1
|
Sánchez-Redondo IR, Alejo LB, Revuelta C, de Pablos R, Ibañez M, Pérez-López A, Lucia A, Barranco-Gil D, Valenzuela PL. Intrasession Caffeine Intake and Cycling Performance After Accumulated Work: A Field-Based Study. Int J Sport Nutr Exerc Metab 2025; 35:61-66. [PMID: 39326860 DOI: 10.1123/ijsnem.2024-0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Preexercise caffeine intake has proven to exert ergogenic effects on cycling performance. However, whether these benefits are also observed under fatigue conditions remains largely unexplored. We aimed to assess the effect of caffeine ingested during prolonged cycling on subsequent time-trial performance in trained cyclists. METHODS The study followed a triple-blinded, randomized, placebo-controlled cross-over design. Eleven well-trained junior cyclists (17 ± 1 years) performed a field-based 8-min time trial under "fresh" conditions (i.e., after their usual warm-up) or after two work-matched steady-state cycling sessions (total energy expenditure∼20 kJ/kg and ∼100 min duration). During the latter sessions, participants consumed caffeine (3 mg/kg) or a placebo ∼60 min before the time trial. We assessed power output, heart rate, and rating of perceived exertion during the time trial and mood state (Brunel Mood Scale) before and after each session. RESULTS No significant condition effect was found for the mean power output attained during the time trial (365 ± 25, 369 ± 31, and 364 32 W for "fresh," caffeine, and placebo condition, respectively; p = .669). Similar results were found for the mean heart rate (p = .100) and rating of perceived exertion (p = 1.000) during the time trial and for the different mood domains (all p > .1). CONCLUSIONS Caffeine intake during prolonged exercise seems to exert no ergogenic effects on subsequent time-trial performance in junior cyclists. Future studies should determine whether significant effects can be found with larger caffeine doses or after greater fatigue levels.
Collapse
Affiliation(s)
| | - Lidia B Alejo
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
- Physical Activity and Health Research Group ("PaHerg"), Research Institute of Hospital "12 de Octubre" ("imas12"), Madrid, Spain
| | - Carlos Revuelta
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Raúl de Pablos
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | | | - Alberto Pérez-López
- Facultad de Medicina y Ciencias de la Salud, Departamento de Ciencias Biomédicas, Área de Educación Física y Deportiva, Universidad de Alcalá, Madrid, Spain
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
- Physical Activity and Health Research Group ("PaHerg"), Research Institute of Hospital "12 de Octubre" ("imas12"), Madrid, Spain
| | | | - Pedro L Valenzuela
- Physical Activity and Health Research Group ("PaHerg"), Research Institute of Hospital "12 de Octubre" ("imas12"), Madrid, Spain
- Department of Systems Biology, University of Alcalá, Madrid, Spain
| |
Collapse
|
2
|
Martos-Arregui A, Li Z, Miras-Moreno S, Marcos-Frutos D, Jiménez-Martínez P, Alix-Fages C, Janicijevic D, García-Ramos A. Comparative effects of caffeine, beta-alanine, and their combination on mechanical, physiological, and perceptual responses to upper-body superset resistance training. Eur J Appl Physiol 2024:10.1007/s00421-024-05639-4. [PMID: 39438314 DOI: 10.1007/s00421-024-05639-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Caffeine and beta-alanine are widely used in multi-ingredient pre-workout supplements believed to enhance resistance training, but their specific role in driving this effect remains unclear. The current study employed a randomized, triple-blinded, placebo-controlled and crossover experimental design to explore the acute effects of caffeine (200 mg), beta-alanine (3 g), or their combination (200 mg caffeine and 3 g beta-alanine; C+B-A) administered 30 min prior to resistance training (RT) on mechanical, physiological, and perceptual variables. Twenty-one young resistance-trained males (age = 23.5 ± 4.5 years, body mass = 82.1 ± 10.2 kg) visited the laboratory on six occasions: one familiarization session, one preliminary testing session for load determination, and four experimental sessions which differed only in supplementation condition and involved four supersets of bench press and bench pull exercises. The supplement condition did not significantly affect any mechanical variables (p ≥ 0.335), except for the velocity of the last repetition of the set, where beta-alanine produced lower values (0.383 m/s) compared to placebo (0.407 m/s; p < 0.05), with no differences observed for C+B-A (0.397 m/s) and caffeine (0.392 m/s). Heart rate was consistent across the different supplement conditions with the exception of the higher values observed immediately before the start of the RT session for placebo compared to caffeine (p = 0.010) and C+B-A (p = 0.019). Post-RT blood lactate concentration (p = 0.384), general and local ratings of perceived exertion (p = 0.177 and 0.160, respectively), and readiness (p = 0.281-0.925), did not differ significantly between supplement conditions. Selected supplements have minimal effects on performance and physiological responses in agonist-antagonist upper-body superset RT not leading to failure.
Collapse
Affiliation(s)
- Antonio Martos-Arregui
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Camino de Alfacar, 21, 18071, Granada, Spain
| | - Zhaoqian Li
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Camino de Alfacar, 21, 18071, Granada, Spain
| | - Sergio Miras-Moreno
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Camino de Alfacar, 21, 18071, Granada, Spain
| | - Daniel Marcos-Frutos
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Camino de Alfacar, 21, 18071, Granada, Spain
| | | | | | - Danica Janicijevic
- Faculty of Sports Science, Ningbo University, Ningbo, China
- Department of Radiology, Ningbo No. 2 Hospital, Ningbo, China
- Department of Sports Sciences and Physical Conditioning, Faculty of Education, Universidad Católica de La Santísima Concepción, Concepción, Chile
| | - Amador García-Ramos
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Camino de Alfacar, 21, 18071, Granada, Spain.
- Department of Sports Sciences and Physical Conditioning, Faculty of Education, Universidad Católica de La Santísima Concepción, Concepción, Chile.
| |
Collapse
|
3
|
Valério MV, Schaun GZ, Andrade LS, David GB, Orcy RB, Rombaldi AJ, Alberton CL. Caffeine Supplementation Effects on Concurrent Training Performance in Resistance-Trained Men: A Double-Blind Placebo-Controlled Crossover Study. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2024; 95:546-554. [PMID: 38100570 DOI: 10.1080/02701367.2023.2276401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/22/2023] [Indexed: 12/17/2023]
Abstract
Purpose: The aim of the present study was to investigate the effects of acute caffeine supplementation on the performance during a session of resistance training alone (RT) or in combination with aerobic training (i.e. concurrent training; CT). Method: Fourteen resistance-trained men (23.1 ± 4.2 years) were recruited and performed both RT and CT under three different conditions: control (CONT), placebo (PLA), and caffeine (CAF; 6 mg.kg-1) for a total of six experimental conditions. Results: Both total and per set number of repetitions, and total volume load were lower during CT as compared to RT, irrespective of the supplementation condition (all p < .001), whereas a supplementation main effect was observed for the total number of repetitions (p = .001), the number of repetitions in the first (p = .002) and second sets (p = .001), and total volume load (p = .001). RPE values were higher after the CT sessions than after the RT sessions (p < .001), whereas no differences were observed between supplementation conditions (p = .865). Conclusions: Caffeine supplementation was not sufficient to minimize the acute interference effect on strength performance in a CT session when compared to RT alone. In contrast, caffeine improved strength performance during the first set of both CT and RT, while maintaining a similar RPE between the supplementation conditions. However, the overall effect was small.
Collapse
|
4
|
Lukasiewicz CJ, Vandiver KJ, Albert ED, Kirby BS, Jacobs RA. Assessing exogenous carbohydrate intake needed to optimize human endurance performance across sex: insights from modeling runners pursuing a sub-2-h marathon. J Appl Physiol (1985) 2024; 136:158-176. [PMID: 38059288 DOI: 10.1152/japplphysiol.00521.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023] Open
Abstract
Carbohydrate (CHO) availability sustains high metabolic demands during prolonged exercise. The adequacy of current CHO intake recommendations, 30-90 g·h-1 dependent on CHO mixture and tolerability, to support elite marathon performance is unclear. We sought to scrutinize the current upper limit recommendation for exogenous CHO intake to support modeled sub-2-h marathon (S2M) attempts across elite male and female runners. Male and female runners (n = 120 each) were modeled from published literature with reference characteristics necessary to complete a S2M (e.g., body mass and running economy). Completion of a S2M was considered across a range of respiratory exchange rates, with maximal starting skeletal muscle and liver glycogen content predicted for elite male and female runners. Modeled exogenous CHO bioavailability needed for male and female runners were 93 ± 26 and 108 ± 22 g·h-1, respectively (P < 0.0001, d = 0.61). Without exogenous CHO, males were modeled to deplete glycogen in 84 ± 7 min, females in 71 ± 5 min (P < 0.0001, d = 2.21) despite higher estimated CHO oxidation rates in males (5.1 ± 0.5 g·h-1) than females (4.4 ± 0.5 g·h-1; P < 0.0001, d = 1.47). Exogenous CHO intakes ≤ 90 g·h-1 are insufficient for 65% of modeled runners attempting a S2M. Current recommendations to support marathon performance appear inadequate for elite marathon runners but may be more suitable for male runners in pursuit of a S2M (56 of 120) than female runners (28 of 120).NEW & NOTEWORTHY This study scrutinizes the upper limit of exogenous carbohydrate (CHO) recommendations for elite male and female marathoners by modeling sex-specific needs across an extreme metabolic challenge lasting ∼2 h, a sub-2-h marathon. Contemporary nutritional guidelines to optimize marathon performance appear inadequate for most elite marathon runners but appear more appropriate for males over their female counterparts. Future research examining possible benefits of exogenous CHO intakes > 90 g·h-1 should prioritize female athlete study inclusion.
Collapse
Affiliation(s)
- Cole J Lukasiewicz
- Department of Human Physiology & Nutrition, College of Nursing and Health Sciences, University of Colorado Colorado Springs (UCCS), Colorado Springs, Colorado, United States
- William J. Hybl Sports Medicine and Performance Center, Colorado Springs, Colorado, United States
| | - Kayla J Vandiver
- Department of Human Physiology & Nutrition, College of Nursing and Health Sciences, University of Colorado Colorado Springs (UCCS), Colorado Springs, Colorado, United States
- William J. Hybl Sports Medicine and Performance Center, Colorado Springs, Colorado, United States
| | - Elizabeth D Albert
- Department of Human Physiology & Nutrition, College of Nursing and Health Sciences, University of Colorado Colorado Springs (UCCS), Colorado Springs, Colorado, United States
- William J. Hybl Sports Medicine and Performance Center, Colorado Springs, Colorado, United States
| | - Brett S Kirby
- Nike Sport Research Lab, Nike, Inc., Beaverton, Oregon, United States
| | - Robert A Jacobs
- Department of Human Physiology & Nutrition, College of Nursing and Health Sciences, University of Colorado Colorado Springs (UCCS), Colorado Springs, Colorado, United States
- William J. Hybl Sports Medicine and Performance Center, Colorado Springs, Colorado, United States
| |
Collapse
|
5
|
Taheri Karami G, Hemmatinafar M, Koushkie Jahromi M, Nemati J, Niknam A. Repeated mouth rinsing of coffee improves the specific-endurance performance and jump performance of young male futsal players. J Int Soc Sports Nutr 2023; 20:2214108. [PMID: 37190757 DOI: 10.1080/15502783.2023.2214108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Mouth-rinsing with ergogenic solutions such as carbohydrate and caffeinated drinks has been considered among athletes as a practical nutritional strategy. Therefore, this study aimed to determine the effect of repeated coffee mouth-rinsing (CMR) doses on specific performances of futsal players. METHOD Twenty-four male futsal players randomly participated in this randomized, double-blind, and crossover design study. During the intervention, participants were randomly placed in four different conditions including 1. low-dose CMR (LDC, n = 6, ~60 mg caffeine); 2. high-dose CMR (HDC, n = 6, ~125 mg caffeine); 3. decaffeinated CMR (PLA, n = 6, ~10 mg caffeine); and 4. no CMR (CON, n = 6). Vertical jump height was measured at baseline, baseline after CMR (baseline-CMR), immediately after the intermittent futsal endurance test (FIET) (IA-FIET), 5 min after the FIET (5"A-FIET) and 10 min after the FIET (10"A-FIET). Perceived fatigue was also measured by visual analogue scale (VAS) at baseline, IA-FIET, 5"A-FIET, and 10"A-FIET. CMR was also performed at baseline, during FIET (Repeated between levels), and 10'A-FIET. The collected data were analyzed (with SPSS software) by one- and two-way repeated measure ANOVA and Bonferroni post hoc test at P < 0.05 level. RESULTS The findings of the present study illustrated that the perceived fatigue in IA-FIET increased significantly compared to the baseline which was accompanied by a significant decrease in 5"A-FIET and 10"A-FIET compared to IA-FIET (P < 0.05), and no significant difference was observed between conditions in the baseline, IA-FIET, 5"A-FIET, and 10"A-FIET (P > 0.05). However, HDC and LDC rose significantly the distance covered in FIET compared to CON and PLA (P < 0.05). In addition, HDC increased the FIET performance more than LDC (P < 0.05). Although there was no difference between any of the conditions at baseline (P > 0.05), baseline-CMR increased significantly the vertical jump height (P < 0.05). At IA-FIET, vertical jump height decreased to baseline levels in CMR conditions but increased in 5"A-FIET, which remained constant until 10"A-FIET (P < 0.05). In addition, vertical jump height in HDC and LDC conditions was significantly higher than CON in IA-FIET, 5"A-FIET, and 10"A-FIET. CONCLUSION This study showed that repeated CMR with low and high doses is a useful strategy to improve specific futsal performance. However, higher dose CMR appears to have more profound effects on performance improvement than lower doses.
Collapse
Affiliation(s)
- Ghasem Taheri Karami
- Department of Sport Science, Faculty of Education and Psychology, Shiraz University, Shiraz, Iran
| | - Mohammad Hemmatinafar
- Department of Sport Science, Faculty of Education and Psychology, Shiraz University, Shiraz, Iran
| | - Maryam Koushkie Jahromi
- Department of Sport Science, Faculty of Education and Psychology, Shiraz University, Shiraz, Iran
| | | | - Alireza Niknam
- Department of Sport Science, Faculty of Education and Psychology, Shiraz University, Shiraz, Iran
| |
Collapse
|
6
|
Caetano M, Souza M, Loureiro L, Capistrano Junior V. The effects of acute caffeine supplementation on performance in trained CrossFit® athletes: A randomized, double-blind, placebo-controlled, and crossover trial. Sci Sports 2023. [DOI: 10.1016/j.scispo.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
7
|
Kreutzer A, Graybeal AJ, Moss K, Braun-Trocchio R, Shah M. Caffeine Supplementation Strategies Among Endurance Athletes. Front Sports Act Living 2022; 4:821750. [PMID: 35463835 PMCID: PMC9030507 DOI: 10.3389/fspor.2022.821750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/18/2022] [Indexed: 11/21/2022] Open
Abstract
Caffeine is widely accepted as an endurance-performance enhancing supplement. Most scientific research studies use doses of 3–6 mg/kg of caffeine 60 min prior to exercise based on pharmacokinetics. It is not well understood whether endurance athletes employ similar supplementation strategies in practice. The purpose of this study was to investigate caffeine supplementation protocols among endurance athletes. A survey conducted on Qualtrics returned responses regarding caffeine supplementation from 254 endurance athletes (f = 134, m =120; age = 39.4 ± 13.9 y; pro = 11, current collegiate athlete = 37, recreational = 206; running = 98, triathlon = 83, cycling = 54, other = 19; training days per week = 5.4 ± 1.3). Most participants reported habitual caffeine consumption (85.0%; 41.2% multiple times daily). However, only 24.0% used caffeine supplements. A greater proportion of men (31.7%) used caffeine supplements compared with women (17.2%; p = 0.007). Caffeine use was also more prevalent among professional (45.5%) and recreational athletes (25.1%) than in collegiate athletes (9.4%). Type of sport (p = 0.641), household income (p = 0.263), education (p = 0.570) or working with a coach (p = 0.612) did not have an impact on caffeine supplementation prevalence. Of those reporting specific timing of caffeine supplementation, 49.1% and 34.9% reported consuming caffeine within 30 min of training and races respectively; 38.6 and 36.5% used caffeine 30–60 min before training and races. Recreational athletes reported consuming smaller amounts of caffeine before training (1.6 ± 1.0 mg/kg) and races (2.0 ± 1.2 mg/kg) compared with collegiate (TRG: 2.1 ± 1.2 mg/kg; RACE: 3.6 ± 0.2 mg/kg) and professional (TRG: 2.4 ± 1.1 mg/kg; RACE: 3.5 ± 0.6 mg/kg) athletes. Overall, participants reported minor to moderate perceived effectiveness of caffeine supplementation (2.31 ± 0.9 on a four-point Likert-type scale) with greatest effectiveness during longer sessions (2.8 ± 1.1). It appears that recreational athletes use lower caffeine amounts than what has been established as ergogenic in laboratory protocols; further, they consume caffeine closer to exercise compared with typical research protocols. Thus, better education of recreational athletes and additional research into alternative supplementation strategies are warranted.
Collapse
Affiliation(s)
- Andreas Kreutzer
- Department of Kinesiology, Texas Christian University, Fort Worth, TX, United States
- *Correspondence: Andreas Kreutzer
| | - Austin J. Graybeal
- Department of Kinesiology, Texas Christian University, Fort Worth, TX, United States
- School of Kinesiology and Nutrition, College of Education and Human Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Kamiah Moss
- Department of Kinesiology, Texas Christian University, Fort Worth, TX, United States
| | - Robyn Braun-Trocchio
- Department of Kinesiology, Texas Christian University, Fort Worth, TX, United States
| | - Meena Shah
- Department of Kinesiology, Texas Christian University, Fort Worth, TX, United States
- Meena Shah
| |
Collapse
|
8
|
Effect of Acetaminophen on Endurance Cycling Performance in Trained Triathletes in Hot and Humid Conditions. Int J Sports Physiol Perform 2022; 17:917-925. [PMID: 35240576 DOI: 10.1123/ijspp.2021-0475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE The effect of acetaminophen (ACT, also known as paracetamol) on endurance performance in hot and humid conditions has been shown previously in recreationally active populations. The aim of this study was to determine the effect of ACT on physiological and perceptual variables during steady-state and time-trial cycling performance of trained triathletes in hot and humid conditions. METHODS In a randomized, double-blind crossover design, 11 triathletes completed ∼60 minutes steady-state cycling at 63% peak power output followed by a time trial (7 kJ·kg body mass-1, ∼30 min) in hot and humid conditions (∼30°C, ∼69% relative humidity) 60 minutes after consuming either 20 mg·kg body mass-1 ACT or a color-matched placebo. Time-trial completion time, gastrointestinal temperature, skin temperature, thermal sensation, thermal comfort, rating of perceived exertion, and fluid balance were recorded throughout each session. RESULTS There was no difference in performance in the ACT trial compared with placebo (P = .086, d = 0.57), nor were there differences in gastrointestinal and skin temperature, thermal sensation and comfort, or fluid balance between trials. CONCLUSION In conclusion, there was no effect of ACT (20 mg·kg body mass-1) ingestion on physiology, perception, and performance of trained triathletes in hot and humid conditions, and existing precooling and percooling strategies appear to be more appropriate for endurance cycling performance in the heat.
Collapse
|
9
|
Burke LM. Nutritional approaches to counter performance constraints in high-level sports competition. Exp Physiol 2021; 106:2304-2323. [PMID: 34762329 PMCID: PMC9299184 DOI: 10.1113/ep088188] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022]
Abstract
New Findings What is the topic of this review? The nutritional strategies that athletes use during competition events to optimize performance and the reasons they use them. What advances does it highlight? A range of nutritional strategies can be used by competitive athletes, alone or in combination, to address various event‐specific factors that constrain event performance. Evidence for such practices is constantly evolving but must be combined with understanding of the complexities of real‐life sport for optimal implementation.
Abstract High‐performance athletes share a common goal despite the unique nature of their sport: to pace or manage their performance to achieve the highest sustainable outputs over the duration of the event. Periodic or sustained decline in the optimal performance of event tasks, involves an interplay between central and peripheral phenomena that can often be reduced or delayed in onset by nutritional strategies. Contemporary nutrition practices undertaken before, during or between events include strategies to ensure the availability of limited muscle fuel stores. This includes creatine supplementation to increase muscle phosphocreatine content and consideration of the type, amount and timing of dietary carbohydrate intake to optimize muscle and liver glycogen stores or to provide additional exogenous substrate. Although there is interest in ketogenic low‐carbohydrate high‐fat diets and exogenous ketone supplements to provide alternative fuels to spare muscle carbohydrate use, present evidence suggests a limited utility of these strategies. Mouth sensing of a range of food tastants (e.g., carbohydrate, quinine, menthol, caffeine, fluid, acetic acid) may provide a central nervous system derived boost to sports performance. Finally, despite decades of research on hypohydration and exercise capacity, there is still contention around their effect on sports performance and the best guidance around hydration for sporting events. A unifying model proposes that some scenarios require personalized fluid plans while others might be managed by an ad hoc approach (ad libitum or thirst‐driven drinking) to fluid intake.
Collapse
Affiliation(s)
- Louise M Burke
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| |
Collapse
|
10
|
Fowles JR, O'Brien MW, Comeau KG, Thurston B, Petrie HJ. Flattened cola improves high-intensity interval performance in competitive cyclists. Eur J Appl Physiol 2021; 121:2859-2867. [PMID: 34189603 DOI: 10.1007/s00421-021-04745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 06/09/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE Some cyclists consume flattened cola during competitive events, but limited research has investigated if cola beverages elicit ergogenic effects, particularly on high-intensity exercise performance. Whether the potentially beneficial effects of cola are due to the caffeine and/or the carbohydrate content is also unclear. This study assessed the ergogenic effects of different cola beverages on performance during a constant power bout (CPB) and subsequent high-intensity interval efforts in competitive cyclists. METHODS In a randomized, double-blind, cross-over design, competitive cyclists (n = 13; [Formula: see text]O2max 65.7 ± 5.9 ml kg-1 min-1) completed a 45-min CPB at 69% of maximum workload (Wmax), followed by four maximal 1-min high-intensity intervals (HII) against a resistance of 0.5 N kg-1. Participants consumed 16 ml kg-1 total (intermittantly at four time points) of flattened decaffinated diet cola (PLA), caffeinated diet cola (CAF) or cola containing caffeine and carbohydrates (CAF + CHO). RESULTS During the CPB, ratings of perceived exertion were lower in the CAF + CHO and CAF conditions compared to PLA (both, P < 0.04). Compared to PLA, CAF + CHO and CAF similarly increased (all, P < 0.049) mean power (CAF + CHO: 448 ± 51 W; CAF: 448 ± 50 W; PLA: 434 ± 57 W), minimum power (CAF + CHO: 353 ± 45 W; CAF: 352 ± 51 W; PLA: 324 ± 49 W) and total work (CAF + CHO: 26.9 ± 3.1 kJ; CAF: 26.9 ± 3.0 kJ; PLA: 26.0 ± 3.4 kJ), but not peak power (CAF + CHO: 692 ± 117 W; CAF: 674 ± 114 W; PLA: 670 ± 113 W; all, P > 0.57) during the HII. CONCLUSION Cola containing caffeine with or without carbohydrates favorably influenced perceived effort during the CPB and enhanced mean and minimum power during repeated maximal intervals. We provide evidence supporting the consumption of commercially available cola for high-intensity cycling in competitive cyclists.
Collapse
Affiliation(s)
- Jonathon R Fowles
- School of Kinesiology, Acadia University, 550 Main Street, Wolfville, NS, B4P 2R6, Canada.
| | - Myles W O'Brien
- School of Kinesiology, Acadia University, 550 Main Street, Wolfville, NS, B4P 2R6, Canada
- Division of Kinesiology, Dalhousie University, Halifax, NS, Canada
| | - Kathryn G Comeau
- School of Kinesiology, Acadia University, 550 Main Street, Wolfville, NS, B4P 2R6, Canada
- School of Nutrition and Dietetics, Acadia University, Wolfville, NS, Canada
- Dietitians of Canada, Toronto, Canada
| | - Bretton Thurston
- School of Kinesiology, Acadia University, 550 Main Street, Wolfville, NS, B4P 2R6, Canada
| | - Heather J Petrie
- School of Nutrition and Dietetics, Acadia University, Wolfville, NS, Canada
- Dietitians of Canada, Toronto, Canada
| |
Collapse
|
11
|
Dittrich N, Serpa MC, Lemos EC, De Lucas RD, Guglielmo LGA. Effects of Caffeine Chewing Gum on Exercise Tolerance and Neuromuscular Responses in Well-Trained Runners. J Strength Cond Res 2021; 35:1671-1676. [PMID: 30789581 DOI: 10.1519/jsc.0000000000002966] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Dittrich, N, Serpa, MC, Lemos, EC, De Lucas, RD, and Guglielmo, LGA. Effects of caffeine chewing gum on exercise tolerance and neuromuscular responses in well-trained runners. J Strength Cond Res 35(6): 1671-1676, 2021-This study aimed to investigate the effects of caffeinated chewing gum on endurance exercise, neuromuscular properties, and rate of perceived exertion on exercise tolerance. Twelve trained male runners (31.3 ± 6.4 years; 70.5 ± 6.6 kg; 175.2 ± 6.2 cm; 9.4 ± 2.7% body fat; and V̇o2max = 62.0 ± 4.2 ml·kg-1·min-1) took part of the study. The athletes performed an intermittent treadmill test to determine maximal aerobic speed and delta 50% (Δ50%) intensity. In the following visits, they performed 2 randomized time to exhaustion tests (15.4 ± 0.7 km·h-1) after the ingestion of 300 mg of caffeine in a double-blind, crossover, randomized design. Maximal voluntary contraction of the knee extensor associated to surface electromyographic recording and the twitch interpolation technique were assessed before and immediately after the tests to quantify neuromuscular fatigue of the knee extensor muscles. Caffeine significantly improved exercise tolerance by 18% (p < 0.01). Neuromuscular responses decreased similarly after time to exhaustion in both exercise conditions; however, athletes were able to run a longer distance in the caffeine condition. The performance improvement induced by caffeine seems to have a neuromuscular contribution because athletes were able to run a longer distance with the same neuromuscular impairment.
Collapse
Affiliation(s)
- Naiandra Dittrich
- Sports Center, Federal University of Santa Catarina, Physical Effort Laboratory, Florianópolis, Brazil
| | | | | | | | | |
Collapse
|
12
|
Merino Fernández M, Ruiz-Moreno C, Giráldez-Costas V, Gonzalez-Millán C, Matos-Duarte M, Gutiérrez-Hellín J, González-García J. Caffeine Doses of 3 mg/kg Increase Unilateral and Bilateral Vertical Jump Outcomes in Elite Traditional Jiu-Jitsu Athletes. Nutrients 2021; 13:nu13051705. [PMID: 34069892 PMCID: PMC8157547 DOI: 10.3390/nu13051705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 01/11/2023] Open
Abstract
Caffeine increases vertical jump, although its effects on kinetics and kinematics during different phases of bilateral and unilateral jumps remain unclear. The aim of this study was to identify the effects of 3 mg/kg on kinetic, kinematic and temporal variables in the concentric and eccentric phases of bilateral and unilateral countermovement jumps. A total of 16 Spanish national team traditional Jiu-Jitsu athletes took part in two experimental trials (3 mg/kg caffeine or placebo) in a randomized, double-blind crossover study. Sixty minutes after ingestion, bilateral and unilateral jumps were performed on a force platform. Compared to the placebo, caffeine increased bilateral jump height (p = 0.008; Δ% = 4.40), flight time (p = 0.008; Δ% = 2.20), flight time:contraction time (p = 0.029; Δ% = 8.90), concentric impulse (p = 0.018; Δ% = 1.80), peak power (p = 0.049; Δ% = 2.50), RSI-modified (p = 0.011; Δ% = 11.50) and eccentric mean braking force (p = 0.045; Δ% = 4.00). Additionally, caffeine increased unilateral RSI-mod in both legs (Left: p = 0.034; Δ% = 7.65; Right: p = 0.004; Δ% = 11.83), left leg flight time (p = 0.044; Δ% = 1.91), left leg jump height (p = 0.039; Δ% = 3.75) and right leg FT:CT (p = 0.040; Δ% = 9.72). Caffeine in a dose of 3 mg/kg BM in elite Jiu-Jitsu athletes is a recommended ergogenic aid as it increased performance of bilateral and unilateral vertical jumps. These increases were also accompanied by modified jump execution during the different phases of the countermovement prior to take-off.
Collapse
Affiliation(s)
- María Merino Fernández
- Exercise and Sport Sciences, Health Sciences Faculty, Francisco de Vitoria University, UFV, Bulding E, Ctra, M-515 Pozuelo-Majadahonda Km 1800, 28223 Madrid, Spain; (M.M.F.); (M.M.-D.); (J.G.-H.)
| | - Carlos Ruiz-Moreno
- Education and Health Faculty, Camilo José Cela University, 28692 Madrid, Spain; (C.R.-M.); (V.G.-C.); (C.G.-M.)
| | - Verónica Giráldez-Costas
- Education and Health Faculty, Camilo José Cela University, 28692 Madrid, Spain; (C.R.-M.); (V.G.-C.); (C.G.-M.)
| | - Cristina Gonzalez-Millán
- Education and Health Faculty, Camilo José Cela University, 28692 Madrid, Spain; (C.R.-M.); (V.G.-C.); (C.G.-M.)
| | - Michelle Matos-Duarte
- Exercise and Sport Sciences, Health Sciences Faculty, Francisco de Vitoria University, UFV, Bulding E, Ctra, M-515 Pozuelo-Majadahonda Km 1800, 28223 Madrid, Spain; (M.M.F.); (M.M.-D.); (J.G.-H.)
| | - Jorge Gutiérrez-Hellín
- Exercise and Sport Sciences, Health Sciences Faculty, Francisco de Vitoria University, UFV, Bulding E, Ctra, M-515 Pozuelo-Majadahonda Km 1800, 28223 Madrid, Spain; (M.M.F.); (M.M.-D.); (J.G.-H.)
| | - Jaime González-García
- Education and Health Faculty, Camilo José Cela University, 28692 Madrid, Spain; (C.R.-M.); (V.G.-C.); (C.G.-M.)
- Correspondence: ; Tel.: +34-699-686-379
| |
Collapse
|
13
|
Killian LA, Muir JG, Barrett JS, Burd NA, Lee SY. High Fermentable Oligosaccharides, Disaccharides, Monosaccharides, and Polyols (FODMAP) Consumption Among Endurance Athletes and Relationship to Gastrointestinal Symptoms. Front Nutr 2021; 8:637160. [PMID: 33959628 PMCID: PMC8095397 DOI: 10.3389/fnut.2021.637160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
Endurance athletes commonly experience lower gastrointestinal (GI) symptoms similar to those of irritable bowel syndrome (IBS). Previous research on the restriction of fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAP), a diet-based mitigation strategy initially developed for IBS, has shown promise for application in athlete populations. Athlete's dietary strategies surrounding exercise have not been formally assessed in relation to FODMAP content of foods or sports nutrition products. Additionally, the FODMAP content of athlete's habitual diets has not been examined in larger sample sizes. This research aims to investigate the FODMAP content of endurance athlete diets by examining these three areas, in conjunction with GI symptoms. Dietary habits surrounding exercise and GI symptoms were examined in 430 endurance athletes using a previously validated Endurance Athlete Questionnaire. A subset of athletes (n = 73) completed a FODMAP-specific food frequency questionnaire for habitual intake. The most commonly reported sports nutrition products were analyzed for FODMAP content using standardized analytical methods. Mean habitual intakes were compared to previous FODMAP studies and medians were compared between those with and without lower GI symptoms. Athletes commonly consumed high FODMAP foods during pre-race dinners and breakfasts, with over 60% reporting specific high FODMAP foods. More frequent nutrition product use, particularly solid, gel/gummy, and homemade products, was often related to increased frequency of GI symptoms. Of the sixteen commonly used sports nutrition products tested, seven were high FODMAP in one serving. All but one of the remaining products became high FODMAP when consumed in multiple servings, as is likely the case during endurance exercise. Average habitual FODMAP intake was 26.1 g (±15.9 g), similar to intakes classified as high FODMAP in previous research on FODMAPs and IBS or GI symptoms. Only 15.1% of athletes consumed a diet that would be considered low in FODMAP. Exploratory analyses showed higher intake of some FODMAP types among athletes exhibiting various lower GI symptoms. Overall, this study demonstrated that FODMAP intake by endurance athletes is high both surrounding exercise and habitually, and may be contributing to GI symptoms experienced during exercise. This information can be utilized when analyzing athlete diets and selecting foods to decrease GI symptoms.
Collapse
Affiliation(s)
- Lauren A Killian
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Jane G Muir
- Department of Gastroenterology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Jacqueline S Barrett
- Department of Gastroenterology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Nicholas A Burd
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Soo-Yeun Lee
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
14
|
Domaszewski P, Pakosz P, Konieczny M, Bączkowicz D, Sadowska-Krępa E. Caffeine-Induced Effects on Human Skeletal Muscle Contraction Time and Maximal Displacement Measured by Tensiomyography. Nutrients 2021; 13:nu13030815. [PMID: 33801251 PMCID: PMC8001539 DOI: 10.3390/nu13030815] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 01/09/2023] Open
Abstract
Studies on muscle activation time in sport after caffeine supplementation confirmed the effectiveness of caffeine. The novel approach was to determine whether a dose of 9 mg/kg/ body mass (b.m.) of caffeine affects the changes of contraction time and the displacement of electrically stimulated muscle (gastrocnemius medialis) in professional athletes who regularly consume products rich in caffeine and do not comply with the caffeine discontinuation period requirements. The study included 40 professional male handball players (age = 23.13 ± 3.51, b.m. = 93.51 ± 15.70 kg, height 191 ± 7.72, BMI = 25.89 ± 3.10). The analysis showed that in the experimental group the values of examined parameters were significantly reduced (p ≤ 0.001) (contraction time: before = 20.60 ± 2.58 ms/ after = 18.43 ± 3.05 ms; maximal displacement: before = 2.32 ± 0.80 mm/after = 1.69 ± 0.51 mm). No significant changes were found in the placebo group. The main achievement of this research was to demonstrate that caffeine at a dose of 9 mg/kg in professional athletes who regularly consume products rich in caffeine has a direct positive effect on the mechanical activity of skeletal muscle stimulated by an electric pulse.
Collapse
Affiliation(s)
- Przemysław Domaszewski
- Faculty of Physical Education and Physiotherapy, Opole University of Technology, 45-758 Opole, Poland; (M.K.); (D.B.)
- Correspondence: (P.D.); (P.P.); Tel.: +48-774498330 (P.D.); +48-774498321 (P.P.)
| | - Paweł Pakosz
- Faculty of Physical Education and Physiotherapy, Opole University of Technology, 45-758 Opole, Poland; (M.K.); (D.B.)
- Correspondence: (P.D.); (P.P.); Tel.: +48-774498330 (P.D.); +48-774498321 (P.P.)
| | - Mariusz Konieczny
- Faculty of Physical Education and Physiotherapy, Opole University of Technology, 45-758 Opole, Poland; (M.K.); (D.B.)
| | - Dawid Bączkowicz
- Faculty of Physical Education and Physiotherapy, Opole University of Technology, 45-758 Opole, Poland; (M.K.); (D.B.)
| | - Ewa Sadowska-Krępa
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland;
| |
Collapse
|
15
|
Guest NS, VanDusseldorp TA, Nelson MT, Grgic J, Schoenfeld BJ, Jenkins NDM, Arent SM, Antonio J, Stout JR, Trexler ET, Smith-Ryan AE, Goldstein ER, Kalman DS, Campbell BI. International society of sports nutrition position stand: caffeine and exercise performance. J Int Soc Sports Nutr 2021; 18:1. [PMID: 33388079 PMCID: PMC7777221 DOI: 10.1186/s12970-020-00383-4] [Citation(s) in RCA: 245] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 10/31/2020] [Indexed: 12/13/2022] Open
Abstract
Following critical evaluation of the available literature to date, The International Society of Sports Nutrition (ISSN) position regarding caffeine intake is as follows: 1. Supplementation with caffeine has been shown to acutely enhance various aspects of exercise performance in many but not all studies. Small to moderate benefits of caffeine use include, but are not limited to: muscular endurance, movement velocity and muscular strength, sprinting, jumping, and throwing performance, as well as a wide range of aerobic and anaerobic sport-specific actions. 2. Aerobic endurance appears to be the form of exercise with the most consistent moderate-to-large benefits from caffeine use, although the magnitude of its effects differs between individuals. 3. Caffeine has consistently been shown to improve exercise performance when consumed in doses of 3-6 mg/kg body mass. Minimal effective doses of caffeine currently remain unclear but they may be as low as 2 mg/kg body mass. Very high doses of caffeine (e.g. 9 mg/kg) are associated with a high incidence of side-effects and do not seem to be required to elicit an ergogenic effect. 4. The most commonly used timing of caffeine supplementation is 60 min pre-exercise. Optimal timing of caffeine ingestion likely depends on the source of caffeine. For example, as compared to caffeine capsules, caffeine chewing gums may require a shorter waiting time from consumption to the start of the exercise session. 5. Caffeine appears to improve physical performance in both trained and untrained individuals. 6. Inter-individual differences in sport and exercise performance as well as adverse effects on sleep or feelings of anxiety following caffeine ingestion may be attributed to genetic variation associated with caffeine metabolism, and physical and psychological response. Other factors such as habitual caffeine intake also may play a role in between-individual response variation. 7. Caffeine has been shown to be ergogenic for cognitive function, including attention and vigilance, in most individuals. 8. Caffeine may improve cognitive and physical performance in some individuals under conditions of sleep deprivation. 9. The use of caffeine in conjunction with endurance exercise in the heat and at altitude is well supported when dosages range from 3 to 6 mg/kg and 4-6 mg/kg, respectively. 10. Alternative sources of caffeine such as caffeinated chewing gum, mouth rinses, energy gels and chews have been shown to improve performance, primarily in aerobic exercise. 11. Energy drinks and pre-workout supplements containing caffeine have been demonstrated to enhance both anaerobic and aerobic performance.
Collapse
Affiliation(s)
- Nanci S Guest
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, 1 King's College Circle, Room 5326A, Toronto, ON, M5S 1A8, Canada.
| | - Trisha A VanDusseldorp
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, 30144, USA
| | | | - Jozo Grgic
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Australia
| | - Brad J Schoenfeld
- Department of Health Sciences, CUNY Lehman College, Bronx, NY, 10468, USA
| | - Nathaniel D M Jenkins
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA, 52240, USA
| | - Shawn M Arent
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Colombia, SC, 29208, USA
- School of Social and Health Sciences, Leeds Trinity University, Leeds, UK
| | - Jose Antonio
- Exercise and Sport Science, Nova Southeastern University, Davie, FL, 33314, USA
| | - Jeffrey R Stout
- Institue of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL, 32816, USA
| | | | - Abbie E Smith-Ryan
- Department of Exercise and Sport Science, Applied Physiology Laboratory, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Erica R Goldstein
- Institue of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL, 32816, USA
| | - Douglas S Kalman
- Nutrion Department, College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314, USA
- Scientific Affairs. Nutrasource, Guelph, ON, Canada
| | - Bill I Campbell
- Performance & Physique Enhancement Laboratory, University of South Florida, Tampa, FL, 33612, USA
| |
Collapse
|
16
|
Martins GL, Guilherme JPLF, Ferreira LHB, de Souza-Junior TP, Lancha AH. Caffeine and Exercise Performance: Possible Directions for Definitive Findings. Front Sports Act Living 2020; 2:574854. [PMID: 33345139 PMCID: PMC7739593 DOI: 10.3389/fspor.2020.574854] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/17/2020] [Indexed: 01/01/2023] Open
Abstract
Caffeine is one of the most studied supplements in the world. Studies correlate its use to increased exercise performance in endurance activities, as well as its possible ergogenic effects for both intermittent and strength activities. Recent findings show that caffeine may increase or decrease exercise performance. These antagonist responses may occur even when using the same dosage and for individuals with the same characteristics, making it challenging to explain caffeine's impact and applicability. This review article provides an analytic look at studies involving the use of caffeine for human physical performance, and addresses factors that could influence the ergogenic effects of caffeine on different proposed activities. These factors subdivide into caffeine effects, daily habits, physiological factors, and genetic factors. Each variable has been focused on by discussions to research related to caffeine. A better understanding and control of these variables should be considered in future research into personalized nutritional strategies.
Collapse
Affiliation(s)
- Gabriel Loureiro Martins
- Laboratory of Applied Nutrition and Metabolism, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | | | - Luis Henrique Boiko Ferreira
- Research Group on Metabolism, Nutrition and Strength Training, Department of Physical Education, Federal University of Parana, Curitiba, Brazil
| | - Tácito Pessoa de Souza-Junior
- Research Group on Metabolism, Nutrition and Strength Training, Department of Physical Education, Federal University of Parana, Curitiba, Brazil
| | - Antonio Herbert Lancha
- Laboratory of Applied Nutrition and Metabolism, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
Aditya Rifqi M, Setyaningtyas SW, Rachmah Q. White tea drink (Camellia sinensis) improves endurance and body weight maintenance of rats. JOURNAL OF HEALTH RESEARCH 2020. [DOI: 10.1108/jhr-01-2020-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
PurposeWhite tea is an unfermented tea made from young shoots of Camellia sinensis protected from sunlight to avoid polyphenol degradation. White tea contains a high level of polyphenolic compounds known as catechins. Several types of evidence have suggested that tea consumption has benefits in body weight and endurance maintenance. This study was designed to evaluate the effect of white tea on body weight and endurance of animal models.Design/methodology/approachThis research was an intervention design using 20 Wistar white rats (Rattus Norvegicus) in body weight between 150 and 200 g. The rats were randomized into four groups, three groups receiving white tea drink (WTD) with different doses and the other group receiving plain water in equal volume as a control group for four weeks. The forced swim test (FST) was done to measure their struggling capacity, and digital bodyweight to measure the weight.FindingsIntervention (WTD Groups and Control) caused weight gain among except G3 with the highest doses of white tea. The result showed that WTD intake in G3 had a significant difference (p < 0.05) on body weight gain compared to control. The authors found that WTD in a specific dose (G3: 0.22 mg) tends to maintain the body weight of animals (219.2 ± 41.96; 212.6 ± 46.90, respectively), while other doses caused weight gain. WTD also significantly increased the swimming and struggling capacity of rats that represented improvements the endurance along with the test. There was a statistically significant difference in endurance among all groups (p < 0.05).Research limitations/implicationsThe results of this study can be followed as human intervention research as an input for nutritionists and sports scientists to explore the beneficial effect of white tea.Practical implicationsThe results of this study can be followed as human intervention research as an input for nutritionists and sports scientists to explore the beneficial effect of white tea.Originality/valueThis study adds more evidence and information about the advantages of white tea as potential beverages in future healthy lifestyles.
Collapse
|
18
|
Baur DA, Saunders MJ. Carbohydrate supplementation: a critical review of recent innovations. Eur J Appl Physiol 2020; 121:23-66. [PMID: 33106933 DOI: 10.1007/s00421-020-04534-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/12/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE To critically examine the research on novel supplements and strategies designed to enhance carbohydrate delivery and/or availability. METHODS Narrative review. RESULTS Available data would suggest that there are varying levels of effectiveness based on the supplement/supplementation strategy in question and mechanism of action. Novel carbohydrate supplements including multiple transportable carbohydrate (MTC), modified carbohydrate (MC), and hydrogels (HGEL) have been generally effective at modifying gastric emptying and/or intestinal absorption. Moreover, these effects often correlate with altered fuel utilization patterns and/or glycogen storage. Nevertheless, performance effects differ widely based on supplement and study design. MTC consistently enhances performance, but the magnitude of the effect is yet to be fully elucidated. MC and HGEL seem unlikely to be beneficial when compared to supplementation strategies that align with current sport nutrition recommendations. Combining carbohydrate with other ergogenic substances may, in some cases, result in additive or synergistic effects on metabolism and/or performance; however, data are often lacking and results vary based on the quantity, timing, and inter-individual responses to different treatments. Altering dietary carbohydrate intake likely influences absorption, oxidation, and and/or storage of acutely ingested carbohydrate, but how this affects the ergogenicity of carbohydrate is still mostly unknown. CONCLUSIONS In conclusion, novel carbohydrate supplements and strategies alter carbohydrate delivery through various mechanisms. However, more research is needed to determine if/when interventions are ergogenic based on different contexts, populations, and applications.
Collapse
Affiliation(s)
- Daniel A Baur
- Department of Physical Education, Virginia Military Institute, 208 Cormack Hall, Lexington, VA, 24450, USA.
| | - Michael J Saunders
- Department of Kinesiology, James Madison University, Harrisonburg, VA, 22801, USA
| |
Collapse
|
19
|
Anderson DE, German RE, Harrison ME, Bourassa KN, Taylor CE. Real and Perceived Effects of Caffeine on Sprint Cycling in Experienced Cyclists. J Strength Cond Res 2020; 34:929-933. [PMID: 31996613 DOI: 10.1519/jsc.0000000000003537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Anderson, DE, German, RE, Harrison, ME, Bourassa, KN, and Taylor, CE. Real and perceived effects of caffeine on sprint cycling in experienced cyclists. J Strength Cond Res 34(4): 929-933, 2020-Caffeine ingestion before an exercise bout may provide ergogenic effects on anaerobic performance, particularly in trained athletes. However, the degree of influence of caffeine may be coupled with the placebo effect. A double-blind, placebo-controlled, randomized design was used to determine the real and perceived effects of caffeine on anaerobic performance. Ten competitively trained cyclists (9 men and 1 woman) completed 3 trials of the Wingate Anaerobic Test (WAnT). Subjects were given coffee that they believed contained a high caffeine dose, a low caffeine dose, or a placebo 45 minutes before WAnT. Subjects were actually given 2 placebos (decaffeinated coffee) and one dose of caffeine (280 mg). Level of significance was p ≤ 0.05. No significant differences were found between trials for blood lactate concentration and heart rate. Seven of the subjects (70%) correctly identified the caffeine trial as the high caffeine trial. Time to peak power was significantly shorter for the trial in which subjects incorrectly guessed they had consumed caffeine when given the placebo compared with placebo trial (1.6 ± 0.1 vs. 2.3 ± 0.2 seconds). Power drop was significantly higher for the trial in which subjects incorrectly guessed they had consumed caffeine when given the placebo compared with placebo trial (524 ± 37 vs. 433 ± 35 W). There seems to be a placebo effect of caffeine on anaerobic performance. Improved performance may result from psychological advantages rather than physical advantages. Coaches may find it beneficial to use a placebo to improve anaerobic performance, especially if concerned about the side effects or cost of caffeine.
Collapse
|
20
|
Wang C, Zhu Y, Dong C, Zhou Z, Zheng X. Effects of Various Doses of Caffeine Ingestion on Intermittent Exercise Performance and Cognition. Brain Sci 2020; 10:E595. [PMID: 32872249 PMCID: PMC7564618 DOI: 10.3390/brainsci10090595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
To date, no study has examined the effects of caffeine on prolonged intermittent exercise performance that imitates certain team-sports, and the suitable concentration of caffeine for improved intermittent exercise performance remains elusive. The purpose of the present cross-over, double-blind preliminary study was to investigate effects of low, moderate, and high doses of caffeine ingestion on intermittent exercise performance and cognition. Ten males performed a familiarization session and four experimental trials. Participants ingested capsules of placebo or caffeine (3, 6, or 9 mg/kg) at 1 h before exercise, rested quietly, and then performed cycling for 2 × 30 min. The cycling protocol consisted of maximal power pedaling for 5 s (mass × 0.075 kp) every minute, separated by unloaded pedaling for 25 s and rest for 30 s. At pre-ingestion of capsules, 1 h post-ingestion, and post-exercise, participants completed the Stroop task. The mean power-output (MPO), peak power-output (PPO), and response time (RT) in the Stroop task were measured. Only 3 mg/kg of caffeine had positive effects on the mean PPO and MPO; 3 mg/kg caffeine decreased RTs significantly in the incongruent and congruent conditions. These results indicate that the ingestion of low-dose caffeine had greater positive effects on the participants' physical strength during prolonged intermittent exercise and cognition than moderate- or high-dose caffeine.
Collapse
Affiliation(s)
| | | | | | | | - Xinyan Zheng
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; (C.W.); (Y.Z.); (C.D.); (Z.Z.)
| |
Collapse
|
21
|
Morales AP, Sampaio-Jorge F, Barth T, Pierucci APTR, Ribeiro BG. Caffeine Supplementation for 4 Days Does Not Induce Tolerance to the Ergogenic Effects Promoted by Acute Intake on Physiological, Metabolic, and Performance Parameters of Cyclists: A Randomized, Double-Blind, Crossover, Placebo-Controlled Study. Nutrients 2020; 12:E2101. [PMID: 32708555 PMCID: PMC7400874 DOI: 10.3390/nu12072101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/03/2020] [Accepted: 07/08/2020] [Indexed: 11/24/2022] Open
Abstract
The present study investigated whether the caffeine supplementation for four days would induce tolerance to the ergogenic effects promoted by acute intake on physiological, metabolic, and performance parameters of cyclists. A double-blind placebo-controlled cross-over design was employed, involving four experimental trials; placebo (4-day)-placebo (acute)/PP, placebo (4-day)-caffeine (acute)/PC, caffeine (4-day)-caffeine (acute)/CC and caffeine (4-day)-placebo (acute)/CP. Fourteen male recreationally-trained cyclists ingested capsules containing either placebo or caffeine (6 mg∙kg-1) for 4 days. On day 5 (acute), capsules containing placebo or caffeine (6 mg∙kg-1) were ingested 60 min before completing a 16 km time-trial (TT). CC and PC showed improvements in time (3.54%, ES = 0.72; 2.53%, ES = 0.51) and in output power (2.85%, ES = 0.25; 2.53%, ES = 0.20) (p < 0.05) compared to CP and PP conditions, respectively. These effects were accompanied by increased heart rate (2.63%, ES = 0.47; 1.99%, ES = 0.34), minute volume (13.11%, ES = 0.61; 16.32%, ES = 0.75), expired O2 fraction (3.29%, ES = 0.96; 2.87, ES = 0.72), lactate blood concentration (immediately after, 29.51% ES = 0.78; 28.21% ES = 0.73 recovery (10 min), 36.01% ES = 0.84; 31.22% ES = 0.81), and reduction in expired CO2 fraction (7.64%, ES = 0.64; 7.75%, ES = 0.56). In conclusion, these results indicate that caffeine, when ingested by cyclists in a dose of 6 mg∙kg-1 for 4 days, does not induce tolerance to the ergogenic effects promoted by acute intake on physiological, metabolic, and performance parameters.
Collapse
Affiliation(s)
- Anderson Pontes Morales
- Laboratory Research and Innovation in Sports Sciences, Federal University of Rio de Janeiro (UFRJ), Macaé, RJ 27930-560, Brazil; (F.S.-J.); (B.G.R.)
- Macaé Sports Secretary, City Government of Macaé (PMM), Macaé, RJ 27913-080, Brazil
- Higher Institutes of Education of CENSA (ISECENSA), Campos dos Goytacazes, RJ 28030-260, Brazil
- Postgraduate Program in Nutrition, Josué de Castro Nutrition Institute, Federal University of Rio de Janeiro (UFRJ), Macaé, RJ 21941-590, Brazil;
| | - Felipe Sampaio-Jorge
- Laboratory Research and Innovation in Sports Sciences, Federal University of Rio de Janeiro (UFRJ), Macaé, RJ 27930-560, Brazil; (F.S.-J.); (B.G.R.)
- Macaé Sports Secretary, City Government of Macaé (PMM), Macaé, RJ 27913-080, Brazil
- Higher Institutes of Education of CENSA (ISECENSA), Campos dos Goytacazes, RJ 28030-260, Brazil
- Postgraduate Program in Bioactive Products and Biosciences, Federal University of Rio de Janeiro (UFRJ), Macaé, RJ 27930-560, Brazil;
| | - Thiago Barth
- Postgraduate Program in Bioactive Products and Biosciences, Federal University of Rio de Janeiro (UFRJ), Macaé, RJ 27930-560, Brazil;
- Laboratory of Bioactive Products, Federal University of Rio de Janeiro (UFRJ), Macaé, RJ 27933-378, Brazil
| | - Anna Paola Trindade Rocha Pierucci
- Postgraduate Program in Nutrition, Josué de Castro Nutrition Institute, Federal University of Rio de Janeiro (UFRJ), Macaé, RJ 21941-590, Brazil;
| | - Beatriz Gonçalves Ribeiro
- Laboratory Research and Innovation in Sports Sciences, Federal University of Rio de Janeiro (UFRJ), Macaé, RJ 27930-560, Brazil; (F.S.-J.); (B.G.R.)
- Postgraduate Program in Nutrition, Josué de Castro Nutrition Institute, Federal University of Rio de Janeiro (UFRJ), Macaé, RJ 21941-590, Brazil;
| |
Collapse
|
22
|
Apostolidis A, Mougios V, Smilios I, Frangous M, Hadjicharalambous M. Caffeine supplementation is ergogenic in soccer players independent of cardiorespiratory or neuromuscular fitness levels. J Int Soc Sports Nutr 2020; 17:31. [PMID: 32513182 PMCID: PMC7282184 DOI: 10.1186/s12970-020-00360-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 06/03/2020] [Indexed: 11/18/2022] Open
Abstract
Background Equivocal findings examining the influence of caffeine on performance and biological responses to exercise may be due to inter-individual variability in cardiorespiratory or neuromuscular fitness. This study examined whether the effects of caffeine ingestion on exercise performance and biological responses to prolonged intermittent exercise to exhaustion depend on cardiorespiratory or neuromuscular fitness. Methods Twenty male soccer players, separated according to either cardiorespiratory fitness (high vs medium) or neuromuscular fitness (high vs medium) underwent two trials simulating the cardiovascular demands of a soccer game to exhaustion on treadmill after ingesting either caffeine (6 mg∙kg− 1) or placebo. Physical performance, cardiorespiratory and metabolic parameters and blood metabolites were evaluated. Results Time to exhaustion (719 ± 288 vs 469 ± 228 s), jump height (42.7 ± 4.2 vs 38.6 ± 4.4 cm), heart rate (163 ± 12 vs 157 ± 13 b∙min− 1), mean arterial blood pressure (98 ± 8 vs 92 ± 10 mmHg), plasma glucose (5.6 ± 0.7 vs 5.3 ± 0.6 mmol∙l− 1) and lactate (3.3 ± 1.2 vs 2.9 ± 1.2 mmol∙l− 1) were higher, while rating of perceived exertion (12.6 ± 1.7 vs 13.3 ± 1.6) was lower with caffeine vs placebo (p < 0.01), independent of cardiorespiratory or neuromuscular fitness level. Reaction time; plasma glycerol, non-esterified fatty acids and epinephrine; carbohydrate and fat oxidation rates; and energy expenditure were not affected by caffeine (p > 0.05). Conclusions Caffeine was effective in improving endurance and neuromuscular performance in athletes with either high or medium cardiorespiratory and neuromuscular fitness. Cardiorespiratory and neuromuscular fitness do not appear to modulate the ergogenic effects of caffeine supplementation in well-trained athletes.
Collapse
Affiliation(s)
- Andreas Apostolidis
- Human Performance Laboratory, Department of Life & Health Sciences, University of Nicosia, 46 Makedonitissas Ave., P.O. Box 24005, 1700, Nicosia, Cyprus
| | - Vassilis Mougios
- Laboratory of Evaluation of Human Biological Performance, School of Physical Education & Sport Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ilias Smilios
- School of Physical Education & Sports Science, Democritus University of Thrace, Komotini, Greece
| | | | - Marios Hadjicharalambous
- Human Performance Laboratory, Department of Life & Health Sciences, University of Nicosia, 46 Makedonitissas Ave., P.O. Box 24005, 1700, Nicosia, Cyprus.
| |
Collapse
|
23
|
Abstract
Caffeine is a widely utilized performance-enhancing supplement used by athletes and non-athletes alike. In recent years, a number of meta-analyses have demonstrated that caffeine's ergogenic effects on exercise performance are well-established and well-replicated, appearing consistent across a broad range of exercise modalities. As such, it is clear that caffeine is an ergogenic aid-but can we further explore the context of this ergogenic aid in order to better inform practice? We propose that future research should aim to better understand the nuances of caffeine use within sport and exercise. Here, we propose a number of areas for exploration within future caffeine research. These include an understanding of the effects of training status, habitual caffeine use, time of day, age, and sex on caffeine ergogenicity, as well as further insight into the modifying effects of genotype. We also propose that a better understanding of the wider, non-direct effects of caffeine on exercise, such as how it modifies sleep, anxiety, and post-exercise recovery, will ensure athletes can maximize the performance benefits of caffeine supplementation during both training and competition. Whilst not exhaustive, we hope that the questions provided within this manuscript will prompt researchers to explore areas with the potential to have a large impact on caffeine use in the future.
Collapse
Affiliation(s)
- Craig Pickering
- Institute of Coaching and Performance, School of Sport and Wellbeing, University of Central Lancashire, Fylde Road, Preston, PR1 2HE, UK. .,The Prenetics DNAFit Research Centre, London, UK.
| | - Jozo Grgic
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Australia
| |
Collapse
|
24
|
Abstract
Caffeine is a well-established ergogenic aid, demonstrated to enhance performance across a wide range of capacities through a variety of mechanisms. As such, it is frequently used by both athletes and non-athletes alike. As a result, caffeine ingestion is ubiquitous in modern society, with athletes typically being exposed to regular non-supplemental caffeine through a variety of sources. Previously, it has been suggested that regular caffeine use may lead to habituation and subsequently a reduction in the expected ergogenic effects, thereby blunting caffeine’s performance-enhancing impact during critical training and performance events. In order to mitigate this expected performance loss, some practitioners recommended a pre-competition withdrawal period to restore the optimal performance benefits of caffeine supplementation. However, at present the evidence base exploring both caffeine habituation and withdrawal strategies in athletes is surprisingly small. Accordingly, despite the prevalence of caffeine use within athletic populations, formulating evidence-led guidelines is difficult. Here, we review the available research regarding habitual caffeine use in athletes and seek to derive rational interpretations of what is currently known—and what else we need to know—regarding habitual caffeine use in athletes, and how athletes and performance staff may pragmatically approach these important, complex, and yet under-explored phenomena.
Collapse
Affiliation(s)
- Craig Pickering
- Institute of Coaching and Performance, School of Sport and Wellbeing, University of Central Lancashire, Preston, PR1 2HE, UK.
- Exercise and Nutritional Genomics Research Centre, DNAFit Ltd, London, UK.
| | - John Kiely
- Institute of Coaching and Performance, School of Sport and Wellbeing, University of Central Lancashire, Preston, PR1 2HE, UK
| |
Collapse
|
25
|
Hulton AT, Vitzel K, Doran DA, MacLaren DPM. Addition of Caffeine to a Carbohydrate Feeding Strategy Prior to Intermittent Exercise. Int J Sports Med 2020; 41:603-609. [PMID: 32252101 DOI: 10.1055/a-1121-7817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The ergogenic effect of caffeine is well established, although no investigations providing a high carbohydrate feeding strategy (pre-exercise meal=2 g/kg BM) co-ingested with caffeine exist for soccer. This investigation examines the effect of caffeine in addition to a pre-exercise carbohydrate meal and drink mid-way through a soccer simulation. Eight recreational soccer players completed an 85-minute soccer simulation followed by an exercise capacity test (Yo-yo Intermittent Endurance test level 2) on two occasions. Prior to exercise participants consumed a high carbohydrate meal, with placebo or 5 mg/kg BM-1 caffeine. No significant performance effect was identified (p=0.099) despite a 12.8% (109 m) improvement in exercise capacity following caffeine. Rates of carbohydrate and fat oxidation did not differ between conditions and nor were differences apparent for plasma glucose, fatty acids, glycerol, β-hydroxybutyrate (p>0.05). However, an increase in lactate was observed for caffeine (p=0.039). A significant condition effect on rating of perceived exertion was identified (p<0.001), with the overall mean for the protocol lowered to 11.7±0.9 au for caffeine compared to 12.8±1.3 au. Caffeine supplementation with a carbohydrate feeding strategy failed to affect metabolic and metabolite responses, although reductions in perception of exercise were observed. While a 12.8% increase in exercise capacity was noted the findings were not significant, possibly due to the small sample size.
Collapse
Affiliation(s)
- Andrew T Hulton
- Department of Nutritional Sciences, University of Surrey, Guildford, United Kingdom of Great Britain and Northern Ireland
| | - Kaio Vitzel
- School of Heath Science, Massey University, Palmerston North, New Zealand
| | - Dominic A Doran
- Research Institute of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom of Great Britain and Northern Ireland
| | - Don P M MacLaren
- Research Institute of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
26
|
Vera J, Redondo B, Bardón A, Pérez‐Castilla A, García‐Ramos A, Jiménez R. Effects of caffeine consumption on intraocular pressure during low‐intensity endurance exercise: A placebo‐controlled, double‐blind, balanced crossover study. Clin Exp Ophthalmol 2020; 48:602-609. [DOI: 10.1111/ceo.13755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/24/2020] [Accepted: 03/19/2020] [Indexed: 01/24/2023]
Affiliation(s)
- Jesús Vera
- Department of Optics, Faculty of Sciences University of Granada Granada Spain
| | - Beatriz Redondo
- Department of Optics, Faculty of Sciences University of Granada Granada Spain
| | - Anabel Bardón
- Department of Optics, Faculty of Sciences University of Granada Granada Spain
| | - Alejandro Pérez‐Castilla
- Department of Physical Education and Sport, Faculty of Sport Sciences University of Granada Granada Spain
| | - Amador García‐Ramos
- Department of Physical Education and Sport, Faculty of Sport Sciences University of Granada Granada Spain
- Department of Sports Sciences and Physical Conditioning, Faculty of Education Universidad Católica de la Santísima Concepción Concepción Chile
| | - Raimundo Jiménez
- Department of Optics, Faculty of Sciences University of Granada Granada Spain
| |
Collapse
|
27
|
Davenport AD, Jameson TSO, Kilroe SP, Monteyne AJ, Pavis GF, Wall BT, Dirks ML, Alamdari N, Mikus CR, Stephens FB. A Randomised, Placebo-Controlled, Crossover Study Investigating the Optimal Timing of a Caffeine-Containing Supplement for Exercise Performance. SPORTS MEDICINE-OPEN 2020; 6:17. [PMID: 32232597 PMCID: PMC7105519 DOI: 10.1186/s40798-020-00246-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/19/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Pre-exercise supplements containing low doses of caffeine improve endurance exercise performance, but the most efficacious time for consumption before intense endurance exercise remains unclear, as does the contribution of caffeine metabolism. METHODS This study assessed the timing of a commercially available supplement containing 200 mg of caffeine, 1600 mg of β-alanine and 1000 mg of quercetin [Beachbody Performance Energize, Beachbody LLC, USA] on exercise performance, perception of effort and plasma caffeine metabolites. Thirteen cyclists (V̇O2max 64.5 ± 1.4 ml kg- 1 min- 1 (± SEM)) completed four experimental visits consisting of 30 min of steady-state exercise on a cycle ergometer at 83 ± 1% V̇O2max followed by a 15-min time trial, with perceived exertion measured regularly. On three of the visits, participants consumed caffeine either 35 min before steady-state exercise (PRE), at the onset of steady-state (ONS) or immediately before the time trial (DUR) phases, with a placebo consumed at the other two time points (i.e. three drinks per visit). The other visit (PLA) consisted of consuming the placebo supplement at all three time points. The placebo was taste-, colour- and calorie-matched. RESULTS Total work performed during the time trial in PRE was 5% greater than PLA (3.53 ± 0.14 vs. 3.36 ± 0.13 kJ kg- 1 body mass; P = 0.0025), but not ONS (3.44 ± 0.13 kJ kg- 1; P = 0.3619) or DUR (3.39 ± 0.13 kJ kg- 1; P = 0.925), which were similar to PLA. Perceived exertion was lowest during steady-state exercise in the PRE condition (P < 0.05), which coincided with elevated plasma paraxanthine in PRE only (P < 0.05). CONCLUSION In summary, ingestion of a pre-exercise supplement containing 200 mg caffeine 35 min before exercise appeared optimal for improved performance in a subsequent fatiguing time trial, possibly by reducing the perception of effort. Whether this was due to increased circulating paraxanthine requires further investigation. TRIAL REGISTRATION ClinicalTrials.Gov, NCT02985606 ; 10/26/2016.
Collapse
Affiliation(s)
- Andrew D Davenport
- University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2 LU, UK
| | - Tom S O Jameson
- University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2 LU, UK
| | - Sean P Kilroe
- University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2 LU, UK
| | - Alistair J Monteyne
- University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2 LU, UK
| | - George F Pavis
- University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2 LU, UK
| | - Benjamin T Wall
- University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2 LU, UK
| | - Marlou L Dirks
- University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2 LU, UK
| | - Nima Alamdari
- Beachbody, LLC, 3301 Exposition Blvd, Santa Monica, CA, 90404, USA
| | | | - Francis B Stephens
- University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2 LU, UK.
| |
Collapse
|
28
|
De Salles Painelli V, Brietzke C, Franco-Alvarenga PE, Canestri R, Vinícius Í, Pires FO. Comment on: “Caffeine and Exercise: What Next?”. Sports Med 2020; 50:1211-1218. [DOI: 10.1007/s40279-020-01278-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Tiller NB, Roberts JD, Beasley L, Chapman S, Pinto JM, Smith L, Wiffin M, Russell M, Sparks SA, Duckworth L, O'Hara J, Sutton L, Antonio J, Willoughby DS, Tarpey MD, Smith-Ryan AE, Ormsbee MJ, Astorino TA, Kreider RB, McGinnis GR, Stout JR, Smith JW, Arent SM, Campbell BI, Bannock L. International Society of Sports Nutrition Position Stand: nutritional considerations for single-stage ultra-marathon training and racing. J Int Soc Sports Nutr 2019; 16:50. [PMID: 31699159 PMCID: PMC6839090 DOI: 10.1186/s12970-019-0312-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
Background In this Position Statement, the International Society of Sports Nutrition (ISSN) provides an objective and critical review of the literature pertinent to nutritional considerations for training and racing in single-stage ultra-marathon. Recommendations for Training. i) Ultra-marathon runners should aim to meet the caloric demands of training by following an individualized and periodized strategy, comprising a varied, food-first approach; ii) Athletes should plan and implement their nutrition strategy with sufficient time to permit adaptations that enhance fat oxidative capacity; iii) The evidence overwhelmingly supports the inclusion of a moderate-to-high carbohydrate diet (i.e., ~ 60% of energy intake, 5–8 g·kg− 1·d− 1) to mitigate the negative effects of chronic, training-induced glycogen depletion; iv) Limiting carbohydrate intake before selected low-intensity sessions, and/or moderating daily carbohydrate intake, may enhance mitochondrial function and fat oxidative capacity. Nevertheless, this approach may compromise performance during high-intensity efforts; v) Protein intakes of ~ 1.6 g·kg− 1·d− 1 are necessary to maintain lean mass and support recovery from training, but amounts up to 2.5 g.kg− 1·d− 1 may be warranted during demanding training when calorie requirements are greater; Recommendations for Racing. vi) To attenuate caloric deficits, runners should aim to consume 150–400 Kcal·h− 1 (carbohydrate, 30–50 g·h− 1; protein, 5–10 g·h− 1) from a variety of calorie-dense foods. Consideration must be given to food palatability, individual tolerance, and the increased preference for savory foods in longer races; vii) Fluid volumes of 450–750 mL·h− 1 (~ 150–250 mL every 20 min) are recommended during racing. To minimize the likelihood of hyponatraemia, electrolytes (mainly sodium) may be needed in concentrations greater than that provided by most commercial products (i.e., > 575 mg·L− 1 sodium). Fluid and electrolyte requirements will be elevated when running in hot and/or humid conditions; viii) Evidence supports progressive gut-training and/or low-FODMAP diets (fermentable oligosaccharide, disaccharide, monosaccharide and polyol) to alleviate symptoms of gastrointestinal distress during racing; ix) The evidence in support of ketogenic diets and/or ketone esters to improve ultra-marathon performance is lacking, with further research warranted; x) Evidence supports the strategic use of caffeine to sustain performance in the latter stages of racing, particularly when sleep deprivation may compromise athlete safety.
Collapse
Affiliation(s)
- Nicholas B Tiller
- Division of Pulmonary and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA. .,Academy of Sport and Physical Activity, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, UK.
| | - Justin D Roberts
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sports Science, Anglia Ruskin University, Cambridge, UK.
| | - Liam Beasley
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sports Science, Anglia Ruskin University, Cambridge, UK
| | - Shaun Chapman
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sports Science, Anglia Ruskin University, Cambridge, UK
| | - Jorge M Pinto
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sports Science, Anglia Ruskin University, Cambridge, UK
| | - Lee Smith
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sports Science, Anglia Ruskin University, Cambridge, UK
| | - Melanie Wiffin
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sports Science, Anglia Ruskin University, Cambridge, UK
| | - Mark Russell
- School of Social and Health Sciences, Leeds Trinity University, Leeds, UK
| | - S Andy Sparks
- Sport Nutrition and Performance Research Group, Department of Sport and Physical Activity, Edge Hill University, Ormskirk, Lancashire, UK
| | | | - John O'Hara
- Carnegie School of Sport, Leeds Beckett University, Leeds, UK
| | - Louise Sutton
- Carnegie School of Sport, Leeds Beckett University, Leeds, UK
| | - Jose Antonio
- College of Health Care Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Darryn S Willoughby
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Michael D Tarpey
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Abbie E Smith-Ryan
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | - Michael J Ormsbee
- Institute of Sports Sciences & Medicine, Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA.,Discipline of Biokinetics, Exercise and Leisure Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Todd A Astorino
- Department of Kinesiology, California State University San Marcos, San Marcos, CA, USA
| | - Richard B Kreider
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, USA
| | - Graham R McGinnis
- Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, NV, USA
| | - Jeffrey R Stout
- College of Health Professions and Sciences, University of Central Florida, Orlando, FL, USA
| | - JohnEric W Smith
- Department of Kinesiology, Mississippi State University, Mississippi, MS, USA
| | - Shawn M Arent
- Department of Exercise Science, University of South Carolina, Columbia, SC, USA
| | - Bill I Campbell
- Exercise Science Program, Performance & Physique Enhancement Laboratory, University of South Florida, Tampa, FL, USA
| | | |
Collapse
|
30
|
Stecker RA, Harty PS, Jagim AR, Candow DG, Kerksick CM. Timing of ergogenic aids and micronutrients on muscle and exercise performance. J Int Soc Sports Nutr 2019; 16:37. [PMID: 31477133 PMCID: PMC6721335 DOI: 10.1186/s12970-019-0304-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/21/2019] [Indexed: 11/10/2022] Open
Abstract
The timing of macronutrient ingestion in relation to exercise is a purported strategy to augment muscle accretion, muscle and athletic performance, and recovery. To date, the majority of macronutrient nutrient timing research has focused on carbohydrate and protein intake. However, emerging research suggests that the strategic ingestion of various ergogenic aids and micronutrients may also have beneficial effects. Therefore, the purpose of this narrative review is to critically evaluate and summarize the available literature examining the timing of ergogenic aids (caffeine, creatine, nitrates, sodium bicarbonate, beta-alanine) and micronutrients (iron, calcium) on muscle adaptations and exercise performance. In summary, preliminary data is available to indicate the timing of caffeine, nitrates, and creatine monohydrate may impact outcomes such as exercise performance, strength gains and other exercise training adaptations. Furthermore, data is available to suggest that timing the administration of beta-alanine and sodium bicarbonate may help to minimize known untoward adverse events while maintaining potential ergogenic outcomes. Finally, limited data indicates that timed ingestion of calcium and iron may help with the uptake and metabolism of these nutrients. While encouraging, much more research is needed to better understand how timed administration of these nutrients and others may impact performance, health, or other exercise training outcomes.
Collapse
Affiliation(s)
- Richard A. Stecker
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO 63301 USA
| | - Patrick S. Harty
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO 63301 USA
| | - Andrew R. Jagim
- Human Performance Lab, Sports Medicine, Mayo Clinic Health System, Onalaska, WI USA
| | - Darren G. Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK S4S 0A2 Canada
| | - Chad M. Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO 63301 USA
| |
Collapse
|
31
|
Borba GDL, Batista JSDF, Novais LMQ, Silva MB, Silva Júnior JBD, Gentil P, Marini ACB, Giglio BM, Pimentel GD. Acute Caffeine and Coconut Oil Intake, Isolated or Combined, Does Not Improve Running Times of Recreational Runners: A Randomized, Placebo-Controlled and Crossover Study. Nutrients 2019; 11:nu11071661. [PMID: 31330804 PMCID: PMC6682906 DOI: 10.3390/nu11071661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 11/16/2022] Open
Abstract
The aim was to evaluate the effect of caffeine (CAF) and extra virgin coconut oil (CO), isolated or combined, on running performance in runners. Methods: A randomized, placebo-controlled, and crossover study was conducted with thirteen recreational runners aged 18-40. All volunteers performed a 1600 m time trial at a 400 m track, each ingesting four different substances: (1) placebo (water), (2) decaffeinated coffee plus isolated CAF (DECAF + CAF), (3) decaffeinated coffee plus isolated CAF plus soy oil (DECAF + CAF + SO), and (4) decaffeinated coffee plus isolated CAF plus extra virgin coconut oil (DECAF + CAF + CO). The substances were ingested 60 min before the trials, the order of the situations was randomized, and there were one-week intervals between them. At the end of the trials, the Borg scale was applied to evaluate the rating of perceived exertion (RPE) and the time was measured. Results: Our data did not show differences in running time among the trials (placebo: 7.64 ± 0.80, DECAF + CAF: 7.61 ± 1.02, DECAF + CAF + SO: 7.66 ± 0.89, and DECAF + CAF + CO: 7.58 ± 0.74 min; p = 0.93), nor RPE (placebo: 6.15 ± 2.03, DECAF + CAF: 6.00 ± 2.27, DECAF + CAF + SO: 6.54 ± 2.73, and DECAF + CAF + CO: 6.00 ± 2.45 score; p = 0.99). Lactate concentrations (placebo: 6.23 ± 2.72, DECAF + CAF: 4.43 ± 3.77, DECAF + CAF + SO: 5.29 ± 3.77, and DECAF + CAF + CO: 6.17 ± 4.18 mmol/L; p = 0.55) also was not modified. Conclusion: Our study shows that ingestion of decaffeinated coffee with the addition of isolated CAF and extra virgin CO, either isolated or combined, does not improve 1600 m running times, nor influence RPE and lactate concentrations in recreational runners. Thus, combination of coffee with CO as a pre-workout supplement seems to be unsubstantiated for a short-distance race.
Collapse
Affiliation(s)
- Gabrielle de Lima Borba
- Laboratory of Research in Clinical Nutrition and Sports (Labince), Faculty of Nutrition, Federal University of Goiás, Rua 227, Quadra 68 s/n°, Setor Leste Universitário, Goiânia 74605080, GO, Brazil
| | - Julianne Soares de Freitas Batista
- Laboratory of Research in Clinical Nutrition and Sports (Labince), Faculty of Nutrition, Federal University of Goiás, Rua 227, Quadra 68 s/n°, Setor Leste Universitário, Goiânia 74605080, GO, Brazil
| | - Ludmilla Marques Queiroz Novais
- Laboratory of Research in Clinical Nutrition and Sports (Labince), Faculty of Nutrition, Federal University of Goiás, Rua 227, Quadra 68 s/n°, Setor Leste Universitário, Goiânia 74605080, GO, Brazil
| | - Myrnzzia Beatriz Silva
- Laboratory of Research in Clinical Nutrition and Sports (Labince), Faculty of Nutrition, Federal University of Goiás, Rua 227, Quadra 68 s/n°, Setor Leste Universitário, Goiânia 74605080, GO, Brazil
| | - João Batista da Silva Júnior
- Laboratory of Research in Clinical Nutrition and Sports (Labince), Faculty of Nutrition, Federal University of Goiás, Rua 227, Quadra 68 s/n°, Setor Leste Universitário, Goiânia 74605080, GO, Brazil
| | - Paulo Gentil
- College of Physical Education and Dance, Federal University of Goiás, Goiânia 74605080, GO, Brazil
| | - Ana Clara Baretto Marini
- Laboratory of Research in Clinical Nutrition and Sports (Labince), Faculty of Nutrition, Federal University of Goiás, Rua 227, Quadra 68 s/n°, Setor Leste Universitário, Goiânia 74605080, GO, Brazil
| | - Bruna Melo Giglio
- Laboratory of Research in Clinical Nutrition and Sports (Labince), Faculty of Nutrition, Federal University of Goiás, Rua 227, Quadra 68 s/n°, Setor Leste Universitário, Goiânia 74605080, GO, Brazil
| | - Gustavo Duarte Pimentel
- Laboratory of Research in Clinical Nutrition and Sports (Labince), Faculty of Nutrition, Federal University of Goiás, Rua 227, Quadra 68 s/n°, Setor Leste Universitário, Goiânia 74605080, GO, Brazil.
| |
Collapse
|
32
|
Wilk M, Filip A, Krzysztofik M, Maszczyk A, Zajac A. The Acute Effect of Various Doses of Caffeine on Power Output and Velocity during the Bench Press Exercise among Athletes Habitually Using Caffeine. Nutrients 2019; 11:nu11071465. [PMID: 31252655 PMCID: PMC6682895 DOI: 10.3390/nu11071465] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 11/16/2022] Open
Abstract
Background: Previously studies confirm ergogenic effects of caffeine (CAF); however there is no available scientific data regarding the influence of acute CAF intake on power output in athletes habitually consuming CAF. The main goal of this study was to assess the acute effect of 3, 6, 9 mg/kg/b.m. doses of CAF intake on power output and bench press bar velocity in athletes habitually consuming CAF. Methods: The study included 15 healthy strength-trained male athletes (age = 26.8 ± 6.2 years, body mass = 82.6 ± 9.7 kg; BMI = 24.8 ± 2.7; bench press 1RM = 122.3 ± 24.5 kg). All participants were habitual caffeine consumers (5.2 ± 1.2 mg/kg/b.m.; 426 ± 102 mg of caffeine per day). This study had a randomized, crossover, double-blind study design where each participant performed four different experimental sessions, with one week interval between each trial. In every experimental session participants performed bench press, three sets of five repetitions at 50% 1RM. The power output and bar velocity assessments under four different conditions: a placebo (PLAC), and three doses of caffeine ingestion: 3 mg/kg/b.m. (CAF-3), 6 mg/kg/b.m. (CAF-6) and 9 mg/kg/b.m. (CAF-9). Results: The statistical significance was set at p < 0.05. The repeated measures ANOVA between PLAC and CAF-3; CAF-6; CAF-9 revealed no statistically significant differences in power output and velocity of the bar during the bench press exercise. A large effect size (ES) in mean power-output was found between PLAC and CAF-9 in Sets 1 and 2. A large ES in peak power-output was found between PLAC and CAF-6 in Set 2, and between PLAC and CAF-9 in Sets 1 and 2. A large ES in peak velocity was found between PLAC and CAF-9 in Sets 1–3. Conclusion: The results of the present study indicate that acute doses of CAF before exercise does not have a significant effect on power output and bar velocity in a group of habitual caffeine users.
Collapse
Affiliation(s)
- Michal Wilk
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Mikolowska 72a, 40-065 Katowice, Poland.
| | - Aleksandra Filip
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Mikolowska 72a, 40-065 Katowice, Poland
| | - Michal Krzysztofik
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Mikolowska 72a, 40-065 Katowice, Poland
| | - Adam Maszczyk
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Mikolowska 72a, 40-065 Katowice, Poland
| | - Adam Zajac
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Mikolowska 72a, 40-065 Katowice, Poland
| |
Collapse
|
33
|
Pickering C, Kiely J. Are low doses of caffeine as ergogenic as higher doses? A critical review highlighting the need for comparison with current best practice in caffeine research. Nutrition 2019; 67-68:110535. [PMID: 31400738 DOI: 10.1016/j.nut.2019.06.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 06/12/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022]
Abstract
Caffeine is a popular and widely consumed sporting ergogenic aid. Over the years, the effects of different caffeine doses have been researched, with the general consensus being that 3 to 6 mg/kg of caffeine represents the optimal dose for most people. Recently, there has been increased attention placed on lower (≤3 mg/kg) caffeine doses, with some research suggesting these doses are also ergogenic. However, a critical consideration for athletes is not merely whether caffeine is ergogenic at a given dose, but whether the consumed dose provides an optimized performance benefit. Following this logic, the aim of this review was to identify a potential oversight in the current research relating to the efficacy of lower caffeine doses. Although low caffeine doses do appear to bestow ergogenic effects, these effects have not been adequately compared with the currently accepted best practice dose of 3 to 6 mg/kg. This methodological oversight limits the practical conclusions we can extract from the research into the efficacy of lower doses of caffeine, as the relative ergogenic benefits between low and recommended doses remains unclear. Here, we examine existing research with a critical eye, and provide recommendations both for those looking to use caffeine to enhance their performance, and those conducting research into caffeine and sport.
Collapse
Affiliation(s)
- Craig Pickering
- Institute of Coaching and Performance, University of Central Lancashire, Preston, UK.
| | - John Kiely
- Institute of Coaching and Performance, University of Central Lancashire, Preston, UK
| |
Collapse
|
34
|
Clarke JS, Highton JM, Close GL, Twist C. Carbohydrate and Caffeine Improves High-Intensity Running of Elite Rugby League Interchange Players During Simulated Match Play. J Strength Cond Res 2019; 33:1320-1327. [DOI: 10.1519/jsc.0000000000001742] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Caffeine Supplementation: Ergogenic in Both High and Low Caffeine Responders. Int J Sports Physiol Perform 2019; 14:650-657. [DOI: 10.1123/ijspp.2018-0238] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Purpose: Inconsistent results among studies examining the effects of caffeine on exercise performance are potentially due to interindividual variability in biological responses to caffeine ingestion. The aims, therefore, of the present study were to identify high and low caffeine responders and compare the influence of caffeine on exercise performance and biological responses between groups during a simulated soccer-game protocol on treadmill. Methods: Well-trained soccer players were distinguished as high (n = 11) and low (n = 9) caffeine responders based on resting blood pressure, plasma glycerol, nonesterified fatty acid, and epinephrine responses to caffeine. Participants underwent 2 simulated soccer-game protocols on a treadmill after caffeine (6 mg·kg−1) or placebo ingestion. Exercise performance and several biological responses were evaluated. Results: Exercise performance did not differ between the high and low responders to caffeine (P > .05). However, time to fatigue (high, caffeine: 797 [201] s vs placebo: 487 [258] s; low, caffeine: 625 [357] s vs placebo 447 [198] s) and countermovement jump (high, caffeine: 42.1 [5.5] cm vs placebo: 40.5 [5.7] cm; low, caffeine: 41.0 [3.8] cm vs placebo: 38.8 [4.6] cm) improved with caffeine relative to placebo (P < .001). Rating of perceived exertion was lower (P < .001) in high (13.4 [2.3]) than in low responders (14.3 [2.4]) with caffeine ingestion. Conclusions: Caffeine improved aerobic endurance and neuromuscular performance in well-trained soccer players regardless of their responsiveness to caffeine at rest. Since no changes in substrate utilization were found with caffeine supplementation, performance improvements could be attributed to positive effects on the central nervous system and/or neuromuscular function, although the precise mechanism remains unclear.
Collapse
|
36
|
Bello ML, Walker AJ, McFadden BA, Sanders DJ, Arent SM. The effects of TeaCrine® and caffeine on endurance and cognitive performance during a simulated match in high-level soccer players. J Int Soc Sports Nutr 2019; 16:20. [PMID: 30999897 PMCID: PMC6472067 DOI: 10.1186/s12970-019-0287-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 04/04/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Theacrine (1,3,7,9-tetramethyluric-acid) is a pure alkaloid with a similar structure to caffeine and acts comparably as an adenosine receptor antagonist. Early studies have shown non-habituating effects, including increases in energy and focus in response to Teacrine®, the compound containing pure theacrine. The purpose of this study was to determine and compare the effects of Teacrine® and caffeine on cognitive performance and time-to-exhaustion during a simulated soccer game in high-level male and female athletes. METHODS Male and female soccer players (N = 24; MAge = 20.96 ± 2.05y, MMaleVO2max = 55.31 ± 3.39 mL/O2/kg, MFemaleVO2max = 50.97 ± 3.90 mL/O2/kg) completed a 90-min simulated treadmill soccer match over four randomized sessions (TeaCrine®, caffeine, TeaCrine® + caffeine, placebo). Cognitive testing at halftime and end-of-game including simple reaction time (SRT), choice RT (CRT), and cognitive-load RT with distraction questions (COGRT/COGRTWrong) was performed, with a run time-to-exhaustion (TTE) at 85% VO2max following end-of-game cognitive testing. Session times and pre-exercise nutrition were controlled. RM-MANOVAs with univariate follow-ups were conducted and significance was set at P < 0.05. RESULTS TTE trended towards significance in TeaCrine® and TeaCrine® + caffeine conditions compared to placebo (P < 0.052). A condition main effect (P < 0.05) occurred with faster CRT in caffeine and TeaCrine® + caffeine compared to placebo. COGRTWrong showed a significant time main effect, with better accuracy at end-of-game compared to halftime (P < 0.05). A time x condition interaction in SRT (P < 0.05) showed placebo improved from halftime to end-of-game. CONCLUSIONS The 27-38% improvements in TTE reflect increased performance capacity that may have important implications for overtime scenarios. These findings suggest TeaCrine® favorably impacts endurance and the combination with caffeine provides greater benefits on cognitive function than either supplement independently.
Collapse
Affiliation(s)
- Marissa L Bello
- IFNH Center for Health and Human Performance, Rutgers University, 61 Dudley Rd, New Brunswick, NJ, 08901, USA
| | - Alan J Walker
- IFNH Center for Health and Human Performance, Rutgers University, 61 Dudley Rd, New Brunswick, NJ, 08901, USA
| | - Bridget A McFadden
- IFNH Center for Health and Human Performance, Rutgers University, 61 Dudley Rd, New Brunswick, NJ, 08901, USA
| | - David J Sanders
- IFNH Center for Health and Human Performance, Rutgers University, 61 Dudley Rd, New Brunswick, NJ, 08901, USA
| | - Shawn M Arent
- IFNH Center for Health and Human Performance, Rutgers University, 61 Dudley Rd, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
37
|
Abstract
There has been recent interest in the ergogenic effects of caffeine delivered in low doses (~ 200 mg or ~ 3 mg/kg body mass) and administered in forms other than capsules, coffee and sports drinks, including chewing gum, bars, gels, mouth rinses, energy drinks and aerosols. Caffeinated chewing gum is absorbed quicker through the buccal mucosa compared with capsule delivery and absorption in the gut, although total caffeine absorption over time is not different. Rapid absorption may be important in many sporting situations. Caffeinated chewing gum improved endurance cycling performance, and there is limited evidence that repeated sprint cycling and power production may also be improved. Mouth rinsing with caffeine may stimulate nerves with direct links to the brain, in addition to caffeine absorption in the mouth. However, caffeine mouth rinsing has not been shown to have significant effects on cognitive performance. Delivering caffeine with mouth rinsing improved short-duration, high-intensity, repeated sprinting in normal and depleted glycogen states, while the majority of the literature indicates no ergogenic effect on aerobic exercise performance, and resistance exercise has not been adequately studied. Studies with caffeinated energy drinks have generally not examined the individual effects of caffeine on performance, making conclusions about this form of caffeine delivery impossible. Caffeinated aerosol mouth and nasal sprays may stimulate nerves with direct brain connections and enter the blood via mucosal and pulmonary absorption, although little support exists for caffeine delivered in this manner. Overall, more research is needed examining alternate forms of caffeine delivery including direct measures of brain activation and entry of caffeine into the blood, as well as more studies examining trained athletes and female subjects.
Collapse
Affiliation(s)
- Kate A Wickham
- Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Lawrence L Spriet
- Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
38
|
Abstract
The exploits of elite athletes delight, frustrate, and confound us as they strive to reach their physiological, psychological, and biomechanical limits. We dissect nutritional approaches to optimal performance, showcasing the contribution of modern sports science to gold medals and world titles. Despite an enduring belief in a single, superior “athletic diet,” diversity in sports nutrition practices among successful athletes arises from the specificity of the metabolic demands of different sports and the periodization of training and competition goals. Pragmatic implementation of nutrition strategies in real-world scenarios and the prioritization of important strategies when nutrition themes are in conflict add to this variation. Lastly, differences in athlete practices both promote and reflect areas of controversy and disagreement among sports nutrition experts.
Collapse
|
39
|
Southward K, Rutherfurd-Markwick KJ, Ali A. The Effect of Acute Caffeine Ingestion on Endurance Performance: A Systematic Review and Meta-Analysis. Sports Med 2018; 48:1913-1928. [PMID: 29876876 DOI: 10.1007/s40279-018-0939-8] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Caffeine is a widely used ergogenic aid with most research suggesting it confers the greatest effects during endurance activities. Despite the growing body of literature around the use of caffeine as an ergogenic aid, there are few recent meta-analyses that quantitatively assess the effect of caffeine on endurance exercise. OBJECTIVES To summarise studies that have investigated the ergogenic effects of caffeine on endurance time-trial performance and to quantitatively analyse the results of these studies to gain a better understanding of the magnitude of the ergogenic effect of caffeine on endurance time-trial performance. METHODS A systematic review was carried out on randomised placebo-controlled studies investigating the effects of caffeine on endurance performance and a meta-analysis was conducted to determine the ergogenic effect of caffeine on endurance time-trial performance. RESULTS Forty-six studies met the inclusion criteria and were included in the meta-analysis. Caffeine has a small but evident effect on endurance performance when taken in moderate doses (3-6 mg/kg) as well as an overall improvement following caffeine compared to placebo in mean power output (3.03 ± 3.07%; effect size = 0.23 ± 0.15) and time-trial completion time (2.22 ± 2.59%; effect size = 0.41 ± 0.2). However, differences in responses to caffeine ingestion have been shown, with two studies reporting slower time-trial performance, while five studies reported lower mean power output during the time-trial. CONCLUSION Caffeine can be used effectively as an ergogenic aid when taken in moderate doses, such as during sports when a small increase in endurance performance can lead to significant differences in placements as athletes are often separated by small margins.
Collapse
Affiliation(s)
- Kyle Southward
- School of Sport, Exercise and Nutrition, Massey University, North Shore Mail Centre, Private Bag 102 904, Auckland, 0745, New Zealand
| | - Kay J Rutherfurd-Markwick
- School of Health Sciences, Massey University, Auckland, New Zealand.,Centre for Metabolic Health Research, Massey University, Auckland, New Zealand
| | - Ajmol Ali
- School of Sport, Exercise and Nutrition, Massey University, North Shore Mail Centre, Private Bag 102 904, Auckland, 0745, New Zealand. .,Centre for Metabolic Health Research, Massey University, Auckland, New Zealand.
| |
Collapse
|
40
|
Shen JG, Brooks MB, Cincotta J, Manjourides JD. Establishing a relationship between the effect of caffeine and duration of endurance athletic time trial events: A systematic review and meta-analysis. J Sci Med Sport 2018; 22:232-238. [PMID: 30170953 DOI: 10.1016/j.jsams.2018.07.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/16/2018] [Accepted: 07/26/2018] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Caffeine has well-documented benefits on endurance athletic performance. Because of caffeine's ergogenic effects of reducing perceived fatigue, it is hypothesized that as duration of athletic event increases, so will the effect size of caffeine upon performance. This study aims to examine the relationship between duration of endurance athletic event and the effect size of caffeine compared to placebo for athletic performance. DESIGN A systematic review and meta-analysis of placebo-controlled trials assessing the effects of caffeine in adults performing endurance athletic events. METHODS We searched MedLine, Web of Science, and review article references published through March 2016. We performed meta-analyses on placebo-controlled trials to determine the effect of the duration of an endurance athletic event on the standardized mean difference (Cohen's d) between the caffeine and placebo groups for athletic performance. RESULTS Forty articles including 56 unique comparison groups were included. Pooled results showed a Cohen's d of 0.33 (95% CI=0.21, 0.45; p=1.00; I2=0%). The effect of the duration of athletic event was significantly associated with Cohen's d (Relative Risk: 0.005; 95% CI=0.001, 0.009; p=0.024). For a 30min increase in duration of the athletic event, Cohen's d will increase by 0.150. CONCLUSIONS This study is the first to report on the statistical finding that the effect size of caffeine increases along with the increasing duration of the time trial event. Endurance athletes may especially benefit from caffeine for performance enhancement.
Collapse
Affiliation(s)
| | - Meredith B Brooks
- Department of Global Health and Social Medicine, Harvard Medical School, United States; Department of Health Sciences, Northeastern University, United States
| | - Jessica Cincotta
- Department of Health Sciences, Northeastern University, United States
| | | |
Collapse
|
41
|
Southward K, Rutherfurd-Markwick KJ, Ali A. Correction to: The Effect of Acute Caffeine Ingestion on Endurance Performance: A Systematic Review and Meta-Analysis. Sports Med 2018; 48:2425-2441. [DOI: 10.1007/s40279-018-0967-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
42
|
Acute Caffeinated Coffee Consumption Does not Improve Time Trial Performance in an 800-m Run: A Randomized, Double-Blind, Crossover, Placebo-Controlled Study. Nutrients 2018; 10:nu10060657. [PMID: 29789507 PMCID: PMC6024787 DOI: 10.3390/nu10060657] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/10/2018] [Accepted: 05/15/2018] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Studies evaluating caffeinated coffee (CAF) can reveal ergogenic effects; however, studies on the effects of caffeinated coffee on running are scarce and controversial. AIM To investigate the effects of CAF consumption compared to decaffeinated coffee (DEC) consumption on time trial performances in an 800-m run in overnight-fasting runners. METHODS A randomly counterbalanced, double-blind, crossover, placebo-controlled study was conducted with 12 healthy adult males with experience in amateur endurance running. Participants conducted two trials on two different occasions, one day with either CAF or DEC, with a one-week washout. After arriving at the data collection site, participants consumed the soluble CAF (5.5 mg/kg of caffeine) or DEC and after 60 min the run was started. Before and after the 800-m race, blood pressure and lactate and glucose concentrations were measured. At the end of the run, the ratings of perceived exertion (RPE) scale was applied. RESULTS The runners were light consumers of habitual caffeine, with an average ingestion of 91.3 mg (range 6⁻420 mg/day). Time trial performances did not change between trials (DEF: 2.38 + 0.10 vs. CAF: 2.39 + 0.09 min, p = 0.336), nor did the RPE (DEC: 16.5 + 2.68 vs. CAF: 17.0 + 2.66, p = 0.326). No difference between the trials was observed for glucose and lactate concentrations, or for systolic and diastolic blood pressure levels. CONCLUSION CAF consumption failed to enhance the time trial performance of an 800-m run in overnight-fasting runners, when compared with DEC ingestion. In addition, no change was found in RPE, blood pressure levels, or blood glucose and lactate concentrations between the two trials.
Collapse
|
43
|
Sicard J. L’hydratation, au cœur de la stratégie nutritionnelle du sportif. ACTUALITES PHARMACEUTIQUES 2018. [DOI: 10.1016/j.actpha.2018.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Rahimi R. The effect of CYP1A2 genotype on the ergogenic properties of caffeine during resistance exercise: a randomized, double-blind, placebo-controlled, crossover study. Ir J Med Sci 2018. [PMID: 29532291 DOI: 10.1007/s11845-018-1780-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AIM The purpose of this study was to examine the effect of CYP1A2 -163C>A polymorphism on the ergogenic effects of caffeine supplementation during a resistance exercise (RE) session. METHODS In a randomized, double-blind, placebo (PL)-controlled, crossover study, 30 resistance-trained men took part in two RE sessions (three sets to failure at 85% of one repetition maximum, 2-min rest between sets), including bench press (BP), leg press (LP), seated cable row, and shoulder press (SP) following caffeine (CAF) (6 mg kg-1) or PL (6 mg kg-1 of maltodextrin) ingestion 1 h prior to the trial. The number of repetitions was recorded after each set, along with calculation of total number of repetitions for each exercise. Genomic DNA was isolated from the whole blood samples for analyzing the CYP1A2 -163C>A polymorphism through amplification refractory mutation system-polymerase chain reaction (ARMS-PCR). Subjects were classified as either AA (n = 14) or AC/CC genotypes (n = 16). RESULTS The two-way ANOVA with repeated measures revealed differences between AAs and AC/CCs under CAF conditions for repetitions performed in sets 1, 2, and 3 of BP (F(1, 28) = 14.84, P = 0.001, ƞ2 = 0.34), LP (F(1, 28) = 8.92, P = 0.006, ƞ2 = 0.24), SR (F(1, 28) = 17.38, P = 0.0001, ƞ2 = 0.38), and SP (F(1, 28) = 3.76, P = 0.063, ƞ2 = 0.11). CAF also increased the total number of repetitions performed for all three sets in AAs versus AC/CCs for BP (F(1, 28) = 8.72, P = 0.006, ƞ2 = 0.23), LP (F(1, 28) = 4.67, P = 0.03, ƞ2 = 0.14), SR (F(1, 28) = 5.54, P = 0.02, ƞ2 = 0.16), and SP (F(1, 28) = 3.89, P = 0.058, ƞ2 = 0.12) in athletes who were homozygous carriers of the A allele, compared to the C allele carriers. Therefore, AA homozygotes were able to carry out a greater total volume of RE work under CAF but not PL conditions, compared to the C allele carriers. CONCLUSION In conclusion, acute ingestion of CAF significantly enhanced RE performance in resistance-trained men who were homozygous for the A allele, but not for C allele carriers. Further studies are needed to replicate the potential role of the CYP1A2 -163C>A polymorphism on the ergogenic effects of CAF in other modes of exercise and in other populations.
Collapse
Affiliation(s)
- Rahman Rahimi
- Department of Exercise Physiology, University of Kurdistan, Sanandaj, Kurdistan, 416, Islamic Republic of Iran.
| |
Collapse
|
45
|
Abstract
Many expert sporting bodies now support a pragmatic acceptance of the use of performance supplements which have passed a risk:benefit analysis of being safe, effective, and permitted for use, while also being appropriate to the athlete's age and maturation in their sport. However, gaining evidence of the performance benefits of these supplements is a process challenged by the scarcity of research in relation to the number of available products, and the limitations of the poor quality of some studies. While meta-analyses and systematic reviews can help to provide information about the general use of performance supplements, the controlled scientific trial provides the basis on which these reviews are undertaken, as well as an opportunity to address more specific questions about supplement applications. Guidelines for the design of studies include the choice of well-trained athletes who are familiarized with performance tasks that have been chosen on their basis of their known reliability and validity. Supplement protocols should be chosen to maximize the likely benefits, and researchers should also make efforts to control confounding variables, while keeping conditions similar to real-life practices. Performance changes should be interpreted in light of what is meaningful to the outcomes of sporting competition. Issues that have been poorly addressed to date include the use of several supplements in combination and the use of the same supplement over successive events, both within a single, and across multiple competition days. Strategies to isolate and explain the variability of benefits to individuals are also a topic for future investigation.
Collapse
|
46
|
Pickering C, Kiely J. Are the Current Guidelines on Caffeine Use in Sport Optimal for Everyone? Inter-individual Variation in Caffeine Ergogenicity, and a Move Towards Personalised Sports Nutrition. Sports Med 2018; 48:7-16. [PMID: 28853006 PMCID: PMC5752738 DOI: 10.1007/s40279-017-0776-1] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Caffeine use is widespread in sport, with a strong evidence base demonstrating its ergogenic effect. Based on existing research, current guidelines recommend ingestion of 3-9 mg/kg approximately 60 min prior to exercise. However, the magnitude of performance enhancement following caffeine ingestion differs substantially between individuals, with the spectrum of responses ranging between highly ergogenic to ergolytic. These extensive inter-individual response distinctions are mediated by variation in individual genotype, environmental factors, and the legacy of prior experiences partially mediated via epigenetic mechanisms. Here, we briefly review the drivers of this inter-individual variation in caffeine response, focusing on the impact of common polymorphisms within two genes, CYP1A2 and ADORA2A. Contemporary evidence suggests current standardised guidelines are optimal for only a sub-set of the athlete population. Clearer understanding of the factors underpinning inter-individual variation potentially facilitates a more nuanced, and individually and context-specific customisation of caffeine ingestion guidelines, specific to an individual's biology, history, and competitive situation. Finally, we identify current knowledge deficits in this area, along with future associated research questions.
Collapse
Affiliation(s)
- Craig Pickering
- Institute of Coaching and Performance, School of Sport and Wellbeing, University of Central Lancashire, Preston, PR1 2HE, UK.
- Exercise and Nutritional Genomics Research Centre, DNAFit Ltd, London, UK.
| | - John Kiely
- Institute of Coaching and Performance, School of Sport and Wellbeing, University of Central Lancashire, Preston, PR1 2HE, UK
| |
Collapse
|
47
|
Fatigue-related impairments in oculomotor control are prevented by norepinephrine-dopamine reuptake inhibition. Sci Rep 2017; 7:42726. [PMID: 28198465 PMCID: PMC5309883 DOI: 10.1038/srep42726] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/12/2017] [Indexed: 11/09/2022] Open
Abstract
Fatigue-induced reductions in saccade velocity have been reported following acute, prolonged exercise. Interestingly, the detrimental impact of fatigue on oculomotor control can be prevented by a moderate dose of caffeine. This effect may be related to central catecholamine upregulation via caffeine's action as an adenosine antagonist. To test this hypothesis, we compared the protective effect of caffeine on oculomotor control post-exercise to that of a norepinephrine-dopamine reuptake inhibitor. Within a placebo-controlled crossover design, 12 cyclists consumed placebo, caffeine or a norepinephrine-dopamine reuptake inhibitor (bupropion) during 180 minutes of stationary cycling. Saccades, smooth pursuit and optokinetic nystagmus were measured using infrared oculography. Exercise fatigue was associated with an 8 ± 11% reduction in the peak velocity of prosaccades, and a 10 ± 11% decrement in antisaccade peak velocity. Optokinetic nystagmus quick phases decreased in velocity by 15 ± 17%. These differences were statistically significant (p < 0.05). Norepinephrine-dopamine reuptake inhibition and caffeine prevented fatigue-related decrements in eye movement velocity. Pursuit eye movements and visual attention were unaffected. These findings show that norepinephrine-dopamine reuptake inhibition protects oculomotor function during exercise fatigue. Caffeine's fatigue-reversing effects on eye movements appear to be mediated, at least in part, via modulation of central catecholamines.
Collapse
|
48
|
McLellan TM, Caldwell JA, Lieberman HR. A review of caffeine’s effects on cognitive, physical and occupational performance. Neurosci Biobehav Rev 2016; 71:294-312. [DOI: 10.1016/j.neubiorev.2016.09.001] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 08/26/2016] [Accepted: 09/04/2016] [Indexed: 12/31/2022]
|
49
|
Naderi A, de Oliveira EP, Ziegenfuss TN, Willems MT. Timing, Optimal Dose and Intake Duration of Dietary Supplements with Evidence-Based Use in Sports Nutrition. J Exerc Nutrition Biochem 2016; 20:1-12. [PMID: 28150472 PMCID: PMC5545206 DOI: 10.20463/jenb.2016.0031] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
[Purpose] The aim of the present narrative review was to consider the evidence on the timing, optimal dose and intake duration of the main dietary supplements in sports nutrition, i.e. β-alanine, nitrate, caffeine, creatine, sodium bicarbonate, carbohydrate and protein. [Methods] This review article focuses on timing, optimal dose and intake duration of main dietary supplements in sports nutrition. [Results] This paper reviewed the evidence to determine the optimal time, efficacy doses and intake duration for sports supplements verified by scientific evidence that report a performance enhancing effect in both situation of laboratory and training settings. [Conclusion] Consumption of the supplements are usually suggested into 5 specific times, such as pre-exercise (nitrate, caffeine, sodium bicarbonate, carbohydrate and protein), during exercise (carbohydrate), post-exercise (creatine, carbohydrate, protein), meal time (β-alanine, creatine, sodium bicarbonate, nitrate, carbohydrate and protein), and before sleep (protein). In addition, the recommended dosing protocol for the supplements nitrate and β-alanine are fixed amounts irrespective of body weight, while dosing protocol for sodium bicarbonate, caffeine and creatine supplements are related to corrected body weight (mg/kg bw). Also, intake duration is suggested for creatine and β-alanine, being effective in chronic daily time < 2 weeks while caffeine, sodium bicarbonate are effective in acute daily time (1-3 hours). Plus, ingestion of nitrate supplement is required in both chronic daily time < 28 days and acute daily time (2- 2.5 h) prior exercise.
Collapse
Affiliation(s)
- Alireza Naderi
- Department of Sport Physiology, Boroujerd Branch, Islamic Azad University, Boroujerd, Iran
| | - Erick P de Oliveira
- School of Medicine, Federal University of Uberlandia, Uberlandia, Minas Gerais State, Brazil
| | | | - MarkE T Willems
- Department of Sport and Exercise Sciences, University of Chichester, College Lane, Chichester, United Kingdom
| |
Collapse
|
50
|
Prins PJ, Goss FL, Nagle EF, Beals K, Robertson RJ, Lovalekar MT, Welton GL. Energy Drinks Improve Five-Kilometer Running Performance in Recreational Endurance Runners. J Strength Cond Res 2016; 30:2979-2990. [DOI: 10.1519/jsc.0000000000001391] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|