recovery period on long-term episodic memory function, which was a secondary objective of this study. With exercise intensity and post-exercise recovery period occurring as within-subject factors, and fitness as a between-subject factor, 59 participants (Mage = 20 years) completed 12 primary laboratory visits. These visits included a 20-min bout of exercise (Control, Moderate, and Vigorous), followed by a recovery period (1, 5, 10, and 15 min) and then a word-list episodic memory task, involving an encoding phase and two long-term recall assessments (20-min and 24-h delayed recall). The primary finding from this experiment was that moderate and vigorous-intensity exercise improved memory function when compared to a non-exercise control. A secondary finding was that individuals with higher levels of aerobic endurance, compared to their lesser fit counterparts, had greater memory performance after exercise (moderate or vigorous) when compared to after a control condition. Additionally, individuals with higher levels of aerobic endurance, compared to their lesser fit counterparts, generally performed better on the memory task with longer post-exercise recovery periods. Future research should carefully consider these parameters when evaluating the effects of acute exercise on long-term episodic memory.
Collapse
|
33
|
Aktitiz S, Atakan MM, Turnagöl HH, Koşar ŞN. Interleukin-6, undercarboxylated osteocalcin, and brain-derived neurotrophic factor responses to single and repeated sessions of high-intensity interval exercise. Peptides 2022; 157:170864. [PMID: 36028073 DOI: 10.1016/j.peptides.2022.170864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/20/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVES The purpose of this study was to compare the effects of a single session of high-intensity interval exercise (HIIE) with 2 consecutive HIIEs, separated by 3 h of recovery, on plasma interleukin-6 (IL-6), undercarboxylated osteocalcin (ucOC), and brain-derived neurotrophic factor (BDNF) responses. METHODS Twenty male recreational endurance athletes completed two HIIE trials in a randomized crossover design: a single session of HIIE on the single exercise day (HIIE-S) and two sessions of HIIE 3 h apart on the double exercise day (HIIE-D). The HIIE protocol consisted of 10 × 1 min cycling at 100 % of peak oxygen uptake, with 75 s of low-intensity cycling at 60 W. Blood samples were collected to analyze IL-6, ucOC, and BDNF levels before and immediately after HIIE on the HIIE-S and before and immediately after the second HIIE on the HIIE-D. RESULTS Both HIIE interventions significantly increased (p < 0.001) plasma IL-6 (HIIE-S 33.90 % vs HIIE-D 31.04 %; p = 0.64), ucOC (HIIE-S 37.18 % vs HIIE-D 39.54 %; p = 0.85), and BDNF levels (HIIE-S 236.01 % vs HIIE-D 216.68 %; p = 0.69), with no group effect. CONCLUSIONS Our results demonstrate that performing two consecutive HIIEs on the same day with a 3-h rest results in similar changes in plasma levels of IL-6, BDNF, and ucOC compared with a single session of HIIE.
Collapse
Affiliation(s)
- Selin Aktitiz
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, Ankara 06800, Turkey.
| | - Muhammed M Atakan
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, Ankara 06800, Turkey.
| | - Hüseyin H Turnagöl
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, Ankara 06800, Turkey.
| | - Şükran N Koşar
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, Ankara 06800, Turkey.
| |
Collapse
|
34
|
Shah Z, Ahmad F, Zahra M, Zulfiqar F, Aziz S, Mahmood A. Effect of Single Bout of Moderate and High Intensity Interval Exercise on Brain Derived Neurotrophic Factor and Working Memory in Young Adult Females. Brain Plast 2022; 8:35-42. [PMID: 36448038 PMCID: PMC9661357 DOI: 10.3233/bpl-210130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 11/15/2022] Open
Abstract
Objectives The objectives of the study were to determine the effect of moderate-intensity exercise (MIE) and high-intensity interval exercise (HIIE) on serum brain-derived neurotrophic factor (BDNF) levels and working memory (WM) in young adult females. Methodology This study was conducted in the Physiology Department, Khyber Girls Medical College Peshawar. Young adult females (n = 22), with a mean age of 20±2 years were recruited for two experimental sessions of MIE and HIIE, respectively. Baseline and post exercise blood samples were taken for determination of serum BDNF level and backward digit span test (BDST) for assessment of working memory in both sessions. Results Serum BDNF levels pre and post MIE were 707±448 pg/ml and 829±476 pg/ml (p = 0.006) respectively while pre and post HIIE were 785±329 pg /ml and 1116±379 pg/ml (p < 0.001) respectively. BDST scores were significantly high at post intervention for both MIE (p = 0.05) and HIIE (p 0.001). Conclusions Altogether our findings showed that both MIE and HIIE significantly increased serum BDNF levels and working memory in young adult females.
Collapse
Affiliation(s)
- Zubia Shah
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Farida Ahmad
- Department of Physiology, Khyber Girls Medical College, Peshawar, Pakistan
| | - Musarrat Zahra
- Department of Physiology, Gajju Khan Medical College, Swabi, Pakistan
| | - Fatma Zulfiqar
- Department of Community Medicine, Khyber Girls Medical College, Peshawar, Pakistan
| | - Sabeena Aziz
- Community Medicine & Research, Khyber Girls Medical College, Peshawar, Pakistan
| | - Afsheen Mahmood
- Department of Physiology, Khyber Girls Medical College, Peshawar, Pakistan
| |
Collapse
|
35
|
Ballester-Ferrer JA, Roldan A, Cervelló E, Pastor D. Memory Modulation by Exercise in Young Adults Is Related to Lactate and Not Affected by Sex or BDNF Polymorphism. BIOLOGY 2022; 11:biology11101541. [PMID: 36290444 PMCID: PMC9598181 DOI: 10.3390/biology11101541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022]
Abstract
Currently, high-intensity interval exercise (HIIE) is on the rise compared to moderate-intensity exercise (MIE) due to its similar benefits for health and performance with low time requirements. Recent studies show how physical exercise can also influence cognitive function, although the optimal dose and underlying mechanisms remain unknown. Therefore, in our study, we have compared the effects on visuospatial and declarative memory of different exercise intensities (HIIE vs. MIE), including possible implicated factors such as lactate released after each session and the Brain-Derived Neurotrophic Factor (BDNF) genotype. Thirty-six undergraduate students participated in this study. The HIIE session consisted of a 3 min warm-up, four 2 min sets at 90−95% of the maximal aerobic speed (MAS) with 2 min of passive recovery between sets, and a 3 min cooldown, and the MIE session implies the same total duration of continuous exercise at 60% of the MAS. Better improvements were found after HIIE than MIE on the backward condition of the visuospatial memory test (p = 0.014, ηp2 = 0.17) and the 48 h retention of the declarative memory test (p = 0.04; d = 0.34). No differences were observed in the forward condition of the visuospatial memory test and the 7-day retention of the declarative memory test (p > 0.05). Moreover, non-modifiable parameters such as biological sex and BDNF polymorphism (Val/Val, Val/Met, or Met/Met) did not modulate the cognitive response to exercise. Curiously, the correlational analysis showed associations (p < 0.05) between changes in memory (visuospatial and declarative) and lactate release. In this sense, our results suggest an important role for intensity in improving cognitive function with exercise, regardless of genetic factors such as biological sex or BDNF Val66Met polymorphism.
Collapse
|
36
|
Raharjo S, Rejeki P, Kurniawan A, Widiastuti, Taufik M, Siregar A, Harisman A, Andiana O, Hidayati H. Pattern of serum brain-derived neurotrophic factor levels after acute interval exercise versus acute continuous exercise in obese adolescent females. COMPARATIVE EXERCISE PHYSIOLOGY 2022. [DOI: 10.3920/cep220017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Obesity has been linked to lower cognitive function, while exercise is known to be beneficial in enhancing the cognitive function. Exercise is also known to increase brain-derived neurotrophic factor (BDNF), as the biological marker of cognitive function. This study aimed to analyse the pattern of serum BDNF levels after acute interval exercise (MIE) versus acute continuous exercise (MCE) in obese adolescent females. A total of 24 obese females were enrolled in this study and given acute interval exercise and acute continuous exercise with moderate intensity. The serum level of BDNF in all samples was quantified using ELISA. Statistical analysis was performed using two-way repeated measures ANOVA, and LSD post-hoc test with a 5% significance level. The results revealed pre-exercise mean serum BDNF levels of 254.17±86.90 pg/ml (Control), 263.21±79.82 pg/ml (MIE) and 266.01±33.29 pg/ml (MCE) (P=0.948). The mean serum BDNF levels at 10 min post-exercise were 248.84±44.42 pg/ml (Control), 397.00±31.36 pg/ml (MIE), and 582.82±79.24 pg/ml (MCE) (P=0.000). The mean serum BDNF levels at 6 h post-exercise were 250.05±70.44 pg/ml (Control), 344.50±68.84 pg/ml (MIE), and 364.42±100.87 pg/ml (MCE) (P=0.029). The mean serum BDNF levels at 24 h post-exercise were 244.20±48.55 pg/ml (Control), 252.49±89.11 pg/ml (MIE), and 250.99±65.86 pg/ml (MCE) (P=0.986). It was concluded that serum BDNF in obese adolescent females increased but transiently. Serum BDNF levels increased by acute exercise in both MIE and MCE at 10 min and 6 h post-exercise. However, serum BDNF level at 24 h post-exercise decreased close to the pre-exercise serum BDNF level in all groups. Further research is needed studying the effect of chronic exercise on the kinetics of serum BDNF levels in obese adolescent females.
Collapse
Affiliation(s)
- S. Raharjo
- Department of Sport Science, Faculty of Sport Science, State University of Malang, Semarang No. 5, Malang 65145, Indonesia
| | - P.S. Rejeki
- Physiology Division, Department of Medical Physiology and Biochemistry, Faculty of Medicine, Universitas Airlangga, Prof. Dr. Moestopo No. 47, Surabaya 60131, Indonesia
| | - A.W. Kurniawan
- Department of Physical Education, Health and Recreation, Faculty of Sports Sciences, State University of Malang, Semarang No. 5, Malang 65145, Indonesia
| | - Widiastuti
- Department of Sport Science, Faculty of Sport Science, State University of Jakarta, Pemuda No. 10, Jakarta 13220, Indonesia
| | - M.S. Taufik
- Department of Physical Education, Health and Recreation, Faculty of Teacher and Education, University of Suryakancana, Pasirgede Raya, Cianjur 43216, Indonesia
| | - A.H. Siregar
- Department of Physical Education, Health and Recreation, Faculty of Sports Sciences, State University of Medan, Willem Iskandar, Medan 20221, Indonesia
| | - A.S.M. Harisman
- Department of Sport Science, Faculty of Sport Science, State University of Malang, Semarang No. 5, Malang 65145, Indonesia
| | - O. Andiana
- Department of Sport Science, Faculty of Sport Science, State University of Malang, Semarang No. 5, Malang 65145, Indonesia
| | - H.B. Hidayati
- Department of Neurology, Faculty of Medicine, Universitas Airlangga, Prof. Dr. Moestopo No. 47, Surabaya 60131, Indonesia
| |
Collapse
|
37
|
Zhao K, Hu Z, Wang T, Tian L, Wang M, Liu R, Zuo C, Jihua W. Acute effects of two different work-to-rest ratio of high-intensity interval training on brain-derived neurotrophic factor in untrained young men. Front Physiol 2022; 13:988773. [PMID: 36160866 PMCID: PMC9490303 DOI: 10.3389/fphys.2022.988773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Aerobic exercise could produce a positive effect on the brain by releasing brain-derived neurotrophic factor (BDNF). In untrained healthy humans there seems to be a linear correlation between exercise duration and the positive effect of acute aerobic exercise on brain-derived neurotrophic factor levels. Therefore, we performed two different duration of high-intensity interval training protocols (HIIT), both known to improve cardiovascular fitness, to determine whether then have a similar efficacy in affecting brain-derived neurotrophic factor levels.Methods: 12 untrained young males (aged 23.7 ± 1.8 years), participated in a randomized controlled cross-over trial. They underwent two different work-to-rest ratio high-intensity interval training protocols: high-intensity interval training 1 (30 min, 15 intervals of 1 min efforts at 85%–90% VO2max with 1 min of active recovery at 50%–60% VO2max) and HIIT2 (30 min, 10 intervals of 2 min efforts at 85%–90% VO2max with 1 min of active recovery at 50%–60% VO2max). Serum cortisol, brain-derived neurotrophic factor were collected at baseline, immediately following intervention, and 30 min into recovery for measurements using a Sandwich ELISA method, blood lactate was measured by using a portable lactate analyzer.Results: Our results showed that the similar serum brain-derived neurotrophic factor change in both high-intensity interval training protocols, with maximal serum brain-derived neurotrophic factor levels being reached toward the end of intervention. There was no significant change in serum brain-derived neurotrophic factor from baseline after 30 min recovery. We then showed that both high-intensity interval training protocols significantly increase blood lactate and serum cortisol compared with baseline value (high-intensity interval training p < 0.01; high-intensity interval training 2 p < 0.01), with high-intensity interval training 2 reaching higher blood lactate levels than high-intensity interval training 1 (p = 0.027), but no difference was observed in serum cortisol between both protocols. Moreover, changes in serum brain-derived neurotrophic factor did corelate with change in blood lactate (high-intensity interval training 1 r = 0.577, p < 0.05; high-intensity interval training 2 r = 0.635, p < 0.05), but did not correlate with the change in serum cortisol.Conclusions: brain-derived neurotrophic factor levels in untrained young men are significantly increased in response to different work-to-rest ratio of high-intensity interval training protocols, and the magnitude of increase is exercise duration independent. Moreover, the higher blood lactate did not raise circulating brain-derived neurotrophic factor. Therefore, given that prolonged exercise causes higher levels of cortisol. We suggest that the 1:1work-to-rest ratio of high-intensity interval training protocol might represent a preferred intervention for promoting brain health.
Collapse
Affiliation(s)
- Kegang Zhao
- School of Physical Education of Shandong Normal University, Jinan, China
- *Correspondence: Kegang Zhao,
| | | | - Tao Wang
- School of Physical Education of Liaocheng University, Jinan, China
| | - Lei Tian
- School of Physical Education of Shandong Normal University, Jinan, China
| | - Maoye Wang
- School of Physical Education of Shandong Normal University, Jinan, China
| | - Ruijiang Liu
- School of Physical Education of Shandong Normal University, Jinan, China
| | - Chongwen Zuo
- Capital Institute of Physical Education and Sports, Beijing, China
| | - Wang Jihua
- Department of Information Science and Engineering of Shandong Normal University, Jinan, China
| |
Collapse
|
38
|
Rentería I, García-Suárez PC, Fry AC, Moncada-Jiménez J, Machado-Parra JP, Antunes BM, Jiménez-Maldonado A. The Molecular Effects of BDNF Synthesis on Skeletal Muscle: A Mini-Review. Front Physiol 2022; 13:934714. [PMID: 35874524 PMCID: PMC9306488 DOI: 10.3389/fphys.2022.934714] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
The brain-derived neurotrophic factor (BDNF) is a member of the nerve growth factor family which is generated mainly by the brain. Its main role involve synaptic modulation, neurogenesis, neuron survival, immune regulation, myocardial contraction, and angiogenesis in the brain. Together with the encephalon, some peripheral tissues synthesize BDNF like skeletal muscle. On this tissue, this neurotrophin participates on cellular mechanisms related to muscle function maintenance and plasticity as reported on recent scientific works. Moreover, during exercise stimuli the BDNF contributes directly to strengthening neuromuscular junctions, muscle regeneration, insulin-regulated glucose uptake and β-oxidation processes in muscle tissue. Given its vital relevance on many physiological mechanisms, the current mini-review focuses on discussing up-to-date knowledge about BDNF production in skeletal muscle and how this neurotrophin impacts skeletal muscle biology.
Collapse
Affiliation(s)
- I Rentería
- Facultad de Deportes, Universidad Autónoma de Baja California, Ensenada, Mexico
| | - P C García-Suárez
- Facultad de Deportes, Universidad Autónoma de Baja California, Ensenada, Mexico.,Department of Health, Sports and Exercise Sciences, University of Kansas, Lawrence, KS, United States
| | - A C Fry
- Department of Health, Sports and Exercise Sciences, University of Kansas, Lawrence, KS, United States
| | - J Moncada-Jiménez
- Human Movement Sciences Research Center (CIMOHU), University of Costa Rica, San José, Costa Rica
| | - J P Machado-Parra
- Facultad de Deportes, Universidad Autónoma de Baja California, Ensenada, Mexico
| | - B M Antunes
- Facultad de Deportes, Universidad Autónoma de Baja California, Ensenada, Mexico
| | - A Jiménez-Maldonado
- Facultad de Deportes, Universidad Autónoma de Baja California, Ensenada, Mexico
| |
Collapse
|
39
|
Vints WAJ, Levin O, Fujiyama H, Verbunt J, Masiulis N. Exerkines and long-term synaptic potentiation: Mechanisms of exercise-induced neuroplasticity. Front Neuroendocrinol 2022; 66:100993. [PMID: 35283168 DOI: 10.1016/j.yfrne.2022.100993] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 01/30/2023]
Abstract
Physical exercise may improve cognitive function by modulating molecular and cellular mechanisms within the brain. We propose that the facilitation of long-term synaptic potentiation (LTP)-related pathways, by products induced by physical exercise (i.e., exerkines), is a crucial aspect of the exercise-effect on the brain. This review summarizes synaptic pathways that are activated by exerkines and may potentiate LTP. For a total of 16 exerkines, we indicated how blood and brain exerkine levels are altered depending on the type of physical exercise (i.e., cardiovascular or resistance exercise) and how they respond to a single bout (i.e., acute exercise) or multiple bouts of physical exercise (i.e., chronic exercise). This information may be used for designing individualized physical exercise programs. Finally, this review may serve to direct future research towards fundamental gaps in our current knowledge regarding the biophysical interactions between muscle activity and the brain at both cellular and system levels.
Collapse
Affiliation(s)
- Wouter A J Vints
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Sporto str. 6, LT-44221 Kaunas, Lithuania; Department of Rehabilitation Medicine Research School CAPHRI, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Centre of Expertise in Rehabilitation and Audiology, Adelante Zorggroep, P.O. Box 88, 6430 AB Hoensbroek, the Netherlands.
| | - Oron Levin
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Sporto str. 6, LT-44221 Kaunas, Lithuania; Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, Catholic University Leuven, Tervuursevest 101, 3001 Heverlee, Belgium.
| | - Hakuei Fujiyama
- Department of Psychology, Murdoch University, 90 South St., WA 6150 Perth, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, 90 South St., WA 6150 Perth, Australia; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, 90 South St., WA 6150 Perth, Australia.
| | - Jeanine Verbunt
- Department of Rehabilitation Medicine Research School CAPHRI, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Centre of Expertise in Rehabilitation and Audiology, Adelante Zorggroep, P.O. Box 88, 6430 AB Hoensbroek, the Netherlands.
| | - Nerijus Masiulis
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Sporto str. 6, LT-44221 Kaunas, Lithuania; Department of Rehabilitation, Physical and Sports Medicine, Institute of Health Science, Faculty of Medicine, Vilnius University, M. K. Čiurlionio Str. 21, LT-03101 Vilnius, Lithuania.
| |
Collapse
|
40
|
Abeln V, Fomina E, Popova J, Braunsmann L, Koschate J, Möller F, Fedyay SO, Vassilieva GY, Schneider S, Strüder HK, Klein T. Chronic, acute and protocol-dependent effects of exercise on psycho-physiological health during long-term isolation and confinement. BMC Neurosci 2022; 23:41. [PMID: 35773633 PMCID: PMC9244384 DOI: 10.1186/s12868-022-00723-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/13/2022] [Indexed: 12/27/2022] Open
Abstract
Exercise could prevent physical and psychological deteriorations, especially during pandemic times of lock-down scenarios and social isolation. But to meet both, the common exercise protocols require optimization based on holistic investigations and with respect to underlying processes. This study aimed to explore individual chronic and acute effects of continuous and interval running exercise on physical and cognitive performance, mood, and affect and underlying neurophysiological factors during a terrestrial simulated space mission. Six volunteers (three females) were isolated for 120 days. Accompanying exercise training consisted of a continuous and interval running protocol in a cross-over design. Incremental stage tests on a treadmill were done frequently to test physical performance. Actigraphy was used to monitor physical activity level. Cognitive performance, mood (MoodMeter®), affect (PANAS), brain-derived neurotrophic factor (BDNF), insulin-like growth factor 1 (IGF-1), vascular-endothelial growth factor (VEGF), and saliva cortisol were investigated prior to, four times during, and after isolation, pre- and post-exercise on two separate days, respectively. As a chronic effect, physical performance increased (and IGF-1 tended) in the course of isolation and training until the end of isolation. Subjective mood and affect state, as well as cognitive performance, basal BDNF and VEGF levels, were well-preserved across the intervention. No acute effects of exercise were detected, besides slower reaction time after exercise in two out of nine cognitive tests, testing sensorimotor speed and memory of complex figures. Consistently higher basal IGF-1 concentrations and faster reaction time in the psychomotor vigilance test were found for the continuous compared to the interval running protocol. The results suggest that 120 days of isolation and confinement can be undergone without cognitive and mental deteriorations. Regular, individual aerobic running training supporting physical fitness is hypothesized to play an important role in this regard. Continuous running exercise seems to trigger higher IGF-1 levels and vigilance compared to interval running. Systematic and prolonged investigations and larger sample size are required to follow up on exercise-protocol specific differences in order to optimize the exercise intervention for long-term psycho-physiological health and well-being.
Collapse
Affiliation(s)
- V Abeln
- Institute of Movement and Neurosciences, Center for Health and Integrative Physiology in Space (CHIPS), German Sport University Cologne, Am Sportpark Muengersdorf 6, 50933, Cologne, Germany.
| | - E Fomina
- Institute of Biomedical Problems (IBMP), Russian Academy of Sciences, Khoroshevskoye shosse 76A, 123007, Moscow, Russia
| | - J Popova
- Institute of Biomedical Problems (IBMP), Russian Academy of Sciences, Khoroshevskoye shosse 76A, 123007, Moscow, Russia
| | - L Braunsmann
- Institute of Movement and Neurosciences, Center for Health and Integrative Physiology in Space (CHIPS), German Sport University Cologne, Am Sportpark Muengersdorf 6, 50933, Cologne, Germany
| | - J Koschate
- Geriatric Medicine, School of Medicine and Health Sciences, Carl Von Ossietzky University Oldenburg, Ammerlaender Heerstr. 140, 26129, Oldenburg, Germany
| | - F Möller
- Department of Exercise Physiology, German Sport University Cologne, Am Sportpark Muengersdorf 6, 50933, CologneCologne, Germany
| | - S O Fedyay
- Institute of Biomedical Problems (IBMP), Russian Academy of Sciences, Khoroshevskoye shosse 76A, 123007, Moscow, Russia
| | - G Y Vassilieva
- Institute of Biomedical Problems (IBMP), Russian Academy of Sciences, Khoroshevskoye shosse 76A, 123007, Moscow, Russia
| | - S Schneider
- Institute of Movement and Neurosciences, Center for Health and Integrative Physiology in Space (CHIPS), German Sport University Cologne, Am Sportpark Muengersdorf 6, 50933, Cologne, Germany
| | - H K Strüder
- Institute of Movement and Neurosciences, Center for Health and Integrative Physiology in Space (CHIPS), German Sport University Cologne, Am Sportpark Muengersdorf 6, 50933, Cologne, Germany
| | - T Klein
- Institute of Movement and Neurosciences, Center for Health and Integrative Physiology in Space (CHIPS), German Sport University Cologne, Am Sportpark Muengersdorf 6, 50933, Cologne, Germany
- Institute of Sport Science, University of Rostock, 18057, Rostock, Germany
| |
Collapse
|
41
|
Maleki S, Hendrikse J, Chye Y, Caeyenberghs K, Coxon JP, Oldham S, Suo C, Yücel M. Associations of cardiorespiratory fitness and exercise with brain white matter in healthy adults: A systematic review and meta-analysis. Brain Imaging Behav 2022; 16:2402-2425. [PMID: 35773556 PMCID: PMC9581839 DOI: 10.1007/s11682-022-00693-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 11/25/2022]
Abstract
Magnetic resonance imaging (MRI) studies have revealed positive associations between brain structure and physical activity, cardiorespiratory fitness, and exercise (referred to here as PACE). While a considerable body of research has investigated the effects of PACE on grey matter, much less is known about effects on white matter (WM). Hence, we conducted a systematic review of peer-reviewed literature published prior to 5th July 2021 using online databases (PubMed and Scopus) and PRISMA guidelines to synthesise what is currently known about the relationship between PACE and WM in healthy adults. A total of 60 studies met inclusion criteria and were included in the review. Heterogeneity across studies was calculated using Qochran's q test, and publication bias was assessed for each meta-analysis using Begg and Mazumdar rank correlation test. A meta-regression was also conducted to explore factors contributing to any observed heterogeneity. Overall, we observed evidence of positive associations between PACE and global WM volume (effect size (Hedges's g) = 0.137, p < 0.001), global WM anomalies (effect size = 0.182, p < 0.001), and local microstructure integrity (i.e., corpus callosum: effect size = 0.345, p < 0.001, and anterior limb of internal capsule: effect size = 0.198, p < 0.001). These findings suggest that higher levels of PACE are associated with improved global WM volume and local integrity. We appraise the quality of evidence, and discuss the implications of these findings for the preservation of WM across the lifespan. We conclude by providing recommendations for future research in order to advance our understanding of the specific PACE parameters and neurobiological mechanisms underlying these effects.
Collapse
Affiliation(s)
- Suzan Maleki
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, 770 Blackburn RD, Clayton, VIC, 3168, Australia
| | - Joshua Hendrikse
- Movement and Exercise Neuroscience Laboratory, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Clayton, Australia
| | - Yann Chye
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, 770 Blackburn RD, Clayton, VIC, 3168, Australia
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - James P Coxon
- Movement and Exercise Neuroscience Laboratory, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Clayton, Australia
| | - Stuart Oldham
- Neural Systems and Behaviour, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Clayton, Australia.,Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia
| | - Chao Suo
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, 770 Blackburn RD, Clayton, VIC, 3168, Australia.
| | - Murat Yücel
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, 770 Blackburn RD, Clayton, VIC, 3168, Australia.
| |
Collapse
|
42
|
Li Q, Zhang L, Zhang Z, Wang Y, Zuo C, Bo S. A Shorter-Bout of HIIT Is More Effective to Promote Serum BDNF and VEGF-A Levels and Improve Cognitive Function in Healthy Young Men. Front Physiol 2022; 13:898603. [PMID: 35846013 PMCID: PMC9277476 DOI: 10.3389/fphys.2022.898603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
Objective: The aim of this study was to investigate the effects of single bouts of high-intensity interval training (HIIT) with different duration on serum brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor-A (VEGF-A) levels and cognitive function in healthy young men. Methods: Twelve healthy young men were participated in two HIIT treatments (20 min HIIT and 30 min HIIT) in a random order. BDNF, VEGF-A, cortisol, testosterone, blood lactic acid were measured and cognitive function was assessed by Stroop test (CWST) and Digital Span test (DST) before, immediately after, and 30 min after HIIT. Results: 20 and 30 min HIIT increased BLa (both p < 0.01), cortisol (20 min HIIT: p < 0.05; 30 min HIIT: p < 0.01), and testosterone (both p < 0.05) levels immediately when compared with their baselines. While BLa and cortisol were significantly higher in 30 min HIIT group than in 20 min HIIT group. Moreover, BDNF concentration (p < 0.01), DST-F (p < 0.01) and DST-B (p < 0.05) were increased and response time of Stroop was decreased immediately after HIIT only in 20 min HIIT group. VEGF-A concentration was increased immediately after HIIT in both groups (p < 0.01), but after 30 min recovery, it was returned to the baseline in the 20 min HIIT group and was lower than the baseline in 30 min HIIT group (p < 0.05). Conclusion: Twenty minutes HIIT is more effective than 30 minutes HIIT for promoting serum levels of BDNF and VEGF-A as well as cognitive function in healthy young men.
Collapse
Affiliation(s)
- Qing Li
- College of Kinesiology and Health, Capital University of Physical Education and Sports, Beijing, China
| | - Li Zhang
- College of Kinesiology and Health, Capital University of Physical Education and Sports, Beijing, China
| | - Zhengguo Zhang
- College of Kinesiology and Health, Capital University of Physical Education and Sports, Beijing, China
| | - Yuhan Wang
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Chongwen Zuo
- College of Kinesiology and Health, Capital University of Physical Education and Sports, Beijing, China
| | - Shumin Bo
- College of Kinesiology and Health, Capital University of Physical Education and Sports, Beijing, China
- *Correspondence: Shumin Bo,
| |
Collapse
|
43
|
Marko DM, MacPherson REK. APP Processing: A Biochemical Competition Influenced by Exercise-Induced Signaling Mediators? Am J Physiol Regul Integr Comp Physiol 2022; 323:R169-R180. [PMID: 35608263 DOI: 10.1152/ajpregu.00297.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), are becoming more common in aging our society. One specific neuropathological hallmark of this disease is excessive accumulation of amyloid-β (Aβ) peptides, which can aggregate to form the plaques commonly associated with this disease. These plaques are often observed well before clinical diagnosis of AD. At the cellular level, both production and aggregation of Aβ peptides in the brain is detrimental to neuronal cell production, survival, and function, as well as often resulting in neuronal dysfunction and death. Exercise and physical activity have been shown to improve overall health, including brain health, and in the last several years there has been evidence to support that exercise may be able to regulate Aβ peptide production in the brain. Exercise promotes the release of a wide array of signaling mediators from various metabolically active tissues and organs in the body. These exercise-induced signaling mediators could be the driving force behind some of the beneficial effects observed in brain with exercise. This review will aim to discuss potential exercise-induced signaling mediators with the capacity to influence various proteins involved in the formation of Aβ peptide production in the brain.
Collapse
Affiliation(s)
- Daniel M Marko
- Department of Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Rebecca E K MacPherson
- Department of Health Sciences, Brock University, St. Catharines, Ontario, Canada.,Centre for Neuroscience, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
44
|
Mazo CE, Miranda ER, Shadiow J, Vesia M, Haus JM. High Intensity Acute Aerobic Exercise Elicits Alterations in Circulating and Skeletal Muscle Tissue Expression of Neuroprotective Exerkines. Brain Plast 2022; 8:5-18. [DOI: 10.3233/bpl-220137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2022] [Indexed: 11/15/2022] Open
Abstract
Background: Cathepsin B (CTSB) and brain derived neurotrophic factor (BDNF) are increased with aerobic exercise (AE) and skeletal muscle has been identified as a potential source of secretion. However, the intensity of AE and the potential for skeletal muscle contributions to circulating CTSB and BDNF have not been fully studied in humans. Objective: Determine the effects of AE intensity on circulating and skeletal muscle CTSB and BDNF expression profiles. Methods: Young healthy subjects (n = 16) completed treadmill-based AE consisting of VO2max and calorie-matched acute AE sessions at 40%, 65% and 80% VO2max. Fasting serum was obtained before and 30-minutes after each bout of exercise. Skeletal muscle biopsies (vastus lateralis) were taken before, 30-minutes and 3-hours after the 80% bout. Circulating CTSB and BDNF were assayed in serum. CTSB protein, BDNF protein and mRNA expression were measured in skeletal muscle tissue. Results: Serum CTSB increased by 20±7% (p = 0.02) and 30±18% (p = 0.04) after 80% and VO2max AE bouts, respectively. Serum BDNF showed a small non-significant increase (6±3%; p = 0.09) after VO2max. In skeletal muscle tissue, proCTSB increased 3 h-post AE (87±26%; p < 0.01) with no change in CTSB gene expression. Mature BDNF protein decreased (31±35%; p = 0.03) while mRNA expression increased (131±41%; p < 0.01) 3 h-post AE. Skeletal muscle fiber typing revealed that type IIa and IIx fibers display greater BDNF expression compared to type I (p = 0.02 and p < 0.01, respectively). Conclusions: High intensity AE elicits greater increases in circulating CTSB compared with lower intensities. Skeletal muscle protein and gene expression corroborate the potential role of skeletal muscle in generating and releasing neuroprotective exerkines into the circulation. NEW AND NOTEWORTHY: 1) CTSB is enriched in the circulation in an aerobic exercise intensity dependent manner. 2) Skeletal muscle tissue expresses both message and protein of CTSB and BDNF. 3) BDNF is highly expressed in glycolytic skeletal muscle fibers.
Collapse
Affiliation(s)
- Corey E. Mazo
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Edwin R. Miranda
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - James Shadiow
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Michael Vesia
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Jacob M. Haus
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
45
|
Andrzejewski M, Konefał M, Podgórski T, Pluta B, Chmura P, Chmura J, Marynowicz J, Melka K, Brazaitis M, Kryściak J. How training loads in the preparation and competitive period affect the biochemical indicators of training stress in youth soccer players? PeerJ 2022; 10:e13367. [PMID: 35539014 PMCID: PMC9080429 DOI: 10.7717/peerj.13367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/11/2022] [Indexed: 01/13/2023] Open
Abstract
Background Physical fitness optimization and injury risk-reducing require extensive monitoring of training loads and athletes' fatigue status. This study aimed to investigate the effect of a 6-month training program on the training-related stress indicators (creatine kinase - CK; cortisol - COR; serotonin - SER; brain-derived neurotrophic factor - BDNF) in youth soccer players. Methods Eighteen players (17.8 ± 0.9 years old, body height 181.6 ± 6.9 cm, training experience 9.7 ± 1.7 years) were blood-tested four times: at the start of the preparation period (T0), immediately following the preparation period (T1), mid-competitive period (T2), and at the end of the competitive period (T3). CK activity as well as concentrations of serum COR, SER and BDNF were determined. Training loads were recorded using a session rating of perceived exertion (sRPE). Results Statistical analyzes revealed significant effects for all biochemical parameters in relation to their time measurements (T0, T1, T2, T3). The statistical analyzes of sRPE and differences of biochemical parameters in their subsequent measurements (T0-T1, T1-T2, T2-T3) also demonstrated significant effects observed for all variables: sRPE (HKW = 13.189 (df = 2); p = 0.00), COR (HKW = 9.261 (df = 2); p = 0.01), CK (HKW = 12.492 (df = 2); p = 0.00), SER (HKW = 7.781 (df = 2); p = 0.02) and BDNF (HKW = 15.160 (df = 2); p < 0.001). Discussion In conclusion, it should be stated that the most demanding training loads applied in the preparation period (highest sRPE values) resulted in a significant increase in all analyzed biochemical training stress indicators. The reduction in the training loads during a competitive period and the addition of recovery training sessions resulted in a systematic decrease in the values of the measured biochemical indicators. The results of the study showed that both subjective and objective markers, including training loads, are useful in monitoring training stress in youth soccer players.
Collapse
Affiliation(s)
- Marcin Andrzejewski
- Department of Methodology of Recreation, Poznań University of Physical Education, Poznań, Poland
| | - Marek Konefał
- Department of Biological and Motor Sport Bases, Wroclaw University of Health and Sport Sciences, Wrocław, Poland
| | - Tomasz Podgórski
- Department of Physiology and Biochemistry, Poznań University of Physical Education, Poznań, Poland
| | - Beata Pluta
- Department of Methodology of Recreation, Poznań University of Physical Education, Poznań, Poland
| | - Paweł Chmura
- Department of Team Games, Wroclaw University of Health and Sport Sciences, Wrocław, Poland
| | - Jan Chmura
- Department of Biological and Motor Sport Bases, Wroclaw University of Health and Sport Sciences, Wrocław, Poland
| | - Jakub Marynowicz
- Department of Theory and Methodology of Team Sport Games, Poznań University of Physical Education, Poznań, Poland
| | - Kamil Melka
- Institute of Mathematics, University of Wrocław, Wrocław, Poland
| | - Marius Brazaitis
- Institute of Sports Science and Innovation, Lithuanian Sports University, Kaunas, Lithuania
| | - Jakub Kryściak
- Department of Physiology and Biochemistry, Poznań University of Physical Education, Poznań, Poland
| |
Collapse
|
46
|
Fernández-Rodríguez R, Álvarez-Bueno C, Martínez-Ortega IA, Martínez-Vizcaíno V, Mesas AE, Notario-Pacheco B. Immediate effect of high-intensity exercise on brain-derived neurotrophic factor in healthy young adults: A systematic review and meta-analysis. JOURNAL OF SPORT AND HEALTH SCIENCE 2022; 11:367-375. [PMID: 34481089 PMCID: PMC9189701 DOI: 10.1016/j.jshs.2021.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/09/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Although brain-derived neurotrophic factor (BDNF) has been identified as a molecular biomarker of the neurophysiological effects induced by exercise, the acute effects of high-intensity exercise (HIE) on BDNF levels are inconclusive. This study aims to estimate the immediate effects of HIE on BDNF levels in healthy young adults. METHODS A systematic search was conducted in the MEDLINE, Scopus, Cochrane CENTRAL, and SPORTDiscuss databases up to December 2020. Randomized controlled trials (RCTs) and non-RCTs reporting pre-post changes in serum or plasma BDNF after an acute intervention of HIE compared to a control condition were included. Pooled effect sizes (p-ESs) and 95% confidence intervals (95%CIs) were calculated for RCTs using a random effects model with Stata/SE (Version 15.0; StataCorp., College Station, TX, USA). The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed. PROPERO registration number: CRD42020221047. RESULTS A total of 22 studies with 552 individuals (age range: 20-31 years; 59.1% male) were included. The meta-analysis included 10 RCTs that reported valid outcome data. Higher BDNF levels were observed when HIE interventions were compared with non-exercise (p-ES = 0.55, 95%CI: 0.12-0.98; I2 = 25.7%; n = 4 studies) and light-intensity exercise (p-ES = 0.78, 95%CI: 0.15-1.40; I2 = 52.4%; n = 3 studies) but not moderate-intensity exercise (p-ES = 0.93, 95%CI: -0.16 to 2.02; I2 = 88.5%; n = 4 studies) conditions. CONCLUSION In comparison to non-exercise or light-intensity exercises, an immediate increase in BDNF levels may occur when young adults perform HIE. Given the benefits obtained maximizing circulating BDNF when performing HIE and its potential effects on brain health, our findings suggest that HIE could be recommended by clinicians as a useful exercise strategy to healthy adults.
Collapse
Affiliation(s)
| | - Celia Álvarez-Bueno
- Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca 16071, Spain; Universidad Politécnica y Artística del Paraguay, Asunción 2024, Paraguay.
| | | | - Vicente Martínez-Vizcaíno
- Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca 16071, Spain; Faculty of Medicine, Universidad Autónoma de Chile, Talca 3460000, Chile
| | - Arthur Eumann Mesas
- Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca 16071, Spain; Postgraduate Program in Public Health, Universidad Estadual de Londrina, Londrina 86051-990, Brazil
| | - Blanca Notario-Pacheco
- Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca 16071, Spain
| |
Collapse
|
47
|
Ozan M, Buzdağli Y, Baygutalp NK, Yüce N, Baygutalp F, Bakan E. Serum BDNF and Selenium Levels in Elite Athletes Exposed to Blows. Medicina (B Aires) 2022; 58:medicina58050608. [PMID: 35630025 PMCID: PMC9145651 DOI: 10.3390/medicina58050608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/18/2022] [Accepted: 04/23/2022] [Indexed: 11/21/2022] Open
Abstract
Background and Objectives: The study aimed to investigate the combined acute and long-term effects of exposure to blows and exercise on serum BDNF (brain-derived neurotrophic factor) and selenium levels. Materials and Methods: Serum BDNF and selenium levels were determined in 40 male elite athletes before and after vigorous exercise (training match) with a probability of exposure to blows and in 10 sedentary men subjected to exercise (Astrand running protocol). Results: Serum BDNF levels were found 11.50 ± 3.50 ng/mL before exercise and 14.02 ± 3.15 ng/mL after exercise in the athlete group (p = 0.02), and 12.18 ± 4.55 ng/ mL and 11.74 ± 2.48 ng/ mL before and after exercise in the sedentary group, respectively (p = 0.873). Serum BDNF (pre-exercise, baseline) levels were slightly lower in the athlete group than those in the sedentary group (11.50 ± 3.50 and 12.18 ± 4.55 ng/mL, respectively, p = 0.796). Pre-exercise serum selenium levels in athletes were significantly higher compared to those of sedentary participants (130.53 ± 36.79 and 95.51 ± 20.57 µg/L, respectively, p = 0.011). There was no difference in selenium levels after exercise (124.01 ± 29.96 µg/L) compared to pre-exercise (130.53 ± 36.79 µg/L) in the athlete group (p = 0.386). Similarly, there was no difference in selenium levels after exercise (113.28 ± 25.51 µg/L) compared to pre-exercise (95.51 ± 20.57 µg/L) in the sedentary group (p = 0.251). Conclusions: BDNF results show that even if athletes are exposed to blows, they may be protected from the long-term effects of blows thanks to the protective effect of their non-sedentary lifestyle. Regular exercise may have a protective effect on maintaining serum selenium levels in athletes even exposed to blows chronically.
Collapse
Affiliation(s)
- Murat Ozan
- Department of Physical Education and Sports, Kazım Karabekir Education Faculty, Ataturk University, Erzurum 25240, Turkey;
| | - Yusuf Buzdağli
- Department of Physical Education and Sports, Faculty of Sport Sciences, Erzurum Technical University, Erzurum 25240, Turkey;
| | - Nurcan Kılıç Baygutalp
- Department of Biochemistry, Faculty of Pharmacy, Ataturk University, Erzurum 25240, Turkey
- Correspondence: ; Tel.: +90-442-2315231
| | - Neslihan Yüce
- Department of Medical Biochemistry, Faculty of Medicine, Ataturk University, Erzurum 25240, Turkey;
| | - Fatih Baygutalp
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Ataturk University, Erzurum 25240, Turkey;
| | - Ebubekir Bakan
- Department of Biochemistry, Faculty of Medicine, Ağrı İbrahim Çeçen University, Ağrı 04100, Turkey;
| |
Collapse
|
48
|
Ballester-Ferrer JA, Carbonell-Hernández L, Pastor D, Cervelló E. COVID-19 Quarantine Impact on Wellbeing and Cognitive Functioning During a 10-Week High-Intensity Functional Training Program in Young University Students. Front Behav Neurosci 2022; 16:822199. [PMID: 35464146 PMCID: PMC9028760 DOI: 10.3389/fnbeh.2022.822199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/10/2022] [Indexed: 11/13/2022] Open
Abstract
Physical exercise can improve cognitive functioning and wellbeing; however, the degree of change in either of these two variables seems to be related to the exercise intensity or type. Therefore, new physical training (PT) programs have been developed to increase exercise efficiency. One such example is high-intensity functional training (HIFT), which has proven to be a time-efficient and highly effective strategy to improve physical fitness. This study analyzed whether HIFT can affect reaction time (RT) and vitality, as well as positive and negative affect. Forty-two college students participated in the study, 21 in the experimental group and 21 in the control group. The experimental group completed 10 weeks of training, five of which were supervised, and the remainder consisted of online training during the COVID-19 quarantine. Participants were evaluated at the beginning, at the end of the 5 weeks of supervised training, and after the 5 weeks of online training. HIFT improved RT without changes in psychological wellbeing during the entire period of training supervised and online. Therefore, during the HIFT program, the quarantine situation did not adversely affect this population’s wellbeing, but it did negatively affect adherence to the training program.
Collapse
|
49
|
Hendy AM, Andrushko JW, Della Gatta PA, Teo WP. Acute Effects of High-Intensity Aerobic Exercise on Motor Cortical Excitability and Inhibition in Sedentary Adults. Front Psychol 2022; 13:814633. [PMID: 35369205 PMCID: PMC8967942 DOI: 10.3389/fpsyg.2022.814633] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/24/2022] [Indexed: 11/26/2022] Open
Abstract
Transcranial magnetic stimulation studies have demonstrated increased cortical facilitation and reduced inhibition following aerobic exercise, even when examining motor regions separate to the exercised muscle group. These changes in brain physiology following exercise may create favorable conditions for adaptive plasticity and motor learning. One candidate mechanism behind these benefits is the increase in brain-derived neurotropic factor (BDNF) observed following exercise, which can be quantified from a venous blood draw. The aim of this study was to investigate changes in motor cortex excitability and inhibition of the upper limb, and circulating BDNF, following high-intensity interval training (HIIT) on a stationary bicycle. Nineteen sedentary adults participated in a randomized crossover design study involving a single bout of high-intensity interval cycling for 20 min or seated rest. Venous blood samples were collected, and transcranial magnetic stimulation (TMS) was used to stimulate the extensor carpi radialis (ECR), where motor evoked potentials (MEP) were recorded pre- and post-condition. Following exercise, there was a significant increase (29.1%, p < 0.001) in corticospinal excitability measured at 120% of resting motor threshold (RMT) and a reduction in short-interval cortical inhibition (SICI quantified as 86.2% increase in the SICI ratio, p = 0.002). There was a non-significant (p = 0.125) 23.6% increase in BDNF levels. Collectively, these results reflect a net reduction in gamma aminobutyric acid (GABA)ergic synaptic transmission and increased glutamatergic facilitation, resulting in increased corticospinal excitability. This study supports the notion that acute high-intensity exercise provides a potent stimulus for inducing cortical neuroplasticity, which may support enhanced motor learning.
Collapse
Affiliation(s)
- Ashlee M. Hendy
- Faculty of Health, School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, VIC, Australia
- *Correspondence: Ashlee M. Hendy,
| | - Justin W. Andrushko
- Brain Behaviour Laboratory, Department of Physical Therapy, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Paul A. Della Gatta
- Faculty of Health, School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, VIC, Australia
| | - Wei-Peng Teo
- Faculty of Health, School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, VIC, Australia
- Motor Behaviour Laboratory, Physical Education and Sports Science Academic Group, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
50
|
Effects of Physical Training in Different Modes on Cognitive Function and GNDF Level in Old Mice. NEUROPHYSIOLOGY+ 2022. [DOI: 10.1007/s11062-022-09924-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|