1
|
Moreira TS, Burgraff NJ, Takakura AC, Oliveira LM, Araujo EV, Guan S, Ramirez JM. Functional Modulation of Retrotrapezoid Neurons Drives Fentanyl-Induced Respiratory Depression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635295. [PMID: 39975139 PMCID: PMC11838384 DOI: 10.1101/2025.01.28.635295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The primary cause of death from opioid overdose is opioid-induced respiratory depression (OIRD), characterized by severe suppression of respiratory rate, destabilized breathing patterns, hypercapnia, and heightened risk of apnea. The retrotrapezoid nucleus (RTN), a critical chemosensitive brainstem region in the rostral ventrolateral medullary reticular formation contains Phox2b + /Neuromedin-B ( Nmb ) propriobulbar neurons. These neurons, stimulated by CO 2 /H + , regulate breathing to prevent respiratory acidosis. Since the RTN shows limited expression of opioid-receptors, we expected that opioid-induced hypoventilation should activate these neurons to restore ventilation and stabilize arterial blood gases. However, the ability of the RTN to stimulate ventilation during OIRD has never been tested. We used optogenetic and pharmacogenetic approaches, to activate and inhibit RTN Phox2B + / Nmb + neurons before and after fentanyl administration. As expected, fentanyl (500 µg/kg, ip) suppressed respiratory rate and destabilized breathing. Before fentanyl, optogenetic stimulation of Phox2b + / Nmb + or chemogenetic inhibition of Nmb + cells increased and decreased breathing activity, respectively. Surprisingly, optogenetic stimulation after fentanyl administration caused a significantly greater increase in breathing activity compared to pre-fentanyl levels. By contrast chemogenetic ablation of RTN Nmb neurons caused profound hypoventilation and breathing instability after fentanyl. The results suggest that fentanyl does not inhibit the ability of Phox2b + / Nmb + cells within the RTN region to stimulate breathing. Thus, this study highlights the potential of stimulating RTN neurons as a therapeutic approach to restore respiratory function in cases of OIRD.
Collapse
|
2
|
El Hamamy A, Iqbal Z, Le NM, Ranjan A, Zhang Y, Lin HW, Tan C, Sumani D, Patrizz A, McCullough LD, Li J. Targeted TGF-βR2 Silencing in the Retrotrapezoid Nucleus Mitigates Respiratory Dysfunction and Cognitive Decline in a Mouse Model of Cerebral Amyloid Angiopathy with and without Stroke. Transl Stroke Res 2024:10.1007/s12975-024-01306-0. [PMID: 39543011 DOI: 10.1007/s12975-024-01306-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/07/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by the deposition of amyloid-beta peptides within cerebral blood vessels, leading to neurovascular complications. Ischemic strokes result from acute disruptions in cerebral blood flow, triggering metabolic disturbances and neurodegeneration. Both conditions often co-occur and are associated with respiratory dysfunctions. The retrotrapezoid nucleus (RTN), which is crucial for CO2 sensing and breathing regulation in the brainstem, may play a key role in breathing disorders seen in these conditions. This study aims to investigate the role of Transforming Growth Factor Beta (TGF-β) signaling in the RTN on respiratory and cognitive functions in CAA, both with and without concurrent ischemic stroke. Adult male Tg-SwDI (CAA model) mice and C57BL/6 wild-type controls underwent stereotaxic injections of lentivirus targeting TGF-βR2 in the RTN. Stroke was induced by middle cerebral artery occlusion using a monofilament. Respiratory functions were assessed using whole-body plethysmography, while cognitive functions were evaluated through the Barnes Maze and Novel Object Recognition Test (NORT). Immunohistochemical analysis was conducted to measure TGF-βR2 and GFAP expressions in the RTN. CAA mice exhibited significant respiratory dysfunctions, including reduced respiratory rates and increased apnea frequency, as well as impaired cognitive performance. TGF-βR2 silencing in the RTN improved respiratory functions and cognitive outcomes in CAA mice. In CAA mice with concurrent stroke, TGF-βR2 silencing similarly enhanced respiratory and cognitive functions. Immunohistochemistry confirmed reduced TGF-βR2 and GFAP expressions in the RTN following silencing. Our findings demonstrate that increased TGF-β signaling and gliosis in the RTN contribute to respiratory and cognitive dysfunctions in CAA and CAA with stroke. Targeting TGF-βR2 signaling in the RTN offers a promising therapeutic strategy to mitigate these impairments. This study is the first to report a causal link between brainstem gliosis and both respiratory and cognitive dysfunctions in CAA and stroke models.
Collapse
Affiliation(s)
- Ahmad El Hamamy
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zahid Iqbal
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ngoc Mai Le
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Arya Ranjan
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - YuXing Zhang
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hung Wen Lin
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Chunfeng Tan
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Destiny Sumani
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Anthony Patrizz
- Department of Neurological Surgery and Brain Repair, University of South Florida at Tampa, Tampa, FL, USA
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jun Li
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
3
|
Dempsey JA, Gibbons TD. Rethinking O 2, CO 2 and breathing during wakefulness and sleep. J Physiol 2024; 602:5571-5585. [PMID: 37750243 DOI: 10.1113/jp284551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023] Open
Abstract
We have examined the importance of three long-standing questions concerning chemoreceptor influences on cardiorespiratory function which are currently experiencing a resurgence of study among physiologists and clinical investigators. Firstly, while carotid chemoreceptors (CB) are required for hypoxic stimulation of breathing, use of an isolated, extracorporeally perfused CB preparation in unanaesthetized animals with maintained tonic input from the CB, reveals that extra-CB hypoxaemia also provides dose-dependent ventilatory stimulation sufficient to account for 40-50% of the total ventilatory response to steady-state hypoxaemia. Extra-CB hyperoxia also provides a dose- and time-dependent hyperventilation. Extra-CB sites of O2-driven ventilatory stimulation identified to date include the medulla, kidney and spinal cord. Secondly, using the isolated or denervated CB preparation in awake animals and humans has demonstrated a hyperadditive effect of CB sensory input on central CO2 sensitivity, so that tonic CB activity accounts for as much as 35-40% of the normal, air-breathing eupnoeic drive to breathe. Thirdly, we argue for a key role for CO2 chemoreception and the neural drive to breathe in the pathogenesis of upper airway obstruction during sleep (OSA), based on the following evidence: (1) removal of the wakefulness drive to breathe enhances the effects of transient CO2 changes on breathing instability; (2) oscillations in respiratory motor output precipitate pharyngeal obstruction in sleeping subjects with compliant, collapsible airways; and (3) in the majority of patients in a large OSA cohort, a reduced neural drive to breathe accompanied reductions in both airflow and pharyngeal airway muscle dilator activity, precipitating airway obstruction.
Collapse
Affiliation(s)
| | - Travis D Gibbons
- University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
4
|
Simpson LL, Stembridge M, Siebenmann C, Moore JP, Lawley JS. Mechanisms underpinning sympathoexcitation in hypoxia. J Physiol 2024; 602:5485-5503. [PMID: 38533641 DOI: 10.1113/jp284579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
Sympathoexcitation is a hallmark of hypoxic exposure, occurring acutely, as well as persisting in acclimatised lowland populations and with generational exposure in highland native populations of the Andean and Tibetan plateaus. The mechanisms mediating altitude sympathoexcitation are multifactorial, involving alterations in both peripheral autonomic reflexes and central neural pathways, and are dependent on the duration of exposure. Initially, hypoxia-induced sympathoexcitation appears to be an adaptive response, primarily mediated by regulatory reflex mechanisms concerned with preserving systemic and cerebral tissue O2 delivery and maintaining arterial blood pressure. However, as exposure continues, sympathoexcitation is further augmented above that observed with acute exposure, despite acclimatisation processes that restore arterial oxygen content (C a O 2 ${C_{{\mathrm{a}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ). Under these conditions, sympathoexcitation may become maladaptive, giving rise to reduced vascular reactivity and mildly elevated blood pressure. Importantly, current evidence indicates the peripheral chemoreflex does not play a significant role in the augmentation of sympathoexcitation during altitude acclimatisation, although methodological limitations may underestimate its true contribution. Instead, processes that provide no obvious survival benefit in hypoxia appear to contribute, including elevated pulmonary arterial pressure. Nocturnal periodic breathing is also a potential mechanism contributing to altitude sympathoexcitation, although experimental studies are required. Despite recent advancements within the field, several areas remain unexplored, including the mechanisms responsible for the apparent normalisation of muscle sympathetic nerve activity during intermediate hypoxic exposures, the mechanisms accounting for persistent sympathoexcitation following descent from altitude and consideration of whether there are sex-based differences in sympathetic regulation at altitude.
Collapse
Affiliation(s)
- Lydia L Simpson
- Department of Sport Science, Performance Physiology and Prevention, Universität Innsbruck, Innsbruck, Austria
| | - Mike Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | | | - Jonathan P Moore
- School of Psychology and Sport Science, Institute of Applied Human Physiology, Bangor University, Bangor, UK
| | - Justin S Lawley
- Department of Sport Science, Performance Physiology and Prevention, Universität Innsbruck, Innsbruck, Austria
- Institute of Mountain Emergency Medicine, EURAC Research, Bolzano, Italy
| |
Collapse
|
5
|
Burtscher J, Citherlet T, Camacho-Cardenosa A, Camacho-Cardenosa M, Raberin A, Krumm B, Hohenauer E, Egg M, Lichtblau M, Müller J, Rybnikova EA, Gatterer H, Debevec T, Baillieul S, Manferdelli G, Behrendt T, Schega L, Ehrenreich H, Millet GP, Gassmann M, Schwarzer C, Glazachev O, Girard O, Lalande S, Hamlin M, Samaja M, Hüfner K, Burtscher M, Panza G, Mallet RT. Mechanisms underlying the health benefits of intermittent hypoxia conditioning. J Physiol 2024; 602:5757-5783. [PMID: 37860950 DOI: 10.1113/jp285230] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
Intermittent hypoxia (IH) is commonly associated with pathological conditions, particularly obstructive sleep apnoea. However, IH is also increasingly used to enhance health and performance and is emerging as a potent non-pharmacological intervention against numerous diseases. Whether IH is detrimental or beneficial for health is largely determined by the intensity, duration, number and frequency of the hypoxic exposures and by the specific responses they engender. Adaptive responses to hypoxia protect from future hypoxic or ischaemic insults, improve cellular resilience and functions, and boost mental and physical performance. The cellular and systemic mechanisms producing these benefits are highly complex, and the failure of different components can shift long-term adaptation to maladaptation and the development of pathologies. Rather than discussing in detail the well-characterized individual responses and adaptations to IH, we here aim to summarize and integrate hypoxia-activated mechanisms into a holistic picture of the body's adaptive responses to hypoxia and specifically IH, and demonstrate how these mechanisms might be mobilized for their health benefits while minimizing the risks of hypoxia exposure.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Tom Citherlet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Alba Camacho-Cardenosa
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Marta Camacho-Cardenosa
- Clinical Management Unit of Endocrinology and Nutrition - GC17, Maimónides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofía University Hospital, Córdoba, Spain
| | - Antoine Raberin
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Bastien Krumm
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Erich Hohenauer
- Rehabilitation and Exercise Science Laboratory (RES lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
- International University of Applied Sciences THIM, Landquart, Switzerland
- Department of Neurosciences and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - Margit Egg
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria
| | - Mona Lichtblau
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Julian Müller
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Elena A Rybnikova
- Pavlov Institute of Physiology, Russian Academy of Sciences, St Petersburg, Russia
| | - Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
- Institute for Sports Medicine, Alpine Medicine and Health Tourism (ISAG), UMIT TIROL-Private University for Health Sciences and Health Technology, Hall in Tirol, Austria
| | - Tadej Debevec
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
- Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Sebastien Baillieul
- Service Universitaire de Pneumologie Physiologie, University of Grenoble Alpes, Inserm, Grenoble, France
| | | | - Tom Behrendt
- Chair Health and Physical Activity, Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Lutz Schega
- Chair Health and Physical Activity, Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Hannelore Ehrenreich
- Clinical Neuroscience, University Medical Center and Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru
| | - Christoph Schwarzer
- Institute of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Oleg Glazachev
- Department of Normal Physiology, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Olivier Girard
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, Western Australia, Australia
| | - Sophie Lalande
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, TX, USA
| | - Michael Hamlin
- Department of Tourism, Sport and Society, Lincoln University, Christchurch, New Zealand
| | - Michele Samaja
- Department of Health Science, University of Milan, Milan, Italy
| | - Katharina Hüfner
- Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, University Hospital for Psychiatry II, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Gino Panza
- The Department of Health Care Sciences, Program of Occupational Therapy, Wayne State University, Detroit, MI, USA
- John D. Dingell VA Medical Center Detroit, Detroit, MI, USA
| | - Robert T Mallet
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
6
|
Nuding SC, Segers LS, Iceman KE, O'Connor R, Dean JB, Valarezo PA, Shuman D, Solomon IC, Bolser DC, Morris KF, Lindsey BG. Hypoxia evokes a sequence of raphe-pontomedullary network operations for inspiratory drive amplification and gasping. J Neurophysiol 2024; 132:1315-1329. [PMID: 39259892 PMCID: PMC11495181 DOI: 10.1152/jn.00032.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/20/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024] Open
Abstract
Hypoxia can trigger a sequence of breathing-related behaviors, from augmentation to apneusis to apnea and gasping. Gasping is an autoresuscitative behavior that, via large tidal volumes and altered intrathoracic pressure, can enhance coronary perfusion, carotid blood flow, and sympathetic activity, and thereby coordinate cardiac and respiratory functions. We tested the hypotheses that hypoxia-evoked gasps are amplified through a disinhibitory microcircuit within the inspiratory neuron chain and that this drive is distributed via an efference copy mechanism. This generates coordinated gasplike discharges concurrently in other circuits of the raphe-pontomedullary respiratory network. Data were obtained from six decerebrate, vagotomized, neuromuscularly blocked, and artificially ventilated adult cats. Arterial blood pressure, phrenic nerve activity, end-tidal CO2, and other parameters were monitored. Hypoxia was produced by ventilation with a gas mixture of 5% O2 in nitrogen. Neuron spike trains were recorded at multiple pontomedullary sites simultaneously and evaluated for firing rate modulations and short-timescale correlations indicative of functional connectivity. Experimental perturbations evoked reconfiguration of raphe-pontomedullary circuits during initial augmentation, apneusis and augmented bursts, apnea, and gasping. Functional connectivity, altered firing rates, efference copy of gasp drive, and coordinated incremental blood pressure increases support a distributed brain stem network model for amplification and broadcasting of inspiratory drive during autoresuscitative gasping. Gasping begins with a reduction in inhibition by expiratory neurons and an initial loss of inspiratory drive during hypoxic apnea and culminates in autoresuscitative efforts. NEW & NOTEWORTHY Severe hypoxia evokes a sequence of breathing-related behaviors culminating in gasping. We report firing rate modulations and short-timescale correlations in spike trains recorded simultaneously in the raphe-pontomedullary respiratory network during hypoxia. Our findings support a disinhibitory microcircuit and a distributed efference copy mechanism for amplification of gasping. Coordinated increments in blood pressure lead to a model for autoresuscitative bootstrapping of peripheral chemoreceptor reflexes, breathing, and sympathetic activity, complementing and extending prior work.
Collapse
Affiliation(s)
- Sarah C Nuding
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Lauren S Segers
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Kimberly E Iceman
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Russell O'Connor
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Jay B Dean
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Pierina A Valarezo
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Dale Shuman
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Irene C Solomon
- Department of Physiology and Biophysics, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, United States
| | - Donald C Bolser
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States
| | - Kendall F Morris
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Bruce G Lindsey
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| |
Collapse
|
7
|
Khalilpour J, Soltani Zangbar H, Alipour MR, Shahabi P. The hypoxic respiratory response of the pre-Bötzinger complex. Heliyon 2024; 10:e34491. [PMID: 39114066 PMCID: PMC11305331 DOI: 10.1016/j.heliyon.2024.e34491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/18/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Since the discovery of the pre-Bötzinger Complex (preBötC) as a crucial region for generating the main respiratory rhythm, our understanding of its cellular and molecular aspects has rapidly increased within the last few decades. It is now apparent that preBötC is a highly flexible neuronal network that reconfigures state-dependently to produce the most appropriate respiratory output in response to various metabolic challenges, such as hypoxia. However, the responses of the preBötC to hypoxic conditions can be varied based on the intensity, pattern, and duration of the hypoxic challenge. This review discusses the preBötC response to hypoxic challenges at the cellular and network level. Particularly, the involvement of preBötC in the classical biphasic response of the respiratory network to acute hypoxia is illuminated. Furthermore, the article discusses the functional and structural changes of preBötC neurons following intermittent and sustained hypoxic challenges. Accumulating evidence shows that the preBötC neural circuits undergo substantial changes following hypoxia and contribute to several types of the respiratory system's hypoxic ventilatory responses.
Collapse
Affiliation(s)
- Jamal Khalilpour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Soltani Zangbar
- Department of Neuroscience, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Parviz Shahabi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
El Hamamy A, Iqbal Z, Mai Le N, Ranjan A, Zhang Y, Lin HW, Tan C, Patrizz A, McCullough LD, Li J. Targeted TGF-βR2 Knockdown in the Retrotrapezoid Nucleus Mitigates Respiratory Dysfunction and Cognitive Decline in a Mouse Model of Cerebral Amyloid Angiopathy with and without Stroke. RESEARCH SQUARE 2024:rs.3.rs-4438544. [PMID: 38854014 PMCID: PMC11160887 DOI: 10.21203/rs.3.rs-4438544/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Introduction Cerebral amyloid angiopathy (CAA) is characterized by the deposition of amyloid-beta peptides within cerebral blood vessels, leading to neurovascular complications. Ischemic strokes result from acute disruptions in cerebral blood flow, triggering metabolic disturbances and neurodegeneration. Both conditions often co-occur and are associated with respiratory dysfunctions. The retrotrapezoid nucleus (RTN), which is crucial for CO2 sensing and breathing regulation in the brainstem, may play a key role in breathing disorders seen in these conditions. This study aims to investigate the role of Transforming Growth Factor Beta (TGF-β) signaling in the RTN on respiratory and cognitive functions in CAA, both with and without concurrent ischemic stroke. Methods Adult male Tg-SwDI (CAA model) mice and C57BL/6 wild-type controls underwent stereotaxic injections of lentivirus targeting TGF-β2R2 in the RTN. Stroke was induced by middle cerebral artery occlusion using a monofilament. Respiratory functions were assessed using whole-body plethysmography, while cognitive functions were evaluated through the Barnes Maze and Novel Object Recognition Test (NORT). Immunohistochemical analysis was conducted to measure TGF-βR2 and GFAP expressions in the RTN. Results CAA mice exhibited significant respiratory dysfunctions, including reduced respiratory rates and increased apnea frequency, as well as impaired cognitive performance. TGF-βR2 knockdown in the RTN improved respiratory functions and cognitive outcomes in CAA mice. In CAA mice with concurrent stroke, TGF-βR2 knockdown similarly enhanced respiratory and cognitive functions. Immunohistochemistry confirmed reduced TGF-βR2 and GFAP expressions in the RTN following knockdown. Conclusions Our findings demonstrate that increased TGF-β signaling and gliosis in the RTN contribute to respiratory and cognitive dysfunctions in CAA and CAA with stroke. Targeting TGF-βR2 signaling in the RTN offers a promising therapeutic strategy to mitigate these impairments. This study is the first to report a causal link between brainstem gliosis and both respiratory and cognitive dysfunctions in CAA and stroke models.
Collapse
Affiliation(s)
| | - Zahid Iqbal
- University of Texas Health Science Center at Houston
| | - Ngoc Mai Le
- University of Texas Health Science Center at Houston
| | - Arya Ranjan
- University of Texas Health Science Center at Houston
| | - YuXing Zhang
- University of Texas Health Science Center at Houston
| | - Hung Wen Lin
- University of Texas Health Science Center at Houston
| | - Chunfeng Tan
- University of Texas Health Science Center at Houston
| | | | | | - Jun Li
- University of Texas Health Science Center at Houston
| |
Collapse
|
9
|
Nuding SC, Segers LS, Iceman K, O'Connor R, Dean JB, Valarezo PA, Shuman D, Solomon IC, Bolser DC, Morris KF, Lindsey BG. Hypoxia evokes a sequence of raphe-pontomedullary network operations for inspiratory drive amplification and gasping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.07.566027. [PMID: 37986850 PMCID: PMC10659307 DOI: 10.1101/2023.11.07.566027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Hypoxia can trigger a sequence of breathing-related behaviors, from tachypnea to apneusis to apnea and gasping, an autoresuscitative behavior that, via large tidal volumes and altered intrathoracic pressure, can enhance coronary perfusion, carotid blood flow, and sympathetic activity, and thereby coordinate cardiac and respiratory functions. We tested the hypothesis that hypoxia-evoked gasps are amplified through a disinhibitory microcircuit within the inspiratory neuron chain and a distributed efference copy mechanism that generates coordinated gasp-like discharges concurrently in other circuits of the raphe-pontomedullary respiratory network. Data were obtained from 6 decerebrate, vagotomized, neuromuscularly-blocked, and artificially ventilated adult cats. Arterial blood pressure, phrenic nerve activity, end-tidal CO2, and other parameters were monitored. Hypoxia was produced by ventilation with a gas mixture of 5% O2 in nitrogen (N2). Neuron spike trains were recorded at multiple pontomedullary sites simultaneously and evaluated for firing rate modulations and short-time scale correlations indicative of functional connectivity. Experimental perturbations evoked reconfiguration of raphe-pontomedullary circuits during tachypnea, apneusis and augmented bursts, apnea, and gasping. The functional connectivity, altered firing rates, efference copy of gasp drive, and coordinated step increments in blood pressure reported here support a distributed brain stem network model for amplification and broadcasting of inspiratory drive during autoresuscitative gasping that begins with a reduction in inhibition by expiratory neurons and an initial loss of inspiratory drive during hypoxic apnea.
Collapse
|
10
|
Christie IN, Theparambil SM, Braga A, Doronin M, Hosford PS, Brazhe A, Mascarenhas A, Nizari S, Hadjihambi A, Wells JA, Hobbs A, Semyanov A, Abramov AY, Angelova PR, Gourine AV. Astrocytes produce nitric oxide via nitrite reduction in mitochondria to regulate cerebral blood flow during brain hypoxia. Cell Rep 2023; 42:113514. [PMID: 38041814 PMCID: PMC7615749 DOI: 10.1016/j.celrep.2023.113514] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 10/17/2023] [Accepted: 11/14/2023] [Indexed: 12/04/2023] Open
Abstract
During hypoxia, increases in cerebral blood flow maintain brain oxygen delivery. Here, we describe a mechanism of brain oxygen sensing that mediates the dilation of intraparenchymal cerebral blood vessels in response to reductions in oxygen supply. In vitro and in vivo experiments conducted in rodent models show that during hypoxia, cortical astrocytes produce the potent vasodilator nitric oxide (NO) via nitrite reduction in mitochondria. Inhibition of mitochondrial respiration mimics, but also occludes, the effect of hypoxia on NO production in astrocytes. Astrocytes display high expression of the molybdenum-cofactor-containing mitochondrial enzyme sulfite oxidase, which can catalyze nitrite reduction in hypoxia. Replacement of molybdenum with tungsten or knockdown of sulfite oxidase expression in astrocytes blocks hypoxia-induced NO production by these glial cells and reduces the cerebrovascular response to hypoxia. These data identify astrocyte mitochondria as brain oxygen sensors that regulate cerebral blood flow during hypoxia via release of nitric oxide.
Collapse
Affiliation(s)
- Isabel N Christie
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK
| | - Shefeeq M Theparambil
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK.
| | - Alice Braga
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK
| | - Maxim Doronin
- College of Medicine, Jiaxing University, Jiaxing 314001, China
| | - Patrick S Hosford
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK
| | - Alexey Brazhe
- Department of Molecular Neurobiology, Institute of Bioorganic Chemistry, Moscow 117997, Russian Federation; Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russian Federation
| | - Alexander Mascarenhas
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK
| | - Shereen Nizari
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK; Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London WC1E 6BT, UK
| | - Anna Hadjihambi
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, and Faculty of Life Sciences and Medicine, King's College London, London SE5 9NT, UK
| | - Jack A Wells
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London WC1E 6BT, UK
| | - Adrian Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UK
| | - Alexey Semyanov
- College of Medicine, Jiaxing University, Jiaxing 314001, China; Department of Molecular Neurobiology, Institute of Bioorganic Chemistry, Moscow 117997, Russian Federation
| | - Andrey Y Abramov
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Plamena R Angelova
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
11
|
Felippe ISA, Río RD, Schultz H, Machado BH, Paton JFR. Commonalities and differences in carotid body dysfunction in hypertension and heart failure. J Physiol 2023; 601:5527-5551. [PMID: 37747109 PMCID: PMC10873039 DOI: 10.1113/jp284114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Carotid body pathophysiology is associated with many cardiovascular-respiratory-metabolic diseases. This pathophysiology reflects both hyper-sensitivity and hyper-tonicity. From both animal models and human patients, evidence indicates that amelioration of this pathophysiological signalling improves disease states such as a lowering of blood pressure in hypertension, a reduction of breathing disturbances with improved cardiac function in heart failure (HF) and a re-balancing of autonomic activity with lowered sympathetic discharge. Given this, we have reviewed the mechanisms of carotid body hyper-sensitivity and hyper-tonicity across disease models asking whether there is uniqueness related to specific disease states. Our analysis indicates some commonalities and some potential differences, although not all mechanisms have been fully explored across all disease models. One potential commonality is that of hypoperfusion of the carotid body across hypertension and HF, where the excessive sympathetic drive may reduce blood flow in both models and, in addition, lowered cardiac output in HF may potentiate the hypoperfusion state of the carotid body. Other mechanisms are explored that focus on neurotransmitter and signalling pathways intrinsic to the carotid body (e.g. ATP, carbon monoxide) as well as extrinsic molecules carried in the blood (e.g. leptin); there are also transcription factors found in the carotid body endothelium that modulate its activity (Krüppel-like factor 2). The evidence to date fully supports that a better understanding of the mechanisms of carotid body pathophysiology is a fruitful strategy for informing potential new treatment strategies for many cardiovascular, respiratory and metabolic diseases, and this is highly relevant clinically.
Collapse
Affiliation(s)
- Igor S. A. Felippe
- Manaaki Manawa – The Centre for Heart Research, Department of Physiology, Faculty of Health & Medical Sciences, University of Auckland, Grafton, Auckland, 1023, New Zealand
| | - Rodrigo Del Río
- Department of Physiology, Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
- Mechanisms of Myelin Formation and Repair Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
- Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Harold Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Benedito H. Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Julian F. R. Paton
- Manaaki Manawa – The Centre for Heart Research, Department of Physiology, Faculty of Health & Medical Sciences, University of Auckland, Grafton, Auckland, 1023, New Zealand
| |
Collapse
|
12
|
Panza GS, Kissane DM, Puri S, Mateika JH. The hypoxic ventilatory response and hypoxic burden are predictors of the magnitude of ventilatory long-term facilitation in humans. J Physiol 2023; 601:4611-4623. [PMID: 37641466 PMCID: PMC11006398 DOI: 10.1113/jp285192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
Mild intermittent hypoxia initiates progressive augmentation (PA) and ventilatory long-term facilitation (vLTF) in humans. The magnitude of these forms of plasticity might be influenced by anthropometric and physiological variables, as well as protocol elements. However, the impact of many of these variables on the magnitude of respiratory plasticity has not been established in humans. A meta-analysis was completed using anthropometric and physiological variables obtained from 124 participants that completed one of three intermittent hypoxia protocols. Simple correlations between the aggregate variables and the magnitude of PA and vLTF standardized to baseline was completed. Thereafter, the variables correlated to PA or vLTF were input into a multilinear regression equation. Baseline measures of the hypoxic ventilatory response was the sole predictor of PA (R = 0.370, P = 0.012). Similarly, this variable along with the hypoxic burden predicted the magnitude of vLTF (R = 0.546, P < 0.006 for both variables). In addition, the magnitude of PA was strongly correlated to vLTF (R = 0.617, P < 0.001). Anthropometric measures do not predict the magnitude of PA and vLTF in humans. Alternatively, the hypoxic ventilatory response was the sole predictor of PA, and in combination with the hypoxic burden, predicted the magnitude of vLTF. These influences should be considered in the design of mild intermittent hypoxia protocol studies in humans. Moreover, the strong correlation between PA and vLTF suggests that a common mechanistic pathway may have a role in the initiation of these forms of plasticity. KEY POINTS: Mild intermittent hypoxia initiates progressive augmentation (PA) and ventilatory long-term facilitation (vLTF) in humans. Many of the anthropometric and physiological variables that could impact the magnitude of these forms of plasticity are unknown. Anthropometric and physiological variables were measured from a total of 124 participants that completed one of three distinct intermittent hypoxia protocols. The variables correlated to PA or vLTF were input into a multilinear regression analysis. The hypoxic ventilatory response was the sole predictor of PA, while this variable in addition to the average hypoxic burden predicted the magnitude of vLTF. A strong correlation between PA and vLTF was also revealed. These influences should be considered in the design of mild intermittent hypoxia protocol studies in humans. Moreover, the strong correlation between PA and vLTF suggests that a common mechanistic pathway may have a role in the initiation of these forms of plasticity.
Collapse
Affiliation(s)
- Gino S Panza
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
- Department of Health Care Sciences, Program of Occupational Therapy, Wayne State University, Detroit, MI, USA
| | - Dylan M Kissane
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Shipra Puri
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jason H Mateika
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
13
|
Dempsey JA, Welch JF. Control of Breathing. Semin Respir Crit Care Med 2023; 44:627-649. [PMID: 37494141 DOI: 10.1055/s-0043-1770342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Substantial advances have been made recently into the discovery of fundamental mechanisms underlying the neural control of breathing and even some inroads into translating these findings to treating breathing disorders. Here, we review several of these advances, starting with an appreciation of the importance of V̇A:V̇CO2:PaCO2 relationships, then summarizing our current understanding of the mechanisms and neural pathways for central rhythm generation, chemoreception, exercise hyperpnea, plasticity, and sleep-state effects on ventilatory control. We apply these fundamental principles to consider the pathophysiology of ventilatory control attending hypersensitized chemoreception in select cardiorespiratory diseases, the pathogenesis of sleep-disordered breathing, and the exertional hyperventilation and dyspnea associated with aging and chronic diseases. These examples underscore the critical importance that many ventilatory control issues play in disease pathogenesis, diagnosis, and treatment.
Collapse
Affiliation(s)
- Jerome A Dempsey
- John Rankin Laboratory of Pulmonary Medicine, Department of Population Health Sciences, University of Wisconsin, Madison, Wisconsin
| | - Joseph F Welch
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
14
|
Guluzade NA, Huggard JD, Duffin J, Keir DA. A test of the interaction between central and peripheral respiratory chemoreflexes in humans. J Physiol 2023; 601:4591-4609. [PMID: 37566804 DOI: 10.1113/jp284772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
How central and peripheral chemoreceptor drives to breathe interact in humans remains contentious. We measured the peripheral chemoreflex sensitivity to hypoxia (PChS) at various isocapnic CO2 tensions (P C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ) to determine the form of the relationship between PChS and centralP C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ . Twenty participants (10F) completed three repetitions of modified rebreathing tests with end-tidalP O 2 ${P_{{{\mathrm{O}}_{\mathrm{2}}}}}$ (P ET O 2 ${P_{{\mathrm{ET}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ) clamped at 150, 70, 60 and 45 mmHg. End-tidalP C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ (P ETC O 2 ${P_{{\mathrm{ETC}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ),P ET O 2 ${P_{{\mathrm{ET}}{{\mathrm{O}}_{\mathrm{2}}}}}$ , ventilation (V ̇ $\dot{V}$ E ) and calculated oxygen saturation (SC O2 ) were measured breath-by-breath by gas-analyser and pneumotach. TheV ̇ $\dot{V}$ E -P ETC O 2 ${P_{{\mathrm{ETC}}{{\mathrm{O}}_{\mathrm{2}}}}}$ relationship of repeat-trials were linear-interpolated, combined, averaged into 1 mmHg bins, and fitted with a double-linear function (V ̇ $\dot{V}$ E S, L min-1 mmHg-1 ). PChS was computed at intervals of 1 mmHg ofP ETC O 2 ${P_{{\mathrm{ETC}}{{\mathrm{O}}_{\mathrm{2}}}}}$ as follows: the difference inV ̇ $\dot{V}$ E between the three hypoxic profiles and the hyperoxic profile (∆V ̇ $\dot{V}$ E ) was calculated; three ∆V ̇ $\dot{V}$ E values were plotted against corresponding SC O2 ; and linear regression determined PChS (Lmin-1 mmHg-1 %SC O2 -1 ). These processing steps were repeated at eachP ETC O 2 ${P_{{\mathrm{ETC}}{{\mathrm{O}}_{\mathrm{2}}}}}$ to produce the PChS vs. isocapnicP C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ relationship. These were fitted with linear and polynomial functions, and Akaike information criterion identified the best-fit model. One-way repeated measures analysis of variance assessed between-condition differences.V ̇ $\dot{V}$ E S increased (P < 0.0001) with isoxicP ET O 2 ${P_{{\mathrm{ET}}{{\mathrm{O}}_{\mathrm{2}}}}}$ from 3.7 ± 1.5 L min-1 mmHg-1 at 150 mmHg to 4.4 ± 1.8, 5.0 ± 1.6 and 6.0 ± 2.2 Lmin-1 mmHg-1 at 70, 60 and 45 mmHg, respectively. Mean SC O2 fell progressively (99.3 ± 0%, 93.7 ± 0.1%, 90.4 ± 0.1% and 80.5 ± 0.1%; P < 0.0001). In all individuals, PChS increased withP ETC O 2 ${P_{{\mathrm{ETC}}{{\mathrm{O}}_{\mathrm{2}}}}}$ , and this relationship was best described by a linear model in 75%. Despite increasing central chemoreflex activation, PChS increased linearly withP ETC O 2 ${P_{{\mathrm{ETC}}{{\mathrm{O}}_{\mathrm{2}}}}}$ indicative of an additive central-peripheral chemoreflex response. KEY POINTS: How central and peripheral chemoreceptor drives to breathe interact in humans remains contentious. We measured peripheral chemoreflex sensitivity to hypoxia (PChS) at various isocapnic carbon dioxide tensions (P C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ) to determine the form of the relationship between PChS and centralP C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ . Participants performed three repetitions of modified rebreathing with end-tidalP O 2 ${P_{{{\mathrm{O}}_{\mathrm{2}}}}}$ fixed at 150, 70, 60 and 45 mmHg. PChS was computed at intervals of 1 mmHg of end-tidalP C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ (P ETC O 2 ${P_{{\mathrm{ETC}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ) as follows: the difference inV ̇ $\dot{V}$ E between the three hypoxic profiles and the hyperoxic profile (∆V ̇ $\dot{V}$ E ) was calculated; three ∆V ̇ $\dot{V}$ E values were plotted against corresponding calculated oxygen saturation (SC O2 ); and linear regression determined PChS (Lmin-1 mmHg-1 %SC O2 -1 ). In all individuals, PChS increased withP ETC O 2 ${P_{{\mathrm{ETC}}{{\mathrm{O}}_{\mathrm{2}}}}}$ , and this relationship was best described by a linear (rather than polynomial) model in 15 of 20. Most participants did not exhibit a hypo- or hyper-additive effect of central chemoreceptors on the peripheral chemoreflex indicating that the interaction was additive.
Collapse
Affiliation(s)
- Nasimi A Guluzade
- School of Kinesiology, The University of Western Ontario, London, ON, Canada
| | - Joshua D Huggard
- School of Kinesiology, The University of Western Ontario, London, ON, Canada
| | - James Duffin
- Department of Anaesthesia and Pain Management, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Thornhill Research Inc., Toronto, ON, Canada
| | - Daniel A Keir
- School of Kinesiology, The University of Western Ontario, London, ON, Canada
- Toronto General Research Institute, Toronto General Hospital, Toronto, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
15
|
Onimaru H, Fukushi I, Ikeda K, Yazawa I, Takeda K, Okada Y, Izumizaki M. Cell Responses of the Ventrolateral Medulla to PAR1 Activation and Changes in Respiratory Rhythm in Newborn Rat En Bloc Brainstem-Spinal Cord Preparations. Neuroscience 2023; 528:89-101. [PMID: 37557948 DOI: 10.1016/j.neuroscience.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
Proteinase-activated receptor-1 (PAR1) is expressed in astrocytes of various brain regions, and its activation is involved in the modulation of neuronal activity. Here, we report effects of PAR1 selective agonist TFLLR on respiratory rhythm generation in brainstem-spinal cord preparations. Preparations were isolated from newborn rats (P0-P4) under deep isoflurane anesthesia and were transversely cut at the rostral medulla. Preparations were superfused with artificial cerebrospinal fluid (25-26 °C), and inspiratory C4 ventral root activity was monitored. The responses to TFLLR of cells close to the cut surface were detected by calcium imaging or membrane potential recordings. Application of 10 μM TFLLR (4 min) induced a rapid and transient increase of calcium signal in cells of the ventrolateral respiratory regions of the medulla. More than 88% of responding cells (223/254 cells from 13 preparations) were also activated by low (0.2 mM) K+ solution, suggesting that they were astrocytes. Immunohistochemical examination demonstrated that PAR1 was expressed on many astrocytes. Respiratory-related neurons in the medulla were transiently hyperpolarized (-1.8 mV) during 10 μM TFLLR application, followed by weak membrane depolarization after washout. C4 burst rate decreased transiently in response to application of TFLLR, followed by a slight increase. The inhibitory effect was partially blocked by 50 μM theophylline. In conclusion, activation of astrocytes via PAR1 resulted in a decrease of inspiratory C4 burst rate in association with transient hyperpolarization of respiratory-related neurons. After washout, slow and weak excitatory responses appeared. Adenosine may be partially involved in the inhibitory effect of PAR1 activation.
Collapse
Affiliation(s)
- Hiroshi Onimaru
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan.
| | - Isato Fukushi
- Faculty of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan; Clinical Research Center, Murayama Medical Center, Musashimurayama, Tokyo, Japan
| | - Keiko Ikeda
- Department of Oral Physiology, Showa University School of Dentistry, Tokyo, Japan
| | - Itaru Yazawa
- Department of Food & Nutrition, Kyushu Nutrition Welfare University, Fukuoka, Japan
| | - Kotaro Takeda
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Yasumasa Okada
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Tokyo, Japan
| | - Masahiko Izumizaki
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
16
|
Severs LJ, Bush NE, Quina LA, Hidalgo-Andrade S, Burgraff NJ, Dashevskiy T, Shih AY, Baertsch NA, Ramirez JM. Purinergic signaling mediates neuroglial interactions to modulate sighs. Nat Commun 2023; 14:5300. [PMID: 37652903 PMCID: PMC10471608 DOI: 10.1038/s41467-023-40812-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 08/10/2023] [Indexed: 09/02/2023] Open
Abstract
Sighs prevent the collapse of alveoli in the lungs, initiate arousal under hypoxic conditions, and are an expression of sadness and relief. Sighs are periodically superimposed on normal breaths, known as eupnea. Implicated in the generation of these rhythmic behaviors is the preBötzinger complex (preBötC). Our experimental evidence suggests that purinergic signaling is necessary to generate spontaneous and hypoxia-induced sighs in a mouse model. Our results demonstrate that driving calcium increases in astrocytes through pharmacological methods robustly increases sigh, but not eupnea, frequency. Calcium imaging of preBötC slices corroborates this finding with an increase in astrocytic calcium upon application of sigh modulators, increasing intracellular calcium through g-protein signaling. Moreover, photo-activation of preBötC astrocytes is sufficient to elicit sigh activity, and this response is blocked with purinergic antagonists. We conclude that sighs are modulated through neuron-glia coupling in the preBötC network, where the distinct modulatory responses of neurons and glia allow for both rhythms to be independently regulated.
Collapse
Affiliation(s)
- Liza J Severs
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA.
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA.
| | - Nicholas E Bush
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Lely A Quina
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Skyler Hidalgo-Andrade
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Nicholas J Burgraff
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Tatiana Dashevskiy
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Andy Y Shih
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, 98101, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Nathan A Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA.
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA.
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, 98195, USA.
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, 98195, USA.
| |
Collapse
|
17
|
Li K, Gonye EC, Stornetta RL, Bayliss CB, Yi G, Stornetta DS, Baca SM, Abbott SB, Guyenet PG, Bayliss DA. The astrocytic Na + -HCO 3 - cotransporter, NBCe1, is dispensable for respiratory chemosensitivity. J Physiol 2023; 601:3667-3686. [PMID: 37384821 PMCID: PMC10528273 DOI: 10.1113/jp284960] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/02/2023] [Indexed: 07/01/2023] Open
Abstract
The interoceptive homeostatic mechanism that controls breathing, blood gases and acid-base balance in response to changes in CO2 /H+ is exquisitely sensitive, with convergent roles proposed for chemosensory brainstem neurons in the retrotrapezoid nucleus (RTN) and their supporting glial cells. For astrocytes, a central role for NBCe1, a Na+ -HCO3 - cotransporter encoded by Slc4a4, has been envisaged in multiple mechanistic models (i.e. underlying enhanced CO2 -induced local extracellular acidification or purinergic signalling). We tested these NBCe1-centric models by using conditional knockout mice in which Slc4a4 was deleted from astrocytes. In GFAP-Cre;Slc4a4fl/fl mice we found diminished expression of Slc4a4 in RTN astrocytes by comparison to control littermates, and a concomitant reduction in NBCe1-mediated current. Despite disrupted NBCe1 function in RTN-adjacent astrocytes from these conditional knockout mice, CO2 -induced activation of RTN neurons or astrocytes in vitro and in vivo, and CO2 -stimulated breathing, were indistinguishable from NBCe1-intact littermates; hypoxia-stimulated breathing and sighs were likewise unaffected. We obtained a more widespread deletion of NBCe1 in brainstem astrocytes by using tamoxifen-treated Aldh1l1-Cre/ERT2;Slc4a4fl/fl mice. Again, there was no difference in effects of CO2 or hypoxia on breathing or on neuron/astrocyte activation in NBCe1-deleted mice. These data indicate that astrocytic NBCe1 is not required for the respiratory responses to these chemoreceptor stimuli in mice, and that any physiologically relevant astrocytic contributions must involve NBCe1-independent mechanisms. KEY POINTS: The electrogenic NBCe1 transporter is proposed to mediate local astrocytic CO2 /H+ sensing that enables excitatory modulation of nearby retrotrapezoid nucleus (RTN) neurons to support chemosensory control of breathing. We used two different Cre mouse lines for cell-specific and/or temporally regulated deletion of the NBCe1 gene (Slc4a4) in astrocytes to test this hypothesis. In both mouse lines, Slc4a4 was depleted from RTN-associated astrocytes but CO2 -induced Fos expression (i.e. cell activation) in RTN neurons and local astrocytes was intact. Likewise, respiratory chemoreflexes evoked by changes in CO2 or O2 were unaffected by loss of astrocytic Slc4a4. These data do not support the previously proposed role for NBCe1 in respiratory chemosensitivity mediated by astrocytes.
Collapse
Affiliation(s)
- Keyong Li
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA, 22908
| | - Elizabeth C. Gonye
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA, 22908
| | - Ruth L. Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA, 22908
| | | | - Grace Yi
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA, 22908
| | - Daniel S. Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA, 22908
| | - Serapio M. Baca
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA, 22908
| | - Stephen B.G. Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA, 22908
| | - Patrice G. Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA, 22908
| | - Douglas A. Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA, 22908
| |
Collapse
|
18
|
Souza GMPR, Stornetta DS, Shi Y, Lim E, Berry FE, Bayliss DA, Abbott SBG. Neuromedin B-Expressing Neurons in the Retrotrapezoid Nucleus Regulate Respiratory Homeostasis and Promote Stable Breathing in Adult Mice. J Neurosci 2023; 43:5501-5520. [PMID: 37290937 PMCID: PMC10376939 DOI: 10.1523/jneurosci.0386-23.2023] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023] Open
Abstract
Respiratory chemoreceptor activity encoding arterial Pco2 and Po2 is a critical determinant of ventilation. Currently, the relative importance of several putative chemoreceptor mechanisms for maintaining eupneic breathing and respiratory homeostasis is debated. Transcriptomic and anatomic evidence suggests that bombesin-related peptide Neuromedin-B (Nmb) expression identifies chemoreceptor neurons in the retrotrapezoid nucleus (RTN) that mediate the hypercapnic ventilatory response, but functional support is missing. In this study, we generated a transgenic Nmb-Cre mouse and used Cre-dependent cell ablation and optogenetics to test the hypothesis that RTN Nmb neurons are necessary for the CO2-dependent drive to breathe in adult male and female mice. Selective ablation of ∼95% of RTN Nmb neurons causes compensated respiratory acidosis because of alveolar hypoventilation, as well as profound breathing instability and respiratory-related sleep disruption. Following RTN Nmb lesion, mice were hypoxemic at rest and were prone to severe apneas during hyperoxia, suggesting that oxygen-sensitive mechanisms, presumably the peripheral chemoreceptors, compensate for the loss of RTN Nmb neurons. Interestingly, ventilation following RTN Nmb -lesion was unresponsive to hypercapnia, but behavioral responses to CO2 (freezing and avoidance) and the hypoxia ventilatory response were preserved. Neuroanatomical mapping shows that RTN Nmb neurons are highly collateralized and innervate the respiratory-related centers in the pons and medulla with a strong ipsilateral preference. Together, this evidence suggests that RTN Nmb neurons are dedicated to the respiratory effects of arterial Pco2/pH and maintain respiratory homeostasis in intact conditions and suggest that malfunction of these neurons could underlie the etiology of certain forms of sleep-disordered breathing in humans.SIGNIFICANCE STATEMENT Respiratory chemoreceptors stimulate neural respiratory motor output to regulate arterial Pco2 and Po2, thereby maintaining optimal gas exchange. Neurons in the retrotrapezoid nucleus (RTN) that express the bombesin-related peptide Neuromedin-B are proposed to be important in this process, but functional evidence has not been established. Here, we developed a transgenic mouse model and demonstrated that RTN neurons are fundamental for respiratory homeostasis and mediate the stimulatory effects of CO2 on breathing. Our functional and anatomic data indicate that Nmb-expressing RTN neurons are an integral component of the neural mechanisms that mediate CO2-dependent drive to breathe and maintain alveolar ventilation. This work highlights the importance of the interdependent and dynamic integration of CO2- and O2-sensing mechanisms in respiratory homeostasis of mammals.
Collapse
Affiliation(s)
- George M P R Souza
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Daniel S Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Yingtang Shi
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Eunu Lim
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Faye E Berry
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Stephen B G Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
19
|
Getsy PM, Davis J, Coffee GA, Lewis THJ, Lewis SJ. Hypercapnic signaling influences hypoxic signaling in the control of breathing in C57BL6 mice. J Appl Physiol (1985) 2023; 134:1188-1206. [PMID: 36892890 PMCID: PMC10151047 DOI: 10.1152/japplphysiol.00548.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/10/2023] Open
Abstract
Interactions between hypoxic and hypercapnic signaling pathways, expressed as ventilatory changes occurring during and following a simultaneous hypoxic-hypercapnic gas challenge (HH-C) have not been determined systematically in mice. This study in unanesthetized male C57BL6 mice addressed the hypothesis that hypoxic (HX) and hypercapnic (HC) signaling events display an array of interactions indicative of coordination by peripheral and central respiratory mechanisms. We evaluated the ventilatory responses elicited by hypoxic (HX-C, 10%, O2, 90% N2), hypercapnic (HC-C, 5% CO2, 21%, O2, 90% N2), and HH-C (10% O2, 5%, CO2, 85% N2) challenges to determine whether ventilatory responses elicited by HH-C were simply additive of responses elicited by HX-C and HC-C, or whether other patterns of interactions existed. Responses elicited by HH-C were additive for tidal volume, minute ventilation and expiratory time, among others. Responses elicited by HH-C were hypoadditive of the HX-C and HC-C responses (i.e., HH-C responses were less than expected by simple addition of HX-C and HC-C responses) for frequency of breathing, inspiratory time and relaxation time, among others. In addition, end-expiratory pause increased during HX-C, but decreased during HC-C and HH-C, therefore showing that HC-C responses influenced the HX-C responses when given simultaneously. Return to room-air responses was additive for tidal volume and minute ventilation, among others, whereas they were hypoadditive for frequency of breathing, inspiratory time, peak inspiratory flow, apneic pause, inspiratory and expiratory drives, and rejection index. These data show that HX-C and HH-C signaling pathways interact with one another in additive and often hypoadditive processes.NEW & NOTEWORTHY We present data showing that the ventilatory responses elicited by a hypoxic gas challenge in male C57BL6 mice are markedly altered by coexposure to hypercapnic gas challenge with hypercapnic responses often dominating the hypoxic responses. These data suggest that hypercapnic signaling processes activated within brainstem regions, such as the retrotrapezoid nuclei, may directly modulate the signaling processes within the nuclei tractus solitarius resulting from hypoxic-induced increase in carotid body chemoreceptor input to these nuclei.
Collapse
Affiliation(s)
- Paulina M Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States
| | - Jesse Davis
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States
| | - Gregory A Coffee
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States
| | - Tristan H J Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States
| | - Stephen J Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States
- Functional Electrical Stimulation Center, Case Western Reserve University, Cleveland, Ohio, United States
| |
Collapse
|
20
|
Janes TA, Guay LM, Fournier S, Kinkead R. Persistent augmentation of fictive air breathing by hypoxia: An in vitro study of the role of GABA B signaling in pre-metamorphic tadpoles. Comp Biochem Physiol A Mol Integr Physiol 2023; 281:111437. [PMID: 37088410 DOI: 10.1016/j.cbpa.2023.111437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
Tadpole development is influenced by environmental cues and hypoxia can favor the emergence of the neural networks driving air breathing. Exposing isolated brainstems from pre-metamorphic tadpoles to acute hypoxia (~0% O2; 15 min) leads to a progressive increase in fictive air breaths (~3 fold) in the hours that follow stimulation. Here, we first determined whether this effect persists over longer periods (<18 h); we then evaluated maturity of the motor output by comparing the breathing pattern of hypoxia-exposed brainstems to that of preparations from adult bullfrogs under basal conditions. Because progressive withdrawal of GABAB-mediated inhibition contributes to the developmental increase in fictive lung ventilation, we then hypothesised that hypoxia reduces respiratory sensitivity to baclofen (selective GABAB-agonist). Experiments were performed on isolated brainstem preparations from pre-metamorphic tadpoles (TK stages IV to XIV); respiratory-related neural activity was recorded from cranial nerves V/VII and X before and 18 h after exposure to hypoxia (0% O2 + 2% CO2; 25 min). Time-control experiments (no hypoxia) were performed. Exposing pre-metamorphic tadpoles to hypoxia did not affect gill burst frequency, but augmented the frequency of fictive lung bursts and the incidence of episodic breathing levels intermediate between pre-metamorphic and adult preparations. Addition of baclofen to the aCSF (0,2 μM - 20 min) reduced lung burst frequency, but the response of hypoxia-exposed brainstems was greater than controls. We conclude that acute hypoxia facilitates development and maturation of the motor command driving air breathing. We propose that a greater number of active rhythmogenic neurons expressing GABAb receptors contributes to this effect.
Collapse
Affiliation(s)
- Tara A Janes
- Department of Pediatrics, Université Laval & Research Center of the Québec Heart & Lung Institute, Québec, QC, Canada; Department of Physiology, Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Loralie Mei Guay
- Department of Pediatrics, Université Laval & Research Center of the Québec Heart & Lung Institute, Québec, QC, Canada
| | - Stéphanie Fournier
- Department of Pediatrics, Université Laval & Research Center of the Québec Heart & Lung Institute, Québec, QC, Canada
| | - Richard Kinkead
- Department of Pediatrics, Université Laval & Research Center of the Québec Heart & Lung Institute, Québec, QC, Canada.
| |
Collapse
|
21
|
Virsilas E, Liubsys A, Janulionis A, Valiulis A. Noninvasive Respiratory Support Effects on Sighs in Preterm Infants by Electrical Impedance Tomography. Indian J Pediatr 2022:10.1007/s12098-022-04413-8. [PMID: 36539568 DOI: 10.1007/s12098-022-04413-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/26/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To evaluate differences regarding sigh frequency between noninvasive respiratory support types and to assess regional ventilation distribution, delta Z, and end-expiratory lung impedance differences before and after sighs. METHODS Very low-birth-weight infants with gestational ages less than 32 wk were included in the study. Participants were split into two groups: those receiving continuous positive airway pressure and infants receiving high-flow nasal cannula therapy. RESULTS The study enrolled 30 infants. The high-flow nasal cannula therapy group had more sighs per 10-min period than infants receiving continuous positive airway pressure (p = 0.016). Ventilation distribution was similar in the anterior and right ventilation distribution compartments pre- and post-sigh (46.30% vs. 45.68% and 54.27% vs. 55.26%, respectively). No statistically significant increase in end-expiratory lung impedance or delta Z was observed in global or separate lung regions (p > 0.05). CONCLUSION The study has demonstrated that sighs are more frequent in infants receiving high-flow nasal cannula respiratory support compared to continuous positive airway pressure. Spontaneously occurring sighs on noninvasive respiratory support due to respiratory distress syndrome (RDS) do not increase end-expiratory lung impedance or alter delta Z, and appear to have limited clinical significance. TRIAL REGISTRATION Prospectively registered at www. CLINICALTRIALS gov , reg. No. NCT04542096, reg. date 01/09/2020.
Collapse
Affiliation(s)
- Ernestas Virsilas
- Clinic of Children's Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Santariškių G. 7, 08406, Vilnius, Lithuania.
| | - Arunas Liubsys
- Clinic of Children's Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Santariškių G. 7, 08406, Vilnius, Lithuania
| | - Adomas Janulionis
- Clinic of Children's Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Santariškių G. 7, 08406, Vilnius, Lithuania
| | - Arunas Valiulis
- Clinic of Children's Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Santariškių G. 7, 08406, Vilnius, Lithuania
| |
Collapse
|
22
|
Yoshizawa M, Fukushi I, Takeda K, Kono Y, Hasebe Y, Koizumi K, Ikeda K, Pokorski M, Toda T, Okada Y. Role of microglia in blood pressure and respiratory responses to acute hypoxic exposure in rats. J Physiol Sci 2022; 72:26. [PMID: 36229778 DOI: 10.1186/s12576-022-00848-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 09/02/2022] [Indexed: 11/10/2022]
Abstract
Microglia modulate cardiorespiratory activities during chronic hypoxia. It has not been clarified whether microglia are involved in the cardiorespiratory responses to acute hypoxia. Here we investigated this issue by comparing cardiorespiratory responses to two levels of acute hypoxia (13% O2 for 4 min and 7% O2 for 5 min) in conscious unrestrained rats before and after systemic injection of minocycline (MINO), an inhibitor of microglia activation. MINO increased blood pressure but not lung ventilation in the control normoxic condition. Acute hypoxia stimulated cardiorespiratory responses in MINO-untreated rats. MINO failed to significantly affect the magnitude of hypoxia-induced blood pressure elevation. In contrast, MINO tended to suppress the ventilatory responses to hypoxia. We conclude that microglia differentially affect cardiorespiratory regulation depending on the level of blood oxygenation. Microglia suppressively contribute to blood pressure regulation in normoxia but help maintain ventilatory augmentation in hypoxia, which underscores the dichotomy of central regulatory pathways for both systems.
Collapse
Affiliation(s)
- Masashi Yoshizawa
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan.,Clinical Research Center, Murayama Medical Center, Tokyo, Japan
| | - Isato Fukushi
- Clinical Research Center, Murayama Medical Center, Tokyo, Japan.,Faculty of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan
| | - Kotaro Takeda
- Clinical Research Center, Murayama Medical Center, Tokyo, Japan.,Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Yosuke Kono
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan.,Clinical Research Center, Murayama Medical Center, Tokyo, Japan
| | - Yohei Hasebe
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan.,Clinical Research Center, Murayama Medical Center, Tokyo, Japan
| | - Keiichi Koizumi
- Department of Pediatrics, Fujiyoshida Municipal Hospital, Yamanashi, Japan
| | - Keiko Ikeda
- Institute of Innovative Research, Homeostatic Mechanism Research Unit, Tokyo Institute of Technology, Yokohama, Japan
| | | | - Takako Toda
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Yasumasa Okada
- Clinical Research Center, Murayama Medical Center, Tokyo, Japan.
| |
Collapse
|
23
|
Ciumas C, Rheims S, Ryvlin P. fMRI studies evaluating central respiratory control in humans. Front Neural Circuits 2022; 16:982963. [PMID: 36213203 PMCID: PMC9537466 DOI: 10.3389/fncir.2022.982963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
A plethora of neural centers in the central nervous system control the fundamental respiratory pattern. This control is ensured by neurons that act as pacemakers, modulating activity through chemical control driven by changes in the O2/CO2 balance. Most of the respiratory neural centers are located in the brainstem, but difficult to localize on magnetic resonance imaging (MRI) due to their small size, lack of visually-detectable borders with neighboring areas, and significant physiological noise hampering detection of its activity with functional MRI (fMRI). Yet, several approaches make it possible to study the normal response to different abnormal stimuli or conditions such as CO2 inhalation, induced hypercapnia, volitional apnea, induced hypoxia etc. This review provides a comprehensive overview of the majority of available studies on central respiratory control in humans.
Collapse
Affiliation(s)
- Carolina Ciumas
- Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Lyon Neuroscience Research Center, Institut National de la Santé et de la Recherche Médicale U1028/CNRS UMR 5292 Lyon 1 University, Bron, France
- IDEE Epilepsy Institute, Lyon, France
| | - Sylvain Rheims
- Lyon Neuroscience Research Center, Institut National de la Santé et de la Recherche Médicale U1028/CNRS UMR 5292 Lyon 1 University, Bron, France
- IDEE Epilepsy Institute, Lyon, France
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon, Lyon, France
| | - Philippe Ryvlin
- Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
24
|
Gourine AV, Dale N. Brain H + /CO 2 sensing and control by glial cells. Glia 2022; 70:1520-1535. [PMID: 35102601 DOI: 10.1002/glia.24152] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 01/04/2023]
Abstract
Maintenance of constant brain pH is critically important to support the activity of individual neurons, effective communication within the neuronal circuits, and, thus, efficient processing of information by the brain. This review article focuses on how glial cells detect and respond to changes in brain tissue pH and concentration of CO2 , and then trigger systemic and local adaptive mechanisms that ensure a stable milieu for the operation of brain circuits. We give a detailed account of the cellular and molecular mechanisms underlying sensitivity of glial cells to H+ and CO2 and discuss the role of glial chemosensitivity and signaling in operation of three key mechanisms that work in concert to keep the brain pH constant. We discuss evidence suggesting that astrocytes and marginal glial cells of the brainstem are critically important for central respiratory CO2 chemoreception-a fundamental physiological mechanism that regulates breathing in accord with changes in blood and brain pH and partial pressure of CO2 in order to maintain systemic pH homeostasis. We review evidence suggesting that astrocytes are also responsible for the maintenance of local brain tissue extracellular pH in conditions of variable acid loads associated with changes in the neuronal activity and metabolism, and discuss potential role of these glial cells in mediating the effects of CO2 on cerebral vasculature.
Collapse
Affiliation(s)
- Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Nicholas Dale
- School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
25
|
Arce-Álvarez A, Salazar-Ardiles C, Cornejo C, Paez V, Vásquez-Muñoz M, Stillner-Vilches K, Jara CR, Ramirez-Campillo R, Izquierdo M, Andrade DC. Chemoreflex Control as the Cornerstone in Immersion Water Sports: Possible Role on Breath-Hold. Front Physiol 2022; 13:894921. [PMID: 35733994 PMCID: PMC9207453 DOI: 10.3389/fphys.2022.894921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/10/2022] [Indexed: 11/30/2022] Open
Abstract
Immersion water sports involve long-term apneas; therefore, athletes must physiologically adapt to maintain muscle oxygenation, despite not performing pulmonary ventilation. Breath-holding (i.e., apnea) is common in water sports, and it involves a decrease and increases PaO2 and PaCO2, respectively, as the primary signals that trigger the end of apnea. The principal physiological O2 sensors are the carotid bodies, which are able to detect arterial gases and metabolic alterations before reaching the brain, which aids in adjusting the cardiorespiratory system. Moreover, the principal H+/CO2 sensor is the retrotrapezoid nucleus, which is located at the brainstem level; this mechanism contributes to detecting respiratory and metabolic acidosis. Although these sensors have been characterized in pathophysiological states, current evidence shows a possible role for these mechanisms as physiological sensors during voluntary apnea. Divers and swimmer athletes have been found to displayed longer apnea times than land sports athletes, as well as decreased peripheral O2 and central CO2 chemoreflex control. However, although chemosensitivity at rest could be decreased, we recently found marked sympathoexcitation during maximum voluntary apnea in young swimmers, which could activate the spleen (which is a reservoir organ for oxygenated blood). Therefore, it is possible that the chemoreflex, autonomic function, and storage/delivery oxygen organ(s) are linked to apnea in immersion water sports. In this review, we summarized the available evidence related to chemoreflex control in immersion water sports. Subsequently, we propose a possible physiological mechanistic model that could contribute to providing new avenues for understanding the respiratory physiology of water sports.
Collapse
Affiliation(s)
- Alexis Arce-Álvarez
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura, Departamento Biomedico, Facultad de Ciencias de La Salud, Universidad de Antofagasta, Antofagasta, Chile
- Escuela de Kinesiología, Facultad de Salud, Universidad Católica Silva Henríquez, Santiago, Chile
- Navarrabiomed, Hospital Universitario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Camila Salazar-Ardiles
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura, Departamento Biomedico, Facultad de Ciencias de La Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Carlos Cornejo
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura, Departamento Biomedico, Facultad de Ciencias de La Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Valeria Paez
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura, Departamento Biomedico, Facultad de Ciencias de La Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Manuel Vásquez-Muñoz
- Navarrabiomed, Hospital Universitario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
- Clínica Santa María, Santiago, Chile
| | | | - Catherine R. Jara
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura, Departamento Biomedico, Facultad de Ciencias de La Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Rodrigo Ramirez-Campillo
- Exercise and Rehabilitation Sciences Laboratory, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago, Chile
| | - Mikel Izquierdo
- Navarrabiomed, Hospital Universitario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - David C. Andrade
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura, Departamento Biomedico, Facultad de Ciencias de La Salud, Universidad de Antofagasta, Antofagasta, Chile
- *Correspondence: David C. Andrade, ,
| |
Collapse
|
26
|
Barioni NO, Derakhshan F, Tenorio Lopes L, Onimaru H, Roy A, McDonald F, Scheibli E, Baghdadwala MI, Heidari N, Bharadia M, Ikeda K, Yazawa I, Okada Y, Harris MB, Dutschmann M, Wilson RJA. Novel oxygen sensing mechanism in the spinal cord involved in cardiorespiratory responses to hypoxia. SCIENCE ADVANCES 2022; 8:eabm1444. [PMID: 35333571 PMCID: PMC8956269 DOI: 10.1126/sciadv.abm1444] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 02/04/2022] [Indexed: 05/05/2023]
Abstract
As blood oxygenation decreases (hypoxemia), mammals mount cardiorespiratory responses, increasing oxygen to vital organs. The carotid bodies are the primary oxygen chemoreceptors for breathing, but sympathetic-mediated cardiovascular responses to hypoxia persist in their absence, suggesting additional high-fidelity oxygen sensors. We show that spinal thoracic sympathetic preganglionic neurons are excited by hypoxia and silenced by hyperoxia, independent of surrounding astrocytes. These spinal oxygen sensors (SOS) enhance sympatho-respiratory activity induced by CNS asphyxia-like stimuli, suggesting they bestow a life-or-death advantage. Our data suggest the SOS use a mechanism involving neuronal nitric oxide synthase 1 (NOS1) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX). We propose NOS1 serves as an oxygen-dependent sink for NADPH in hyperoxia. In hypoxia, NADPH catabolism by NOS1 decreases, increasing availability of NADPH to NOX and launching reactive oxygen species-dependent processes, including transient receptor potential channel activation. Equipped with this mechanism, SOS are likely broadly important for physiological regulation in chronic disease, spinal cord injury, and cardiorespiratory crisis.
Collapse
Affiliation(s)
- Nicole O. Barioni
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Fatemeh Derakhshan
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Luana Tenorio Lopes
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Hiroshi Onimaru
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | - Arijit Roy
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Fiona McDonald
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Erika Scheibli
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mufaddal I. Baghdadwala
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Negar Heidari
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Manisha Bharadia
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Keiko Ikeda
- Division of Internal Medicine, Murayama Medical Center, Musashimurayama, Tokyo, Japan
| | - Itaru Yazawa
- Global Research Center for Innovative Life Science, Peptide Drug Innovation, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan
| | - Yasumasa Okada
- Division of Internal Medicine, Murayama Medical Center, Musashimurayama, Tokyo, Japan
| | - Michael B. Harris
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Mathias Dutschmann
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, 3052, Australia
| | - Richard J. A. Wilson
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
27
|
Feinstein JS, Gould D, Khalsa SS. Amygdala-driven apnea and the chemoreceptive origin of anxiety. Biol Psychol 2022; 170:108305. [PMID: 35271957 DOI: 10.1016/j.biopsycho.2022.108305] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 02/09/2022] [Accepted: 03/03/2022] [Indexed: 12/13/2022]
Abstract
Although the amygdala plays an important part in the pathogenesis of anxiety and generation of exteroceptive fear, recent discoveries have challenged the directionality of this brain-behavior relationship with respect to interoceptive fear. Here we highlight several paradoxical findings including: (1) amygdala lesion patients who experience excessive fear and panic following inhalation of carbon dioxide (CO2), (2) clinically anxious patients who have significantly smaller (rather than larger) amygdalae and a pronounced hypersensitivity toward CO2, and (3) epilepsy patients who exhibit apnea immediately following stimulation of their amygdala yet have no awareness that their breathing has stopped. The above findings elucidate an entirely novel role for the amygdala in the induction of apnea and inhibition of CO2-induced fear. Such a role is plausible given the strong inhibitory connections linking the central nucleus of the amygdala with respiratory and chemoreceptive centers in the brainstem. Based on this anatomical arrangement, we propose a model of Apnea-induced Anxiety (AiA) which predicts that recurring episodes of apnea are being unconsciously elicited by amygdala activation, resulting in transient spikes in CO2 that provoke fear and anxiety, and lead to characteristic patterns of escape and avoidance behavior in patients spanning the spectrum of anxiety. If this new conception of AiA proves to be true, and activation of the amygdala can repeatedly trigger states of apnea outside of one's awareness, then it remains possible that the chronicity of anxiety disorders is being interoceptively driven by a chemoreceptive system struggling to maintain homeostasis in the midst of these breathless states.
Collapse
Affiliation(s)
- Justin S Feinstein
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA, 74136; University of Tulsa, Oxley College of Health Sciences, Tulsa, Oklahoma, USA, 74104; University of Iowa, Department of Neurology, Iowa City, Iowa, USA, 52242.
| | - Dylan Gould
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA, 74136
| | - Sahib S Khalsa
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA, 74136; University of Tulsa, Oxley College of Health Sciences, Tulsa, Oklahoma, USA, 74104
| |
Collapse
|
28
|
Kubin L. Breathing during sleep. HANDBOOK OF CLINICAL NEUROLOGY 2022; 188:179-199. [PMID: 35965026 DOI: 10.1016/b978-0-323-91534-2.00005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The depth, rate, and regularity of breathing change following transition from wakefulness to sleep. Interactions between sleep and breathing involve direct effects of the central mechanisms that generate sleep states exerted at multiple respiratory regulatory sites, such as the central respiratory pattern generator, respiratory premotor pathways, and motoneurons that innervate the respiratory pump and upper airway muscles, as well as effects secondary to sleep-related changes in metabolism. This chapter discusses respiratory effects of sleep as they occur under physiologic conditions. Breathing and central respiratory neuronal activities during nonrapid eye movement (NREM) sleep and REM sleep are characterized in relation to activity of central wake-active and sleep-active neurons. Consideration is given to the obstructive sleep apnea syndrome because in this common disorder, state-dependent control of upper airway patency by upper airway muscles attains high significance and recurrent arousals from sleep are triggered by hypercapnic and hypoxic episodes. Selected clinical trials are discussed in which pharmacological interventions targeted transmission in noradrenergic, serotonergic, cholinergic, and other state-dependent pathways identified as mediators of ventilatory changes during sleep. Central pathways for arousals elicited by chemical stimulation of breathing are given special attention for their important role in sleep loss and fragmentation in sleep-related respiratory disorders.
Collapse
Affiliation(s)
- Leszek Kubin
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
29
|
Abstract
The carotid body (CB) is a bilateral arterial chemoreceptor located in the carotid artery bifurcation with an essential role in cardiorespiratory homeostasis. It is composed of highly perfused cell clusters, or glomeruli, innervated by sensory fibers. Glomus cells, the most abundant in each glomerulus, are neuron-like multimodal sensory elements able to detect and integrate changes in several physical and chemical parameters of the blood, in particular O2 tension, CO2 and pH, as well as glucose, lactate, or blood flow. Activation of glomus cells (e.g., during hypoxia or hypercapnia) stimulates the afferent fibers which impinge on brainstem neurons to elicit rapid compensatory responses (hyperventilation and sympathetic activation). This chapter presents an updated view of the structural organization of the CB and the mechanisms underlying the chemosensory responses of glomus cells, with special emphasis on the molecular processes responsible for acute O2 sensing. The properties of the glomus cell-sensory fiber synapse as well as the organization of CB output are discussed. The chapter includes the description of recently discovered CB stem cells and progenitor cells, and their role in CB growth during acclimatization to hypoxemia. Finally, the participation of the CB in the mechanisms of disease is briefly discussed.
Collapse
Affiliation(s)
- José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Sevilla, Seville, Spain; Biomedical Research Center for Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
30
|
Guyenet PG, Stornetta RL. Rostral ventrolateral medulla, retropontine region and autonomic regulations. Auton Neurosci 2021; 237:102922. [PMID: 34814098 DOI: 10.1016/j.autneu.2021.102922] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022]
Abstract
The rostral half of the ventrolateral medulla (RVLM) and adjacent ventrolateral retropontine region (henceforth RVLMRP) have been divided into various sectors by neuroscientists interested in breathing or autonomic regulations. The RVLMRP regulates respiration, glycemia, vigilance and inflammation, in addition to blood pressure. It contains interoceptors that respond to acidification, hypoxia and intracranial pressure and its rostral end contains the retrotrapezoid nucleus (RTN) which is the main central respiratory chemoreceptor. Acid detection by the RTN is an intrinsic property of the principal neurons that is enhanced by paracrine influences from surrounding astrocytes and CO2-dependent vascular constriction. RTN mediates the hypercapnic ventilatory response via complex projections to the respiratory pattern generator (CPG). The RVLM contributes to autonomic response patterns via differential recruitment of several subtypes of adrenergic (C1) and non-adrenergic neurons that directly innervate sympathetic and parasympathetic preganglionic neurons. The RVLM also innervates many brainstem and hypothalamic nuclei that contribute, albeit less directly, to autonomic responses. All lower brainstem noradrenergic clusters including the locus coeruleus are among these targets. Sympathetic tone to the circulatory system is regulated by subsets of presympathetic RVLM neurons whose activity is continuously restrained by the baroreceptors and modulated by the respiratory CPG. The inhibitory input from baroreceptors and the excitatory input from the respiratory CPG originate from neurons located in or close to the rhythm generating region of the respiratory CPG (preBötzinger complex).
Collapse
Affiliation(s)
- Patrice G Guyenet
- University of Virginia School of Medicine, Department of Pharmacology, 1340 Jefferson Park Avenue, Charlottesville, VA 22908-0735, USA.
| | - Ruth L Stornetta
- University of Virginia School of Medicine, Department of Pharmacology, 1340 Jefferson Park Avenue, Charlottesville, VA 22908-0735, USA.
| |
Collapse
|
31
|
Gourine AV, Spyer KM. Geoff Burnstock, purinergic signalling, and chemosensory control of breathing. Auton Neurosci 2021; 235:102839. [PMID: 34198056 DOI: 10.1016/j.autneu.2021.102839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/11/2021] [Accepted: 06/20/2021] [Indexed: 12/14/2022]
Abstract
This article is the authors' contribution to the tribute issue in honour of Geoffrey Burnstock, the founder of this journal and the field of purinergic signalling. We give a brief account of the results of experimental studies which at the beginning received valuable input from Geoff, who both directly and indirectly influenced our research undertaken over the last two decades. Research into the mechanisms controlling breathing identified ATP as the common mediator of the central and peripheral chemosensory transduction. Studies of the sources and mechanisms of chemosensory ATP release in the CNS suggested that this signalling pathway is universally engaged in conditions of increased metabolic demand by brain glial cells - astrocytes. Astrocytes appear to function as versatile CNS metabolic sensors that detect changes in brain tissue pH, CO2, oxygen, and cerebral perfusion pressure. Experimental studies on various aspects of astrocyte biology generated data indicating that the function of these omnipresent glial cells and communication between astrocytes and neurons are governed by purinergic signalling, - first discovered by Geoff Burnstock in the 70's and researched through his entire scientific career.
Collapse
Affiliation(s)
- Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| | - K Michael Spyer
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
32
|
Fukushi I, Takeda K, Pokorski M, Kono Y, Yoshizawa M, Hasebe Y, Nakao A, Mori Y, Onimaru H, Okada Y. Activation of Astrocytes in the Persistence of Post-hypoxic Respiratory Augmentation. Front Physiol 2021; 12:757731. [PMID: 34690820 PMCID: PMC8531090 DOI: 10.3389/fphys.2021.757731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
Acute hypoxia increases ventilation. After cessation of hypoxia loading, ventilation decreases but remains above the pre-exposure baseline level for a time. However, the mechanism of this post-hypoxic persistent respiratory augmentation (PHRA), which is a short-term potentiation of breathing, has not been elucidated. We aimed to test the hypothesis that astrocytes are involved in PHRA. To this end, we investigated hypoxic ventilatory responses by whole-body plethysmography in unanesthetized adult mice. The animals breathed room air, hypoxic gas mixture (7% O2, 93% N2) for 2min, and again room air for 10min before and after i.p. administration of low (100mg/kg) and high (300mg/kg) doses of arundic acid (AA), an astrocyte inhibitor. AA suppressed PHRA, with the high dose decreasing ventilation below the pre-hypoxic level. Further, we investigated the role of the astrocytic TRPA1 channel, a putative ventilatory hypoxia sensor, in PHRA using astrocyte-specific Trpa1 knockout (asTrpa1−/−) and floxed Trpa1 (Trpa1f/f) mice. In both Trpa1f/f and asTrpa1−/− mice, PHRA was noticeable, indicating that the astrocyte TRPA1 channel was not directly involved in PHRA. Taken together, these results indicate that astrocytes mediate the PHRA by mechanisms other than TRPA1 channels that are engaged in hypoxia sensing.
Collapse
Affiliation(s)
- Isato Fukushi
- Faculty of Health Sciences, Uekusa Gakuen University, Chiba, Japan.,Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan
| | - Kotaro Takeda
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan.,Faculty of Rehabilitation, School of Healthcare, Fujita Health University, Toyoake, Japan
| | - Mieczyslaw Pokorski
- Institute of Health Sciences, University of Opole, Opole, Poland.,Faculty of Health Sciences, The Jan Dlugosz University in Czestochowa, Czestochowa, Poland
| | - Yosuke Kono
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan.,Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Masashi Yoshizawa
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan.,Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Yohei Hasebe
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan.,Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Akito Nakao
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Yasuo Mori
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Hiroshi Onimaru
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | - Yasumasa Okada
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan
| |
Collapse
|
33
|
Marullo AL, Bird JD, Ciorogariu-Ivan AM, Boulet LM, Strzalkowski NDJ, Day TA. Acute hyperglycemia does not affect central respiratory chemoreflex responsiveness to CO 2 in healthy humans. Respir Physiol Neurobiol 2021; 296:103803. [PMID: 34653661 DOI: 10.1016/j.resp.2021.103803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/05/2021] [Accepted: 10/10/2021] [Indexed: 11/17/2022]
Abstract
The central respiratory chemoreceptor complex (CCRC) is comprised of brainstem neurons and surrounding interoceptors, which collectively increase ventilation in response to elevated brainstem tissue CO2/[H+] (i.e., central chemoreflex; CCR). The extent that the CCRC detects/responds to other metabolically related chemostimuli is unknown. We aimed to test the effects of acute oral glucose ingestion on CCR reactivity in heathy human participants (n = 38). We instrumented participants with a pneumotachometer (minute ventilation) and a gas sample line connected to a dual gas analyzer (pressure of end-tidal CO2). Following a baseline (BL) period and capillary blood [glucose] (BG) sample, fasted (F) participants underwent a modified hyperoxic rebreathing test to assess CCR reactivity. Participants then consumed a 75 g standard glucose beverage (glucose loaded; GL). Following 30-min, they underwent a second BL, BG sample and hyperoxic rebreathing test. BG and metabolic rate were higher in GL, confirming the metabolic stimulus. However, the ventilatory recruitment threshold and the CCR responses were unchanged between F and GL states.
Collapse
Affiliation(s)
- Anthony L Marullo
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Jordan D Bird
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Anna-Maria Ciorogariu-Ivan
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Lindsey M Boulet
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Colombia Okanagan, Kelowna, BC, Canada
| | - Nicholas D J Strzalkowski
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Trevor A Day
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada.
| |
Collapse
|
34
|
Montalant A, Carlsen EMM, Perrier J. Role of astrocytes in rhythmic motor activity. Physiol Rep 2021; 9:e15029. [PMID: 34558208 PMCID: PMC8461027 DOI: 10.14814/phy2.15029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 01/14/2023] Open
Abstract
Rhythmic motor activities such as breathing, locomotion, tremor, or mastication are organized by groups of interconnected neurons. Most synapses in the central nervous system are in close apposition with processes belonging to astrocytes. Neurotransmitters released from neurons bind to receptors expressed by astrocytes, activating a signaling pathway that leads to an increase in calcium concentration and the release of gliotransmitters that eventually modulate synaptic transmission. It is therefore likely that the activation of astrocytes impacts motor control. Here we review recent studies demonstrating that astrocytes inhibit, modulate, or trigger motor rhythmic behaviors.
Collapse
Affiliation(s)
- Alexia Montalant
- Department of NeuroscienceFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Eva M. M. Carlsen
- Department of NeuroscienceFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Jean‐François Perrier
- Department of NeuroscienceFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
35
|
Iturriaga R, Alcayaga J, Chapleau MW, Somers VK. Carotid body chemoreceptors: physiology, pathology, and implications for health and disease. Physiol Rev 2021; 101:1177-1235. [PMID: 33570461 PMCID: PMC8526340 DOI: 10.1152/physrev.00039.2019] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The carotid body (CB) is the main peripheral chemoreceptor for arterial respiratory gases O2 and CO2 and pH, eliciting reflex ventilatory, cardiovascular, and humoral responses to maintain homeostasis. This review examines the fundamental biology underlying CB chemoreceptor function, its contribution to integrated physiological responses, and its role in maintaining health and potentiating disease. Emphasis is placed on 1) transduction mechanisms in chemoreceptor (type I) cells, highlighting the role played by the hypoxic inhibition of O2-dependent K+ channels and mitochondrial oxidative metabolism, and their modification by intracellular molecules and other ion channels; 2) synaptic mechanisms linking type I cells and petrosal nerve terminals, focusing on the role played by the main proposed transmitters and modulatory gases, and the participation of glial cells in regulation of the chemosensory process; 3) integrated reflex responses to CB activation, emphasizing that the responses differ dramatically depending on the nature of the physiological, pathological, or environmental challenges, and the interactions of the chemoreceptor reflex with other reflexes in optimizing oxygen delivery to the tissues; and 4) the contribution of enhanced CB chemosensory discharge to autonomic and cardiorespiratory pathophysiology in obstructive sleep apnea, congestive heart failure, resistant hypertension, and metabolic diseases and how modulation of enhanced CB reactivity in disease conditions may attenuate pathophysiology.
Collapse
Affiliation(s)
- Rodrigo Iturriaga
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile, and Centro de Excelencia en Biomedicina de Magallanes, Universidad de Magallanes, Punta Arenas, Chile
| | - Julio Alcayaga
- Laboratorio de Fisiología Celular, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Mark W Chapleau
- Department of Internal Medicine, University of Iowa and Department of Veterans Affairs Medical Center, Iowa City, Iowa
| | - Virend K Somers
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
36
|
Abstract
The development of the control of breathing begins in utero and continues postnatally. Fetal breathing movements are needed for establishing connectivity between the lungs and central mechanisms controlling breathing. Maturation of the control of breathing, including the increase of hypoxia chemosensitivity, continues postnatally. Insufficient oxygenation, or hypoxia, is a major stressor that can manifest for different reasons in the fetus and neonate. Though the fetus and neonate have different hypoxia sensing mechanisms and respond differently to acute hypoxia, both responses prevent deviations to respiratory and other developmental processes. Intermittent and chronic hypoxia pose much greater threats to the normal developmental respiratory processes. Gestational intermittent hypoxia, due to maternal sleep-disordered breathing and sleep apnea, increases eupneic breathing and decreases the hypoxic ventilatory response associated with impaired gasping and autoresuscitation postnatally. Chronic fetal hypoxia, due to biologic or environmental (i.e. high-altitude) factors, is implicated in fetal growth restriction and preterm birth causing a decrease in the postnatal hypoxic ventilatory responses with increases in irregular eupneic breathing. Mechanisms driving these changes include delayed chemoreceptor development, catecholaminergic activity, abnormal myelination, increased astrocyte proliferation in the dorsal respiratory group, among others. Long-term high-altitude residents demonstrate favorable adaptations to chronic hypoxia as do their offspring. Neonatal intermittent hypoxia is common among preterm infants due to immature respiratory systems and thus, display a reduced drive to breathe and apneas due to insufficient hypoxic sensitivity. However, ongoing intermittent hypoxia can enhance hypoxic sensitivity causing ventilatory overshoots followed by apnea; the number of apneas is positively correlated with degree of hypoxic sensitivity in preterm infants. Chronic neonatal hypoxia may arise from fetal complications like maternal smoking or from postnatal cardiovascular problems, causing blunting of the hypoxic ventilatory responses throughout at least adolescence due to attenuation of carotid body fibers responses to hypoxia with potential roles of brainstem serotonin, microglia, and inflammation, though these effects depend on the age in which chronic hypoxia initiates. Fetal and neonatal intermittent and chronic hypoxia are implicated in preterm birth and complicate the respiratory system through their direct effects on hypoxia sensing mechanisms and interruptions to the normal developmental processes. Thus, precise regulation of oxygen homeostasis is crucial for normal development of the respiratory control network. © 2021 American Physiological Society. Compr Physiol 11:1653-1677, 2021.
Collapse
Affiliation(s)
- Gary C. Mouradian
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Satyan Lakshminrusimha
- Department of Pediatrics, UC Davis Children’s Hospital, UC Davis Health, UC Davis, Davis, California, USA
| | - Girija G. Konduri
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Children’s Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
37
|
Onimaru H, Yazawa I, Takeda K, Fukushi I, Okada Y. Calcium Imaging Analysis of Cellular Responses to Hypercapnia and Hypoxia in the NTS of Newborn Rat Brainstem Preparation. Front Physiol 2021; 12:645904. [PMID: 33841182 PMCID: PMC8027497 DOI: 10.3389/fphys.2021.645904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/08/2021] [Indexed: 01/13/2023] Open
Abstract
It is supposed that the nucleus of the solitary tract (NTS) in the dorsal medulla includes gas sensor cells responsive to hypercapnia or hypoxia in the central nervous system. In the present study, we analyzed cellular responses to hypercapnia and hypoxia in the NTS region of newborn rat in vitro preparation. The brainstem and spinal cord were isolated from newborn rat (P0-P4) and were transversely cut at the level of the rostral area postrema. To detect cellular responses, calcium indicator Oregon Green was pressure-injected into the NTS just beneath the cut surface of either the caudal or rostral block of the medulla, and the preparation was superfused with artificial cerebrospinal fluid (25–26°C). We examined cellular responses initially to hypercapnic stimulation (to 8% CO2 from 2% CO2) and then to hypoxic stimulation (to 0% O2 from 95% O2 at 5% CO2). We tested these responses in standard solution and in two different synapse blockade solutions: (1) cocktail blockers solution including bicuculline, strychnine, NBQX and MK-801 or (2) TTX solution. At the end of the experiments, the superfusate potassium concentration was lowered to 0.2 from 3 mM to classify recorded cells into neurons and astrocytes. Excitation of cells was detected as changes of fluorescence intensity with a confocal calcium imaging system. In the synaptic blockade solutions (cocktail or TTX solution), 7.6 and 8% of the NTS cells responded to hypercapnic and hypoxic stimulation, respectively, and approximately 2% of them responded to both stimulations. Some of these cells responded to low K+, and they were classified into astrocytes comprising 43% hypercapnia-sensitive cells, 56% hypoxia-sensitive cells and 54% of both stimulation-sensitive cells. Of note, 49% of the putative astrocytes identified by low K+ stimulation were sensitive to hypercapnia, hypoxia or both. In the presence of a glia preferential blocker, 5 mM fluoroacetate (plus 0.5 μM TTX), the percentage of hypoxia-sensitive cells was significantly reduced compared to those of all other conditions. This is the first study to reveal that the NTS includes hypercapnia and hypoxia dual-sensitive cells. These results suggest that astrocytes in the NTS region could act as a central gas sensor.
Collapse
Affiliation(s)
- Hiroshi Onimaru
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | - Itaru Yazawa
- Global Research Center for Innovative Life Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Kotaro Takeda
- Faculty of Rehabilitation, School of Healthcare, Fujita Health University, Toyoake, Japan
| | - Isato Fukushi
- Faculty of Health Sciences, Uekusa Gakuen University, Chiba, Japan.,Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan
| | - Yasumasa Okada
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan
| |
Collapse
|
38
|
Hülsmann S, Khabbazzadeh S, Meissner K, Quintel M. A Potential Role of the Renin-Angiotensin-System for Disturbances of Respiratory Chemosensitivity in Acute Respiratory Distress Syndrome and Severe Acute Respiratory Syndrome. Front Physiol 2021; 11:588248. [PMID: 33551831 PMCID: PMC7857271 DOI: 10.3389/fphys.2020.588248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/07/2020] [Indexed: 12/27/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) represents an acute diffuse inflammation of the lungs triggered by different causes, uniformly leading to a noncardiogenic pulmonary edema with inhomogeneous densities in lung X-ray and lung CT scan and acute hypoxemia. Edema formation results in "heavy" lungs, inducing loss of compliance and the need to spend more energy to "move" the lungs. Consequently, an ARDS patient, as long as the patient is breathing spontaneously, has an increased respiratory drive to ensure adequate oxygenation and CO2 removal. One would expect that, once the blood gases get back to "physiological" values, the respiratory drive would normalize and the breathing effort return to its initial status. However, in many ARDS patients, this is not the case; their respiratory drive appears to be upregulated and fully or at least partially detached from the blood gas status. Strikingly, similar alteration of the respiratory drive can be seen in patients suffering from SARS, especially SARS-Covid-19. We hypothesize that alterations of the renin-angiotensin-system (RAS) related to the pathophysiology of ARDS and SARS are involved in this dysregulation of chemosensitive control of breathing.
Collapse
Affiliation(s)
- Swen Hülsmann
- Universitätsmedizin Göttingen, Klinik für Anästhesiologie, Georg-August-Universität, Göttingen, Germany
| | - Sepideh Khabbazzadeh
- Universitätsmedizin Göttingen, Klinik für Anästhesiologie, Georg-August-Universität, Göttingen, Germany
| | - Konrad Meissner
- Universitätsmedizin Göttingen, Klinik für Anästhesiologie, Georg-August-Universität, Göttingen, Germany
| | - Michael Quintel
- Universitätsmedizin Göttingen, Klinik für Anästhesiologie, Georg-August-Universität, Göttingen, Germany
- DONAUISAR Klinikum Deggendorf, Deggendorf, Germany
| |
Collapse
|
39
|
Harrison JF, Waser W, Hetz SK. PO2 of the metathoracic ganglion in response to progressive hypoxia in an insect. Biol Lett 2020; 16:20200548. [PMID: 33142085 DOI: 10.1098/rsbl.2020.0548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mammals regulate their brain tissue PO2 tightly, and only small changes in brain PO2 are required to elicit compensatory ventilation. However, unlike the flow-through cardiovascular system of vertebrates, insect tissues exchange gases through blind-ended tracheoles, which may involve a more prominent role for diffusive gas exchange. We tested the effect of progressive hypoxia on ventilation and the PO2 of the metathoracic ganglion (neural site of control of ventilation) using microelectrodes in the American locust, Schistocerca americana. In normal air (21 kPa), PO2 of the metathoracic ganglion was 12 kPa. The PO2 of the ganglion dropped as air PO2 dropped, with ventilatory responses occurring when ganglion PO2 reached 3 kPa. Unlike vertebrates, insects tolerate relatively high resting tissue PO2 levels and allow tissue PO2 to drop during hypoxia, activity and discontinuous gas exchange before activating convective or spiracular gas exchange. Tracheated animals, and possibly pancrustaceans in general, seem likely to generally experience wide spatial and temporal variation in tissue PO2 compared with vertebrates, with important implications for physiological function and the evolution of oxygen-using proteins.
Collapse
Affiliation(s)
- Jon F Harrison
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Wolfgang Waser
- Animal Physiology and Systems Neurobiology, Humboldt University, Berlin, Philippstrasse 13, 10115 Berlin, Germany
| | - Stefan K Hetz
- Animal Physiology and Systems Neurobiology, Humboldt University, Berlin, Philippstrasse 13, 10115 Berlin, Germany
| |
Collapse
|
40
|
Rastogi R, Badr MS, Ahmed A, Chowdhuri S. Amelioration of sleep-disordered breathing with supplemental oxygen in older adults. J Appl Physiol (1985) 2020; 129:1441-1450. [PMID: 32969781 DOI: 10.1152/japplphysiol.00253.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Elderly adults demonstrate increased propensity for breathing instability during sleep compared with younger adults, and this may contribute to increased prevalence of sleep-disordered breathing (SDB) in this population. Hence, in older adults with SDB, we examined whether addition of supplemental oxygen (O2) will stabilize breathing during sleep and alleviate SDB. We hypothesized that exposure to supplemental O2 during non-rapid eye movement (NREM) sleep will stabilize breathing and will alleviate SDB by reducing ventilatory chemoresponsiveness and by widening the carbon dioxide (CO2) reserve. We studied 10 older adults with mild-to-moderate SDB who were randomized to undergo noninvasive bilevel mechanical ventilation with exposure to room air or supplemental O2 (Oxy) to determine the CO2 reserve, apneic threshold (AT), and controller and plant gains. Supplemental O2 was introduced during sleep to achieve a steady-state O2 saturation ≥95% and fraction of inspired O2 at 40%-50%. The CO2 reserve increased significantly during Oxy versus room air (-4.2 ± 0.5 mmHg vs. -3.2 ± 0.5 mmHg, P = 0.03). Compared with room air, Oxy was associated with a significant decline in the controller gain (1.9 ± 0.4 L/min/mmHg vs. 2.5 ± 0.5 L/min/mmHg, P = 0.04), with reductions in the apnea-hypopnea index (11.8 ± 2.0/h vs. 24.4 ± 5.6/h, P = 0.006) and central apnea-hypopnea index (1.7 ± 0.6/h vs. 6.9 ± 3.9/h, P = 0.03). The AT and plant gain were unchanged. Thus, a reduced slope of CO2 response resulted in an increased CO2 reserve. In conclusion, supplemental O2 reduced SDB in older adults during NREM sleep via reduction in chemoresponsiveness and central respiratory events.NEW & NOTEWORTHY This study demonstrates for the first time in elderly adults without heart disease that intervention with supplemental oxygen in the clinical range will ameliorate central apneas and hypopneas by decreasing the propensity to central apnea through decreased chemoreflex sensitivity, even in the absence of a reduction in the plant gain. Thus, the study provides physiological evidence for use of supplemental oxygen as therapy for mild-to-moderate SDB in this vulnerable population.
Collapse
Affiliation(s)
- Ruchi Rastogi
- Medical Service, Sleep Medicine Section, John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan.,Division of Pulmonary/Critical Care and Sleep Medicine, Department of Medicine, Wayne State University School of Medicine, Detroit, Michigan
| | - M S Badr
- Medical Service, Sleep Medicine Section, John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan.,Division of Pulmonary/Critical Care and Sleep Medicine, Department of Medicine, Wayne State University School of Medicine, Detroit, Michigan
| | - A Ahmed
- Division of Pulmonary/Critical Care and Sleep Medicine, Department of Medicine, Wayne State University School of Medicine, Detroit, Michigan
| | - S Chowdhuri
- Medical Service, Sleep Medicine Section, John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan.,Division of Pulmonary/Critical Care and Sleep Medicine, Department of Medicine, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
41
|
Abstract
Astrocytes, the star-shaped brain cells, are known chemosensitive cells in the respiratory system. A new study shows that trafficking of TRPA1 channels in and out of the cell membrane in brainstem astrocytes contributes to their role as central respiratory oxygen sensors.
Collapse
Affiliation(s)
- Shahriar SheikhBahaei
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
42
|
Prasad B, Morgan BJ, Gupta A, Pegelow DF, Teodorescu M, Dopp JM, Dempsey JA. The need for specificity in quantifying neurocirculatory vs. respiratory effects of eucapnic hypoxia and transient hyperoxia. J Physiol 2020; 598:4803-4819. [PMID: 32770545 DOI: 10.1113/jp280515] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 08/04/2020] [Indexed: 12/24/2022] Open
Abstract
KEY POINTS The carotid chemoreceptor mediates the ventilatory and muscle sympathetic nerve activity (MSNA) responses to hypoxia and contributes to tonic sympathetic and respiratory drives. It is often presumed that both excitatory and inhibitory tests of chemoreflex function show congruence in the end-organ responses. Ventilatory and neurocirculatory (MSNA, blood pressure and heart rate) responses to chemoreflex inhibition elicited by transient hyperoxia and to chemoreflex excitation produced by steady-state eucapnic hypoxia were measured in a cohort of 82 middle-aged individuals. Ventilatory and MSNA responsiveness to hyperoxia and hypoxia were not significantly correlated within individuals. It was concluded that ventilatory responses to hypoxia and hyperoxia do not predict MSNA responses and it is recommended that tests using the specific outcome of interest, i.e. MSNA or ventilation, are required. Transient hyperoxia is recommended as a sensitive and reliable means of quantifying tonic chemoreceptor-driven levels of sympathetic nervous system activity and respiratory drive. ABSTRACT Hypersensitivity of the carotid chemoreceptor leading to sympathetic nervous system activation and ventilatory instability has been implicated in the pathogenesis and consequences of several common clinical conditions. A variety of treatment approaches aimed at lessening chemoreceptor-driven sympathetic overactivity are now under investigation; thus, the ability to quantify this outcome variable with specificity and precision is crucial. Accordingly, we measured ventilatory and neurocirculatory responses to chemoreflex inhibition elicited by transient hyperoxia and chemoreflex excitation produced by exposure to graded, steady-state eucapnic hypoxia in middle-aged men and women (n = 82) with continuous positive airway pressure-treated obstructive sleep apnoea. Progressive, eucapnic hypoxia produced robust and highly variable increases in ventilation (+83 ± 59%) and muscle sympathetic nerve activity (MSNA) burst frequency (+55 ± 31%), whereas transient hyperoxia caused marked reductions in these variables (-35 ± 14% and -42 ± 16%, respectively). Coefficients of variation for ventilatory and MSNA burst frequency responses, indicating test-retest reproducibility, were respectively 9% and 24% for hyperoxia and 35% and 28% for hypoxia. Based on statistical measures of rank correlation or even comparisons across quartiles of corresponding ventilatory and MSNA responses, we found that the magnitudes of ventilatory inhibition with hyperoxia or excitation with eucapnic hypoxia were not correlated with corresponding MSNA responses within individuals. We conclude that, in conscious, behaving humans, ventilatory sensitivities to progressive, steady-state, eucapnic hypoxia and transient hyperoxia do not predict MSNA responsiveness. Our findings also support the use of transient hyperoxia as a reliable, sensitive, measure of the carotid chemoreceptor contribution to tonic sympathetic nervous system activity and respiratory drive.
Collapse
Affiliation(s)
- Bharati Prasad
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Barbara J Morgan
- John Rankin Laboratory of Pulmonary Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.,Department of Orthopedics and Rehabilitation, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Ahana Gupta
- GPPA Medical Scholars Program, University of Illinois at Chicago, Chicago, IL, USA
| | - David F Pegelow
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Mihaela Teodorescu
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - John M Dopp
- Pharmacy Practice Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Jerome A Dempsey
- John Rankin Laboratory of Pulmonary Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.,Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
| |
Collapse
|
43
|
Hosford PS, Ninkina N, Buchman VL, Smith JC, Marina N, SheikhBahaei S. Synuclein Deficiency Results in Age-Related Respiratory and Cardiovascular Dysfunctions in Mice. Brain Sci 2020; 10:brainsci10090583. [PMID: 32846874 PMCID: PMC7563345 DOI: 10.3390/brainsci10090583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 01/16/2023] Open
Abstract
Synuclein (α, β, and γ) proteins are highly expressed in presynaptic terminals, and significant data exist supporting their role in regulating neurotransmitter release. Targeting the gene encoding α-synuclein is the basis of many animal models of Parkinson's disease (PD). However, the physiological role of this family of proteins in not well understood and could be especially relevant as interfering with accumulation of α-synuclein level has therapeutic potential in limiting PD progression. The long-term effects of their removal are unknown and given the complex pathophysiology of PD, could exacerbate other clinical features of the disease, for example dysautonomia. In the present study, we sought to characterize the autonomic phenotypes of mice lacking all synucleins (α, β, and γ; αβγ-/-) in order to better understand the role of synuclein-family proteins in autonomic function. We probed respiratory and cardiovascular reflexes in conscious and anesthetized, young (4 months) and aged (18-20 months) αβγ-/- male mice. Aged mice displayed impaired respiratory responses to both hypoxia and hypercapnia when breathing activities were recorded in conscious animals using whole-body plethysmography. These animals were also found to be hypertensive from conscious blood pressure recordings, to have reduced pressor baroreflex gain under anesthesia, and showed reduced termination of both pressor and depressor reflexes. The present data demonstrate the importance of synuclein in the normal function of respiratory and cardiovascular reflexes during aging.
Collapse
Affiliation(s)
- Patrick S. Hosford
- Department of Neuroscience Physiology and Pharmacology, Center for Cardiovascular and Metabolic Neuroscience, University College London (UCL), London WC1E 6BT, UK; (P.S.H.); (N.M.)
| | - Natalia Ninkina
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; (N.N.); (V.L.B.)
- Institute of Physiologically Active Compounds, Russian Academy of Sciences (IPAC RAS), 1 Severniy proezd, 142432 Chernogolovka, Moscow Region, Russia
| | - Vladimir L. Buchman
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; (N.N.); (V.L.B.)
- Institute of Physiologically Active Compounds, Russian Academy of Sciences (IPAC RAS), 1 Severniy proezd, 142432 Chernogolovka, Moscow Region, Russia
| | - Jeffrey C. Smith
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD 20892, USA;
| | - Nephtali Marina
- Department of Neuroscience Physiology and Pharmacology, Center for Cardiovascular and Metabolic Neuroscience, University College London (UCL), London WC1E 6BT, UK; (P.S.H.); (N.M.)
| | - Shahriar SheikhBahaei
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD 20892, USA;
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD 20892, USA
- Correspondence: ; Tel.: +1-301-496-4960; Fax: +1-301-496-1339
| |
Collapse
|
44
|
Tretter V, Zach ML, Böhme S, Ullrich R, Markstaller K, Klein KU. Investigating Disturbances of Oxygen Homeostasis: From Cellular Mechanisms to the Clinical Practice. Front Physiol 2020; 11:947. [PMID: 32848874 PMCID: PMC7417655 DOI: 10.3389/fphys.2020.00947] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/14/2020] [Indexed: 12/22/2022] Open
Abstract
Soon after its discovery in the 18th century, oxygen was applied as a therapeutic agent to treat severely ill patients. Lack of oxygen, commonly termed as hypoxia, is frequently encountered in different disease states and is detrimental to human life. However, at the end of the 19th century, Paul Bert and James Lorrain Smith identified what is known as oxygen toxicity. The molecular basis of this phenomenon is oxygen's readiness to accept electrons and to form different variants of aggressive radicals that interfere with normal cell functions. The human body has evolved to maintain oxygen homeostasis by different molecular systems that are either activated in the case of oxygen under-supply, or to scavenge and to transform oxygen radicals when excess amounts are encountered. Research has provided insights into cellular mechanisms of oxygen homeostasis and is still called upon in order to better understand related diseases. Oxygen therapy is one of the prime clinical interventions, as it is life saving, readily available, easy to apply and economically affordable. However, the current state of research also implicates a reconsidering of the liberal application of oxygen causing hyperoxia. Increasing evidence from preclinical and clinical studies suggest detrimental outcomes as a consequence of liberal oxygen therapy. In this review, we summarize concepts of cellular mechanisms regarding different forms of disturbed cellular oxygen homeostasis that may help to better define safe clinical application of oxygen therapy.
Collapse
Affiliation(s)
- Verena Tretter
- Department of Anaesthesia, General Intensive Care and Pain Therapy, Medical University Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
45
|
Leacy JK, Linares AM, Zouboules SM, Rampuri ZH, Bird JD, Herrington BA, Mann LM, Soriano JE, Thrall SF, Kalker A, Brutsaert TD, O'Halloran KD, Sherpa MT, Day TA. Cardiorespiratory hysteresis during incremental high‐altitude ascent–descent quantifies the magnitude of ventilatory acclimatization. Exp Physiol 2020; 106:139-150. [DOI: 10.1113/ep088488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/13/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Jack K. Leacy
- Department of Biology Faculty of Science and Technology Mount Royal University Calgary Alberta Canada
- Department of Physiology School of Medicine College of Medicine & Health University College Cork Cork Ireland
| | - Andrea M. Linares
- Department of Biology Faculty of Science and Technology Mount Royal University Calgary Alberta Canada
| | - Shaelynn M. Zouboules
- Department of Biology Faculty of Science and Technology Mount Royal University Calgary Alberta Canada
| | - Zahrah H. Rampuri
- Department of Biology Faculty of Science and Technology Mount Royal University Calgary Alberta Canada
| | - Jordan D. Bird
- Department of Biology Faculty of Science and Technology Mount Royal University Calgary Alberta Canada
| | - Brittney A. Herrington
- Department of Biology Faculty of Science and Technology Mount Royal University Calgary Alberta Canada
| | - Leah M. Mann
- Department of Biology Faculty of Science and Technology Mount Royal University Calgary Alberta Canada
| | - Jan E. Soriano
- Department of Biology Faculty of Science and Technology Mount Royal University Calgary Alberta Canada
| | - Scott F. Thrall
- Department of Biology Faculty of Science and Technology Mount Royal University Calgary Alberta Canada
| | - Anne Kalker
- Department of Biology Faculty of Science and Technology Mount Royal University Calgary Alberta Canada
- Radboud University Nijmegen The Netherlands
| | | | - Ken D. O'Halloran
- Department of Physiology School of Medicine College of Medicine & Health University College Cork Cork Ireland
| | | | - Trevor A. Day
- Department of Biology Faculty of Science and Technology Mount Royal University Calgary Alberta Canada
| |
Collapse
|
46
|
Evans AM, Hardie DG. AMPK and the Need to Breathe and Feed: What's the Matter with Oxygen? Int J Mol Sci 2020; 21:ijms21103518. [PMID: 32429235 PMCID: PMC7279029 DOI: 10.3390/ijms21103518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022] Open
Abstract
We live and to do so we must breathe and eat, so are we a combination of what we eat and breathe? Here, we will consider this question, and the role in this respect of the AMP-activated protein kinase (AMPK). Emerging evidence suggests that AMPK facilitates central and peripheral reflexes that coordinate breathing and oxygen supply, and contributes to the central regulation of feeding and food choice. We propose, therefore, that oxygen supply to the body is aligned with not only the quantity we eat, but also nutrient-based diet selection, and that the cell-specific expression pattern of AMPK subunit isoforms is critical to appropriate system alignment in this respect. Currently available information on how oxygen supply may be aligned with feeding and food choice, or vice versa, through our motivation to breathe and select particular nutrients is sparse, fragmented and lacks any integrated understanding. By addressing this, we aim to provide the foundations for a clinical perspective that reveals untapped potential, by highlighting how aberrant cell-specific changes in the expression of AMPK subunit isoforms could give rise, in part, to known associations between metabolic disease, such as obesity and type 2 diabetes, sleep-disordered breathing, pulmonary hypertension and acute respiratory distress syndrome.
Collapse
Affiliation(s)
- A. Mark Evans
- Centre for Discovery Brain Sciences and Cardiovascular Science, Edinburgh Medical School, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
- Correspondence:
| | - D. Grahame Hardie
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK;
| |
Collapse
|
47
|
Malenfant S, Brassard P, Paquette M, Le Blanc O, Chouinard A, Bonnet S, Provencher S. Continuous reduction in cerebral oxygenation during endurance exercise in patients with pulmonary arterial hypertension. Physiol Rep 2020; 8:e14389. [PMID: 32189447 PMCID: PMC7080869 DOI: 10.14814/phy2.14389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/13/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Patients with pulmonary arterial hypertension (PAH) have lower cerebral blood flow (CBF) and oxygenation compared to healthy sedentary subjects, the latter negatively correlating with exercise capacity during incremental cycling exercise. We hypothesized that patients would also exhibit altered CBF and oxygenation during endurance exercise, which would correlate with endurance time. METHODS Resting and exercise cardiorespiratory parameters, blood velocity in the middle cerebral artery (MCAv; transcranial doppler) and cerebral oxygenation (relative changes in cerebral tissue oxygenation index (ΔcTOI) and cerebral deoxyhemoglobin (ΔcHHb); near-infrared spectroscopy) were continuously monitored in nine PAH patients and 10 healthy-matched controls throughout endurance exercise. Cardiac output (CO), systemic blood pressure (BP) and oxygen saturation (SpO2 ), ventilatory metrics and end-tidal CO2 pressure (PET CO2 ) were also assessed noninvasively. RESULTS Despite a lower workload and endurance oxygen consumption, similar CO and systemic BP, ΔcTOI was lower in PAH patients compared to controls (p < .01 for interaction). As expected during exercise, patients were characterized by an altered MCAv response to exercise, a lower PET CO2 and SpO2 , as wells as a higher minute-ventilation/CO2 production ratio ( V ˙ E / V ˙ CO 2 ratio). An uncoupling between changes in MCAv and PET CO2 during the cycling endurance exercise was also progressively apparent in PAH patients, but absent in healthy controls. Both cHHb and ΔcTOI correlated with V ˙ E / V ˙ CO 2 ratio (r = 0.50 and r = -0.52; both p < .05 respectively), but not with endurance time. CONCLUSION PAH patients present an abnormal cerebrovascular profile during endurance exercise with a lower cerebral oxygenation that correlate with hyperventilation but not endurance exercise time. These findings complement the physiological characterization of the cerebral vascular responses to exercise in PAH patients.
Collapse
Affiliation(s)
- Simon Malenfant
- Pulmonary Hypertension and Vascular Biology Research GroupQuebec CityQCCanada
- Quebec Heart and Lung Institute Research CenterUniversité LavalQuebec CityQCCanada
- Department of MedicineFaculty of MedicineUniversité LavalQuebec CityQCCanada
- Department of KinesiologyFaculty of MedicineUniversité LavalQuebec CityQCCanada
| | - Patrice Brassard
- Quebec Heart and Lung Institute Research CenterUniversité LavalQuebec CityQCCanada
- Department of KinesiologyFaculty of MedicineUniversité LavalQuebec CityQCCanada
| | - Myriam Paquette
- Quebec Heart and Lung Institute Research CenterUniversité LavalQuebec CityQCCanada
- Department of KinesiologyFaculty of MedicineUniversité LavalQuebec CityQCCanada
| | - Olivier Le Blanc
- Quebec Heart and Lung Institute Research CenterUniversité LavalQuebec CityQCCanada
- Department of KinesiologyFaculty of MedicineUniversité LavalQuebec CityQCCanada
| | - Audrey Chouinard
- Quebec Heart and Lung Institute Research CenterUniversité LavalQuebec CityQCCanada
- Department of KinesiologyFaculty of MedicineUniversité LavalQuebec CityQCCanada
| | - Sébastien Bonnet
- Pulmonary Hypertension and Vascular Biology Research GroupQuebec CityQCCanada
- Quebec Heart and Lung Institute Research CenterUniversité LavalQuebec CityQCCanada
- Department of MedicineFaculty of MedicineUniversité LavalQuebec CityQCCanada
| | - Steeve Provencher
- Pulmonary Hypertension and Vascular Biology Research GroupQuebec CityQCCanada
- Quebec Heart and Lung Institute Research CenterUniversité LavalQuebec CityQCCanada
- Department of MedicineFaculty of MedicineUniversité LavalQuebec CityQCCanada
| |
Collapse
|
48
|
Dempsey JA, Smith CA. Update on Chemoreception: Influence on Cardiorespiratory Regulation and Pathophysiology. Clin Chest Med 2020; 40:269-283. [PMID: 31078209 DOI: 10.1016/j.ccm.2019.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We examine recent findings that have revealed interdependence of function within the chemoreceptor pathway regulating breathing and sympathetic vasomotor activity and the hypersensitization of these reflexes in chronic disease states. Recommendations are made as to how these states of hyperreflexia in chemoreceptors and muscle afferents might be modified in treating sleep apnea, drug-resistant hypertension, chronic heart failure-induced sympathoexcitation, and the exertional dyspnea of chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Jerome A Dempsey
- Department Population Health Sciences, University of Wisconsin-Madison, 707 WARF Building, 610 N. Walnut Street, WI 53726, USA.
| | - Curtis A Smith
- Department Population Health Sciences, University of Wisconsin-Madison, 707 WARF Building, 610 N. Walnut Street, WI 53726, USA
| |
Collapse
|
49
|
Abstract
The carotid body (CB) is an arterial chemoreceptor organ located in the carotid bifurcation and has a well-recognized role in cardiorespiratory regulation. The CB contains neurosecretory sensory cells (glomus cells), which release transmitters in response to hypoxia, hypercapnia, and acidemia to activate afferent sensory fibers terminating in the respiratory and autonomic brainstem centers. Knowledge of the physiology of the CB has progressed enormously in recent years. Herein we review advances concerning the organization and function of the cellular elements of the CB, with emphasis on the molecular mechanisms of acute oxygen sensing by glomus cells. We introduce the modern view of the CB as a multimodal integrated metabolic sensor and describe the properties of the CB stem cell niche, which support CB growth during acclimatization to chronic hypoxia. Finally, we discuss the increasing medical relevance of CB dysfunction and its potential impact on the mechanisms of disease.
Collapse
Affiliation(s)
- Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla 41013, Spain; , .,Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Sevilla 41009, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sevilla 41013, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla 41013, Spain; , .,Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Sevilla 41009, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sevilla 41013, Spain
| |
Collapse
|
50
|
Duffin J, Hare GM, Fisher JA. A mathematical model of cerebral blood flow control in anaemia and hypoxia. J Physiol 2020; 598:717-730. [DOI: 10.1113/jp279237] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/02/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- James Duffin
- Departments of Anaesthesia and PhysiologyUniversity of Toronto Toronto Ontario Canada
- Thornhill Research Inc. Toronto Ontario Canada
| | - Gregory M.T Hare
- Departments of Anaesthesia and PhysiologyUniversity of Toronto Toronto Ontario Canada
- Department of AnesthesiaKeenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St Michael's HospitalUnity Health Toronto Toronto Ontario Canada
| | - Joseph A. Fisher
- Departments of Anaesthesia and PhysiologyUniversity of Toronto Toronto Ontario Canada
- Thornhill Research Inc. Toronto Ontario Canada
| |
Collapse
|