1
|
Chen G, Dang D, Zhang C, Qin L, Yan T, Wang W, Liang W. Recent advances in neurotechnology-based biohybrid robots. SOFT MATTER 2024; 20:7993-8011. [PMID: 39328163 DOI: 10.1039/d4sm00768a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Biohybrid robots retain the innate biological characteristics and behavioral traits of animals, making them valuable in applications such as disaster relief, exploration of unknown terrains, and medical care. This review aims to comprehensively discuss the evolution of biohybrid robots, their key technologies and applications, and the challenges they face. By analyzing studies conducted on terrestrial, aquatic, and aerial biohybrid robots, we gain a deeper understanding of how these technologies have made significant progress in simulating natural organisms, improving mechanical performance, and intelligent control. Additionally, we address challenges associated with the application of electrical stimulation technology, the precision of neural signal monitoring, and the ethical considerations for biohybrid robots. We highlight the importance of future research focusing on developing more sophisticated and biocompatible control methods while prioritizing animal welfare. We believe that exploring multimodal monitoring and stimulation technologies holds the potential to enhance the performance of biohybrid robots. These efforts are expected to pave the way for biohybrid robotics technology to introduce greater innovation and well-being to human society in the future.
Collapse
Affiliation(s)
- Guiyong Chen
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, People's Republic of China.
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, People's Republic of China
| | - Dan Dang
- School of Sciences, Shenyang Jianzhu University, Shenyang 110168, People's Republic of China.
| | - Chuang Zhang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, People's Republic of China
| | - Ling Qin
- School of Life Sciences, China Medical University, Shenyang 110122, People's Republic of China
| | - Tao Yan
- Department of Anesthesiology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Beijing 100021, People's Republic of China
- Chinese Academy of Medical Sciences, Beijing 100021, People's Republic of China
- Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Wenxue Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, People's Republic of China
| | - Wenfeng Liang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, People's Republic of China.
| |
Collapse
|
2
|
Hasan A, Moustafa I, Shousha T. Effect of Russian current expert modes on quadriceps muscle torque in healthy adults: A single-blinded randomized controlled trial. PLoS One 2024; 19:e0297136. [PMID: 38271360 PMCID: PMC10810422 DOI: 10.1371/journal.pone.0297136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/25/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Russian current (RC), a well-known neuromuscular electrical stimulation operating at 2500 Hz, has demonstrated significant strength improvement over traditional exercises due to its high tolerance and low pain provocation. Despite extensive NMES parameter research, the specific effects of expert modes, particularly ON2 and Rest, remain unexplored. This study investigates the direct effect of these expert modes on quadriceps muscle strength in healthy adults. METHODS This is a single-blind, randomization-controlled trial. Forty-eight healthy university students (31 females, 17 males) were assigned in two randomized experimental groups either the ON2 or Rest mode for a 15-minute electrical stimulation session. Quadriceps maximum voluntary isokinetic contraction measurements were taken before and directly after RC application using Biodex Medical Systems 4 pro isokinetic dynamometer. RESULTS Both RC modes significantly increased the quadriceps muscle torque in healthy adults compared to baseline (p<0.05). Baseline mean torque was 123.28 (SD = 38.8), and post- RC mean torque was 136.67 (SD = 45.76). Deviation from normality was observed at baseline (p = 0.034) and persisted post-RC application (p = 0.017). The Wilcoxon test reported significant increases in quadriceps muscle knee torque for both ON2 and Rest groups (p < 0.001). The lack of ties in ranks and negative Z-values highlight the robustness of the observed effects. CONCLUSION The findings of this study align with previous research on NMES and RC supporting the idea that electrical stimulation enhances muscle strength, selecting the appropriate RC expert modes can assist physiotherapist in tailoring rehabilitation program to achieve their specific strength goals.
Collapse
Affiliation(s)
- Ansam Hasan
- Department of Physiotherapy, College of Health sciences, University of Sharjah, Sharjah, UAE
| | - Ibrahim Moustafa
- Department of Physiotherapy, College of Health sciences, University of Sharjah, Sharjah, UAE
- Neuromusculoskeletal Rehabilitation Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, UAE
- Department of Basic Sciences, Faculty of Physical Therapy, Cairo University, Cairo, Egypt
| | - Tamer Shousha
- Department of Physiotherapy, College of Health sciences, University of Sharjah, Sharjah, UAE
- Neuromusculoskeletal Rehabilitation Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, UAE
- Department of Physical Therapy for Musculoskeletal Disorders and its Surgery, Faculty of Physical Therapy, Cairo University, Cairo, Egypt
- University of Sharjah Center of Excellence for Healthy Aging, Sharjah, UAE
- Healthy Aging, Longevity and Sustainability Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, UAE
| |
Collapse
|
3
|
Kilohertz Frequency Alternating Current Induces Less Evoked Torque and Less Neuromuscular Efficiency Than Pulsed Current in Healthy People: A Randomized Crossover Trial. J Sport Rehabil 2023:1-9. [PMID: 36812919 DOI: 10.1123/jsr.2022-0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 11/29/2022] [Accepted: 12/28/2022] [Indexed: 02/24/2023]
Abstract
CONTEXT Pulsed current and kilohertz frequency alternating current are 2 types of neuromuscular electrical stimulation (NMES) currents often used by clinicians during rehabilitation. However, the low methodological quality and the different NMES parameters and protocols used in several studies might explain their inconclusive results in terms of their effects in the evoked torque and the discomfort level. In addition, the neuromuscular efficiency (ie, the NMES current type that evokes the highest torque with the lowest current intensity) has not been established yet. Therefore, our objective was to compare the evoked torque, current intensity, neuromuscular efficiency (evoked torque/current intensity ratio), and discomfort between pulsed current and kilohertz frequency alternating current in healthy people. DESIGN A double-blind, randomized crossover trial. METHODS Thirty healthy men (23.2 [4.5] y) participated in the study. Each participant was randomized to 4 current settings: 2 kilohertz frequency alternating currents with 2.5 kHz of carrier frequency and similar pulse duration (0.4 ms) and burst frequency (100 Hz) but with different burst duty cycles (20% and 50%) and burst durations (2 and 5 ms); and 2 pulsed currents with similar pulse frequency (100 Hz) and different pulse duration (2 and 0.4 ms). The evoked torque, current intensity at the maximal tolerated intensity, neuromuscular efficiency, and discomfort level were evaluated. RESULTS Both pulsed currents generated higher evoked torque than the kilohertz frequency alternating currents, despite the similar between-currents discomfort levels. The 2 ms pulsed current showed lower current intensity and higher neuromuscular efficiency compared with both alternated currents and with the 0.4 ms pulsed current. CONCLUSIONS The higher evoked torque, higher neuromuscular efficiency, and similar discomfort of the 2 ms pulsed current compared with 2.5-kHz frequency alternating current suggests this current as the best choice for clinicians to use in NMES-based protocols.
Collapse
|
4
|
KiloHertz currents on aspects of muscle function: A scoping review. J Bodyw Mov Ther 2022; 32:110-119. [DOI: 10.1016/j.jbmt.2022.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 05/15/2022] [Indexed: 11/19/2022]
|
5
|
Ando S, Takagi Y, Watanabe H, Mochizuki K, Sudo M, Fujibayashi M, Tsurugano S, Sato K. Effects of electrical muscle stimulation on cerebral blood flow. BMC Neurosci 2021; 22:67. [PMID: 34775960 PMCID: PMC8591929 DOI: 10.1186/s12868-021-00670-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/29/2021] [Indexed: 01/16/2023] Open
Abstract
Background Electrical muscle stimulation (EMS) induces involuntary muscle contraction. Several studies have suggested that EMS has the potential to be an alternative method of voluntary exercise; however, its effects on cerebral blood flow (CBF) when applied to large lower limb muscles are poorly understood. Thus, the purpose of this study was to examine the effects of EMS on CBF, focusing on whether the effects differ between the internal carotid (ICA) and vertebral (VA) arteries. Methods The participants performed the experiments under EMS and control (rest) conditions in a randomized crossover design. The ICA and VA blood flow were measured before and during EMS or control. Heart rate, blood pressure, minute ventilation, oxygen uptake, and end-tidal partial pressure of carbon dioxide (PETCO2) were monitored and measured as well. Results The ICA blood flow increased during EMS [Pre: 330 ± 69 mL min−1; EMS: 371 ± 81 mL min−1, P = 0.001, effect size (Cohen’s d) = 0.55]. In contrast, the VA blood flow did not change during EMS (Pre: 125 ± 47 mL min−1; EMS: 130 ± 45 mL min−1, P = 0.26, effect size = 0.12). In the EMS condition, there was a significant positive linear correlation between ΔPETCO2 and ΔICA blood flow (R = 0.74, P = 0.02). No relationships were observed between ΔPETCO2 and ΔVA blood flow (linear: R = − 0.17, P = 0.66; quadratic: R = 0.43, P = 0.55). Conclusions The present results indicate that EMS increased ICA blood flow but not VA blood flow, suggesting that the effects of EMS on cerebral perfusion differ between anterior and posterior cerebral circulation, primarily due to the differences in cerebrovascular response to CO2.
Collapse
Affiliation(s)
- Soichi Ando
- Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan.
| | - Yoko Takagi
- Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Hikaru Watanabe
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Kodai Mochizuki
- Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Mizuki Sudo
- Physical Fitness Research Institute, Meiji Yasuda Life Foundation of Health and Welfare, Tobuki 150, Hachioji, Tokyo, 192-0001, Japan
| | | | - Shinobu Tsurugano
- Health Care Center, The University of Electro-Communication, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Kohei Sato
- Department of Arts and Sport Science, Tokyo Gakugei University, Tokyo, Japan
| |
Collapse
|
6
|
Pinto Damo NL, Modesto KA, Neto IVDS, Bottaro M, Babault N, Durigan JLQ. Effects of different electrical stimulation currents and phase durations on submaximal and maximum torque, efficiency, and discomfort: a randomized crossover trial. Braz J Phys Ther 2021; 25:593-600. [PMID: 33840592 PMCID: PMC8536851 DOI: 10.1016/j.bjpt.2021.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/02/2020] [Accepted: 03/11/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Neuromuscular electrical stimulation (NMES) is an important therapeutic tool for rehabilitation. However, best stimulation parameters remain to be determined. OBJECTIVE To determine the influence of different electrical stimulation currents and phase durations on torque, efficiency, and discomfort. METHODS Using a cross-over design, kHz frequency alternating currents (KFAC) and pulsed currents (PC) with narrow (200 µs) or wide (500 µs) phase durations were randomly applied on knee extensor muscles of healthy participants with a minimum of seven days between sessions. The NMES-evoked torque, NMES-efficiency, and discomfort (visual 0-10 cm analogue scale) were measured for each stimulation intensity increments (10 mA). Statistics were conducted using a three-way analysis of variances (phase duration x current x intensity), followed by Tukey post-hoc. RESULTS Twenty-four males (age 22.3 ± 3.5years) were included. No effect of NMES current was observed for torque, efficiency, and discomfort. For wide phase durations (500 µs), torque significantly increased for all stimulation intensities. For narrow phase durations (200 µs) evoked torque significantly increased only after 40% of maximal stimulation intensity. Phase durations of 500 µs produced greater torque than 200 µs. Discomfort was greater with 500 µs when compared to 200 µs. Submaximal relative torque, for example 40% of maximum voluntary contraction (MVC), was obtained with ∼ 60% and ∼ 80% of the maximal current intensity for 500 µs and 200 µs, respectively. CONCLUSION KFAC and PC current applied with the same phase duration induced similar relative submaximal and maximum evoked-torque, efficiency, and perceived discomfort. However, currents with 500 µs induced higher evoked-torque, current efficiency, and perceived discomfort.
Collapse
Affiliation(s)
| | | | - Ivo Vieira de Sousa Neto
- Graduate Program of Sciences and Technology of Health, Universidade de Brasília, Brasília, DF, Brazil
| | - Martim Bottaro
- College of Physical Education Department, Universidade de Brasília, Brasília, DF, Brazil
| | - Nicolas Babault
- INSERM U1093 CAPS, Faculty of Sport Sciences, University of Burgundy, Dijon, France
| | | |
Collapse
|
7
|
Paz IDA, Rigo GT, Sgarioni A, Baroni BM, Frasson VB, Vaz MA. Alternating Current Is More Fatigable Than Pulsed Current in People Who Are Healthy: A Double-Blind, Randomized Crossover Trial. Phys Ther 2021; 101:6131761. [PMID: 33561279 DOI: 10.1093/ptj/pzab056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/12/2020] [Accepted: 12/27/2020] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Tolerance level and rapid fatigue onset are limitations in the use of neuromuscular electrical stimulation (NMES) as an electrotherapeutic resource in rehabilitation and training protocols; however, it is unclear if pulsed current (PC) and alternating current (AC) produce different fatigue levels when applied at submaximal contraction level. The purpose of this study was to compare fatigue and discomfort levels between PC and AC during a submaximal contraction protocol in people who are healthy. METHODS In this double-blind, randomized crossover trial conducted in a laboratory setting, 30 male volunteers [23.23 years of age (SD = 4.59)] performed 2 submaximal fatigue protocols (with a 7-day interval) in a randomized order: PC (pulse duration = 2 milliseconds, pulse frequency = 100 Hz) and AC (2.5 kHz, pulse duration = 0.4 milliseconds, burst frequency = 100 Hz). NMES currents were applied to the knee extensor motor point of the dominant limb. The NMES protocol consisted of 80 evoked contractions (time on:off = 5:10 seconds) and lasted 20 minutes. The current was maintained at a constant intensity throughout the NMES protocol. The primary outcome measures were maximal voluntary isometric contraction, fatigue index (evoked torque decline), fatigability (number of contractions for a 50% drop in evoked-torque from the protocol start), total evoked torque-time integral (TTI), decline in TTI, and discomfort level. RESULTS AC at 2.5 kHz demonstrated higher maximal voluntary isometric contraction decline post-fatigue, higher fatigue index, higher fatigability (ie, fewer contractions to reach the 50% evoked torque decline from the protocol start), smaller total TTI, and higher TTI decline compared with PC. No between-currents difference was observed in discomfort level. CONCLUSION PC is less fatigable than AC at 2.5 kHz. IMPACT Based on this study, PC is the preferred current choice when the NMES goal is to generate higher muscle work, higher mechanical load, and smaller fatigability during training both for athletes who are healthy and for rehabilitation programs for people with disease or injury.
Collapse
Affiliation(s)
- Isabel de Almeida Paz
- Exercise Research Laboratory, School of Physical Education, Physical Therapy and Dance, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Graciane Taglian Rigo
- Exercise Research Laboratory, School of Physical Education, Physical Therapy and Dance, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Amanda Sgarioni
- Exercise Research Laboratory, School of Physical Education, Physical Therapy and Dance, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bruno Manfredini Baroni
- Graduate Program in Rehabilitation Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Viviane Bortoluzzi Frasson
- Graduate Program in Rehabilitation Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil.,Physique Centro de Fisioterapia, Porto Alegre, RS, Brazil
| | - Marco Aurélio Vaz
- Exercise Research Laboratory, School of Physical Education, Physical Therapy and Dance, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.,Physique Centro de Fisioterapia, Porto Alegre, RS, Brazil
| |
Collapse
|
8
|
Fouré A, Gondin J. Skeletal Muscle Damage Produced by Electrically Evoked Muscle Contractions. Exerc Sport Sci Rev 2021; 49:59-65. [PMID: 33122596 DOI: 10.1249/jes.0000000000000239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Understanding the physiological/mechanical mechanisms leading to skeletal muscle damage remains one of the challenges in muscle physiology. This review presents the functional, structural, and cellular consequences of electrically evoked submaximal isometric contractions that can elicit severe and localized skeletal muscle damage. Hypotheses related to underlying physiological and mechanical processes involved in severe and localized muscle damage also are discussed.
Collapse
Affiliation(s)
- Alexandre Fouré
- Inter-university Laboratory of Human Mouvement Biology (LIBM), University of Lyon, UCBL-Lyon1, EA 7424, Villeurbanne, France
| | - Julien Gondin
- NeuroMyoGene Institute, Univ Lyon, CNRS 5310, INSERM U1217, UCBL 1, Lyon, France
| |
Collapse
|
9
|
Merrigan JJ, Jones MT, Malecek J, Padecky J, Omcirk D, Xu N, Peñailillo L, Tufano JJ. Comparison of Traditional and Rest-Redistribution Sets on Indirect Markers of Muscle Damage Following Eccentric Exercise. J Strength Cond Res 2020; 36:1810-1818. [DOI: 10.1519/jsc.0000000000003740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Russian and Low-Frequency Currents Induced Similar Neuromuscular Adaptations in Soccer Players: A Randomized Controlled Trial. J Sport Rehabil 2020; 29:594-601. [PMID: 31141429 DOI: 10.1123/jsr.2018-0314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 03/22/2019] [Accepted: 05/12/2019] [Indexed: 11/18/2022]
Abstract
CONTEXT Neuromuscular electrical stimulation is widely used to induce muscular strength increase; however, no study has compared Russian current (RC) with pulsed current (PC) effects after a training program. OBJECTIVES We studied the effects of different neuromuscular electrical stimulation currents, RC, and PC on the neuromuscular system after a 6-week training period. DESIGN Blinded randomized controlled trial. SETTING Laboratory. PATIENTS A total of 27 male soccer players (age 22.2 [2.2] y, body mass 74.2 [10.0] kg, height 177 [0] cm, and body mass index 23.7 [2.9] kg/cm2 for the control group; 22.1 [3.1] y, 69.7 [5.7] kg, 174 [0] cm, and 23.0 [2.5] kg/cm for the PC group; and 23.0 [3.4] y, 72.1 [10.7] kg, 175 [0] cm, and 23.5 [3.4] kg/cm for the RC group) were randomized into 3 groups: (1) control group; (2) RC (2500 Hz, burst 100 Hz, and phase duration 200 μs); and (3) PC (100 Hz and 200 μs). INTERVENTION The experimental groups trained for 6 weeks, with 3 sessions per week with neuromuscular electrical stimulation. MAIN OUTCOME MEASURES Maximal voluntary isometric contraction and evoked torque, muscle architecture, sensory discomfort (visual analog scale), and electromyographic activity were evaluated before and after the 6-week period. RESULTS Evoked torque increased in the RC (169.5% [78.2%], P < .01) and PC (248.7% [81.1%], P < .01) groups. Muscle thickness and pennation angle increased in the RC (8.7% [3.8%] and 16.7% [9.0%], P < .01) and PC (16.1% [8.0%] and 27.4% [11.0%], P < .01) groups. The PC demonstrated lower values for visual analog scale (38.8% [17.1%], P < .01). There was no significant time difference for maximal voluntary isometric contraction and root mean square values (P > .05). For all these variables, there was no difference between the RC and PC (P > .05). CONCLUSION Despite the widespread use of RC in clinical practice, RC and PC training programs produced similar neuromuscular adaptations in soccer players. Nonetheless, as PC generated less perceived discomfort, it could be preferred after several training sessions.
Collapse
|
11
|
Sanchis-Gomar F, Lopez-Lopez S, Romero-Morales C, Maffulli N, Lippi G, Pareja-Galeano H. Neuromuscular Electrical Stimulation: A New Therapeutic Option for Chronic Diseases Based on Contraction-Induced Myokine Secretion. Front Physiol 2019; 10:1463. [PMID: 31849710 PMCID: PMC6894042 DOI: 10.3389/fphys.2019.01463] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 11/13/2019] [Indexed: 11/13/2022] Open
Abstract
Myokines are peptides known to modulate brain neuroplasticity, adipocyte metabolism, bone mineralization, endothelium repair and cell growth arrest in colon and breast cancer, among other processes. Repeated skeletal muscle contraction induces the production and secretion of myokines, which have a wide range of functions in different tissues and organs. This new role of skeletal muscle as a secretory organ means skeletal muscle contraction could be a key player in the prevention and/or management of chronic disease. However, some individuals are not capable of optimal physical exercise in terms of adequate duration, intensity or muscles involved, and therefore they may be virtually deprived of at least some of the physiological benefits induced by exercise. Neuromuscular electrical stimulation (NMES) is emerging as an effective physical exercise substitute for myokine induction. NMES is safe and efficient and has been shown to improve muscle strength, functional capacity, and quality of life. This alternative exercise modality elicits hypertrophy and neuromuscular adaptations of skeletal muscles. NMES stimulates circulating myokine secretion, promoting a cascade of endocrine, paracrine, and autocrine effects. We review the current evidence supporting NMES as an effective physical exercise substitute for inducing myokine production and its potential applications in health and disease.
Collapse
Affiliation(s)
- Fabian Sanchis-Gomar
- Department of Physiology, Faculty of Medicine, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
| | - Sergio Lopez-Lopez
- Facultad de Ciencias del Deporte, Universidad Europea de Madrid, Madrid, Spain
| | | | - Nicola Maffulli
- Department of Musculoskeletal Disorders, Faculty of Medicine and Surgery, University of Salerno, Baronissi, Italy
- Centre for Sports and Exercise Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, United Kingdom
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | | |
Collapse
|
12
|
Johannsen AD, Krogh TP. Rhabdomyolysis in an elite dancer after training with electromyostimulation: A case report. TRANSLATIONAL SPORTS MEDICINE 2019. [DOI: 10.1002/tsm2.91] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Thøger P. Krogh
- Diagnostic Centre Silkeborg Regional Hospital Silkeborg Denmark
- The Danish, National Elite Sport Centre Team Denmark Aarhus Denmark
| |
Collapse
|
13
|
Fouré A, Troter A, Ogier AC, Guye M, Gondin J, Bendahan D. Spatial difference can occur between activated and damaged muscle areas following electrically‐induced isometric contractions. J Physiol 2019; 597:4227-4236. [DOI: 10.1113/jp278205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 06/27/2019] [Indexed: 11/08/2022] Open
Affiliation(s)
- Alexandre Fouré
- Aix‐Marseille UniversitéCNRS, CRMBM UMR 7339 13385 Marseille France
- APHMHôpital Universitaire Timone CEMEREM 13005 Marseille France
- Université de Lyon (UCBL1)Laboratoire Interuniversitaire de Biologie de la MotricitéEA7424 Villeurbanne France
| | - Arnaud Troter
- Aix‐Marseille UniversitéCNRS, CRMBM UMR 7339 13385 Marseille France
| | - Augustin C. Ogier
- Aix‐Marseille UniversitéUniversité de Toulon, CNRS LIS UMR 7020 13385 Marseille France
| | - Maxime Guye
- Aix‐Marseille UniversitéCNRS, CRMBM UMR 7339 13385 Marseille France
- APHMHôpital Universitaire Timone CEMEREM 13005 Marseille France
| | - Julien Gondin
- Aix‐Marseille UniversitéCNRS, CRMBM UMR 7339 13385 Marseille France
- Institut NeuroMyoGène, Université de Lyon (UCBL1)CNRS 5310 INSERM U1217 Lyon France
| | - David Bendahan
- Aix‐Marseille UniversitéCNRS, CRMBM UMR 7339 13385 Marseille France
| |
Collapse
|
14
|
Iijima H, Takahashi M, Tashiro Y, Aoyama T. Comparison of the effects of kilohertz- and low-frequency electric stimulations: A systematic review with meta-analysis. PLoS One 2018; 13:e0195236. [PMID: 29689079 PMCID: PMC5915276 DOI: 10.1371/journal.pone.0195236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 02/26/2018] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE This study aimed to determine whether kilohertz-frequency alternating current (KFAC) is superior to low-frequency pulsed current (PC) in increasing muscle-evoked torque and lessening discomfort. DATA SOURCES The electronic databases PubMed, PEDro, CINAHL, and CENTRAL were searched for related articles, published before August 2017. Furthermore, citation search was performed on the original record using Web of Science. REVIEW METHODS Randomized controlled trials, quasi-experimental studies, and within-subject repeated studies evaluating and comparing KFAC and PC treatments were included. The pooled standardized mean differences (SMDs) of KFAC and PC treatments, with 95% confidence intervals (CIs), were calculated using the random effects model. RESULTS In total, 1148 potentially relevant articles were selected, of which 14 articles with within-subject repeated designs (271 participants, mean age: 26.4 years) met the inclusion criteria. KFAC did not significantly increase muscle-evoked torque, compared to PC (pooled SMD: -0.25; 95% CI: -0.53, 0.06; P = 0.120). KFAC had comparable discomfort compared to that experienced using PC (pooled SMD: -0.06; 95% CI: -0.50, 0.38; P = 0.800). These estimates of the effects had a high risk of bias, as assessed using the Downs and Black scale, and were highly heterogeneous studies. CONCLUSIONS This meta-analysis does not establish that KFAC is superior to PC in increasing muscle-evoked torque and lessening discomfort level. However, no strong conclusion could be drawn because of a high risk of bias and a large amount of heterogeneity. High quality studies comparing the efficacy between PC and KFAC treatments with consideration of potential confounders is warranted to facilitate the development of effective treatment.
Collapse
Affiliation(s)
- Hirotaka Iijima
- Department of System Design Engineering, Keio University, Yokohama, Japan
- Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Masaki Takahashi
- Department of System Design Engineering, Keio University, Yokohama, Japan
| | - Yuto Tashiro
- Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoki Aoyama
- Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
15
|
Vaz MA, Frasson VB. Low-Frequency Pulsed Current Versus Kilohertz-Frequency Alternating Current: A Scoping Literature Review. Arch Phys Med Rehabil 2018; 99:792-805. [DOI: 10.1016/j.apmr.2017.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 11/29/2017] [Accepted: 12/01/2017] [Indexed: 10/18/2022]
|
16
|
Bellew JW, Allen M, Biefnes A, Grantham S, Miglin J, Swartzell D. Efficiency of neuromuscular electrical stimulation: A comparison of elicited force and subject tolerance using three electrical waveforms. Physiother Theory Pract 2018; 34:551-558. [DOI: 10.1080/09593985.2017.1422820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- James W. Bellew
- Krannert School of Physical Therapy, University of Indianapolis, Indianapolis, IN, USA
| | - Molly Allen
- Krannert School of Physical Therapy, University of Indianapolis, Indianapolis, IN, USA
| | - Austin Biefnes
- Krannert School of Physical Therapy, University of Indianapolis, Indianapolis, IN, USA
| | - Sara Grantham
- Krannert School of Physical Therapy, University of Indianapolis, Indianapolis, IN, USA
| | - James Miglin
- Krannert School of Physical Therapy, University of Indianapolis, Indianapolis, IN, USA
| | - Dylan Swartzell
- Krannert School of Physical Therapy, University of Indianapolis, Indianapolis, IN, USA
| |
Collapse
|
17
|
Kilohertz and Low-Frequency Electrical Stimulation With the Same Pulse Duration Have Similar Efficiency for Inducing Isometric Knee Extension Torque and Discomfort. Am J Phys Med Rehabil 2017; 96:388-394. [PMID: 27680427 DOI: 10.1097/phm.0000000000000631] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To test the hypotheses that, as compared with pulsed current with the same pulse duration, kilohertz frequency alternating current would not differ in terms of evoked-torque production and perceived discomfort, and as a result, it would show the same current efficiency. DESIGN A repeated-measures design with 4 stimuli presented in random order was used to test 25 women: (1) 500-microsecond pulse duration, (2) 250-microsecond pulse duration, (3) 500-microsecond pulse duration and low carrier frequency (1 kHz), (4) 250-microsecond pulse duration and high carrier frequency (4 kHz). Isometric peak torque of quadriceps muscle was measured using an isokinetic dynamometer. Discomfort was measured using a visual analog scale. RESULTS Currents with long pulse durations induced approximately 21% higher evoked torque than short pulse durations. In addition, currents with 500 microseconds delivered greater amounts of charge than stimulation patterns using 250-microsecond pulse durations (P < 0.05). All currents presented similar discomfort. There was no difference on stimulation efficiency with the same pulse duration. CONCLUSIONS Both kilohertz frequency alternating current and pulsed current, with the same pulse duration, have similar efficiency for inducing isometric knee extension torque and discomfort. However, neuromuscular electrical stimulation (NMES) with longer pulse duration induces higher NMES-evoked torque, regardless of the carrier frequency. Pulse duration is an important variable that should receive more attention for an optimal application of NMES in clinical settings.
Collapse
|
18
|
Bochkezanian V, Newton RU, Trajano GS, Vieira A, Pulverenti TS, Blazevich AJ. Effect of tendon vibration during wide-pulse neuromuscular electrical stimulation (NMES) on the decline and recovery of muscle force. BMC Neurol 2017; 17:82. [PMID: 28464800 PMCID: PMC5414318 DOI: 10.1186/s12883-017-0862-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/22/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Neuromuscular electrical stimulation (NMES) is commonly used to activate skeletal muscles and reverse muscle atrophy in clinical populations. Clinical recommendations for NMES suggest the use of short pulse widths (100-200 μs) and low-to-moderate pulse frequencies (30-50 Hz). However, this type of NMES causes rapid muscle fatigue due to the (non-physiological) high stimulation intensities and non-orderly recruitment of motor units. The use of both wide pulse widths (1000 μs) and tendon vibration might optimize motor unit activation through spinal reflex pathways and thus delay the onset of muscle fatigue, increasing muscle force and mass. Thus, the objective of this study was to examine the acute effects of patellar tendon vibration superimposed onto wide-pulse width (1000 μs) knee extensor electrical stimulation (NMES, 30 Hz) on peak muscle force, total impulse before "muscle fatigue", and the post-exercise recovery of muscle function. METHODS Tendon vibration (Vib), NMES (STIM) or NMES superimposed onto vibration (STIM + Vib) were applied in separate sessions to 16 healthy adults. Total torque-time integral (TTI), maximal voluntary contraction torque (MVIC) and indirect measures of muscle damage were tested before, immediately after, 1 h and 48 h after each stimulus. RESULTS TTI increased (145.0 ± 127.7%) in STIM only for "positive responders" to the tendon vibration (8/16 subjects), but decreased in "negative responders" (-43.5 ± 25.7%). MVIC (-8.7%) and rectus femoris electromyography (RF EMG) (-16.7%) decreased after STIM (group effect) for at least 1 h, but not after STIM + Vib. No changes were detected in indirect markers of muscle damage in any condition. CONCLUSIONS Tendon vibration superimposed onto wide-pulse width NMES increased TTI only in 8 of 16 subjects, but reduced voluntary force loss (fatigue) ubiquitously. Negative responders to tendon vibration may derive greater benefit from wide-pulse width NMES alone.
Collapse
Affiliation(s)
- Vanesa Bochkezanian
- Exercise Medicine Research Institute, Edith Cowan University, Perth, Australia. .,Centre for Sports and Exercise Science, School of Medical and Health Sciences, Edith Cowan University, Joondalup 270 Joondalup Drive, Joondalup, WA, 6027, Australia.
| | - Robert U Newton
- Exercise Medicine Research Institute, Edith Cowan University, Perth, Australia.,Centre for Sports and Exercise Science, School of Medical and Health Sciences, Edith Cowan University, Joondalup 270 Joondalup Drive, Joondalup, WA, 6027, Australia.,UQ Centre for Clinical Research, University of Queensland, Brisbane, Australia
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, Australia
| | | | - Timothy S Pulverenti
- Centre for Sports and Exercise Science, School of Medical and Health Sciences, Edith Cowan University, Joondalup 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Anthony J Blazevich
- Centre for Sports and Exercise Science, School of Medical and Health Sciences, Edith Cowan University, Joondalup 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| |
Collapse
|
19
|
Mathes S, Lehnen N, Link T, Bloch W, Mester J, Wahl P. Chronic effects of superimposed electromyostimulation during cycling on aerobic and anaerobic capacity. Eur J Appl Physiol 2017; 117:881-892. [PMID: 28271312 DOI: 10.1007/s00421-017-3572-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/13/2017] [Indexed: 11/25/2022]
Abstract
PURPOSE To examine if chronic endurance training by means of simultaneously applied, superimposed electromyostimulation (EMS) can be used to improve performance and physiological core parameters compared to the traditional cycling. METHODS Twenty-one male subjects (VO2peak 55.2 ± 5.1 ml min- 1 kg- 1) were assigned to either a cycling (C) or cycling with superimposed EMS (C + E) group. Before and after the 4-week training period, including 14 sessions of moderate cycling [60 min at 60% peak power output (PPO)], participants performed a 20-min time-trial, a step test to exhaustion, a 30-s isokinetic sprint test, and maximum force- and power-tests. Markers of muscle damage and metabolic condition were assessed during the training period. RESULTS Step test results revealed increases in PPO, VO2peak, lactate threshold 1, and the anaerobic threshold for both groups (p < 0.05). Mean power output (MPO) obtained from time-trial was improved in C and C + E (p < 0.05). Isokinetic sprint test revealed increased PPO in both groups, whereas MPO was only changed in C (p < 0.05). Strength parameters were unaffected. Although metabolic stimuli and markers of muscle damage were higher in C + E compared to C, improvements of endurance performance and capacity were not significantly different between C and C + E. CONCLUSIONS Despite a higher metabolic, respiratory, and muscular demand, chronic additional superimposed EMS during cycling does not result in superior improvements in endurance and strength performance compared to the traditional cycling.
Collapse
Affiliation(s)
- Sebastian Mathes
- Institute of Training Science and Sport Informatics, German Sport University Cologne, Am Sportpark Muengersdorf 6, 50933, Cologne, Germany.,The German Research Centre of Elite Sport, German Sport University Cologne, Am Sportpark Muengersdorf 6, 50933, Cologne, Germany
| | - Niklas Lehnen
- Institute of Training Science and Sport Informatics, German Sport University Cologne, Am Sportpark Muengersdorf 6, 50933, Cologne, Germany
| | - Tobias Link
- Institute of Training Science and Sport Informatics, German Sport University Cologne, Am Sportpark Muengersdorf 6, 50933, Cologne, Germany.,The German Research Centre of Elite Sport, German Sport University Cologne, Am Sportpark Muengersdorf 6, 50933, Cologne, Germany
| | - Wilhelm Bloch
- The German Research Centre of Elite Sport, German Sport University Cologne, Am Sportpark Muengersdorf 6, 50933, Cologne, Germany.,Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Am Sportpark Muengersdorf 6, 50933, Cologne, Germany
| | - Joachim Mester
- Institute of Training Science and Sport Informatics, German Sport University Cologne, Am Sportpark Muengersdorf 6, 50933, Cologne, Germany.,The German Research Centre of Elite Sport, German Sport University Cologne, Am Sportpark Muengersdorf 6, 50933, Cologne, Germany
| | - Patrick Wahl
- Institute of Training Science and Sport Informatics, German Sport University Cologne, Am Sportpark Muengersdorf 6, 50933, Cologne, Germany. .,The German Research Centre of Elite Sport, German Sport University Cologne, Am Sportpark Muengersdorf 6, 50933, Cologne, Germany. .,Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Am Sportpark Muengersdorf 6, 50933, Cologne, Germany.
| |
Collapse
|
20
|
Tönük ŞB, Serin E, Ayhan FF, Yorgancioglu ZR. The effects of physical therapeutic agents on serum levels of stress hormones in patients with osteoarthritis. Medicine (Baltimore) 2016; 95:e4660. [PMID: 27583888 PMCID: PMC5008572 DOI: 10.1097/md.0000000000004660] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
To investigate the effects of physical agents on the levels of stress hormones in patients with osteoarthritis (OA).Transcutaneous electrical nerve stimulation, hot packs, and therapeutic ultrasound were applied to the lumbar region and knees of patients with OA. Blood samples were taken for the measurement of the serum levels of glucose, insulin (INS), growth hormone (GH), prolactin (PRL), cortisol (COR), and plasma adrenocorticotropic hormone (ACTH) immediately before and after the 1st session, to investigate the acute effects of those physical agents on the endocrine system. The hormone levels were also measured every 5 sessions in a total of 10 sessions. The treatment response was also evaluated by using the visual analogue scale (VAS), Roland Morris Disability Questionnaire (RMDQ), and Western Ontario and McMaster Universities Arthritis Index (WOMAC) throughout the therapy period.After the 1st session, there was a decrease in INS levels and a mild decrease in PRL levels (P = 0.001 and P < 0.05, respectively). Throughout the 10-session therapy period, the INS levels increased, whereas the ACTH and COR levels decreased (P < 0.05 for all). The VAS-spine, RMDQ, VAS-knee, and WOMAC scores decreased (P = 0.001 for VAS-spine and P < 0.001 for all others). A positive correlation was detected between the changes in serum COR and WOMAC-pain score (P < 0.05).Although the combination therapy caused changes in INS level accompanied with steady glucose levels, the application of physical agents did not adversely affect the hormone levels. The decrease in ACTH and COR levels may be attributed to the analgesic effect of agents and may be an indicator of patient comfort through a central action.
Collapse
Affiliation(s)
- Şükrü Burak Tönük
- Department of Physical Medicine and Rehabilitation, School of Medicine, Abant Izzet Baysal University, Bolu
- Correspondence: Şükrü Burak Tönük, Abant Izzet Baysal Üniversitesi, Izzet Baysal Fizik Tedavi ve Rehabilitasyon Hastanesi, 14020 Karacasu Bolu, Turkey (e-mail: )
| | - Erdinc Serin
- Department of Medical Biochemistry, Istanbul Research and Education Hospital, Istanbul
| | - Fikriye Figen Ayhan
- Department of Physical Medicine and Rehabilitation, Ankara Research and Education Hospital, Ankara, Turkey
| | - Zeynep Rezan Yorgancioglu
- Department of Physical Medicine and Rehabilitation, Ankara Research and Education Hospital, Ankara, Turkey
| |
Collapse
|
21
|
Fouré A, Wegrzyk J, Le Fur Y, Mattei JP, Boudinet H, Vilmen C, Bendahan D, Gondin J. Impaired mitochondrial function and reduced energy cost as a result of muscle damage. Med Sci Sports Exerc 2016; 47:1135-44. [PMID: 25371171 DOI: 10.1249/mss.0000000000000523] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Although it has been largely acknowledged that isometric neuromuscular electrostimulation (NMES) exercise induces larger muscle damage than voluntary contractions, the corresponding effects on muscle energetics remain to be determined. Voluntary exercise-induced muscle damage (EIMD) has been reported to have minor slight effects on muscle metabolic response to subsequent dynamic exercise, but the magnitude of muscle energetics alterations for NMES EIMD has never been documented. METHODS ³¹P magnetic resonance spectroscopy measurements were performed in 13 young healthy males during a standardized rest-exercise-recovery protocol before (D0) and 2 d (D2) and 4 d (D4) after NMES EIMD on knee extensor muscles. Changes in kinetics of phosphorylated metabolite concentrations (i.e., phosphocreatine [PCr], inorganic phosphate [Pi], and adenosine triphosphate [ATP]) and pH were assessed to investigate aerobic and anaerobic rates of ATP production and energy cost of contraction (Ec). RESULTS Resting [Pi]/[PCr] ratio increased at D2 (+39%) and D4 (+29%), mainly owing to the increased [Pi] (+43% and +32%, respectively), whereas a significant decrease in resting pH was determined (-0.04 pH unit and -0.03 pH unit, respectively). PCr recovery rate decreased at D2 (-21%) and D4 (-23%) in conjunction with a significantly decreased total rate of ATP production at D4 (-18%) mainly owing to an altered aerobic ATP production (-19%). Paradoxically, Ec was decreased at D4 (-21%). CONCLUSION Overall, NMES EIMD led to intramuscular acidosis in resting muscle and mitochondrial impairment in exercising muscle. Alterations of noncontractile processes and/or adaptive mechanisms to muscle damage might account for the decreased Ec during the dynamic exercise.
Collapse
Affiliation(s)
- Alexandre Fouré
- 1Aix-Marseille University, Centre National de la Recherche Scientifique (CNRS), Centre de Résonance Magnétique Biologique et Médicale (CRMBM), Unité Mixte de Recherche 7339, Marseille, FRANCE; 2Assistance Publique des Hôpitaux de Marseille (APHM), Sainte Marguerite Hospital, Department of Rheumatology, Marseille, FRANCE; and 3APHM, La Timone Hospital, Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Imaging Center, Marseille, FRANCE
| | | | | | | | | | | | | | | |
Collapse
|
22
|
da Silva VZM, Durigan JLQ, Arena R, de Noronha M, Gurney B, Cipriano G. Current evidence demonstrates similar effects of kilohertz-frequency and low-frequency current on quadriceps evoked torque and discomfort in healthy individuals: a systematic review with meta-analysis. Physiother Theory Pract 2015; 31:533-9. [DOI: 10.3109/09593985.2015.1064191] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Dantas LO, Vieira A, Siqueira AL, Salvini TF, Durigan JLQ. Comparison between the effects of 4 different electrical stimulation current waveforms on isometric knee extension torque and perceived discomfort in healthy women. Muscle Nerve 2014; 51:76-82. [DOI: 10.1002/mus.24280] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 04/27/2014] [Accepted: 05/06/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Lucas Ogura Dantas
- Department of Physical Therapy; Federal University of São Carlos; São Paulo Brazil
| | - Amilton Vieira
- Physical Therapy Division; University of Brasília; QNN 14 Área Especial Ceilândia Sul 72220-140 Brasilia Distrito Federal Brazil
| | | | - Tania Fatima Salvini
- Department of Physical Therapy; Federal University of São Carlos; São Paulo Brazil
| | - João Luiz Quagliotti Durigan
- Physical Therapy Division; University of Brasília; QNN 14 Área Especial Ceilândia Sul 72220-140 Brasilia Distrito Federal Brazil
| |
Collapse
|
24
|
Fouré A, Nosaka K, Wegrzyk J, Duhamel G, Le Troter A, Boudinet H, Mattei JP, Vilmen C, Jubeau M, Bendahan D, Gondin J. Time course of central and peripheral alterations after isometric neuromuscular electrical stimulation-induced muscle damage. PLoS One 2014; 9:e107298. [PMID: 25215511 PMCID: PMC4162582 DOI: 10.1371/journal.pone.0107298] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 08/08/2014] [Indexed: 11/18/2022] Open
Abstract
Isometric contractions induced by neuromuscular electrostimulation (NMES) have been shown to result in a prolonged force decrease but the time course of the potential central and peripheral factors have never been investigated. This study examined the specific time course of central and peripheral factors after isometric NMES-induced muscle damage. Twenty-five young healthy men were subjected to an NMES exercise consisting of 40 contractions for both legs. Changes in maximal voluntary contraction force of the knee extensors (MVC), peak evoked force during double stimulations at 10 Hz (Db10) and 100 Hz (Db100), its ratio (10∶100), voluntary activation, muscle soreness and plasma creatine kinase activity were assessed before, immediately after and throughout four days after NMES session. Changes in knee extensors volume and T2 relaxation time were also assessed at two (D2) and four (D4) days post-exercise. MVC decreased by 29% immediately after NMES session and was still 19% lower than the baseline value at D4. The decrease in Db10 was higher than in Db100 immediately and one day post-exercise resulting in a decrease (−12%) in the 10∶100 ratio. On the contrary, voluntary activation significantly decreased at D2 (−5%) and was still depressed at D4 (−5%). Muscle soreness and plasma creatine kinase activity increased after NMES and peaked at D2 and D4, respectively. T2 was also increased at D2 (6%) and D4 (9%). Additionally, changes in MVC and peripheral factors (e.g., Db100) were correlated on the full recovery period, while a significant correlation was found between changes in MVC and VA only from D2 to D4. The decrease in MVC recorded immediately after the NMES session was mainly due to peripheral changes while both central and peripheral contributions were involved in the prolonged force reduction. Interestingly, the chronological events differ from what has been reported so far for voluntary exercise-induced muscle damage.
Collapse
Affiliation(s)
- Alexandre Fouré
- Aix-Marseille University, CNRS, CRMBM UMR CNRS 7339, Marseille, France
- * E-mail:
| | - Kazunori Nosaka
- Edith Cowan University, School of Exercise and Health Sciences, WA 6027, Joondalup, Australia
| | - Jennifer Wegrzyk
- Aix-Marseille University, CNRS, CRMBM UMR CNRS 7339, Marseille, France
| | - Guillaume Duhamel
- Aix-Marseille University, CNRS, CRMBM UMR CNRS 7339, Marseille, France
| | - Arnaud Le Troter
- Aix-Marseille University, CNRS, CRMBM UMR CNRS 7339, Marseille, France
| | - Hélène Boudinet
- APHM, La Timone Hospital, CEMEREM, Imaging Center, Marseille, France
| | - Jean-Pierre Mattei
- Aix-Marseille University, CNRS, CRMBM UMR CNRS 7339, Marseille, France
- APHM, La Conception Hospital, Department of Rheumatology, Marseille, France
| | - Christophe Vilmen
- Aix-Marseille University, CNRS, CRMBM UMR CNRS 7339, Marseille, France
| | - Marc Jubeau
- University of Nantes, Laboratory “Motricité, Interactions, Performance” (EA 4334), UFR STAPS, Nantes, France
| | - David Bendahan
- Aix-Marseille University, CNRS, CRMBM UMR CNRS 7339, Marseille, France
| | - Julien Gondin
- Aix-Marseille University, CNRS, CRMBM UMR CNRS 7339, Marseille, France
| |
Collapse
|
25
|
Vanderthommen M, Chamayou R, Demoulin C, Crielaard JM, Croisier JL. Protection against muscle damage induced by electrical stimulation: efficiency of a preconditioning programme. Clin Physiol Funct Imaging 2014; 35:267-74. [PMID: 24774992 DOI: 10.1111/cpf.12160] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 04/09/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE The aim of this study was to explore the efficiency of a preconditioning programme composed of neuromuscular electrical stimulation (NMES) in the protection against muscle damage induced by a subsequent bout of NMES. METHODS Sixteen male volunteers were split up into a control group (CG; n = 8) and a preconditioned group (PCG; n = 8). Both groups attended two NMES bouts (test 1 and test 2) spaced 5 weeks apart. Each one consisted in 100 quadriceps contractions and 100 hamstrings contractions. PCG attended five additional progressive NMES sessions between test 1 and test 2. The outcome measures were the changes in muscle soreness [0-10 pain score on visual analogue pain scale (VAS)], muscle flexibility and serum creatine kinase (CK) activity; they were assessed before (pre-T1) and after (post-T1) test 1 and before (pre-T2) and after (post-T2) test 2. RESULTS Damage markers increased similarly in both groups after test 1 (at post-T1, VAS scores = 4·18 ± 2 and 4·43 ± 1·56 cm in CG and PCG, respectively; CK activity = 2307 ± 3774 and 1671 ± 1790 IU l(-1) in CG and PCG, respectively). Compared with test 1, these damage markers were reduced after test 2 in CG (at post-T2, VAS score = 2·68 ± 1·27 cm and CK activity = 218 ± 72 IU l(-1) ). Muscle soreness was further reduced after test 2 in PCG (VAS score = 0·37 ± 0·74 cm). CONCLUSIONS A protective effect against muscle damage can be obtained after only one NMES bout, and an additional protective effect can be induced by a preconditioning programme.
Collapse
Affiliation(s)
- Marc Vanderthommen
- Department of Sport and Rehabilitation, University of Liège, Liège, Belgium
| | - Remy Chamayou
- Department of Sport and Rehabilitation, University of Liège, Liège, Belgium
| | | | | | | |
Collapse
|
26
|
Is high-frequency neuromuscular electrical stimulation a suitable tool for muscle performance improvement in both healthy humans and athletes? Eur J Appl Physiol 2011; 111:2473-87. [DOI: 10.1007/s00421-011-2101-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 07/26/2011] [Indexed: 12/01/2022]
|
27
|
Muscle damage induced by electrical stimulation. Eur J Appl Physiol 2011; 111:2427-37. [DOI: 10.1007/s00421-011-2086-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 07/11/2011] [Indexed: 11/26/2022]
|
28
|
Gondin J, Giannesini B, Vilmen C, Le Fur Y, Cozzone PJ, Bendahan D. Effects of a single bout of isometric neuromuscular electrical stimulation on rat gastrocnemius muscle: a combined functional, biochemical and MRI investigation. J Electromyogr Kinesiol 2011; 21:525-32. [PMID: 21345698 DOI: 10.1016/j.jelekin.2011.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 11/25/2010] [Accepted: 01/26/2011] [Indexed: 11/28/2022] Open
Abstract
While muscle damage resulting from electrically-induced muscle isometric contractions has been reported in humans, animal studies have failed to illustrate similar deleterious effects and it remains to be determined whether these conflicting results are related to differences regarding experimental procedures or to species. We have investigated in vivo, in rat gastrocnemius muscles, using experimental conditions as close as possible to those used in humans (i.e., muscle length, number of contractions, stimulated muscle), the effects of a single bout of neuromuscular electrical stimulation (NMES). Maximal tetanic force was measured before, immediately after and 1h and 1, 2, 3, 7 and 14 days after NMES. Magnetic resonance imaging measurements, including volume of gastrocnemius muscles and proton transverse relaxation time (T(2)) were performed at baseline and 3, 7, and 14 days after the NMES session. Control animals did not perform any exercise and measurements were recorded at the same time points. For both groups, blood creatine kinase (CK) activity was measured within the first 3 days that followed the initial evaluation. Maximal tetanic force decreased immediately after NMES whereas measurements performed 1h and the days afterwards were similar to the baseline values. CK activity, muscle volume and T(2) values were similar throughout the experimental protocol between the two groups. Under carefully controlled experimental conditions, isometric NMES per se did not induce muscle damage in rat gastrocnemius muscles on the contrary to what has been repeatedly reported in humans. Further experiments would then be warranted in order to clearly delineate these differences and to better understand the physiological events associated with muscle damage resulting from NMES-induced isometric contractions.
Collapse
Affiliation(s)
- Julien Gondin
- Centre de Résonance Magnétique Biologique et Médicale, UMR CNRS 6612, Université de la Méditerranée, Faculté de Médecine de Marseille, Marseille, France.
| | | | | | | | | | | |
Collapse
|
29
|
Gondin J, Brocca L, Bellinzona E, D'Antona G, Maffiuletti NA, Miotti D, Pellegrino MA, Bottinelli R. Neuromuscular electrical stimulation training induces atypical adaptations of the human skeletal muscle phenotype: a functional and proteomic analysis. J Appl Physiol (1985) 2010; 110:433-50. [PMID: 21127206 DOI: 10.1152/japplphysiol.00914.2010] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of the present study was to define the chronic effects of neuromuscular electrical stimulation (NMES) on the neuromuscular properties of human skeletal muscle. Eight young healthy male subjects were subjected to 25 sessions of isometric NMES of the quadriceps muscle over an 8-wk period. Needle biopsies were taken from the vastus lateralis muscle before and after training. The training status, myosin heavy chain (MHC) isoform distribution, and global protein pattern, as assessed by proteomic analysis, widely varied among subjects at baseline and prompted the identification of two subgroups: an "active" (ACT) group, which performed regular exercise and had a slower MHC profile, and a sedentary (SED) group, which did not perform any exercise and had a faster MHC profile. Maximum voluntary force and neural activation significantly increased after NMES in both groups (+∼30% and +∼10%, respectively). Both type 1 and 2 fibers showed significant muscle hypertrophy. After NMES, both groups showed a significant shift from MHC-2X toward MHC-2A and MHC-1, i.e., a fast-to-slow transition. Proteomic maps showing ∼500 spots were obtained before and after training in both groups. Differentially expressed proteins were identified and grouped into functional categories. The most relevant changes regarded 1) myofibrillar proteins, whose changes were consistent with a fast-to-slow phenotype shift and with a strengthening of the cytoskeleton; 2) energy production systems, whose changes indicated a glycolytic-to-oxidative shift in the metabolic profile; and 3) antioxidant defense systems, whose changes indicated an enhancement of intracellular defenses against reactive oxygen species. The adaptations in the protein pattern of the ACT and SED groups were different but were, in both groups, typical of both resistance (i.e., strength gains and hypertrophy) and endurance (i.e., a fast-to-slow shift in MHC and metabolic profile) training. These training-induced adaptations can be ascribed to the peculiar motor unit recruitment pattern associated with NMES.
Collapse
Affiliation(s)
- Julien Gondin
- Dept. of Physiology and Interuniversity, Institute of Myology, Univ. of Pavia, Via Forlanini 6, 27100 Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|