1
|
Doneddu A, Roberto S, Guicciardi M, Pazzona R, Manca A, Monni A, Fanni M, Leban B, Ghiani G, Spranger MD, Mulliri G, Crisafulli A. Hemodynamics and cerebral oxygenation during acute exercise in moderate normobaric hypoxia and with concurrent cognitive task in young healthy males. Appl Physiol Nutr Metab 2024; 49:1573-1584. [PMID: 39088843 DOI: 10.1139/apnm-2023-0629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
The present investigation aimed to study the cardiovascular responses and the cerebral oxygenation (Cox) during exercise in acute hypoxia and with contemporary mental stress. Fifteen physically active, healthy males (age 29.0 ± 5.9 years) completed a cardiopulmonary test on a cycle ergometer to determine the workload at their gas exchange threshold (GET). On a separate day, participants performed two randomly assigned exercise tests pedaling for 6 min at a workload corresponding to 80% of the GET: (1) during normoxia (NORMO), and (2) during acute, normobaric hypoxia at 13.5% inspired oxygen (HYPO). During the last 3 min of the exercise, they also performed a mental task (MT). Hemodynamics were assessed with impedance cardiography, and peripheral arterial oxygen saturation and Cox were continuously measured by near-infrared spectroscopy. The main results were that both in NORMO and HYPO conditions, the MT caused a significant increase in the heart rate and ventricular filling rate. Moreover, MT significantly reduced (74.8 ± 5.5 vs. 62.0 ± 5.2 A.U.) Cox, while the reaction time (RT) increased (813.3 ± 110.2 vs. 868.2 ± 118.1 ms) during the HYPO test without affecting the correctness of the answers. We conclude that in young, healthy males, adding an MT during mild intensity exercise in both normoxia and acute moderate (normobaric) hypoxia induces a similar hemodynamic response. However, MT and exercise in HYPO cause a decrease in Cox and an impairment in RT.
Collapse
Affiliation(s)
- Azzurra Doneddu
- Department of Medical Sciences and Public Health, University of Cagliari, Italy
- International PhD in Innovation Sciences and Technologies, University of Cagliari, Italy
| | - Silvana Roberto
- Department of Medical Sciences and Public Health, University of Cagliari, Italy
| | - Marco Guicciardi
- Department of Education, Psychology and Philosophy, Faculty of Humanities, University of Cagliari, Italy
| | - Riccardo Pazzona
- Department of Education, Psychology and Philosophy, Faculty of Humanities, University of Cagliari, Italy
| | - Andrea Manca
- Department of Education, Psychology and Philosophy, Faculty of Humanities, University of Cagliari, Italy
| | - Alessandra Monni
- Department of Education, Psychology and Philosophy, Faculty of Humanities, University of Cagliari, Italy
| | - Massimo Fanni
- Department of Medical Sciences and Public Health, University of Cagliari, Italy
- International PhD in Innovation Sciences and Technologies, University of Cagliari, Italy
| | - Bruno Leban
- Department of Mechanical, Chemical and Material Engineering, Faculty of Engineering and Architecture, University of Cagliari, Italy
| | - Giovanna Ghiani
- Department of Medical Sciences and Public Health, University of Cagliari, Italy
| | - Marty D Spranger
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Gabriele Mulliri
- Department of Medical Sciences and Public Health, University of Cagliari, Italy
| | - Antonio Crisafulli
- Department of Medical Sciences and Public Health, University of Cagliari, Italy
- International PhD in Innovation Sciences and Technologies, University of Cagliari, Italy
| |
Collapse
|
2
|
Simpson LL, Stembridge M, Siebenmann C, Moore JP, Lawley JS. Mechanisms underpinning sympathoexcitation in hypoxia. J Physiol 2024; 602:5485-5503. [PMID: 38533641 DOI: 10.1113/jp284579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
Sympathoexcitation is a hallmark of hypoxic exposure, occurring acutely, as well as persisting in acclimatised lowland populations and with generational exposure in highland native populations of the Andean and Tibetan plateaus. The mechanisms mediating altitude sympathoexcitation are multifactorial, involving alterations in both peripheral autonomic reflexes and central neural pathways, and are dependent on the duration of exposure. Initially, hypoxia-induced sympathoexcitation appears to be an adaptive response, primarily mediated by regulatory reflex mechanisms concerned with preserving systemic and cerebral tissue O2 delivery and maintaining arterial blood pressure. However, as exposure continues, sympathoexcitation is further augmented above that observed with acute exposure, despite acclimatisation processes that restore arterial oxygen content (C a O 2 ${C_{{\mathrm{a}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ). Under these conditions, sympathoexcitation may become maladaptive, giving rise to reduced vascular reactivity and mildly elevated blood pressure. Importantly, current evidence indicates the peripheral chemoreflex does not play a significant role in the augmentation of sympathoexcitation during altitude acclimatisation, although methodological limitations may underestimate its true contribution. Instead, processes that provide no obvious survival benefit in hypoxia appear to contribute, including elevated pulmonary arterial pressure. Nocturnal periodic breathing is also a potential mechanism contributing to altitude sympathoexcitation, although experimental studies are required. Despite recent advancements within the field, several areas remain unexplored, including the mechanisms responsible for the apparent normalisation of muscle sympathetic nerve activity during intermediate hypoxic exposures, the mechanisms accounting for persistent sympathoexcitation following descent from altitude and consideration of whether there are sex-based differences in sympathetic regulation at altitude.
Collapse
Affiliation(s)
- Lydia L Simpson
- Department of Sport Science, Performance Physiology and Prevention, Universität Innsbruck, Innsbruck, Austria
| | - Mike Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | | | - Jonathan P Moore
- School of Psychology and Sport Science, Institute of Applied Human Physiology, Bangor University, Bangor, UK
| | - Justin S Lawley
- Department of Sport Science, Performance Physiology and Prevention, Universität Innsbruck, Innsbruck, Austria
- Institute of Mountain Emergency Medicine, EURAC Research, Bolzano, Italy
| |
Collapse
|
3
|
Behrendt T, Bielitzki R, Behrens M, Jahns LM, Boersma M, Schega L. Acute psycho-physiological responses to submaximal constant-load cycling under intermittent hypoxia-hyperoxia vs. hypoxia-normoxia in young males. PeerJ 2024; 12:e18027. [PMID: 39376227 PMCID: PMC11457877 DOI: 10.7717/peerj.18027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/12/2024] [Indexed: 10/09/2024] Open
Abstract
Background Hypoxia and hyperoxia can affect the acute psycho-physiological response to exercise. Recording various perceptual responses to exercise is of particular importance for investigating behavioral changes to physical activity, given that the perception of exercise-induced pain, discomfort or unpleasure, and a low level of exercise enjoyment are commonly associated with a low adherence to physical activity. Therefore, this study aimed to compare the acute perceptual and physiological responses to aerobic exercise under intermittent hypoxia-hyperoxia (IHHT), hypoxia-normoxia (IHT), and sustained normoxia (NOR) in young, recreational active, healthy males. Methods Using a randomized, single-blinded, crossover design, 15 males (age: 24.5 ± 4.2 yrs) performed 40 min of submaximal constant-load cycling (at 60% peak oxygen uptake, 80 rpm) under IHHT (5 × 4 min hypoxia and hyperoxia), IHT (5 × 4 min hypoxia and normoxia), and NOR. Inspiratory fraction of oxygen during hypoxia and hyperoxia was set to 14% and 30%, respectively. Heart rate (HR), total hemoglobin (tHb) and muscle oxygen saturation (SmO2) of the right vastus lateralis muscle were continuously recorded during cycling. Participants' peripheral oxygen saturation (SpO2) and perceptual responses (i.e., perceived motor fatigue, effort perception, perceived physical strain, affective valence, arousal, motivation to exercise, and conflict to continue exercise) were surveyed prior, during (every 4 min), and after cycling. Prior to and after exercise, peripheral blood lactate concentration (BLC) was determined. Exercise enjoyment was ascertained after cycling. For statistical analysis, repeated measures analyses of variance were conducted. Results No differences in the acute perceptual responses were found between conditions (p ≥ 0.059, ηp 2 ≤ 0.18), while the physiological responses differed. Accordingly, SpO2 was higher during the hyperoxic periods during the IHHT compared to the normoxic periods during the IHT (p < 0.001, ηp 2 = 0.91). Moreover, HR (p = 0.005, ηp 2 = 0.33) and BLC (p = 0.033, ηp 2 = 0.28) were higher during IHT compared to NOR. No differences between conditions were found for changes in tHb (p = 0.684, ηp 2 = 0.03) and SmO2 (p = 0.093, ηp 2 = 0.16). Conclusion IHT was associated with a higher physiological response and metabolic stress, while IHHT did not lead to an increase in HR and BLC compared to NOR. In addition, compared to IHT, IHHT seems to improve reoxygenation indicated by a higher SpO2 during the hyperoxic periods. However, there were no differences in perceptual responses and ratings of exercise enjoyment between conditions. These results suggest that replacing normoxic by hyperoxic reoxygenation-periods during submaximal constant-load cycling under intermittent hypoxia reduced the exercise-related physiological stress but had no effect on perceptual responses and perceived exercise enjoyment in young recreational active healthy males.
Collapse
Affiliation(s)
- Tom Behrendt
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Robert Bielitzki
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Martin Behrens
- University of Applied Sciences for Sport and Management Potsdam, Potsdam, Germany
| | - Lina-Marie Jahns
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Malte Boersma
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Lutz Schega
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
4
|
Putti GM, Costa GP, Norberto MS, de Carvalho CD, Bertuzzi RCDM, Papoti M. Use of Inter-Effort Recovery Hypoxia as a New Approach to Improve Anaerobic Capacity and Time to Exhaustion. High Alt Med Biol 2024; 25:68-76. [PMID: 38193767 DOI: 10.1089/ham.2023.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Putti, Germano Marcolino, Gabriel Peinado Costa, Matheus Silva Norberto, Carlos Dellavechia de Carvalho, Rômulo Cássio de Moraes Bertuzzi, and Marcelo Papoti. Use of inter-effort recovery hypoxia as a new approach to improve anaerobic capacity and time to exhaustion. High Alt Med Biol. 25:68-76, 2024. Background: Although adding hypoxia to high-intensity training may offer some benefits, a significant problem of this training model is the diminished quality of the training session when performing efforts in hypoxia. The purpose of this study was to investigate the effects of training and tapering combined with inter-effort recovery hypoxia (IEH) on anaerobic capacity, as estimated by alternative maximum accumulated oxygen deficit (MAODALT) and time to exhaustion (TTE). Methods: Twenty-four amateur runners performed, for 5 weeks, 3 sessions per week of training consisted of ten 1-minute bouts at 120% (weeks 1-3) and 130% (weeks 4 and 5) of maximum velocity (VMAX) obtained in graded exercise test, separated by a 2-minute interval in IEH (IEH, n = 11, FIO2 = 0.136) or normoxia (NOR, n = 13, fraction of inspired oxygen = 0.209). Before training, after training, and after 1 week of tapering, a graded exercise test and a maximal effort to exhaustion at 120% of VMAX were performed to determine TTE and MAODALT. The results were analyzed using generalized linear mixed models, and a clinical analysis was also realized by the smallest worthwhile change. Results: MAODALT increased only in IEH after training (0.8 ± 0.5 eq.lO2) and tapering (0.8 ± 0.5 eq.lO2), with time x group interaction. TTE increased for the pooled groups after taper (23 ± 11 seconds) and only for IEH alone (29 ± 16 seconds). Clinical analysis revealed a small size increase for NOR and a moderate size increase for IEH. Conclusions: Although the effects should be investigated in other populations, it can be concluded that IEH is a promising model for improving anaerobic performance and capacity. World Health Organization Universal Trial Number: U1111-1295-9954. University's ethics committee registration number: CAAE: 32220020.0.0000.5659.
Collapse
Affiliation(s)
- Germano Marcolino Putti
- Escola de Educação Física e Esporte de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto, Brazil
| | - Gabriel Peinado Costa
- Escola de Educação Física e Esporte de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto, Brazil
| | - Matheus Silva Norberto
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto, Brazil
| | | | | | - Marcelo Papoti
- Escola de Educação Física e Esporte de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto, Brazil
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
5
|
Bock JM, Greenlund IM, Somers VK, Baker SE. Sex Differences in Neurovascular Control: Implications for Obstructive Sleep Apnea. Int J Mol Sci 2023; 24:13094. [PMID: 37685900 PMCID: PMC10487948 DOI: 10.3390/ijms241713094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023] Open
Abstract
Patients with obstructive sleep apnea (OSA) have a heightened risk of developing cardiovascular diseases, namely hypertension. While seminal evidence indicates a causal role for sympathetic nerve activity in the hypertensive phenotype commonly observed in patients with OSA, no studies have investigated potential sex differences in the sympathetic regulation of blood pressure in this population. Supporting this exploration are large-scale observational data, as well as controlled interventional studies in healthy adults, indicating that sleep disruption increases blood pressure to a greater extent in females relative to males. Furthermore, females with severe OSA demonstrate a more pronounced hypoxic burden (i.e., disease severity) during rapid eye movement sleep when sympathetic nerve activity is greatest. These findings would suggest that females are at greater risk for the hemodynamic consequences of OSA and related sleep disruption. Accordingly, the purpose of this review is three-fold: (1) to review the literature linking sympathetic nerve activity to hypertension in OSA, (2) to highlight recent experimental data supporting the hypothesis of sex differences in the regulation of sympathetic nerve activity in OSA, and (3) to discuss the potential sex differences in peripheral adrenergic signaling that may contribute to, or offset, cardiovascular risk in patients with OSA.
Collapse
Affiliation(s)
- Joshua M. Bock
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55901, USA; (J.M.B.)
| | - Ian M. Greenlund
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55901, USA; (J.M.B.)
| | - Virend K. Somers
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55901, USA; (J.M.B.)
| | - Sarah E. Baker
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55901, USA
| |
Collapse
|
6
|
Jacob DW, Morgenthaler LD, Harper JL, Limberg JK. The forearm vascular response to sympathetic activation is attenuated in female, but not male, participants following acute intermittent hypoxia. J Appl Physiol (1985) 2023; 135:352-361. [PMID: 37410902 PMCID: PMC10396222 DOI: 10.1152/japplphysiol.00760.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/05/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023] Open
Abstract
Acute exposure to hypoxia promotes both an increase in sympathetic nervous system activity (SNA) and local vasodilation. In rodents, intermittent hypoxia (IH)-mediated increases in SNA are associated with an increase in blood pressure in males but not females; notably, the protective effect of female sex is lost following ovariectomy. These data suggest the vascular response to hypoxia and/or SNA following IH may be sex- and/or hormone specific-although mechanisms are unclear. We hypothesized that hypoxia-mediated vasodilation and SNA-mediated vasoconstriction would be unchanged following acute IH in male adults. We further hypothesized that hypoxic vasodilation would be augmented and SNA-mediated vasoconstriction would be attenuated in female adults following acute IH, with the greatest effect when endogenous estradiol was high. Twelve male (25 ± 1 yr) and 10 female (25 ± 1 yr) participants underwent 30 min of IH. Females were studied in a low (early follicular) and high (late follicular) estradiol state. Preceding and following IH, participants completed two trials [steady-state hypoxia and cold pressor test (CPT)], where forearm blood flow and blood pressure were measured and used to determine forearm vascular conductance (FVC). The FVC response to hypoxia (P = 0.67) and sympathetic activation (P = 0.73) were unchanged following IH in males. There was no effect of IH on hypoxic vasodilation in females, regardless of estradiol state (P = 0.75). In contrast, the vascular response to sympathetic activation was attenuated in females following IH (P = 0.02), independent of estradiol state (P = 0.65). Present data highlight sex-related differences in neurovascular responsiveness following acute IH.NEW & NOTEWORTHY We examined the effects of acute intermittent hypoxia (AIH) on the vascular response to sympathetic activation and acute hypoxia. Present findings show, despite no effect of AIH on the vascular response to hypoxia, the forearm vasoconstrictor response to acute sympathetic activation is attenuated in females following AIH, independent of estradiol state. These data provide mechanistic understanding of potential benefits of AIH, as well as the impact of biological sex.
Collapse
Affiliation(s)
- Dain W Jacob
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Leandra D Morgenthaler
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Jennifer L Harper
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Jacqueline K Limberg
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
7
|
Simpson LL, Hansen AB, Moralez G, Amin SB, Hofstaetter F, Gasho C, Stembridge M, Dawkins TG, Tymko MM, Ainslie PN, Lawley JS, Hearon CM. Adrenergic control of skeletal muscle blood flow during chronic hypoxia in healthy males. Am J Physiol Regul Integr Comp Physiol 2023; 324:R457-R469. [PMID: 36717165 PMCID: PMC10026988 DOI: 10.1152/ajpregu.00230.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023]
Abstract
Sympathetic transduction is reduced following chronic high-altitude (HA) exposure; however, vascular α-adrenergic signaling, the primary mechanism mediating sympathetic vasoconstriction at sea level (SL), has not been examined at HA. In nine male lowlanders, we measured forearm blood flow (Doppler ultrasound) and calculated changes in vascular conductance (ΔFVC) during 1) incremental intra-arterial infusion of phenylephrine to assess α1-adrenergic receptor responsiveness and 2) combined intra-arterial infusion of β-adrenergic and α-adrenergic antagonists propranolol and phentolamine (α-β-blockade) to assess adrenergic vascular restraint at rest and during exercise-induced sympathoexcitation (cycling; 60% peak power). Experiments were performed near SL (344 m) and after 3 wk at HA (4,383 m). HA abolished the vasoconstrictor response to low-dose phenylephrine (ΔFVC: SL: -34 ± 15%, vs. HA; +3 ± 18%; P < 0.0001) and markedly attenuated the response to medium (ΔFVC: SL: -45 ± 18% vs. HA: -28 ± 11%; P = 0.009) and high (ΔFVC: SL: -47 ± 20%, vs. HA: -35 ± 20%; P = 0.041) doses. Blockade of β-adrenergic receptors alone had no effect on resting FVC (P = 0.500) and combined α-β-blockade induced a similar vasodilatory response at SL and HA (P = 0.580). Forearm vasoconstriction during cycling was not different at SL and HA (P = 0.999). Interestingly, cycling-induced forearm vasoconstriction was attenuated by α-β-blockade at SL (ΔFVC: Control: -27 ± 128 vs. α-β-blockade: +19 ± 23%; P = 0.0004), but unaffected at HA (ΔFVC: Control: -20 ± 22 vs. α-β-blockade: -23 ± 11%; P = 0.999). Our results indicate that in healthy males, altitude acclimatization attenuates α1-adrenergic receptor responsiveness; however, resting α-adrenergic restraint remains intact, due to concurrent resting sympathoexcitation. Furthermore, forearm vasoconstrictor responses to cycling are preserved, although the contribution of adrenergic receptors is diminished, indicating a reliance on alternative vasoconstrictor mechanisms.
Collapse
Affiliation(s)
- Lydia L Simpson
- Department of Sport Science, Division of Performance Physiology and Prevention, Universität Innsbruck, Innsbruck, Austria
| | - Alexander B Hansen
- Department of Sport Science, Division of Performance Physiology and Prevention, Universität Innsbruck, Innsbruck, Austria
| | - Gilbert Moralez
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Sachin B Amin
- Department of Sport Science, Division of Performance Physiology and Prevention, Universität Innsbruck, Innsbruck, Austria
| | - Florian Hofstaetter
- Department of Sport Science, Division of Performance Physiology and Prevention, Universität Innsbruck, Innsbruck, Austria
| | - Christopher Gasho
- Department of Medicine, Division of Pulmonary and Critical Care, Loma Linda University, Loma Linda, California, United States
| | - Mike Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, Wales, United Kingdom
| | - Tony G Dawkins
- Centre of Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Michael M Tymko
- Centre of Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Philip N Ainslie
- Centre of Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Justin S Lawley
- Department of Sport Science, Division of Performance Physiology and Prevention, Universität Innsbruck, Innsbruck, Austria
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Christopher M Hearon
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas, United States
| |
Collapse
|
8
|
Smith CM, Salmon OF, Jenkins JR. Neuromuscular and Muscle Tissue Hemodynamic Responses When Exposed to Normobaric Hypoxia during Lower-Body Fatiguing Muscle Actions. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2023; 23:26-35. [PMID: 36856097 PMCID: PMC9976181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
OBJECTIVES This study examined effects of acute hypoxia on the neuromuscular responses (electromyographic (EMG) amplitude and EMG frequency) and localized muscle tissue oxygenated hemoglobin (oxygenated hemoglobin (OxyHb), deoxygenated hemoglobin (DeoxyHb), total hemoglobin (TotalHb), and muscle tissue oxygenation saturation (StO2) during the process of fatigue. METHODS Fifteen male participants (21.4±2.8yr) performed leg extension repetitions to failure at 70% 1-repetition maximum until volitional exhaustion under Normoxic (FiO2:21%) and Hypoxic (FiO2:12.9%) conditions. Electromyographic amplitude, EMG frequency, OxyHb, DeoxyHb, TotalHb, and StO2 were measured from the vastus lateralis at Initial, 20, 40, 60, 80, and 100% of the repetitions to failure. RESULTS There was no significant difference in the patterns of responses for EMG amplitude, OxyHb, or DeoxyHb between Normoxia and Hypoxia. For EMG frequency, Hypoxia was greater than Normoxia and decreased with fatigue. TotalHb and StO2 were greater under Normoxia compared to Hypoxia. The patterns of responses for EMG amplitude, DeoxyHb, and TotalHb increased throughout the repetitions to failure. OxyHb and StO2 exhibited decreases throughout the repetitions to failure for Normoxic and Hypoxic conditions. CONCLUSION The EMG and oxygenation measurements non-invasively suggest a sympathoexcitatory response (indicated by EMG frequency) and provided complimentary information regarding the process of fatigue in normoxic and hypoxic states.
Collapse
Affiliation(s)
- Cory M Smith
- Robbins College of Health and Human Sciences, Department of HHPR, Baylor University, USA
| | - Owen F Salmon
- Robbins College of Health and Human Sciences, Department of HHPR, Baylor University, USA
| | - Jasmin R Jenkins
- Interdisciplinary Health Sciences PhD Program, Department of Kinesiology, The University of Texas at El Paso, El Paso, TX, USA
| |
Collapse
|
9
|
Weaver SRC, Rendeiro C, Lucas RAI, Cable NT, Nightingale TE, McGettrick HM, Lucas SJE. Non-pharmacological interventions for vascular health and the role of the endothelium. Eur J Appl Physiol 2022. [PMID: 36149520 DOI: 10.1007/s00421-022-05041-y.pmid:36149520;pmcid:pmc9613570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
The most common non-pharmacological intervention for both peripheral and cerebral vascular health is regular physical activity (e.g., exercise training), which improves function across a range of exercise intensities and modalities. Numerous non-exercising approaches have also been suggested to improved vascular function, including repeated ischemic preconditioning (IPC); heat therapy such as hot water bathing and sauna; and pneumatic compression. Chronic adaptive responses have been observed across a number of these approaches, yet the precise mechanisms that underlie these effects in humans are not fully understood. Acute increases in blood flow and circulating signalling factors that induce responses in endothelial function are likely to be key moderators driving these adaptations. While the impact on circulating factors and environmental mechanisms for adaptation may vary between approaches, in essence, they all centre around acutely elevating blood flow throughout the circulation and stimulating improved endothelium-dependent vascular function and ultimately vascular health. Here, we review our current understanding of the mechanisms driving endothelial adaptation to repeated exposure to elevated blood flow, and the interplay between this response and changes in circulating factors. In addition, we will consider the limitations in our current knowledge base and how these may be best addressed through the selection of more physiologically relevant experimental models and research. Ultimately, improving our understanding of the unique impact that non-pharmacological interventions have on the vasculature will allow us to develop superior strategies to tackle declining vascular function across the lifespan, prevent avoidable vascular-related disease, and alleviate dependency on drug-based interventions.
Collapse
Affiliation(s)
- Samuel R C Weaver
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK.
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK.
| | - Catarina Rendeiro
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Rebekah A I Lucas
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - N Timothy Cable
- Institute of Sport, Manchester Metropolitan University, Manchester, UK
| | - Tom E Nightingale
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Helen M McGettrick
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Samuel J E Lucas
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
10
|
Burtscher J, Mallet RT, Pialoux V, Millet GP, Burtscher M. Adaptive Responses to Hypoxia and/or Hyperoxia in Humans. Antioxid Redox Signal 2022; 37:887-912. [PMID: 35102747 DOI: 10.1089/ars.2021.0280] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Significance: Oxygen is indispensable for aerobic life, but its utilization exposes cells and tissues to oxidative stress; thus, tight regulation of cellular, tissue, and systemic oxygen concentrations is crucial. Here, we review the current understanding of how the human organism (mal-)adapts to low (hypoxia) and high (hyperoxia) oxygen levels and how these adaptations may be harnessed as therapeutic or performance enhancing strategies at the systemic level. Recent Advances: Hyperbaric oxygen therapy is already a cornerstone of modern medicine, and the application of mild hypoxia, that is, hypoxia conditioning (HC), to strengthen the resilience of organs or the whole body to severe hypoxic insults is an important preparation for high-altitude sojourns or to protect the cardiovascular system from hypoxic/ischemic damage. Many other applications of adaptations to hypo- and/or hyperoxia are only just emerging. HC-sometimes in combination with hyperoxic interventions-is gaining traction for the treatment of chronic diseases, including numerous neurological disorders, and for performance enhancement. Critical Issues: The dose- and intensity-dependent effects of varying oxygen concentrations render hypoxia- and/or hyperoxia-based interventions potentially highly beneficial, yet hazardous, although the risks versus benefits are as yet ill-defined. Future Directions: The field of low and high oxygen conditioning is expanding rapidly, and novel applications are increasingly recognized, for example, the modulation of aging processes, mood disorders, or metabolic diseases. To advance hypoxia/hyperoxia conditioning to clinical applications, more research on the effects of the intensity, duration, and frequency of altered oxygen concentrations, as well as on individual vulnerabilities to such interventions, is paramount. Antioxid. Redox Signal. 37, 887-912.
Collapse
Affiliation(s)
- Johannes Burtscher
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.,Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Robert T Mallet
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Vincent Pialoux
- Inter-University Laboratory of Human Movement Biology EA7424, University Claude Bernard Lyon 1, University of Lyon, Lyon, France
| | - Grégoire P Millet
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.,Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
11
|
Weaver SRC, Rendeiro C, Lucas RAI, Cable NT, Nightingale TE, McGettrick HM, Lucas SJE. Non-pharmacological interventions for vascular health and the role of the endothelium. Eur J Appl Physiol 2022; 122:2493-2514. [PMID: 36149520 PMCID: PMC9613570 DOI: 10.1007/s00421-022-05041-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/05/2022] [Indexed: 12/11/2022]
Abstract
The most common non-pharmacological intervention for both peripheral and cerebral vascular health is regular physical activity (e.g., exercise training), which improves function across a range of exercise intensities and modalities. Numerous non-exercising approaches have also been suggested to improved vascular function, including repeated ischemic preconditioning (IPC); heat therapy such as hot water bathing and sauna; and pneumatic compression. Chronic adaptive responses have been observed across a number of these approaches, yet the precise mechanisms that underlie these effects in humans are not fully understood. Acute increases in blood flow and circulating signalling factors that induce responses in endothelial function are likely to be key moderators driving these adaptations. While the impact on circulating factors and environmental mechanisms for adaptation may vary between approaches, in essence, they all centre around acutely elevating blood flow throughout the circulation and stimulating improved endothelium-dependent vascular function and ultimately vascular health. Here, we review our current understanding of the mechanisms driving endothelial adaptation to repeated exposure to elevated blood flow, and the interplay between this response and changes in circulating factors. In addition, we will consider the limitations in our current knowledge base and how these may be best addressed through the selection of more physiologically relevant experimental models and research. Ultimately, improving our understanding of the unique impact that non-pharmacological interventions have on the vasculature will allow us to develop superior strategies to tackle declining vascular function across the lifespan, prevent avoidable vascular-related disease, and alleviate dependency on drug-based interventions.
Collapse
Affiliation(s)
- Samuel R C Weaver
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK.
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK.
| | - Catarina Rendeiro
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Rebekah A I Lucas
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - N Timothy Cable
- Institute of Sport, Manchester Metropolitan University, Manchester, UK
| | - Tom E Nightingale
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Helen M McGettrick
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Samuel J E Lucas
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
12
|
Kelly T, Brown C, Bryant-Ekstrand M, Lord R, Dawkins T, Drane A, Futral JE, Barak O, Dragun T, Stembridge M, Spajić B, Drviš I, Duke JW, Ainslie PN, Foster GE, Dujic Z, Lovering AT. Blunted hypoxic pulmonary vasoconstriction in apnoea divers. Exp Physiol 2022; 107:1225-1240. [PMID: 35993480 DOI: 10.1113/ep090326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/11/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is new and noteworthy? What is the central question of this study? Does the hyperbaric, hypercapnic, acidotic, hypoxic stress of apnoea diving lead to greater pulmonary vasoreactivity and increased right-heart work in apnoea divers? What is the main finding and its importance? Compared to sex- and age-matched controls, Divers had a significantly lower change in total pulmonary resistance in response to short duration isocapnic hypoxia. With oral sildenafil (50 mg), there were no differences in total pulmonary resistance between groups, suggesting Divers can maintain normal pulmonary artery tone in hypoxic conditions. Blunted hypoxic pulmonary vasoconstriction may be beneficial during apnoea diving. ABSTRACT Competitive apnoea divers repetitively dive to depths beyond 50 m. During the final portions of ascent, Divers experience significant hypoxaemia. Additionally, hyperbaria during diving increases thoracic blood volume while simultaneously reducing lung volume, increasing pulmonary artery pressure. We hypothesized that Divers would have exaggerated hypoxic pulmonary vasoconstriction leading to increased right-heart work due to their repetitive hypoxaemia and hyperbaria, and that the administration of sildenafil would have a greater effect in reducing pulmonary resistance in Divers. We recruited 16 Divers and 16 age and sex matched non-diving controls (Controls). Using a double-blinded, placebo-controlled, cross-over design, participants were evaluated for normal cardiac and lung function, then their cardiopulmonary responses to 20-30 minutes of isocapnic hypoxia (end-tidal PO2 = 50 mm Hg) were measured one hour following ingestion of 50 mg sildenafil or placebo. Cardiac structure and cardiopulmonary function were similar at baseline. With placebo, Divers had a significantly smaller increase in total pulmonary resistance than controls after 20-30 minutes isocapnic hypoxia (Δ -3.85 ± 72.85 vs 73.74 ± 91.06 dynes/sec/cm-5 , p = .0222). With sildenafil, Divers and Controls had similarly blunted increases in total pulmonary resistance after 20-30 minutes of hypoxia. Divers also had a significantly lower systemic vascular resistance following sildenafil in normoxia. These data indicate that repetitive apnoea diving leads to a blunted hypoxic pulmonary vasoconstriction. We suggest this is a beneficial adaption allowing for increased cardiac output with reduced right heart work and thus reducing cardiac oxygen utilization under hypoxemic conditions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tyler Kelly
- Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Courtney Brown
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | | | - Rachel Lord
- School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, Wales, UK
| | - Tony Dawkins
- School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, Wales, UK
| | - Aimee Drane
- School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, Wales, UK
| | - Joel E Futral
- Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Otto Barak
- Department of Physiology, University of Novi Sad, Novi Sad, Serbia
| | - Tanja Dragun
- Department of Integrative Physiology, University of Split School of Medicine, Split, Croatia
| | - Michael Stembridge
- School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, Wales, UK
| | - Boris Spajić
- Faculty of Kinesiology, University of Zagreb, Zagreb, Croatia
| | - Ivan Drviš
- Faculty of Kinesiology, University of Zagreb, Zagreb, Croatia
| | - Joseph W Duke
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Philip N Ainslie
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Glen E Foster
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Zeljko Dujic
- Department of Integrative Physiology, University of Split School of Medicine, Split, Croatia
| | - Andrew T Lovering
- Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
13
|
Usaj A, Kapus J, Štrumbelj B, Debevec T, Vodičar J. Effects of Moderate Altitude Training Combined with Moderate or High-altitude Residence. Int J Sports Med 2022; 43:1129-1136. [PMID: 35926513 DOI: 10.1055/a-1885-4053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
We aimed to identify potential physiological and performance differences of trained cross-country skiers (V˙o2max=60±4 ml ∙ kg-1 ∙ min-1) following two, 3-week long altitude modalities: 1) training at moderate altitudes (600-1700 m) and living at 1500 m (LMTM;N=8); and 2) training at moderate altitudes (600-1700 m) and living at 1500 m with additional nocturnal normobaric hypoxic exposures (FiO2 =0.17;LHTM; N=8). All participants conducted the same training throughout the altitude training phase and underwent maximal roller ski trials and submaximal cyclo-ergometery before, during and one week after the training camps. No exercise performance or hematological differences were observed between the two modalities. The average roller ski velocities were increased one week after the training camps following both LMTM (p=0.03) and LHTM (p=0.04) with no difference between the two (p=0.68). During the submaximal test, LMTM increased the Tissue Oxygenation Index (11.5±6.5 to 1.0±8.5%; p=0.04), decreased the total hemoglobin concentration (15.1±6.5 to 1.7±12.9 a.u.;p=0.02), and increased blood pH (7.36±0.03 to 7.39±0.03;p=0.03). On the other hand, LHTM augmented minute ventilation (76±14 to 88±10 l·min-1;p=0.04) and systemic blood oxygen saturation by 2±1%; (p=0.02) with no such differences observed following the LMTM. Collectively, despite minor physiological differences observed between the two tested altitude training modalities both induced comparable exercise performance modulation.
Collapse
Affiliation(s)
- Anton Usaj
- Laboratory of Biodynamics, Faculty of Sport, University of Ljubljana, Slovenia
| | - Jernej Kapus
- Laboratory of Biodynamics, Faculty of Sport, University of Ljubljana, Slovenia
| | - Boro Štrumbelj
- Laboratory of Biodynamics, Faculty of Sport, University of Ljubljana, Slovenia
| | - Tadej Debevec
- Laboratory of Biodynamics, Faculty of Sport, University of Ljubljana, Slovenia.,Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Janez Vodičar
- Institute of Sport, Faculty of Sport, University of Ljubljana, Slovenia
| |
Collapse
|
14
|
Kitagawa T, Sakai K, Umehara T, Kida H, Maku T, Sato T, Takatsu H, Komatsu T, Murakami H, Mitsumura H, Iguchi Y. Repeated erythema and pain in the lateral thoracic region due to spinal cord infarction: a case report. J Neurol 2022; 269:6658-6660. [PMID: 35796764 DOI: 10.1007/s00415-022-11264-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Tomomichi Kitagawa
- Departments of Neurology, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan.
| | - Kenichiro Sakai
- Departments of Neurology, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Tadashi Umehara
- Departments of Neurology, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Hiroyuki Kida
- Departments of Neurology, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Takahiro Maku
- Departments of Neurology, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Takeo Sato
- Departments of Neurology, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Hiroki Takatsu
- Departments of Neurology, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Teppei Komatsu
- Departments of Neurology, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Hidetomo Murakami
- Departments of Neurology, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Hidetaka Mitsumura
- Departments of Neurology, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Yasuyuki Iguchi
- Departments of Neurology, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| |
Collapse
|
15
|
Plant-Based Foods and Vascular Function: A Systematic Review of Dietary Intervention Trials in Older Subjects and Hypothesized Mechanisms of Action. Nutrients 2022; 14:nu14132615. [PMID: 35807796 PMCID: PMC9268664 DOI: 10.3390/nu14132615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
Cardiovascular diseases, still the leading cause of mortality in the world, are closely related to vascular function. Older subjects are more susceptible to endothelial dysfunction and therefore it is important to define possible preventive or support strategies, such as consumption of foods with health-promoting effects. This systematic review aims to summarize the currently available evidence on acute or chronic trials testing the effect of selected plant-based foods on vascular function parameters in older subjects, and consider plausible mechanisms that may support the main findings. A total of 15 trials were included and analyzed, testing the effects of beetroot, plum, blueberry, and vegetable oils. We found some interesting results regarding markers of vascular reactivity, in particular for beetroot, while no effects were found for markers of arterial stiffness. The amelioration of vascular function seems to be more related to the restoration of a condition of nitric oxide impairment, exacerbated by diseases or hypoxic condition, rather than the enhancement of a physiological situation, as indicated by the limited effects on healthy older subjects or in control groups with young subjects. However, the overall set of selected studies is, in any case, rather limited and heterogeneous in terms of characteristics of the studies, indicating the need for additional high-quality intervention trials to better clarify the role of vegetable foods in restoring and/or improving vascular function in order to better elucidate the mechanisms through which these foods may exert their vascular health benefits in older subjects.
Collapse
|
16
|
Wan HY, Weavil JC, Thurston TS, Georgescu VP, Morrissey CK, Amann M. On the hemodynamic consequence of the chemoreflex and muscle mechanoreflex interaction in women and men: two tales, one story. J Physiol 2022; 600:3671-3688. [PMID: 35710103 PMCID: PMC9378608 DOI: 10.1113/jp283051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/14/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The cardiovascular response resulting from the activation of the muscle mechanoreflex (MMR), or the chemoreflex (CR), was previously shown to be different between women and men; this study focused on the hemodynamic consequence of the interaction of these two sympathoexcitatory reflexes. MMR and CR were activated by passive leg movement and exposure to hypoxia (O2 -CR), or hypercapnia (CO2 -CR), respectively. Individual and interactive reflex effects on central and peripheral hemodynamics were quantified in healthy young women and men. In men, the MMR:O2 -CR and MMR:CO2 -CR interactions restricted peripheral hemodynamics, likely by potentiating sympathetic vasoconstriction. In women, the MMR:O2 -CR interaction facilitated central and peripheral hemodynamics, likely by potentiating sympathetic vasodilation; however, the MMR:CO2 -CR interaction was simply additive for the central and peripheral hemodynamics. The interaction between the MMR and the CR exerts a profound influence on the autonomic control of cardiovascular function in humans, with the hemodynamic consequences differing between women and men. ABSTRACT The cardiovascular response resulting from the individual activation of the muscle mechanoreflex (MMR), or the chemoreflex (CR), is different between men and women. Whether the hemodynamic consequence resulting from the interaction of these sympathoexcitatory reflexes is also sex-dependent remains unknown. MMR and CR were activated by passive leg movement (LM) and exposure to hypoxia (O2 -CR), or hypercapnia (CO2 -CR), respectively. Twelve young men and 12 young women completed two experimental protocols: 1) resting in normoxia (PET O2 : ∼83mmHg, PET CO2 : ∼34mmHg), normocapnic hypoxia (PET O2 : ∼48mmHg, PET CO2 : ∼34mmHg), and hyperoxic hypercapnia (PET O2 : ∼524mmHg, PET CO2 : ∼44mmHg); 2) LM under the same gas conditions. During the MMR:O2 -CR coactivation, in men, the observed blood pressure (MAP) and cardiac output (CO) were not different (additive effect), while the observed leg blood flow (LBF) and vascular conductance (LVC) were significantly lower (hypo-additive), compared with the sum of the responses elicited by each reflex alone. In women, the observed MAP was not different (additive) while the observed CO, LBF, and LVC were significantly greater (hyper-additive), compared with the summated responses. During the MMR:CO2 -CR coactivation, in men, the observed MAP, CO, and LBF were not different (additive), while the observed LVC was significantly lower (hypo-additive), compared with the summated responses. In women, the observed MAP was significantly higher (hyper-additive), while the observed CO, LBF, and LVC were not different (additive), compared with the summated responses. The interaction of the MMR and CR has a pronounced influence on the autonomic cardiovascular control, with the hemodynamic consequences differing between men and women. Abstract figure legend The chemoreflex and the muscle mechanoreflex are sympathoexcitatory mechanisms which, via neural feedback to the cardiovascular centre in the medulla, mediate neurocirculatory responses during physical activity. The interaction of the peripheral chemoreflex and muscle mechanoreflex potentiates vasoconstriction in men, but potentiates vasodilatation in women (left panel). The interaction of the central chemoreflex and muscle mechanoreflex also potentiates vasoconstriction in men, whereas the reflex interaction is simply additive for the vasomotor tone in women (right panel). This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hsuan-Yu Wan
- Department of Anesthesiology, University of Utah, Salt Lake City, UT
| | - Joshua C Weavil
- Geriatric Research, Education, and Clinical Center, VAMC, Salt Lake City, UT
| | - Taylor S Thurston
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT
| | - Vincent P Georgescu
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT
| | | | - Markus Amann
- Department of Anesthesiology, University of Utah, Salt Lake City, UT.,Geriatric Research, Education, and Clinical Center, VAMC, Salt Lake City, UT.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT
| |
Collapse
|
17
|
Akin AT, Kaymak E, Ceylan T, Ozturk E, Basaran KE, Karabulut D, Ozdamar S, Yakan B. Chloroquine attenuates chronic hypoxia-induced testicular damage via suppressing endoplasmic reticulum stress and apoptosis in experimental rat model. Clin Exp Pharmacol Physiol 2022; 49:813-823. [PMID: 35579513 DOI: 10.1111/1440-1681.13669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022]
Abstract
Chronic hypoxia negatively affects male fertility by causing pathological changes in male reproductive system. However, underlying mechanisms of this damage are unknown. Chloroquine (CLQ) is an anti-inflammatory agent which is widely used in the treatment of inflammation-related diseases such as malaria and rheumatoid arthritis. This study aimed to investigate the therapeutic effects of CLQ in the hypoxia-induced testicular damage via assessment of hypoxic response, endoplasmic reticulum stress and apoptosis. For this purpose, 32 Wistar albino rats were divided into 4 groups as Control (given %20-21 O2 , no treatment), CLQ (given 50 mg/kg and %20-21 O2 for 28 days), HX (given %10 O2 for 28 days) and HX + CLQ (given 50 mg/kg and %10 O2 for 28 days). After experiment, blood samples and testicular tissues were taken. Histopathological evaluation was performed on testicular tissues and HIF1-α, HSP70, HSP90 and GADD153 expression levels were detected via immunohistochemistry. Moreover, apoptotic cells were detected via TUNEL staining and serum testosterone levels were determined by ELISA assay. Histopathological changes, apoptotic cell numbers and HIF1-α, HSP70, HSP90 and GADD153 expressions significantly increased in HX group (p < 0.05). Moreover, serum testosterone levels decreased in this group (p > 0.05). However, CLQ exerted a strong ameliorative effect on all parameters in HX + CLQ group. According to our results, we suggested that CLQ can be considered as an alternative protective agent for eliminating the negative effects of hypoxic conditions on male fertility. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ali Tugrul Akin
- Biology Department, Faculty of Science, Erciyes University, Kayseri, Turkey
| | - Emin Kaymak
- Histology-Embriology Department, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Tayfun Ceylan
- Program of Pathology Laboratory Techniques, Kapadokya Vocational High School, Kapadokya University, Nevsehir, Turkey
| | - Emel Ozturk
- Histology-Embriology Department, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Kemal Erdem Basaran
- Physiology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Derya Karabulut
- Histology-Embriology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Saim Ozdamar
- Histology-Embriology Department, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Birkan Yakan
- Histology-Embriology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
18
|
Acute Exercise with Moderate Hypoxia Reduces Arterial Oxygen Saturation and Cerebral Oxygenation without Affecting Hemodynamics in Physically Active Males. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084558. [PMID: 35457425 PMCID: PMC9027900 DOI: 10.3390/ijerph19084558] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 01/02/2023]
Abstract
Hemodynamic changes during exercise in acute hypoxia (AH) have not been completely elucidated. The present study aimed to investigate hemodynamics during an acute bout of mild, dynamic exercise during moderate normobaric AH. Twenty-two physically active, healthy males (average age; range 23–40 years) completed a cardiopulmonary test on a cycle ergometer to determine their maximum workload (Wmax). On separate days, participants performed two randomly assigned exercise tests (three minutes pedaling at 30% of Wmax): (1) during normoxia (NORMO), and (2) during normobaric AH at 13.5% inspired oxygen (HYPO). Hemodynamics were assessed with impedance cardiography, and peripheral arterial oxygen saturation (SatO2) and cerebral oxygenation (Cox) were measured by near-infrared spectroscopy. Hemodynamic responses (heart rate, stroke volume, cardiac output, mean arterial blood pressure, ventricular emptying rate, and ventricular filling rate) were not any different between NORMO and HYPO. However, the HYPO test significantly reduced both SatO2 (96.6 ± 3.3 vs. 83.0 ± 4.5%) and Cox (71.0 ± 6.6 vs. 62.8 ± 7.4 A.U.) when compared to the NORMO test. We conclude that an acute bout of mild exercise during acute moderate normobaric hypoxia does not induce significant changes in hemodynamics, although it can cause significant reductions in SatO2 and Cox.
Collapse
|
19
|
Dech S, Bittmann FN, Schaefer LV. Muscle Oxygenation Level Might Trigger the Regulation of Capillary Venous Blood Filling during Fatiguing Isometric Muscle Actions. Diagnostics (Basel) 2021; 11:1973. [PMID: 34829320 PMCID: PMC8621102 DOI: 10.3390/diagnostics11111973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 01/14/2023] Open
Abstract
The regulation of oxygen and blood supply during isometric muscle actions is still unclear. Recently, two behavioral types of oxygen saturation (SvO2) and relative hemoglobin amount (rHb) in venous microvessels were described during a fatiguing holding isometric muscle action (HIMA) (type I: nearly parallel behavior of SvO2 and rHb; type II: partly inverse behavior). The study aimed to ascertain an explanation of these two regulative behaviors. Twelve subjects performed one fatiguing HIMA trial with each arm by weight holding at 60% of the maximal voluntary isometric contraction (MVIC) in a 90° elbow flexion. Six subjects additionally executed one fatiguing PIMA trial by pulling on an immovable resistance with 60% of the MVIC with each side and same position. Both regulative types mentioned were found during HIMA (I: n = 7, II: n = 17) and PIMA (I: n = 3, II: n = 9). During the fatiguing measurements, rHb decreased initially and started to increase in type II at an average SvO2-level of 58.75 ± 2.14%. In type I, SvO2 never reached that specific value during loading. This might indicate the existence of a threshold around 59% which seems to trigger the increase in rHb and could explain the two behavioral types. An approach is discussed to meet the apparent incompatibility of an increased capillary blood filling (rHb) despite high intramuscular pressures which were found by other research groups during isometric muscle actions.
Collapse
Affiliation(s)
- Silas Dech
- Devision of Regulative Physiology and Prevention, Department of Sports and Health Sciences, University of Potsdam, 14476 Potsdam, Germany; (F.N.B.); (L.V.S.)
| | | | | |
Collapse
|
20
|
Tubek S, Niewinski P, Paleczny B, Langner-Hetmanczuk A, Banasiak W, Ponikowski P. Acute hyperoxia reveals tonic influence of peripheral chemoreceptors on systemic vascular resistance in heart failure patients. Sci Rep 2021; 11:20823. [PMID: 34675332 PMCID: PMC8531381 DOI: 10.1038/s41598-021-99159-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 09/09/2021] [Indexed: 01/08/2023] Open
Abstract
Peripheral chemoreceptors’ (PCh) hyperactivity increases sympathetic tone. An augmented acute ventilatory response to hypoxia, being a marker of PCh oversensitivity, was also identified as a marker of poor prognosis in HF. However, not much is known about the tonic (chronic) influence of PCh on cardio-respiratory parameters. In our study 30 HF patients and 30 healthy individuals were exposed to 100% oxygen for 1 min during which minute ventilation and hemodynamic parameters were non-invasively recorded. Systemic vascular resistance (SVR) and mean arterial pressure (MAP) responses to acute hyperoxia differed substantially between HF and control. In HF hyperoxia caused a significant drop in SVR in early stages with subsequent normalization, while increase in SVR was observed in controls. MAP increased in controls, but remained unchanged in HF. Bilateral carotid bodies excision performed in two HF subjects changed the response to hyperoxia towards the course seen in healthy individuals. These differences may be explained by the domination of early vascular reaction to hyperoxia in HF by vasodilation due to the inhibition of augmented tonic activity of PCh. Otherwise, in healthy subjects the vasoconstrictive action of oxygen remains unopposed. The magnitude of SVR change during acute hyperoxia may be used as a novel method for tonic PCh activity assessment.
Collapse
Affiliation(s)
- Stanislaw Tubek
- Institute of Heart Diseases, Wroclaw Medical University, Borowska 213, 50-556, Wrocław, Poland. .,Institute of Heart Diseases, University Hospital, Wrocław, Poland.
| | - Piotr Niewinski
- Institute of Heart Diseases, Wroclaw Medical University, Borowska 213, 50-556, Wrocław, Poland.,Institute of Heart Diseases, University Hospital, Wrocław, Poland
| | | | - Anna Langner-Hetmanczuk
- Institute of Heart Diseases, Wroclaw Medical University, Borowska 213, 50-556, Wrocław, Poland.,Institute of Heart Diseases, University Hospital, Wrocław, Poland
| | - Waldemar Banasiak
- Department of Cardiology, Centre for Heart Diseases, 4th Military Hospital, Wrocław, Poland
| | - Piotr Ponikowski
- Institute of Heart Diseases, Wroclaw Medical University, Borowska 213, 50-556, Wrocław, Poland.,Institute of Heart Diseases, University Hospital, Wrocław, Poland
| |
Collapse
|
21
|
Lemieux P, Birot O. Altitude, Exercise, and Skeletal Muscle Angio-Adaptive Responses to Hypoxia: A Complex Story. Front Physiol 2021; 12:735557. [PMID: 34552509 PMCID: PMC8450406 DOI: 10.3389/fphys.2021.735557] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/16/2021] [Indexed: 12/18/2022] Open
Abstract
Hypoxia, defined as a reduced oxygen availability, can be observed in many tissues in response to various physiological and pathological conditions. As a hallmark of the altitude environment, ambient hypoxia results from a drop in the oxygen pressure in the atmosphere with elevation. A hypoxic stress can also occur at the cellular level when the oxygen supply through the local microcirculation cannot match the cells’ metabolic needs. This has been suggested in contracting skeletal myofibers during physical exercise. Regardless of its origin, ambient or exercise-induced, muscle hypoxia triggers complex angio-adaptive responses in the skeletal muscle tissue. These can result in the expression of a plethora of angio-adaptive molecules, ultimately leading to the growth, stabilization, or regression of muscle capillaries. This remarkable plasticity of the capillary network is referred to as angio-adaptation. It can alter the capillary-to-myofiber interface, which represent an important determinant of skeletal muscle function. These angio-adaptive molecules can also be released in the circulation as myokines to act on distant tissues. This review addresses the respective and combined potency of ambient hypoxia and exercise to generate a cellular hypoxic stress in skeletal muscle. The major skeletal muscle angio-adaptive responses to hypoxia so far described in this context will be discussed, including existing controversies in the field. Finally, this review will highlight the molecular complexity of the skeletal muscle angio-adaptive response to hypoxia and identify current gaps of knowledges in this field of exercise and environmental physiology.
Collapse
Affiliation(s)
- Pierre Lemieux
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Olivier Birot
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| |
Collapse
|
22
|
Appelt P, Gabriel P, Bölter C, Fiedler N, Schierle K, Salameh A, Rassler B. Left ventricular depression and pulmonary edema in rats after short-term normobaric hypoxia: effects of adrenergic blockade and reduced fluid load. Pflugers Arch 2021; 473:1723-1735. [PMID: 34510286 PMCID: PMC8528748 DOI: 10.1007/s00424-021-02618-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/13/2021] [Accepted: 08/25/2021] [Indexed: 12/25/2022]
Abstract
Acute normobaric hypoxia may induce pulmonary injury with edema (PE) and inflammation. Hypoxia is accompanied by sympathetic activation. As both acute hypoxia and high plasma catecholamine levels may elicit PE, we had originally expected that adrenergic blockade may attenuate the severity of hypoxic pulmonary injury. In particular, we investigated whether administration of drugs with reduced fluid load would be beneficial with respect to both cardiocirculatory and pulmonary functions in acute hypoxia. Rats were exposed to normobaric hypoxia (10% O2) over 1.5 or 6 h and received 0.9% NaCl or adrenergic blockers either as infusion (1 ml/h, increased fluid load) or injection (0.5 ml, reduced fluid load). Control animals were kept in normoxia and received infusions or injections of 0.9% NaCl. After 6 h of hypoxia, LV inotropic function was maintained with NaCl injection but decreased significantly with NaCl infusion. Adrenergic blockade induced a similar LV depression when fluid load was low, but did not further deteriorate LV depression after 6 h of infusion. Reduced fluid load also attenuated pulmonary injury after 6 h of hypoxia. This might be due to an effective fluid drainage into the pleural space. Adrenergic blockade could not prevent PE. In general, increased fluid load and impaired LV inotropic function promote the development of PE in acute hypoxia. The main physiologic conclusion from this study is that fluid reduction under hypoxic conditions has a protective effect on cardiopulmonary function. Consequently, appropriate fluid management has particular importance to subjects in hypoxic conditions.
Collapse
Affiliation(s)
- Peter Appelt
- Carl-Ludwig-Institute of Physiology, University of Leipzig, Leipzig, Germany
| | - Philipp Gabriel
- Carl-Ludwig-Institute of Physiology, University of Leipzig, Leipzig, Germany
| | - Christian Bölter
- Carl-Ludwig-Institute of Physiology, University of Leipzig, Leipzig, Germany
| | - Nicole Fiedler
- Carl-Ludwig-Institute of Physiology, University of Leipzig, Leipzig, Germany
| | - Katrin Schierle
- Institute of Pathology, University of Leipzig, Leipzig, Germany
| | - Aida Salameh
- Department of Pediatric Cardiology, Heart Centre, University of Leipzig, Leipzig, Germany
| | - Beate Rassler
- Carl-Ludwig-Institute of Physiology, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
23
|
Cooper ES, Silverstein DC. Fluid Therapy and the Microcirculation in Health and Critical Illness. Front Vet Sci 2021; 8:625708. [PMID: 34055944 PMCID: PMC8155248 DOI: 10.3389/fvets.2021.625708] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
Fluid selection and administration during shock is typically guided by consideration of macrovascular abnormalities and resuscitative targets (perfusion parameters, heart rate, blood pressure, cardiac output). However, the microcirculatory unit (comprised of arterioles, true capillaries, and venules) is vital for the effective delivery of oxygen and nutrients to cells and removal of waste products from the tissue beds. Given that the microcirculation is subject to both systemic and local control, there is potential for functional changes and impacts on tissue perfusion that are not reflected by macrocirculatory parameters. This chapter will present an overview of the structure, function and regulation of the microcirculation and endothelial surface layer in health and shock states such as trauma, hemorrhage and sepsis. This will set the stage for consideration of how these microcirculatory characteristics, and the potential disconnect between micro- and macrovascular perfusion, may affect decisions related to acute fluid therapy (fluid type, amount, and rate) and monitoring of resuscitative efforts. Available evidence for the impact of various fluids and resuscitative strategies on the microcirculation will also be reviewed.
Collapse
Affiliation(s)
- Edward S Cooper
- Department of Veterinary Clinical Sciences, Ohio State University College of Veterinary Medicine, Columbus, OH, United States
| | - Deborah C Silverstein
- Department of Clinical Studies and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, United States
| |
Collapse
|
24
|
Damiani E, Casarotta E, Orlando F, Carsetti A, Scorcella C, Domizi R, Adrario E, Ciucani S, Provinciali M, Donati A. Effects of Normoxia, Hyperoxia, and Mild Hypoxia on Macro-Hemodynamics and the Skeletal Muscle Microcirculation in Anesthetised Rats. Front Med (Lausanne) 2021; 8:672257. [PMID: 34046421 PMCID: PMC8144325 DOI: 10.3389/fmed.2021.672257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/13/2021] [Indexed: 12/13/2022] Open
Abstract
Objectives: Excessive oxygen (O2) administration may have a negative impact on tissue perfusion by inducing vasoconstriction and oxidative stress. We aimed to evaluate the effects of different inhaled oxygen fractions (FiO2) on macro-hemodynamics and microvascular perfusion in a rat model. Methods: Isoflurane-anesthetised spontaneously breathing male Wistar rats were equipped with arterial (carotid artery) and venous (jugular vein) catheters and tracheotomy, and randomized into three groups: normoxia (FiO2 21%, n = 6), hyperoxia (FiO2 100%, n = 6) and mild hypoxia (FiO2 15%, n = 6). Euvolemia was maintained by infusing Lactate Ringer solution at 10 ml/kg/h. At hourly intervals for 4 h we collected measurements of: mean arterial pressure (MAP); stroke volume index (SVI), heart rate (HR), respiratory rate (by means of echocardiography); arterial and venous blood gases; microvascular density, and flow quality (by means of sidestream dark field videomicroscopy on the hindlimb skeletal muscle). Results: MAP and systemic vascular resistance index increased with hyperoxia and decreased with mild hypoxia (p < 0.001 in both cases, two-way analysis of variance). Hyperoxia induced a reduction in SVI, while this was increased in mild hypoxia (p = 0.002). The HR increased under hyperoxia (p < 0.05 vs. normoxia at 3 h). Cardiax index, as well as systemic O2 delivery, did not significantly vary in the three groups (p = 0.546 and p = 0.691, respectively). At 4 h, microvascular vessel surface (i.e., the percentage of tissue surface occupied by vessels) decreased by 29 ± 4% in the hyperoxia group and increased by 19 ± 7 % in mild hypoxia group (p < 0.001). Total vessel density and perfused vessel density showed similar tendencies (p = 0.003 and p = 0.005, respectively). Parameters of flow quality (microvascular flow index, percentage of perfused vessels, and flow heterogeneity index) remained stable and similar in the three groups. Conclusions: Hyperoxia induces vasoconstriction and reduction in skeletal muscle microvascular density, while mild hypoxia has an opposite effect.
Collapse
Affiliation(s)
- Elisa Damiani
- Anesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Erika Casarotta
- Anesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Fiorenza Orlando
- Experimental Animal Models for Aging Units, Scientific Technological Area, Istituto di Ricovero e Cura a Carattere Scientifico - Istituto Nazionale Ricovero e Cura Anziani, Ancona, Italy
| | - Andrea Carsetti
- Anesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy.,Anesthesia and Intensive Care Unit, Azienda Ospedaliera Universitaria "Ospedali Riuniti Umberto I - Lancisi - Salesi" of Ancona, Ancona, Italy
| | - Claudia Scorcella
- Anesthesia and Intensive Care Unit, Azienda Ospedaliera Universitaria "Ospedali Riuniti Umberto I - Lancisi - Salesi" of Ancona, Ancona, Italy
| | - Roberta Domizi
- Anesthesia and Intensive Care Unit, Azienda Ospedaliera Universitaria "Ospedali Riuniti Umberto I - Lancisi - Salesi" of Ancona, Ancona, Italy
| | - Erica Adrario
- Anesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy.,Anesthesia and Intensive Care Unit, Azienda Ospedaliera Universitaria "Ospedali Riuniti Umberto I - Lancisi - Salesi" of Ancona, Ancona, Italy
| | - Silvia Ciucani
- Anesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Mauro Provinciali
- Experimental Animal Models for Aging Units, Scientific Technological Area, Istituto di Ricovero e Cura a Carattere Scientifico - Istituto Nazionale Ricovero e Cura Anziani, Ancona, Italy
| | - Abele Donati
- Anesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy.,Anesthesia and Intensive Care Unit, Azienda Ospedaliera Universitaria "Ospedali Riuniti Umberto I - Lancisi - Salesi" of Ancona, Ancona, Italy
| |
Collapse
|
25
|
Magnani S, Mulliri G, Roberto S, Sechi F, Ghiani G, Sainas G, Nughedu G, Vargiu R, Bassareo PP, Crisafulli A. Systolic and Diastolic Functions After a Brief Acute Bout of Mild Exercise in Normobaric Hypoxia. Front Physiol 2021; 12:650696. [PMID: 33967823 PMCID: PMC8103167 DOI: 10.3389/fphys.2021.650696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/31/2021] [Indexed: 11/13/2022] Open
Abstract
Acute hypoxia (AH) is a challenge to the homeostasis of the cardiovascular system, especially during exercise. Research in this area is scarce. We aimed to ascertain whether echocardiographic, Doppler, and tissue Doppler measures were able to detect changes in systolic and diastolic functions during the recovery after mild exercise in AH. Twelve healthy males (age 33.5 ± 4.8 years) completed a cardiopulmonary test on an electromagnetically braked cycle-ergometer to determine their maximum workload (Wmax). On separate days, participants performed randomly assigned two exercise sessions consisting in 3 min pedalling at 30% of Wmax: (1) one test was conducted in normoxia (NORMO) and (2) one in normobaric hypoxia with FiO2 set to 13.5% (HYPO). Hemodynamics were assessed with an echocardiographic system. The main result was that the HYPO session increased parameters related to myocardial contractility such as pre-ejection period and systolic myocardial velocity with respect to the NORMO test. Moreover, the HYPO test enhanced early transmitral filling peak velocities. No effects were detected for left ventricular volumes, as end-diastolic, end-systolic, and stroke volume were similar between the NORMO and the HYPO test. Results of the present investigation support the hypothesis that a brief, mild exercise bout in acute normobaric hypoxia does not impair systolic or diastolic functions. Rather, it appears that stroke volume is well preserved and that systolic and early diastolic functions are enhanced by exercise in hypoxia.
Collapse
Affiliation(s)
- Sara Magnani
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,International PhD in Innovation Sciences and Technologies, University of Cagliari, Cagliari, Italy
| | - Gabriele Mulliri
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,International PhD in Innovation Sciences and Technologies, University of Cagliari, Cagliari, Italy
| | - Silvana Roberto
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Fabio Sechi
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Giovanna Ghiani
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Gianmarco Sainas
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Giorgio Nughedu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Romina Vargiu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Pier Paolo Bassareo
- University College of Dublin, Mater Misericordiae University Teaching Hospital, Dublin, Ireland
| | - Antonio Crisafulli
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,International PhD in Innovation Sciences and Technologies, University of Cagliari, Cagliari, Italy
| |
Collapse
|
26
|
Post-exercise cardiac autonomic and cardiovascular responses to heart rate-matched and work rate-matched hypoxic exercise. Eur J Appl Physiol 2021; 121:2061-2076. [PMID: 33811558 PMCID: PMC8192382 DOI: 10.1007/s00421-021-04678-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/28/2021] [Indexed: 12/30/2022]
Abstract
Purpose This study investigated the effect of performing hypoxic exercise at the same heart rate (HR) or work rate (WR) as normoxic exercise on post-exercise autonomic and cardiovascular responses. Methods Thirteen men performed three interval-type exercise sessions (5 × 5-min; 1-min recovery): normoxic exercise at 80% of the WR at the first ventilatory threshold (N), hypoxic exercise (FiO2 = 14.2%) at the same WR as N (H-WR) and hypoxic exercise at the same HR as N (H-HR). Autonomic and cardiovascular assessments were conducted before and after exercise, both at rest and during active squat–stand manoeuvres (SS). Results Compared to N, H-WR elicited a higher HR response (≈ 83% vs ≈ 75%HRmax, p < 0.001) and H-HR a reduced exercise WR (− 21.1 ± 9.3%, p < 0.001). Cardiac parasympathetic indices were reduced 15 min after exercise and recovered within 60 min in N and H-HR, but not after H-WR (p < 0.05). H-WR altered cardiac baroreflex sensitivity (cBRS) both at rest and during SS (specifically in the control of blood pressure fall during standing phases) in the first 60 min after the exercise bout (p < 0.05). Post-exercise hypotension (PEH) did not occur in H-HR (p > 0.05) but lasted longer in H-WR than in N (p < 0.05). Conclusions Moderate HR-matched hypoxic exercise mimicked post-exercise autonomic responses of normoxic exercise without resulting in significant PEH. This may relate to the reduced WR and the limited associated mechanical/metabolic strain. Conversely, WR-matched hypoxic exercise impacted upon post-exercise autonomic and cardiovascular responses, delaying cardiac autonomic recovery, temporarily decreasing cBRS and evoking prolonged PEH. Supplementary Information The online version contains supplementary material available at 10.1007/s00421-021-04678-5.
Collapse
|
27
|
Niewinski P, Tubek S, Paton JFR, Banasiak W, Ponikowski P. Oxygenation pattern and compensatory responses to hypoxia and hypercapnia following bilateral carotid body resection in humans. J Physiol 2021; 599:2323-2340. [DOI: 10.1113/jp281319] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/12/2021] [Indexed: 11/08/2022] Open
Affiliation(s)
- Piotr Niewinski
- Department of Heart Diseases Wroclaw Medical University Wroclaw Poland
| | - Stanislaw Tubek
- Department of Heart Diseases Wroclaw Medical University Wroclaw Poland
| | - Julian F. R. Paton
- Department of Physiology Faculty of Medical & Health Sciences University of Auckland Park Road Grafton Auckland New Zealand
| | | | - Piotr Ponikowski
- Department of Heart Diseases Wroclaw Medical University Wroclaw Poland
| |
Collapse
|
28
|
Fentanyl impairs but ketamine preserves the microcirculatory response to hemorrhage. J Trauma Acute Care Surg 2021; 89:S93-S99. [PMID: 32044869 DOI: 10.1097/ta.0000000000002604] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Peripheral vasoconstriction is the most critical compensating mechanism following hemorrhage to maintain blood pressure. On the battlefield, ketamine rather than opioids is recommended for pain management in case of hemorrhage, but effects of analgesics on compensatory vasoconstriction are not defined. We hypothesized that fentanyl impairs but ketamine preserves the peripheral vasoconstriction and blood pressure compensation following hemorrhage. METHOD Sprague-Dawley rats (11-13 weeks) were randomly assigned to control (saline vehicle), fentanyl, or ketamine-treated groups with or without hemorrhage (n = 8 or 9 for each group). Rats were anesthetized with Inactin (i.p. 10 mg/100 g), and the spinotrapezius muscles were prepared for microcirculatory observation. Arteriolar arcades were observed with a Nikon microscope, and vessel images and arteriolar diameters were recorded by using Nikon NIS Elements Imaging Software (Nikon Instruments Inc. NY). After baseline perimeters were recorded, the arterioles were topically challenged with saline, fentanyl, or ketamine at concentrations relevant to intravenous analgesic doses to determine direct vasoactive effects. After arteriolar diameters returned to baseline, 30% of total blood volume was removed in 25 minutes. Ten minutes after hemorrhage, rats were intravenously injected with an analgesic dose of fentanyl (0.6 μg/100 g), ketamine (0.3 mg/100 g), or a comparable volume of saline. For each drug or vehicle administration, the total volume injected was 0.1 mL/100 g. Blood pressure, heart rate, and arteriolar responses were monitored for 40 minutes. RESULTS Topical fentanyl-induced vasodilation (17 ± 2%), but ketamine caused vasoconstriction (-15 ± 4%, p < 0.01). Following hemorrhage, intravenous ketamine did not affect blood pressure or respiratory rate, while fentanyl induced a slight and transient (<5 minutes, p = 0.03 vs. saline group) decrease in blood pressure, with a profound and prolonged suppression in respiratory rate (>10 minutes, with a peak inhibition of 57 ± 8% of baseline, p < 0.01). The compensatory vasoconstriction observed after hemorrhage was not affected by ketamine treatment. However, after fentanyl injection, although changes in blood pressure were transiently present, arteriolar constriction to hemorrhage was absent and replaced with a sustained vasodilation (78 ± 25% to 36 ± 22% of baseline during the 40 minutes after injection, p < 0.01). CONCLUSION Ketamine affects neither systemic nor microcirculatory compensatory responses to hemorrhage, providing preclinical evidence that ketamine may help attenuate adverse physiological consequences associated with opioids following traumatic hemorrhage. Microcirculatory responses are more sensitive than systemic response for evaluation of hemodynamic stability during procedures associated with pain management.
Collapse
|
29
|
De Groote E, Deldicque L. Is Physical Exercise in Hypoxia an Interesting Strategy to Prevent the Development of Type 2 Diabetes? A Narrative Review. Diabetes Metab Syndr Obes 2021; 14:3603-3616. [PMID: 34413663 PMCID: PMC8370110 DOI: 10.2147/dmso.s322249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/10/2021] [Indexed: 12/13/2022] Open
Abstract
Impaired metabolism is becoming one of the main causes of mortality and the identification of strategies to cure those diseases is a major public health concern. A number of therapies are being developed to treat type 2 diabetes mellitus (T2DM), but few of them focus on situations prior to diabetes. Obesity, aging and insulin resistance are all risk factors, which fortunately can be reversed to some extent. Non-drug interventions, such as exercise, are interesting strategies to prevent the onset of diabetes, but it remains to determine the optimal dose and conditions. In the search of optimizing the effects of physical exercise to prevent T2DM, hypoxic training has emerged as an interesting and original strategy. Several recent studies have chosen to look at the effects of hypoxic training in people at risk of developing T2DM. Therefore, the purpose of this narrative review is to give an overview of all original articles having tested the effects of a single exercise or exercise training in hypoxia on glucose metabolism and other health-related parameters in people at risk of developing T2DM. Taken together, the data on the effects of hypoxic training on glucose metabolism, insulin sensitivity and the health status of people at risk of T2DM are inconclusive. Some studies show that hypoxic training can improve glucose metabolism and the health status to a greater extent than normoxic training, while others do not corroborate the latter. When an additional benefit of hypoxic vs normoxic training is found, it still remains to determine which signaling pathways and molecular mechanisms are involved.
Collapse
Affiliation(s)
- Estelle De Groote
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Louise Deldicque
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- Correspondence: Louise Deldicque Institute of Neuroscience, Université catholique de Louvain, Place Pierre de Coubertin, 1 Box L08.10.01, Louvain-la-Neuve, 1348, BelgiumTel +32 10 47 44 43 Email
| |
Collapse
|
30
|
Exposure to acute normobaric hypoxia results in adaptions of both the macro- and microcirculatory system. Sci Rep 2020; 10:20938. [PMID: 33262355 PMCID: PMC7708486 DOI: 10.1038/s41598-020-77724-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/14/2020] [Indexed: 12/19/2022] Open
Abstract
Although acute hypoxia is of utmost pathophysiologic relevance in health and disease, studies on its effects on both the macro- and microcirculation are scarce. Herein, we provide a comprehensive analysis of the effects of acute normobaric hypoxia on human macro- and microcirculation. 20 healthy participants were enrolled in this study. Hypoxia was induced in a normobaric hypoxia chamber by decreasing the partial pressure of oxygen in inhaled air stepwisely (pO2; 21.25 kPa (0 k), 16.42 kPa (2 k), 12.63 kPa (4 k) and 9.64 kPa (6 k)). Macrocirculatory effects were assessed by cardiac output measurements, microcirculatory changes were investigated by sidestream dark-field imaging in the sublingual capillary bed and videocapillaroscopy at the nailfold. Exposure to hypoxia resulted in a decrease of systemic vascular resistance (p < 0.0001) and diastolic blood pressure (p = 0.014). Concomitantly, we observed an increase in heart rate (p < 0.0001) and an increase of cardiac output (p < 0.0001). In the sublingual microcirculation, exposure to hypoxia resulted in an increase of total vessel density, proportion of perfused vessels and perfused vessel density. Furthermore, we observed an increase in peripheral capillary density. Exposure to acute hypoxia results in vasodilatation of resistance arteries, as well as recruitment of microvessels of the central and peripheral microcirculation. The observed macro- and microcirculatory effects are most likely a result from compensatory mechanisms to ensure adequate tissue oxygenation.
Collapse
|
31
|
Berthelsen LF, Fraser GM, Simpson LL, Vanden Berg ER, Busch SA, Steele AR, Meah VL, Lawley JS, Figueroa-Mujíca RJ, Vizcardo-Galindo G, Villafuerte F, Gasho C, Willie CK, Tymko MM, Ainslie PN, Stembridge M, Moore JP, Steinback CD. Highs and lows of sympathetic neurocardiovascular transduction: influence of altitude acclimatization and adaptation. Am J Physiol Heart Circ Physiol 2020; 319:H1240-H1252. [PMID: 32986967 DOI: 10.1152/ajpheart.00364.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
High-altitude (>2,500 m) exposure results in increased muscle sympathetic nervous activity (MSNA) in acclimatizing lowlanders. However, little is known about how altitude affects MSNA in indigenous high-altitude populations. Additionally, the relationship between MSNA and blood pressure regulation (i.e., neurovascular transduction) at high-altitude is unclear. We sought to determine 1) how high-altitude effects neurocardiovascular transduction and 2) whether differences exist in neurocardiovascular transduction between low- and high-altitude populations. Measurements of MSNA (microneurography), mean arterial blood pressure (MAP; finger photoplethysmography), and heart rate (electrocardiogram) were collected in 1) lowlanders (n = 14) at low (344 m) and high altitude (5,050 m), 2) Sherpa highlanders (n = 8; 5,050 m), and 3) Andean (with and without excessive erythrocytosis) highlanders (n = 15; 4,300 m). Cardiovascular responses to MSNA burst sequences (i.e., singlet, couplet, triplet, and quadruplet) were quantified using custom software (coded in MATLAB, v.2015b). Slopes were generated for each individual based on peak responses and normalized total MSNA. High altitude reduced neurocardiovascular transduction in lowlanders (MAP slope: high altitude, 0.0075 ± 0.0060 vs. low altitude, 0.0134 ± 0.080; P = 0.03). Transduction was elevated in Sherpa (MAP slope, 0.012 ± 0.007) compared with Andeans (0.003 ± 0.002, P = 0.001). MAP transduction was not statistically different between acclimatizing lowlanders and Sherpa (MAP slope, P = 0.08) or Andeans (MAP slope, P = 0.07). When resting MSNA is accounted for (ANCOVA), transduction was inversely related to basal MSNA (bursts/minute) independent of population (RRI, r = 0.578 P < 0.001; MAP, r = -0.627, P < 0.0001). Our results demonstrate that transduction is blunted in individuals with higher basal MSNA, suggesting that blunted neurocardiovascular transduction is a physiological adaptation to elevated MSNA rather than an effect or adaptation specific to chronic hypoxic exposure.NEW & NOTEWORTHY This study has identified that sympathetically mediated blood pressure regulation is reduced following ascent to high-altitude. Additionally, we show that high altitude Andean natives have reduced blood pressure responsiveness to sympathetic nervous activity (SNA) compared with Nepalese Sherpa. However, basal sympathetic activity is inversely related to the magnitude of SNA-mediated fluctuations in blood pressure regardless of population or condition. These data set a foundation to explore more precise mechanisms of blood pressure control under conditions of persistent sympathetic activation and hypoxia.
Collapse
Affiliation(s)
- Lindsey F Berthelsen
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Alberta, Canada
| | - Graham M Fraser
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Lydia L Simpson
- School of Sport, Health and Exercise Science, Bangor University, Bangor, United Kingdom
| | - Emily R Vanden Berg
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Alberta, Canada
| | - Stephen A Busch
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Alberta, Canada
| | - Andrew R Steele
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Alberta, Canada
| | - Victoria L Meah
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Alberta, Canada
| | - Justin S Lawley
- Department of Sport Science, Division of Physiology, University of Innsbruck, Innsbruck, Austria
| | - Romulo J Figueroa-Mujíca
- Laboratorio de Fisiologia Comparada, Departamento de Ciencias Biologicas y Fisiologicas, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Gustavo Vizcardo-Galindo
- Laboratorio de Fisiologia Comparada, Departamento de Ciencias Biologicas y Fisiologicas, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Francisco Villafuerte
- Laboratorio de Fisiologia Comparada, Departamento de Ciencias Biologicas y Fisiologicas, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Chris Gasho
- Division of Pulmonary and Critical Care, School of Medicine, Loma Linda University, Loma Linda, California
| | - Christopher K Willie
- Centre for Heart, Lung, and Vascular Health, University of British Columbia Okanagan, Kelowna, Canada
| | - Michael M Tymko
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Alberta, Canada.,Centre for Heart, Lung, and Vascular Health, University of British Columbia Okanagan, Kelowna, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung, and Vascular Health, University of British Columbia Okanagan, Kelowna, Canada
| | - Mike Stembridge
- Cardiff Centre for Exercise and Health, Cardiff School of Sport and Health, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Jonathan P Moore
- School of Sport, Health and Exercise Science, Bangor University, Bangor, United Kingdom
| | - Craig D Steinback
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Alberta, Canada
| |
Collapse
|
32
|
A brief bout of exercise in hypoxia reduces ventricular filling rate and stroke volume response during muscle metaboreflex activation. Eur J Appl Physiol 2020; 120:2115-2126. [PMID: 32683489 PMCID: PMC7419479 DOI: 10.1007/s00421-020-04435-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/10/2020] [Indexed: 01/20/2023]
Abstract
Purpose The hemodynamic consequences of exercise in hypoxia have not been completely investigated. The present investigation aimed at studying the hemodynamic effects of contemporary normobaric hypoxia and metaboreflex activation. Methods Eleven physically active, healthy males (age 32.7 ± 7.2 years) completed a cardiopulmonary test on an electromagnetically braked cycle-ergometer to determine their maximum workload (Wmax). On separate days, participants performed two randomly assigned exercise sessions (3 minutes pedalling at 30% of Wmax): (1) one in normoxia (NORMO), and (2) one in normobaric hypoxia with FiO2 set to 13.5% (HYPO). After each session, the following protocol was randomly assigned: either (1) post-exercise muscle ischemia (PEMI) to study the metaboreflex, or (2) a control exercise recovery session, i.e., without metaboreflex activation. Hemodynamics were assessed with impedance cardiography. Results The main result was that the HYPO session impaired the ventricular filling rate (measured as stroke volume/diastolic time) response during PEMI versus control condition in comparison to the NORMO test (31.33 ± 68.03 vs. 81.52 ± 49.23 ml·s−1,respectively, p = 0.003). This caused a reduction in the stroke volume response (1.45 ± 9.49 vs. 10.68 ± 8.21 ml, p = 0.020). As a consequence, cardiac output response was impaired during the HYPO test. Conclusions The present investigation suggests that a brief exercise bout in hypoxia is capable of impairing cardiac filling rate as well as stroke volume during the metaboreflex. These results are in good accordance with recent findings showing that among hemodynamic modulators, ventricular filling is the most sensible variable to hypoxic stimuli.
Collapse
|
33
|
Schlotman TE, Lehnhardt KR, Abercromby AF, Easter BD, Downs ME, Akers LTCKS, Convertino VA. Bridging the gap between military prolonged field care monitoring and exploration spaceflight: the compensatory reserve. NPJ Microgravity 2019; 5:29. [PMID: 31815179 PMCID: PMC6893012 DOI: 10.1038/s41526-019-0089-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/31/2019] [Indexed: 01/03/2023] Open
Abstract
The concept of prolonged field care (PFC), or medical care applied beyond doctrinal planning timelines, is the top priority capability gap across the US Army. PFC is the idea that combat medics must be prepared to provide medical care to serious casualties in the field without the support of robust medical infrastructure or resources in the event of delayed medical evacuation. With limited resources, significant distances to travel before definitive care, and an inability to evacuate in a timely fashion, medical care during exploration spaceflight constitutes the ultimate example PFC. One of the main capability gaps for PFC in both military and spaceflight settings is the need for technologies for individualized monitoring of a patient's physiological status. A monitoring capability known as the compensatory reserve measurement (CRM) meets such a requirement. CRM is a small, portable, wearable technology that uses a machine learning and feature extraction-based algorithm to assess real-time changes in hundreds of specific features of arterial waveforms. Future development and advancement of CRM still faces engineering challenges to develop ruggedized wearable sensors that can measure waveforms for determining CRM from multiple sites on the body and account for less than optimal conditions (sweat, water, dirt, blood, movement, etc.). We show here the utility of a military wearable technology, CRM, which can be translated to space exploration.
Collapse
Affiliation(s)
- Taylor E. Schlotman
- United States Army Institute of Surgical Research 3698 Chambers Pass, Bldg. 3611 JBSA Fort Sam, Houston, TX 78234 USA
| | | | | | | | - Meghan E. Downs
- NASA Johnson Space Center, 2101 E NASA Pkwy, Houston, TX 77058 USA
| | - L. T. C. Kevin S. Akers
- United States Army Institute of Surgical Research 3698 Chambers Pass, Bldg. 3611 JBSA Fort Sam, Houston, TX 78234 USA
| | - Victor A. Convertino
- United States Army Institute of Surgical Research 3698 Chambers Pass, Bldg. 3611 JBSA Fort Sam, Houston, TX 78234 USA
| |
Collapse
|
34
|
Aebi MR, Willis SJ, Girard O, Borrani F, Millet GP. Active Preconditioning With Blood Flow Restriction or/and Systemic Hypoxic Exposure Does Not Improve Repeated Sprint Cycling Performance. Front Physiol 2019; 10:1393. [PMID: 31798461 PMCID: PMC6867998 DOI: 10.3389/fphys.2019.01393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/28/2019] [Indexed: 11/30/2022] Open
Abstract
Purpose The aim of this study was to evaluate the effects of active preconditioning techniques using blood flow restriction or/and systemic hypoxic exposure on repeated sprint cycling performance and oxygenation responses. Methods Participants were 17 men; 8 were cycle trained (T: 21 ± 6 h/week) and 9 were untrained but physically active (UT). Each participant completed 4 cycles of 5 min stages of cycling at 1.5 W⋅kg–1 in four conditions [Control; IPC (ischemic preconditioning) with partial blood flow restriction (60% of relative total occlusion pressure); HPC (hypoxic preconditioning) in normobaric systemic hypoxia (FIO2 13.6%); and HIPC (hypoxic and ischemic preconditioning combined)]. Following a 40 min rest period, a repeated sprint exercise (RSE: 8 × 10 s sprints; 20 s of recovery) was performed. Near-infrared spectroscopy parameters [for each sprint, change in deoxyhemoglobin (Δ[HHb]), total hemoglobin (Δ[tHb]), and tissue saturation index (ΔTSI%)] were measured. Results Trained participants achieved higher power outputs (+10–16%) than UT in all conditions, yet RSE performance did not differ between active preconditioning techniques in the two groups. All conditions induced similar sprint decrement scores during RSE in both T and UT (16 ± 2 vs. 23 ± 9% in CON; 17 ± 3 vs. 19 ± 6% in IPC; 18 ± 5 vs. 20 ± 10% in HPC; and 17 ± 3 vs. 21 ± 5% in HIPC, for T and UT, respectively). During the sprints, Δ[HHb] was larger after IPC than both HPC and CON in T (p < 0.001). The Δ[tHb] was greater after HPC than all other conditions in T, whereas IPC, HPC, and HIPC induced higher Δ[tHb] than CON in UT. Conclusion None of the active preconditioning methods had an ergogenic effect on repeated sprint cycling performance, despite some specific hemodynamic responses (e.g., greater oxygen extraction and changes in blood volume), which were emphasized in the trained cyclists.
Collapse
Affiliation(s)
- Mathias R Aebi
- ISSUL, Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Aeromedical Center (AeMC), Swiss Air Force, Dübendorf, Switzerland
| | - Sarah J Willis
- ISSUL, Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Olivier Girard
- ISSUL, Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Murdoch Applied Sports Science (MASS) Laboratory, Murdoch University, Perth, WA, Australia
| | - Fabio Borrani
- ISSUL, Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Grégoire P Millet
- ISSUL, Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
35
|
Gollasch B, Wu G, Dogan I, Rothe M, Gollasch M, Luft FC. Maximal exercise and erythrocyte epoxy fatty acids: a lipidomics study. Physiol Rep 2019; 7:e14275. [PMID: 31782268 PMCID: PMC6882955 DOI: 10.14814/phy2.14275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 01/02/2023] Open
Abstract
Fatty acid (FA)-derived lipid products generated by cytochrome P450 (CYP), lipoxygenase (LOX), and cyclo-oxygenase (COX) influence cardiovascular function. However, plasma measurements invariably ignore 40% of the blood specimen, namely the erythrocytes. These red blood cells (RBCs) represent a cell mass of about 3 kg. RBCs are a potential reservoir for epoxy fatty acids, which on release could regulate vascular capacity. We tested the hypothesis that maximal physical activity would influence the epoxy fatty acid status in RBCs. We used a standardized maximal treadmill exercise according to Bruce to ensure a robust hemodynamic and metabolic response. Central hemodynamic monitoring was performed using blood pressure and heart rate measurements and maximal workload was assessed in metabolic equivalents (METs). We used tandem mass spectrometry (LC-MS/MS) to measure epoxides derived from CYP monooxygenase, as well as metabolites derived from LOX, COX, and CYP hydroxylase pathways. Venous blood was obtained for RBC lipidomics. With the incremental exercise test, increases in the levels of various CYP epoxy-mediators in RBCs, including epoxyoctadecenoic acids (9,10-EpOME, 12,13-EpOME), epoxyeicosatrienoic acids (5,6-EET, 11,12-EET, 14,15-EET), and epoxydocosapentaenoic acids (16,17-EDP, 19,20-EDP) occurred, as heart rate, systolic blood pressure, and plasma lactate concentrations increased. Maximal (13.5 METs) exercise intensity had no effect on diols and various LOX, COX, and hydroxylase mediators. Our findings suggest that CYP epoxy-metabolites could contribute to the cardiovascular response to maximal exercise.
Collapse
Affiliation(s)
- Benjamin Gollasch
- Experimental and Clinical Research Center (ECRC), a joint institution between the Charité University Medicine and Max Delbrück Center (MDC) for Molecular MedicineBerlin‐BuchGermany
- HELIOS Klinikum Berlin‐BuchBerlinGermany
| | - Guanlin Wu
- Experimental and Clinical Research Center (ECRC), a joint institution between the Charité University Medicine and Max Delbrück Center (MDC) for Molecular MedicineBerlin‐BuchGermany
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz AssociationBerlinGermany
| | | | | | - Maik Gollasch
- Experimental and Clinical Research Center (ECRC), a joint institution between the Charité University Medicine and Max Delbrück Center (MDC) for Molecular MedicineBerlin‐BuchGermany
- Nephrology/Intensive Care SectionCharité Campus VirchowBerlinGermany
| | - Friedrich C. Luft
- Nephrology/Intensive Care SectionCharité Campus VirchowBerlinGermany
| |
Collapse
|
36
|
Grocott MPW, Levett DZH, Ward SA. Exercise physiology: exercise performance at altitude. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
37
|
Affiliation(s)
- Harald H H W Schmidt
- Department of Pharmacology & Personalised Medicine, Faculty of Health, Medicine & Life Science, Maastricht University, The Netherlands (H.H.H.W.S.)
| | - Martin Feelisch
- Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, UK (M.F.)
| |
Collapse
|
38
|
Effect of New Zealand Blackcurrant Extract on Cycling Performance and Substrate Oxidation in Normobaric Hypoxia in Trained Cyclists. Sports (Basel) 2019; 7:sports7030067. [PMID: 30884866 PMCID: PMC6473752 DOI: 10.3390/sports7030067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/03/2019] [Accepted: 03/13/2019] [Indexed: 11/16/2022] Open
Abstract
New Zealand blackcurrant (NZBC) extract enhanced exercise-induced fat oxidation and 16.1 km cycling time trial (TT) in normobaric normoxia. The effect of NZBC extract on physiological and metabolic responses was examined during steady state cycling and a 16.1 km TT in normobaric hypoxia. This study used a randomized, double-blind, crossover design. Eleven healthy male cyclists (age: 38 ± 11 y, height: 179 ± 4 cm, body mass: 76 ± 8 kg, V ˙ O2max: 47 ± 5 mL·kg-1·min-1, mean ± SD) ingested NZBC extract (600 mg·day-1 CurraNZ® containing 210 mg anthocyanins) or a placebo (600 mg microcrystalline cellulose M102) for seven days (washout 14 days) and performed a steady state cycling test (3 × 10 min at 45%, 55% and 65% V ˙ O2max) followed by a 16.1 km TT at a simulated altitude of ~2500 meters (~15% of O₂). Indirect calorimetry was used to measure substrate oxidation during steady state cycling. Intake of NZBC extract had no effect on blood glucose and lactate, heart rate, substrate oxidation, and respiratory exchange ratio during steady state cycling at 45%, 55% and 65% V ˙ O2max, and on 16.1 km TT performance (placebo: 1685 ± 92 s, NZBC extract: 1685 ± 99 s, P = 0.97). Seven days intake of New Zealand blackcurrant extract does not change exercise-induced metabolic responses and 16.1 km cycling time trial performance for moderately endurance-trained men in normobaric hypoxia.
Collapse
|
39
|
Effects of exercise in normobaric hypoxia on hemodynamics during muscle metaboreflex activation in normoxia. Eur J Appl Physiol 2019; 119:1137-1148. [DOI: 10.1007/s00421-019-04103-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 02/13/2019] [Indexed: 01/21/2023]
|
40
|
Kukadia S, Dehbi HM, Tillin T, Coady E, Chaturvedi N, Hughes AD. A Double-Blind Placebo-Controlled Crossover Study of the Effect of Beetroot Juice Containing Dietary Nitrate on Aortic and Brachial Blood Pressure Over 24 h. Front Physiol 2019; 10:47. [PMID: 30778302 PMCID: PMC6369216 DOI: 10.3389/fphys.2019.00047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 01/17/2019] [Indexed: 01/30/2023] Open
Abstract
Dietary inorganic nitrate in beetroot can act as a source of nitric oxide and has been reported to lower brachial blood pressure (BP). This study examined the effect of inorganic nitrate in beetroot juice on aortic (central) BP acutely and over the subsequent 24-h period. A double blind, randomized, placebo-controlled crossover trial was performed in fifteen healthy, normotensive men and women (age 22–40 years). Participants were randomized to receive beetroot juice containing nitrate (6.5–7.3 mmol) or placebo beetroot juice from which nitrate had been removed (<0.06 mmol nitrate). Effects on aortic systolic BP were measured at 30 min (primary endpoint), 60 min and over a subsequent 24 h period using an ambulatory BP monitor. Carotid-femoral pulse wave velocity (cfPWV) was also measured at 30 min. Following a washout period, the procedure was repeated within 7 days with crossover to the opposite arm of the trial. Compared with placebo, ingestion of beetroot juice containing nitrate lowered aortic systolic BP at 30 min by 5.2 (1.9–8.5) mmHg [mean (95% confidence interval); p < 0.01]. A smaller effect on aortic systolic BP was observed at 60 min. There were minimal effects on brachial BP or cfPWV. Effects on aortic systolic BP were not sustained over the subsequent 24 h and there were no effects on other hemodynamic parameters during ambulatory monitoring. A single dose of beetroot juice containing nitrate lowers aortic BP more effectively than brachial BP in the short term, but the effects are comparatively short-lived and do not persist over the course of the same day.
Collapse
Affiliation(s)
- Suraj Kukadia
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Hakim-Moulay Dehbi
- Institute of Cardiovascular Science, University College London, London, United Kingdom.,CRUK Cancer Trials Centre, Faculty of Medical Sciences, University College London, London, United Kingdom
| | - Therese Tillin
- Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Emma Coady
- Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Nish Chaturvedi
- Institute of Cardiovascular Science, University College London, London, United Kingdom.,MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, United Kingdom
| | - Alun D Hughes
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom.,Institute of Cardiovascular Science, University College London, London, United Kingdom.,MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, United Kingdom
| |
Collapse
|
41
|
Richards JC, Racine ML, Hearon CM, Kunkel M, Luckasen GJ, Larson DG, Allen JD, Dinenno FA. Acute ingestion of dietary nitrate increases muscle blood flow via local vasodilation during handgrip exercise in young adults. Physiol Rep 2019; 6. [PMID: 29380952 PMCID: PMC5789727 DOI: 10.14814/phy2.13572] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 12/04/2022] Open
Abstract
Dietary nitrate (NO3−) is converted to nitrite (NO2−) and can be further reduced to the vasodilator nitric oxide (NO) amid a low O2 environment. Accordingly, dietary NO3− increases hind limb blood flow in rats during treadmill exercise; however, the evidence of such an effect in humans is unclear. We tested the hypothesis that acute dietary NO3− (via beetroot [BR] juice) increases forearm blood flow (FBF) via local vasodilation during handgrip exercise in young adults (n = 11; 25 ± 2 years). FBF (Doppler ultrasound) and blood pressure (Finapres) were measured at rest and during graded handgrip exercise at 5%, 15%, and 25% maximal voluntary contraction (MVC) lasting 4 min each. At the highest workload (25% MVC), systemic hypoxia (80% SaO2) was induced and exercise continued for three additional minutes. Subjects ingested concentrated BR (12.6 mmol nitrate (n = 5) or 16.8 mmol nitrate (n = 6) and repeated the exercise bout either 2 (12.6 mmol) or 3 h (16.8 mmol) postconsumption. Compared to control, BR significantly increased FBF at 15% MVC (184 ± 15 vs. 164 ± 15 mL/min), 25% MVC (323 ± 27 vs. 286 ± 28 mL/min), and 25% + hypoxia (373 ± 39 vs. 343 ± 32 mL/min) and this was due to increases in vascular conductance (i.e., vasodilation). The effect of BR on hemodynamics was not different between the two doses of BR ingested. Forearm VO2 was also elevated during exercise at 15% and 25% MVC. We conclude that acute increases in circulating NO3− and NO2− via BR increases muscle blood flow during moderate‐ to high‐intensity handgrip exercise via local vasodilation. These findings may have important implications for aging and diseased populations that demonstrate impaired muscle perfusion and exercise intolerance.
Collapse
Affiliation(s)
- Jennifer C Richards
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Center for Cardiovascular Research, Colorado State University, Fort Collins, Colorado, USA
| | - Matthew L Racine
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Center for Cardiovascular Research, Colorado State University, Fort Collins, Colorado, USA
| | - Christopher M Hearon
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Center for Cardiovascular Research, Colorado State University, Fort Collins, Colorado, USA
| | - Megan Kunkel
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Center for Cardiovascular Research, Colorado State University, Fort Collins, Colorado, USA
| | - Gary J Luckasen
- Medical Center of the Rockies Foundation, Poudre Valley Health System, Loveland, Colorado, USA
| | - Dennis G Larson
- Medical Center of the Rockies Foundation, Poudre Valley Health System, Loveland, Colorado, USA
| | - Jason D Allen
- Department of Kinesiology, Curry School of Education, University of Virginia, Charlottesville, Virginia, USA.,Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Frank A Dinenno
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Center for Cardiovascular Research, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
42
|
Keller‐Ross ML, Sarkinen AL, Chantigian DP, Cross TJ, Johnson BD, Olson TP. Interaction of hypoxia and vascular occlusion on cardiorespiratory responses during exercise. TRANSLATIONAL SPORTS MEDICINE 2018. [DOI: 10.1002/tsm2.60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Manda L. Keller‐Ross
- Division of Physical Therapy, Medical School University of Minnesota Minneapolis Minnesota
| | | | - Daniel P. Chantigian
- Division of Physical Therapy, Medical School University of Minnesota Minneapolis Minnesota
| | - Troy J. Cross
- Internal Medicine Mayo Clinic College of Medicine Rochester Minnesota
- Menzies Health Institute Queensland, Gold Coast Griffith University QLD Australia
| | - Bruce D. Johnson
- Internal Medicine Mayo Clinic College of Medicine Rochester Minnesota
| | - Thomas P. Olson
- Internal Medicine Mayo Clinic College of Medicine Rochester Minnesota
| |
Collapse
|
43
|
Fornasiero A, Savoldelli A, Skafidas S, Stella F, Bortolan L, Boccia G, Zignoli A, Schena F, Mourot L, Pellegrini B. Delayed parasympathetic reactivation and sympathetic withdrawal following maximal cardiopulmonary exercise testing (CPET) in hypoxia. Eur J Appl Physiol 2018; 118:2189-2201. [PMID: 30051338 DOI: 10.1007/s00421-018-3945-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/13/2018] [Indexed: 12/14/2022]
Abstract
PURPOSE This study investigated the effects of acute hypoxic exposure on post-exercise cardiac autonomic modulation following maximal cardiopulmonary exercise testing (CPET). METHODS Thirteen healthy men performed CPET and recovery in normoxia (N) and normobaric hypoxia (H) (FiO2 = 13.4%, ≈ 3500 m). Post-exercise cardiac autonomic modulation was assessed during recovery (300 s) through the analysis of fast-phase and slow-phase heart rate recovery (HRR) and heart rate variability (HRV) indices. RESULTS Both short-term, T30 (mean difference (MD) 60.0 s, 95% CI 18.2-101.8, p = 0.009, ES 1.01), and long-term, HRRt (MD 21.7 s, 95% CI 4.1-39.3, p = 0.020, ES 0.64), time constants of HRR were higher in H. Fast-phase (30 and 60 s) and slow-phase (300 s) HRR indices were reduced in H either when expressed in bpm or in percentage of HRpeak (p < 0.05). Chronotropic reserve recovery was lower in H than in N at 30 s (MD - 3.77%, 95% CI - 7.06 to - 0.49, p = 0.028, ES - 0.80) and at 60 s (MD - 7.23%, 95% CI - 11.45 to - 3.01, p = 0.003, ES - 0.81), but not at 300 s (p = 0.436). Concurrently, Ln-RMSSD was reduced in H at 60 and 90 s (p < 0.01) but not at other time points during recovery (p > 0.05). CONCLUSIONS Affected fast-phase, slow-phase HRR and HRV indices suggested delayed parasympathetic reactivation and sympathetic withdrawal after maximal exercise in hypoxia. However, a similar cardiac autonomic recovery was re-established within 5 min after exercise cessation. These findings have several implications in cardiac autonomic recovery interpretation and in HR assessment in response to high-intensity hypoxic exercise.
Collapse
Affiliation(s)
- Alessandro Fornasiero
- CeRiSM, Sport Mountain and Health Research Centre, University of Verona, via Matteo del Ben, 5/b, 38068, Rovereto, Italy. .,Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Aldo Savoldelli
- CeRiSM, Sport Mountain and Health Research Centre, University of Verona, via Matteo del Ben, 5/b, 38068, Rovereto, Italy.,Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Spyros Skafidas
- CeRiSM, Sport Mountain and Health Research Centre, University of Verona, via Matteo del Ben, 5/b, 38068, Rovereto, Italy.,Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Federico Stella
- CeRiSM, Sport Mountain and Health Research Centre, University of Verona, via Matteo del Ben, 5/b, 38068, Rovereto, Italy.,Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Lorenzo Bortolan
- CeRiSM, Sport Mountain and Health Research Centre, University of Verona, via Matteo del Ben, 5/b, 38068, Rovereto, Italy.,Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Gennaro Boccia
- NeuroMuscularFunction Research Group, Department of Medical Sciences, School of Exercise and Sport Sciences, University of Turin, Turin, Italy
| | - Andrea Zignoli
- CeRiSM, Sport Mountain and Health Research Centre, University of Verona, via Matteo del Ben, 5/b, 38068, Rovereto, Italy
| | - Federico Schena
- CeRiSM, Sport Mountain and Health Research Centre, University of Verona, via Matteo del Ben, 5/b, 38068, Rovereto, Italy.,Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Laurent Mourot
- Laboratory of Prognostic Markers and Regulatory Factors of Cardiovascular Diseases and Exercise Performance, Health, Innovation Platform (EA 3920), University of Bourgogne Franche-Comté, Besançon, France.,Tomsk Polytechnic University, Tomsk, Russia
| | - Barbara Pellegrini
- CeRiSM, Sport Mountain and Health Research Centre, University of Verona, via Matteo del Ben, 5/b, 38068, Rovereto, Italy.,Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
44
|
Racine ML, Crecelius AR, Luckasen GJ, Larson DG, Dinenno FA. Inhibition of Na + /K + -ATPase and K IR channels abolishes hypoxic hyperaemia in resting but not contracting skeletal muscle of humans. J Physiol 2018; 596:3371-3389. [PMID: 29603743 DOI: 10.1113/jp275913] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 03/27/2018] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS Increasing blood flow (hyperaemia) to exercising muscle helps match oxygen delivery and metabolic demand. During exercise in hypoxia, there is a compensatory increase in muscle hyperaemia that maintains oxygen delivery and tissue oxygen consumption. Nitric oxide (NO) and prostaglandins (PGs) contribute to around half of the augmented hyperaemia during hypoxic exercise, although the contributors to the remaining response are unknown. In the present study, inhibiting NO, PGs, Na+ /K+ -ATPase and inwardly rectifying potassium (KIR ) channels did not blunt augmented hyperaemia during hypoxic exercise beyond previous observations with NO/PG block alone. Furthermore, although inhibition of only Na+ /K+ -ATPase and KIR channels abolished hyperaemia during hypoxia at rest, it had no effect on augmented hyperaemia during hypoxic exercise. This is the first study in humans to demonstrate that Na+ /K+ -ATPase and KIR channel activation is required for augmented muscle hyperaemia during hypoxia at rest but not during hypoxic exercise, thus providing new insight into vascular control. ABSTRACT Exercise hyperaemia in hypoxia is augmented relative to the same exercise intensity in normoxia. During moderate-intensity handgrip exercise, endothelium-derived nitric oxide (NO) and vasodilating prostaglandins (PGs) contribute to ∼50% of the augmented forearm blood flow (FBF) response to hypoxic exercise (HypEx), although the mechanism(s) underlying the remaining response are unclear. We hypothesized that combined inhibition of NO, PGs, Na+ /K+ -ATPase and inwardly rectifying potassium (KIR ) channels would abolish the augmented hyperaemic response in HypEx. In healthy young adults, FBF responses were measured (Doppler ultrasound) and forearm vascular conductance was calculated during 5 min of rhythmic handgrip exercise at 20% maximum voluntary contraction under regional sympathoadrenal inhibition in normoxia and isocapnic HypEx (O2 saturation ∼80%). Compared to control, combined inhibition of NO, PGs, Na+ /K+ -ATPase and KIR channels (l-NMMA + ketorolac + ouabain + BaCl2; Protocol 1; n = 10) blunted the compensatory increase in FBF during HypEx by ∼50% (29 ± 6 mL min-1 vs. 62 ± 8 mL min-1 , respectively, P < 0.05). By contrast, ouabain + BaCl2 alone (Protocol 2; n = 10) did not affect this augmented hyperaemic response (50 ± 11 mL min-1 vs. 60 ± 13 mL min-1 , respectively, P > 0.05). However, the blocked condition in both protocols abolished the hyperaemic response to hypoxia at rest (P < 0.05). We conclude that activation of Na+ /K+ -ATPase and KIR channels is involved in the hyperaemic response to hypoxia at rest, although it does not contribute to the augmented exercise hyperaemia during hypoxia in humans.
Collapse
Affiliation(s)
- Matthew L Racine
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Anne R Crecelius
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Gary J Luckasen
- Cardiovascular Research Center, Colorado State University, Fort Collins, CO, USA.,Medical Center of the Rockies Foundation, University of Colorado Health System, Loveland, CO, USA
| | - Dennis G Larson
- Medical Center of the Rockies Foundation, University of Colorado Health System, Loveland, CO, USA
| | - Frank A Dinenno
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA.,Cardiovascular Research Center, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
45
|
Crisafulli A, Sainas G, Magnani S, Roberto S, Mannoni MO, Pinna V, Tocco F, Doneddu A, Mulliri G. Muscle metaboreflex activity after an acute session of exercise under hypoxia. FASEB J 2018. [DOI: 10.1096/fasebj.2018.32.1_supplement.909.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
46
|
Tremblay JC, Howe CA, Ainslie PN, Pyke KE. UBC-Nepal Expedition: imposed oscillatory shear stress does not further attenuate flow-mediated dilation during acute and sustained hypoxia. Am J Physiol Heart Circ Physiol 2018. [PMID: 29522371 DOI: 10.1152/ajpheart.00717.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Experimentally induced oscillatory shear stress (OSS) and hypoxia reduce endothelial function in humans. Acute and sustained hypoxia may cause increases in resting OSS; however, whether this influences endothelial susceptibility to further increases in OSS is unknown. Healthy lowlanders ( n = 15, 30 ± 6 yr; means ± SD) participated in three OSS interventions: two interventions at sea level [normoxia and after 20 min of normobaric hypoxia (acute hypoxia, 11% O2)] and one intervention 5-7 days after a 9-day ascent to 5,050 m (sustained hypoxia). OSS was provoked in the brachial artery using a 30-min distal cuff inflation (75 mmHg). Endothelial function was assessed before and after each intervention by reactive hyperemia flow-mediated dilation (FMD). Shear stress magnitude and patterns were obtained via Duplex ultrasound. Baseline retrograde shear stress and OSS were greater in acute hypoxia versus normoxia ( P < 0.001), and OSS was elevated in sustained hypoxia versus normoxia ( P = 0.011). The intervention further augmented OSS during each condition. Preintervention FMD was decreased by 29 ± 48% in acute hypoxia and by 25 ± 31% in sustained hypoxia compared with normoxia ( P = 0.001 and 0.026); these changes correlated with changes in baseline mean and antegrade shear stress. After the intervention, FMD decreased during normoxia (-41 ± 26%, P < 0.001) and was unaltered during acute or sustained hypoxia. Therefore, a 30-min exposure to OSS reduced FMD during normoxia, a condition with an unchallenged, healthy endothelium; however, imposed OSS did not appear to worsen endothelial function during acute or sustained hypoxia. Exposure to an altered magnitude and pattern of shear stress at baseline in hypoxia may contribute to the insensitivity to further acute augmentation of OSS. NEW & NOTEWORTHY We investigated whether the endothelium remains sensitive to experimental increases in oscillatory shear stress in acute (11% O2) and sustained (2 wk at 5,050 m) hypoxia. Hypoxia altered baseline shear stress and decreased endothelial function (flow-mediated dilation); however, exposure to experimentally induced oscillatory shear stress only impaired flow-mediated dilation in normoxia.
Collapse
Affiliation(s)
- Joshua C Tremblay
- Cardiovascular Stress Response Laboratory, School of Kinesiology and Health Studies, Queen's University , Kingston, Ontario , Canada
| | - Connor A Howe
- Centre for Heart, Lung, and Vascular Health, University of British Columbia , Kelowna, British Columbia , Canada
| | - Philip N Ainslie
- Centre for Heart, Lung, and Vascular Health, University of British Columbia , Kelowna, British Columbia , Canada
| | - Kyra E Pyke
- Cardiovascular Stress Response Laboratory, School of Kinesiology and Health Studies, Queen's University , Kingston, Ontario , Canada
| |
Collapse
|
47
|
Abstract
In some organisms and cells, oxygen availability influences oxygen consumption. In this review, we examine this phenomenon of hypoxic hypometabolism (HH), discussing its features, mechanisms, and implications. Small mammals and other vertebrate species exhibit "oxyconformism," a downregulation of metabolic rate and body temperature during hypoxia which is sensed by the central nervous system. Smaller body mass and cooler ambient temperature contribute to a high metabolic rate in mammals. It is this hypermetabolic state that is suppressed by hypoxia leading to HH. Larger mammals including humans do not exhibit HH. Tissues and cells also exhibit reductions in respiration during hypoxia in vitro, even at oxygen levels ample for mitochondrial oxidative phosphorylation. The mechanisms of cellular HH involve intracellular oxygen sensors including hypoxia-inducible factors, AMP-activated protein kinase (AMPK), and mitochondrial reactive oxygen species (ROS) which downregulate mitochondrial activity and ATP utilization. HH has a profound impact on cardiovascular, respiratory, and metabolic physiology in rodents. Therefore, caution should be exercised when extrapolating the results of rodent hypoxia studies to human physiology.
Collapse
|
48
|
Schroeder T, Piantadosi CA, Natoli MJ, Autmizguine J, Cohen-Wolkowieczs M, Hamilton KL, Bell C, Klawitter J, Christians U, Irwin DC, Noveck RJ. Safety and Ergogenic Properties of Combined Aminophylline and Ambrisentan in Hypoxia. Clin Pharmacol Ther 2017; 103:888-898. [PMID: 28857147 PMCID: PMC5947522 DOI: 10.1002/cpt.860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 01/24/2023]
Abstract
We hypothesized that concomitant pharmacological inhibition of the endothelin and adenosine pathway is safe and improves exercise performance in hypoxic humans, via a mechanism that does not involve augmentation of blood oxygenation. To test this hypothesis, we established safety and drug interactions for aminophylline (500 mg) plus ambrisentan (5 mg) in normoxic volunteers. Subsequently, a placebo-controlled study was employed to test the combination in healthy resting and exercising volunteers at simulated altitude (4,267 m). No serious adverse events occurred. Drug interaction was minimal or absent. Aminophylline alleviated hypoxia-induced headaches. Aminophylline, ambrisentan, and their combination all significantly (P < 0.05 vs. placebo) improved submaximal hypoxic exercise performance (19.5, 20.6, and 19.1% >placebo). Single-dose ambrisentan increased blood oxygenation in resting, hypoxic subjects. We conclude that combined aminophylline and ambrisentan offer promise to safely increase exercise capacity in hypoxemic humans without relying on increasing blood oxygen availability.
Collapse
Affiliation(s)
| | - Claude A Piantadosi
- Hyperbaric Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Michael J Natoli
- Hyperbaric Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Julie Autmizguine
- Department of Pharmacology, University of Montreal, Montreal, Quebec, Canada
| | - Michael Cohen-Wolkowieczs
- Duke Early Phase Clinical Research Unit, Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Karyn L Hamilton
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, USA
| | - Christopher Bell
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, USA
| | - Jelena Klawitter
- iC42 Integrated Solutions in Clinical Research and Development, University of Colorado, Bioscience East, Aurora, Colorado, USA
| | - Uwe Christians
- iC42 Integrated Solutions in Clinical Research and Development, University of Colorado, Bioscience East, Aurora, Colorado, USA
| | - David C Irwin
- Department of Medicine, University of Colorado Denver Anschutz Campus, Aurora, Colorado, USA
| | - Robert J Noveck
- Hyperbaric Center, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
49
|
Gasier HG, Reinhold AR, Loiselle AR, Soutiere SE, Fothergill DM. Effects of oral sodium nitrate on forearm blood flow, oxygenation and exercise performance during acute exposure to hypobaric hypoxia (4300 m). Nitric Oxide 2017; 69:1-9. [DOI: 10.1016/j.niox.2017.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/16/2017] [Accepted: 07/01/2017] [Indexed: 10/19/2022]
|
50
|
Convertino VA, Sawka MN. Wearable technology for compensatory reserve to sense hypovolemia. J Appl Physiol (1985) 2017; 124:442-451. [PMID: 28751369 DOI: 10.1152/japplphysiol.00264.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Traditional monitoring technologies fail to provide accurate or early indications of hypovolemia-mediated extremis because physiological systems (as measured by vital signs) effectively compensate until circulatory failure occurs. Hypovolemia is the most life-threatening physiological condition associated with circulatory shock in hemorrhage or sepsis, and it impairs one's ability to sustain physical exertion during heat stress. This review focuses on the physiology underlying the development of a novel noninvasive wearable technology that allows for real-time evaluation of the cardiovascular system's ability to compensate to hypovolemia, or its compensatory reserve, which provides an individualized estimate of impending circulatory collapse. Compensatory reserve is assessed by real-time changes (sampled millions of times per second) in specific features (hundreds of features) of arterial waveform analog signals that can be obtained from photoplethysmography using machine learning and feature extraction techniques. Extensive experimental evidence employing acute reductions in central blood volume (using lower-body negative pressure, blood withdrawal, heat stress, dehydration) demonstrate that compensatory reserve provides the best indicator for early and accurate assessment for compromises in blood pressure, tissue perfusion, and oxygenation in resting human subjects. Engineering challenges exist for the development of a ruggedized wearable system that can measure signals from multiple sites, improve signal-to-noise ratios, be customized for use in austere conditions (e.g., battlefield, patient transport), and be worn during strenuous physical activity.
Collapse
Affiliation(s)
- Victor A Convertino
- Battlefield Health & Trauma Center for Human Integrative Physiology, U. S. Army Institute of Surgical Research, Joint Base San Antonio-Fort Sam Houston, San Antonio, Texas
| | - Michael N Sawka
- School of Biological Sciences, Georgia Institute of Technology , Atlanta, Georgia
| |
Collapse
|